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Abstract

A straight�ahead walk in an embedded Eulerian graph G always
passes from an edge to the opposite edge in the rotation at the same
vertex� A straight�ahead walk is called Eulerian if all the edges of the
embedded graph G are traversed in this way starting from an arbitrary
edge� An embedding that contains an Eulerian straight�ahead walk is
called an Eulerian embedding�

In this article� we characterize some properties of Eulerian embed�
dings of graphs and of embeddings of graphs such that the correspond�
ing medial graph is Eulerian embedded� We prove that in the case of
��valent planar graphs� the number of straight ahead walks does not
depend on the actual embedding in the plane� Finally� we show that
the minimal genus over Eulerian embeddings of a graph can be quite
close to the minimal genus over all embeddings�

� Introduction

Given an Eulerian graph� any matching of edges at each vertex results in a
circuit decomposition of the graph� Since there are so many matchings� it
would be nice to look at matchings that arise in some natural way or are
connected to other properties of the graph� Embeddings of the graph provide
an interesting source of matchings� The purpose of this paper is to study the
relationship between the embeddings of an Eulerian graph and the circuit
decomposition of the graph induced by the embedding by a �straight�ahead�
matching� In the other direction� we also show that an Eulerian circuit in a
graph can be used to construct interesting embeddings of the graph�
A straight�ahead walk or a SAW in the embedded Eulerian graph G al�

ways passes from an edge to the opposite edge adjacent to the same vertex�
two edges are �opposite� at a vertex of valence �d in an embedded graph if
they are d edges apart in the cyclic ordering �rotation� of the edges at that
vertex induced by the embedding�
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In this paper we assume the graphs to be 	nite and connected and the
embeddings to be ��cell� Let us now introduce some terminology and no�
tation� A circuit is a closed walk with no repeated edges� The straight
ahead walks � the SAWs� of an embedded Eulerian graph G induce a circuit
partition of the edges� Let us denote by s
G � S� the number of compo�
nents of SAW decomposition of G� Notice that this number depends not
only on the surface S but also on the given embedding in that surface� it
is not hard� for example� to give two embeddings of K� in the torus� such
that one embedding has two SAWs and the other has three� An embedding
of an Eulerian graph G in a surface S is Eulerian� if it contains exactly
one SAW� ie� s
G � S� � �� The medial graph of an embedded graph G�
Me
G�� is a graph� embedded in the same surface as G and is obtained from
G as follows the vertices of Me
G� are the edges of G and two vertices of
Me
G� are adjacent if they are adjacent edges in the rotation of a vertex
in G� Note that embedded graphs� which are dual to each other� have the
same medial graphs� The medial graph of any graph is ��valent and thus
Eulerian� An embedded graph is Eulerian medial embedded if its medial is
Eulerian embedded�

Eulerian embeddings of ��valent graphs in the plane are just knot pro�
jections 
without a speci	cation of which parts of the knot are over or under
other parts� and hence are related to Gauss�s coding of knot projections 
see
����� An Eulerian embedding of a ��valent graph in a surface of genus g can
be viewed as a knot projection on a genus g Heegard splitting surface for
a closed ��manifold� Unfortunately� the Reidermeister moves for such knot
projections include moves across solid handles of the splitting and make knot
theory� say for knot polynomials� too complicated� Planar Eulerian graphs
are discussed in ���� Works of Bouchet and others ��� �� �� �� ��� are also
related to this paper�

� Counting SAWs in graphs and medial graphs�

some examples

In this section� we give some examples of Eulerian embedded plane graphs
and of plane graphs whose medial graph is Eulerian embedded� The most
obvious examples of Eulerian embedded graphs are cycles Cn� The medial
graphs of odd cycles� which are odd cycles with double edges� are also Eu�
lerian embedded� There exist less trivial in	nite families of plane graphs�
whose medial graphs are Eulerian embedded� too� It is easy to see� that
the medial of the pyramid graph � the antiprism on Figure � is Eulerian
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Figure � The pyramid graph and its medial graph � the antiprism A��

embedded� We used the computer system Vega� see ���� to verify whether
this property holds for all the pyramid graphs� We also checked the number
of SAWs in medial graphs of prisms �n and antiprisms An� The results gave
us the following theorem� which we state without proof

Theorem �
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�
� n � �k
� n �� �k

s
Me
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���
��
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�
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� n �� �k

Let G� and G� be graphs� ��cell embedded in orientable surfaces Sk�
and Sk�� respectively� where Sk denotes the sphere with k � � handles� Let

u�� v�� be an edge in G� and 
u�� v�� be an edge in G�� If these edges are
not both bridges� we can de	ne the connected sum G��G� of graphs G� and
G� with respect to the directed edges 
v�� u�� and 
v�� u�� as follows take
the union of graphs G� and G� and substitute the edges 
v�� u�� and 
v�� u��
by the edges 
v�� v�� and 
u�� u��� The rotation scheme is inherited from the
embeddings of G� and G�� except for the vertices v�� v�� u� and u�� In the
rotation around v�� u� is substituted by v�� in the rotation around u�� v� is
substituted by u�� and in the rotation around v�� u� is substituted by v�� in
the rotation around u�� v� is substituted by u�� The connected sum of G�

and G� is therefore a connected graph� and if at least one of the edges lies
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on the boundary of two di�erent faces� the graph G��G� is ��cell embedded
in the surface Sk��k�� The following theorem is very useful for constructing
in	nite families of Eulerian embedded graphs

Theorem � Let G � G��G�� Then s
G � S� � s
G� � Sk�� � s
G� �
Sk�� � �� In particular� if G� and G� are Eulerian embedded� then G is

Eulerian embedded as well�

Figure � The connected sum of the antiprisms A� and A��

In Figure �� the connected sum of the antiprisms A� and A� is shown�
Both A� and A� are Eulerian embedded and so is their connected sum�

Given an embedded graph� we substitute every k�valent vertex by a
cycle on k vertices� The obtained graph is cubic and embedded in the same
surface� It is called the truncation of the embedded graph� There are two
types of faces in a truncated graph the ones that correspond to former
vertices and the ones that correspond to the faces with the boundary twice
as long as in the original graph� In ���� the following theorem is proved

Theorem � The truncations of cubic maps preserve the number of SAWs

in their medials�

So we obtain some other in	nite families of Eulerian embedded plane
graphs � the medials of all the truncations of the �odd� prisms� medials of
their truncations and so on�

� Number of SAWs in ��valent plane graphs

Every Eulerian directed graph has an Eulerian embedding� orientable and
nonorientable� To obtain such an embedding just choose any embedding
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where SAW is the given Eulerian circuit � at each vertex the opposite edges
are consecutive in the Eulerian circuit�
But it is not at all obvious how to embed a graph in a given surface

with the minimal possible number of SAWs or to 	nd the surface of minimal
genus in which a graph G can be embedded so to have only one SAW� These
questions seem to be very di�cult and are still open� Nevertheless� for the
plane the following result holds

Theorem � Let G be a planar ��valent graph� Then the number of SAWs

is the same for any embedding of G in the plane�

Proof For ��connected graphs the theorem trivially holds� since they
have essentialy unique embeddings in the plane�
For ��connected graphs the proof depends on the well�known theorem�

that any embedding of a planar ��connected graph can be obtained from
another by a sequence of operations dual to the Witney�s ��switchings� This
operation is de	ned as follows if we have a separation pair fx� yg� we turn
around one component of a graph� adjacent to x and y� so the orders of
neighbors of x and y in this component are reversed� This procedure is
illustrated in Figure ��

Figure � An example of a dual ��switching

The proof consists of considering of all possible cases of how SAWs can
pass through a separation pair� As an example� let us consider the case�
where there is only one SAW passing through x and y� and it passes 	rst
twice through x and then twice through y� After the dual ��switching� the
SAW through x and y is changed� but the number of SAWs in G remains
the same� see Figure �� where the SAWs through x and y are depicted in
bold lines and the rest of the graph� in which the dual ��switching doesn�t
a�ect the SAWs� is depicted in gray�
If G is not ��connected� it has a cut�vertex� say v� Through the cut�

vertex v� only one SAW can pass� Changing the rotation at v such that the
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embedding remains plane does not change the number of SAWs through v� �

This theorem does not hold for all planar Eulerian graphs� In Figure �
two embeddings in the plane of the same graph are shown� which contain
di�erent numbers of SAWs�

Figure � An example of a planar graph having di�erent number of SAWs
in di�erent embeddings in the plane�

But from the proof of the Theorem � it can easily be seen that the
Theorem holds for a more general class of ��valent graphs� namely the planar
Eulerian graphs with cut�vertices and separation pairs of degree not di�erent
from ��

Corollary � Let G be a planar Eulerian graph with possible cut�vertices and

separation pairs of degree �� Then the number of SAWs is independent of

the embedding of G in the plane�

� Eulerian medial embeddings

Any ��cell embedding of a connected graph G can be represented by a triple

G�P� ��� where P is the rotation scheme of G and �  E
G� � f��� �g
assigns signatures to the edges� which tells us� whether an edge is orientation
preserving or orientation reversing� see �����

Given an embedding of a graph G� we change the signatures of the edges
such that the orientation preserving edges become orientation reversing and
vice versa� A di�erent embedding of G is obtained� which is called the
Petrie dual of 
the embedded� graph G� The faces of the Petrie dual are
called Petrie walks of the original embedding of G� It is not hard to see that
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SAWs of medial graphs correspond to Petrie walks of the original map� See�
for example� ���� where the Petrie walks are called left�right paths� That
means� that an Eulerian medial embedding of a graph is equivalent to Petrie
dual being ��face embedded�

Theorem � Every graph embedding can be subdivided to give an Eulerian

medial embedding�

Proof The proof depends on the following idea If SAWs of a ��valent
graph have two circuits at a vertex the other two matchings at a vertex give
one circuit through that vertex� Subdividing an edge of the original graph
can be viewed as changing the matching of the corresponding vertex of the
medial graph� At each step we subdivide an edge� whose corresponding
vertex of the medial graph is contained in two di�erent SAWs� and at the
end we obtain an Eulerian medial embedded graph� �

The following corollary is an easy consequence of the Theorem and the
fact that for every surface there exist medial graphs�

Corollary � Every surface admits Eulerian embeddings�

The question arises� whether every graph has an Eulerian medial em�
bedding� If we consider only orientable surfaces� the answer is �no�� The
simplest example of graphs having no orientable Eulerian embedding are
even cycles� The embedding of an even cycle to an orientable surface is
unique and the corresponding medial graph has two SAWs� Let us de	ne a
cactus as a graph� in which every vertex belongs to at most one cycle�

Theorem 	 In a cactus� the number of SAWs in the medial is equal to the

number of even cycles � 	�

Proof By induction� �

Note� that Theorem � is not valid for a similar class of graphs with the
property that each edge belongs to at most one cycle�
Attaching a graph G� to graph G� by an edge is the following procedure

we choose edges e� inG� and e� inG�� subdivide ei and denote the additional
vertex by vi� i � �� �� Then we join the vertices v� and v� by an edge�

Corollary 
 If a cactus with even cycles is attached by an edge to an ar�
bitrary graph G� then the resulting graph doesn
t have an Eulerian medial

embedding�
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These examples of graphs are not even ��connected� The graph of a ��
dimensional cube� usually denoted by Q�� is a ��connected cubic graph� It
has �� di�erent embeddings 
many of them are equivalent�� We have counted
the numbers of SAWs in the medials of all these embeddings of Q� with the
help of a computer and found out� that they always have more than one
SAW� The question arises� which ��connected graphs do have an Eulerian
medial embedding� In particular� is it true that a graph with a ��face em�
bedding has an Eulerian medial embedding�

If we also allow nonorientable embeddings� every graph has an Eulerian
medial embedding�

Theorem �� For every rotation scheme� there is an assignment of signa�

tures to edges that gives an Eulerian medial embedding �possibly nonori�

entable��

Proof The proof is divided in two steps�

� Change the signatures of edges between distinct faces until a one�face
embedding is obtained� If the signature of an edge between two faces
is changed� these two faces are merged to one face�

� The Petrie dual of the so�obtained graph has the medial with required
property�

�

� Bounds on Eulerian genus

Every Eulerian directed graph has an Eulerian embedding� orientable and
non orientable� To obtain such an embedding just choose any embedding
where the SAW is the given Eulerian circuit � at each vertex the opposite
edges are consecutive in the Eulerian circuit� We can de	ne the Eulerian
genus of a graph G as the smallast possible genus of an orientable surface�
in which G can be Eulerian embedded� In section �� we have seen some
examples of planar graphs which are Eulerian embedded in the plane� In
Figure � the embedding of K� in the torus is shown� It only has one SAW�
which means� that the Eulerian genus of K� is equal to its ordinary genus�

Lemma �� Let G be an Eulerian graph� embedded in a surface of genus
g with s
G � Sg� � k� Then the Eulerian genus of G is less or equal to

g � k � ��
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Figure � An Eulerian embedding of K� in the torus�

Proof Let e and f be two edges� adjacent in the rotation at a vertex
v� and let them belong to di�erent SAWs 
if there is more than � SAW� this
must happen�� Switching e and f at v causes the SAWs through e and f
to be joined into one SAW� We repeat this procedure until there is only one
SAW left� Switcing the rotation at a vertex can only increase the genus by
one 
see� for example ����� So after k � � switches� the genus is increased by
at most k � �� �

Remark let 
���� e�� e�� ���� ek� ����� be the rotation at a vertex v and let the
edges e�� ���ek belong to distinct SAWs� Then changing the rotation at v to

���� e�� ���� ek � e�� ���� causes all these SAWs to join�

Corollary �� The Eulerian genus of Cm � Cn is less or equal to m� n�

Proof The graph Cm�Cn can be embedded in the torus in the obvious
way such that it contains n�m SAWs� It follows from the Lemma� that the
Eulerian genus must be at most � � 
m� n� �� � m� n� �

Let us state a theorem� characterizing the number of SAWs in covering
graphs� For the de	nitions of covering graphs and Cayley graphs see� for
example� ����

Theorem �� Let G be an embedded voltage graph with voltages from group

� of order n� Let the SAWs of G be C�� C�� ���� Ck and let the product of

voltages along Ci have order mi in the voltage group �� i � �� �� ���� k� �The
voltage on a minus directed edge is understood to be the group inverese of the

voltage on its reverse edge�� Then the derived graph �G has n
m�
� n

m�
� ���� n

mk

SAWs�

Proof The proof is based on the following theorem from ��� Let C be
a k�cycle in the base space of an ordinary voltage graph 
G��� such that the
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product of voltages along C has order m in the voltage group �� Then each
component of the preimage p��
C� is a k �m�cycle and there are j�j�m such
components� �

Corollary �� Let G be an Eulerian embedded graph� which is Eulerian di�

rected according to its SAW� Given any cyclic voltage graph on G such that

the product of voltages along the directed edges generates the group� then the

covering graph is Eulerian embedded�

Cayley graphs are regular coverings of bouquets of circles� A regular
embedding of a Cayley graph is given by lifting the rotation of the bouquet
of circles to the Cayley graph� The rotation is called special� if the SAW in
the bouquet of circles is Eulerian� The following Corollary is thus an easy
consequence of the Corollary ���

Corollary �� Given any regular embedding of an even Cayley graph� it is

Eulerian if and only if the group is cyclic� the rotation is special and the
product of the generators along the SAW in the bouquet of circles generates

the group�

Figure � A triangular embedding of B� in the double torus�

Example � Figure � shows the embedding of the bouquet of � circles B� in

the double torus� Its edges are directed and have voltages from the group Z���
The covering graph of this voltage graph is a triangular embedding of K��

and thus a minimal genus embedding�

The number of SAWs in the embedding of B� is � the products of voltages

along the SAWs are 	� and � in Z��� and are relatively prime to 	�� By

the theorem 	�� the triangular embedding of K��� obtained from 
B�� Z����
contains two SAWs and we conclude that the Eulerian genus of K�� di�ers

from its ordinary genus by at most 	�
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The construction can be generalized to all complete graphs on ��t � �
vertices� which was done by G� Ringel in ���� 
see ���� or ����� With help of a
computer we have constructed the graphs B	t��� which give us the triangular
embeddings of K��t�
 as covering graphs� We calculated the numbers of
SAWs in B	t��� t � �� ���� ���� and the products of voltages along the SAWs�
Part of the results is given in the tables � and �� It is interesting� that there
exist also large t such that the Eulerian genus of K��t�
 di�ers from the
ordinary genus of K��t�
 by at most ��

t� � � 	 � 
 � �  � �� �� �� �	 �� �
 ��

s�B�t��� St��� � 	 � 	 � � � 
 � � � � � 	 �� 	

t� �� � �� �� �� �� �	 �� �
 �� �� � �� 	�

s�B�t��� St��� � � � 	 � � � �
 � 	 � 
  �

Table � Numbers of SAWs in the graphs B	t���

t� Group Products of voltages along the SAWs

� Z�� �� �
� Z�� �� �� �
� Z�� �� �� � �� � ��
� Z�� �� � �
� Z	
 �� ��
� Z
� �� �� �� � �� �� ��
� Z�� �� �� � ��
� Z��� � �� �� �� ��
� Z��� �� �� �� �� �� ��
�� Z��
 �� ��� �� �� �� ��� ��
�� Z��� �� ��
�� Z��� ��� ��� �� �� �� ��� �� �� ��

Table � Products of voltages along the SAWs in the graphs B	t���

� Conclusion and open problems

The natural question is which Eulerian graphs have their Eulerian genus
equal to the ordinary genus� Another question that can be posed is the
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following which ��cell embeddings of graphs have their connected and four�
valent medial graphs Eulerian embedded� Finally� which graphs have at
least one orientable embedding such that the corresponding medial graph is
Eulerian embedded�
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