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Abstract

A straight-ahead walk in an embedded Eulerian graph G always
passes from an edge to the opposite edge in the rotation at the same
vertex. A straight-ahead walk is called Eulerian if all the edges of the
embedded graph G are traversed in this way starting from an arbitrary
edge. An embedding that contains an Eulerian straight-ahead walk is
called an Eulerian embedding.

In this article, we characterize some properties of Eulerian embed-
dings of graphs and of embeddings of graphs such that the correspond-
ing medial graph is Eulerian embedded. We prove that in the case of
4-valent planar graphs, the number of straight ahead walks does not
depend on the actual embedding in the plane. Finally, we show that
the minimal genus over Eulerian embeddings of a graph can be quite
close to the minimal genus over all embeddings.

1 Introduction

Given an Eulerian graph, any matching of edges at each vertex results in a
circuit decomposition of the graph. Since there are so many matchings, it
would be nice to look at matchings that arise in some natural way or are
connected to other properties of the graph. Embeddings of the graph provide
an interesting source of matchings. The purpose of this paper is to study the
relationship between the embeddings of an Eulerian graph and the circuit
decomposition of the graph induced by the embedding by a ”straight-ahead”
matching. In the other direction, we also show that an Eulerian circuit in a
graph can be used to construct interesting embeddings of the graph.

A straight-ahead walk or a SAW in the embedded Eulerian graph G al-
ways passes from an edge to the opposite edge adjacent to the same vertex;
two edges are ”opposite” at a vertex of valence 2d in an embedded graph if
they are d edges apart in the cyclic ordering (rotation) of the edges at that
vertex induced by the embedding.



In this paper we assume the graphs to be finite and connected and the
embeddings to be 2-cell. Let us now introduce some terminology and no-
tation. A circuit is a closed walk with no repeated edges. The straight
ahead walks , the SAWSs, of an embedded Eulerian graph G induce a circuit
partition of the edges. Let us denote by s(G — S) the number of compo-
nents of SAW decomposition of G. Notice that this number depends not
only on the surface S but also on the given embedding in that surface; it
is not hard, for example, to give two embeddings of K5 in the torus, such
that one embedding has two SAWs and the other has three. An embedding
of an Eulerian graph G in a surface S is Fulerian, if it contains exactly
one SAW, ie. s(G — S) = 1. The medial graph of an embedded graph G,
Me(G), is a graph, embedded in the same surface as G' and is obtained from
G as follows: the vertices of Me(G) are the edges of G and two vertices of
Me(G) are adjacent if they are adjacent edges in the rotation of a vertex
in G. Note that embedded graphs, which are dual to each other, have the
same medial graphs. The medial graph of any graph is 4-valent and thus
Eulerian. An embedded graph is Fulerian medial embedded if its medial is
Eulerian embedded.

Eulerian embeddings of 4-valent graphs in the plane are just knot pro-
jections (without a specification of which parts of the knot are over or under
other parts) and hence are related to Gauss’s coding of knot projections (see
[7]). An Eulerian embedding of a 4-valent graph in a surface of genus g can
be viewed as a knot projection on a genus g Heegard splitting surface for
a closed 3-manifold. Unfortunately, the Reidermeister moves for such knot
projections include moves across solid handles of the splitting and make knot
theory, say for knot polynomials, too complicated. Planar EKulerian graphs
are discussed in [4]. Works of Bouchet and others [1, 2, 3, 6, 11] are also
related to this paper.

2 Counting SAWSs in graphs and medial graphs:
some examples

In this section, we give some examples of Eulerian embedded plane graphs
and of plane graphs whose medial graph is Eulerian embedded. The most
obvious examples of Kulerian embedded graphs are cycles C,. The medial
graphs of odd cycles, which are odd cycles with double edges, are also Eu-
lerian embedded. There exist less trivial infinite families of plane graphs,
whose medial graphs are Eulerian embedded, too. It is easy to see, that
the medial of the pyramid graph - the antiprism on Figure 1 is Eulerian



Figure 1: The pyramid graph and its medial graph - the antiprism Ajy.

embedded. We used the computer system VEGA, see [8], to verify whether
this property holds for all the pyramid graphs. We also checked the number
of SAWSs in medial graphs of prisms II,, and antiprisms A,. The results gave
us the following theorem, which we state without proof:

Theorem 1

s(A, — Sphere) = { i’ Z ; gl]z
1 n=2k+1

s(Me(Il,) — Sphere) =< 4 n =4k
2 n=4k+2

s(Me(Ay,) — Sphere) = { ;l Z;gz

Let G; and G2 be graphs, 2-cell embedded in orientable surfaces Siq
and Ska, respectively, where Sy denotes the sphere with £ > 0 handles. Let
(u1,v1) be an edge in G; and (ug,v2) be an edge in Gy. If these edges are
not both bridges, we can define the connected sum G1#G2 of graphs G and
G4 with respect to the directed edges (v1,u1) and (vg,ug) as follows: take
the union of graphs G; and G4 and substitute the edges (v1,u1) and (vg, usz)
by the edges (v1,v2) and (u1,usz). The rotation scheme is inherited from the
embeddings of G and Go, except for the vertices v1,v2,u1 and us. In the
rotation around v, uq is substituted by vo, in the rotation around wuq, vy is
substituted by us, and in the rotation around vo, us is substituted by v;, in
the rotation around wue, vo is substituted by wi. The connected sum of G
and G is therefore a connected graph, and if at least one of the edges lies



on the boundary of two different faces, the graph G1#G5 is 2-cell embedded
in the surface Siyyko. The following theorem is very useful for constructing
infinite families of Fulerian embedded graphs:

Theorem 2 Let G = G1#Gy. Then s(G — S) = s(G1 — Sk1) + s(Gg2 —
Sk2) — 1. In particular, if G1 and Gy are Eulerian embedded, then G is
Eulerian embedded as well.

Figure 2: The connected sum of the antiprisms A4 and As.

In Figure 2, the connected sum of the antiprisms A4 and As is shown.
Both A4 and Aj are Eulerian embedded and so is their connected sum.

Given an embedded graph, we substitute every k—valent vertex by a
cycle on k vertices. The obtained graph is cubic and embedded in the same
surface. It is called the truncation of the embedded graph. There are two
types of faces in a truncated graph: the ones that correspond to former
vertices and the ones that correspond to the faces with the boundary twice
as long as in the original graph. In [9], the following theorem is proved:

Theorem 3 The truncations of cubic maps preserve the number of SAWs
in their medials.

So we obtain some other infinite families of Eulerian embedded plane
graphs - the medials of all the truncations of the odd” prisms, medials of
their truncations and so on.

3 Number of SAWSs in 4-valent plane graphs

Every Eulerian directed graph has an Eulerian embedding, orientable and
nonorientable. To obtain such an embedding just choose any embedding



where SAW is the given Eulerian circuit - at each vertex the opposite edges
are consecutive in the Eulerian circuit.

But it is not at all obvious how to embed a graph in a given surface
with the minimal possible number of SAWs or to find the surface of minimal
genus in which a graph G' can be embedded so to have only one SAW. These
questions seem to be very difficult and are still open. Nevertheless, for the
plane the following result holds:

Theorem 4 Let G be a planar 4-valent graph. Then the number of SAWs
is the same for any embedding of G in the plane.

Proof For 3-connected graphs the theorem trivially holds, since they
have essentialy unique embeddings in the plane.

For 2-connected graphs the proof depends on the well-known theorem,
that any embedding of a planar 2-connected graph can be obtained from
another by a sequence of operations dual to the Witney’s 2-switchings. This
operation is defined as follows: if we have a separation pair {z,y}, we turn
around one component of a graph, adjacent to x and y; so the orders of
neighbors of z and y in this component are reversed. This procedure is
illustrated in Figure 3.

Figure 3: An example of a dual 2-switching

The proof consists of considering of all possible cases of how SAWs can
pass through a separation pair. As an example, let us consider the case,
where there is only one SAW passing through = and y, and it passes first
twice through  and then twice through y. After the dual 2-switching, the
SAW through z and y is changed, but the number of SAWs in G remains
the same, see Figure 3, where the SAWs through z and y are depicted in
bold lines and the rest of the graph, in which the dual 2-switching doesn’t
affect the SAWs, is depicted in gray.

If G is not 2-connected, it has a cut-vertex, say v. Through the cut-
vertex v, only one SAW can pass. Changing the rotation at v such that the



embedding remains plane does not change the number of SAWs through v. O

This theorem does not hold for all planar Eulerian graphs. In Figure 4
two embeddings in the plane of the same graph are shown, which contain
different numbers of SAWs.

Figure 4: An example of a planar graph having different number of SAWs
in different embeddings in the plane.

But from the proof of the Theorem 4 it can easily be seen that the
Theorem holds for a more general class of 4-valent graphs, namely the planar
Eulerian graphs with cut-vertices and separation pairs of degree not different
from 4.

Corollary 5 Let G be a planar Eulerian graph with possible cut-vertices and
separation pairs of degree 4. Then the number of SAWs is independent of
the embedding of G in the plane.

4 Eulerian medial embeddings

Any 2-cell embedding of a connected graph G can be represented by a triple
(G, P,)\), where P is the rotation scheme of G and \ : E(G) — {-1,1}
assigns signatures to the edges, which tells us, whether an edge is orientation
preserving or orientation reversing, see [12].

Given an embedding of a graph G, we change the signatures of the edges
such that the orientation preserving edges become orientation reversing and
vice versa. A different embedding of G is obtained, which is called the
Petrie dual of (the embedded) graph G. The faces of the Petrie dual are
called Petrie walks of the original embedding of G. It is not hard to see that



SAWs of medial graphs correspond to Petrie walks of the original map. See,
for example, [7], where the Petrie walks are called left-right paths. That
means, that an Eulerian medial embedding of a graph is equivalent to Petrie
dual being 1-face embedded.

Theorem 6 Fvery graph embedding can be subdivided to give an Eulerian
medial embedding.

Proof The proof depends on the following idea: If SAWSs of a 4-valent
graph have two circuits at a vertex the other two matchings at a vertex give
one circuit through that vertex. Subdividing an edge of the original graph
can be viewed as changing the matching of the corresponding vertex of the
medial graph. At each step we subdivide an edge, whose corresponding
vertex of the medial graph is contained in two different SAWs, and at the
end we obtain an Eulerian medial embedded graph. O

The following corollary is an easy consequence of the Theorem and the
fact that for every surface there exist medial graphs.

Corollary 7 FEvery surface admits Eulerian embeddings.

The question arises, whether every graph has an Eulerian medial em-
bedding. If we consider only orientable surfaces, the answer is "no”. The
simplest example of graphs having no orientable Eulerian embedding are
even cycles. The embedding of an even cycle to an orientable surface is
unique and the corresponding medial graph has two SAWs. Let us define a
cactus as a graph, in which every vertex belongs to at most one cycle.

Theorem 8 In a cactus, the number of SAWs in the medial is equal to the
number of even cycles + 1.

Proof By induction. O

Note, that Theorem 8 is not valid for a similar class of graphs with the
property that each edge belongs to at most one cycle.

Attaching a graph G to graph G2 by an edge is the following procedure:
we choose edges e; in G; and ey in G2, subdivide e; and denote the additional
vertex by v;, ¢ = 1,2. Then we join the vertices v; and vs by an edge.

Corollary 9 If a cactus with even cycles is attached by an edge to an ar-
bitrary graph G, then the resulting graph doesn’t have an FEulerian medial
embedding.



These examples of graphs are not even 2-connected. The graph of a 3-
dimensional cube, usually denoted by @Q3, is a 3-connected cubic graph. It
has 28 different embeddings (many of them are equivalent). We have counted
the numbers of SAWs in the medials of all these embeddings of Q3 with the
help of a computer and found out, that they always have more than one
SAW. The question arises, which 3-connected graphs do have an Eulerian
medial embedding. In particular, is it true that a graph with a 1-face em-
bedding has an Eulerian medial embedding?

If we also allow nonorientable embeddings, every graph has an Eulerian
medial embedding.

Theorem 10 For every rotation scheme, there is an assignment of signa-
tures to edges that gives an Eulerian medial embedding (possibly nonori-
entable).

Proof The proof is divided in two steps.

e Change the signatures of edges between distinct faces until a one-face
embedding is obtained. If the signature of an edge between two faces
is changed, these two faces are merged to one face.

e The Petrie dual of the so-obtained graph has the medial with required
property.

5 Bounds on Eulerian genus

Every Eulerian directed graph has an Eulerian embedding, orientable and
non orientable. To obtain such an embedding just choose any embedding
where the SAW is the given Eulerian circuit - at each vertex the opposite
edges are consecutive in the Eulerian circuit. We can define the Eulerian
genus of a graph G as the smallast possible genus of an orientable surface,
in which G can be Eulerian embedded. In section 2, we have seen some
examples of planar graphs which are Eulerian embedded in the plane. In
Figure 5 the embedding of K5 in the torus is shown. It only has one SAW,
which means, that the Eulerian genus of Kj is equal to its ordinary genus.

Lemma 11 Let G be an Eulerian graph, embedded in o surface of genus
g with s(G — S;) = k. Then the Eulerian genus of G is less or equal to
g+k—1.
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Figure 5: An Eulerian embedding of K5 in the torus.

Proof Let e and f be two edges, adjacent in the rotation at a vertex
v, and let them belong to different SAWSs (if there is more than 1 SAW, this
must happen). Switching e and f at v causes the SAWs through e and f
to be joined into one SAW. We repeat this procedure until there is only one
SAW left. Switcing the rotation at a vertex can only increase the genus by
one (see, for example [5]). So after k£ — 1 switches, the genus is increased by
at most £ — 1. O

Remark: let (...,eq,e9,...,€k,....) be the rotation at a vertex v and let the
edges eq,...e; belong to distinct SAWs. Then changing the rotation at v to
(..., €9,..., €k, €1,...) causes all these SAWs to join.

Corollary 12 The Eulerian genus of Cy, X Cy, is less or equal to m + n.

Proof The graph C), x C}, can be embedded in the torus in the obvious
way such that it contains n+m SAWSs. It follows from the Lemma, that the
Eulerian genus must be at most 1 + (m+n —1) =m +n. O

Let us state a theorem, characterizing the number of SAWs in covering
graphs. For the definitions of covering graphs and Cayley graphs see, for
example, [5].

Theorem 13 Let G be an embedded voltage graph with voltages from group
a of order n. Let the SAWs of G be Cy,Cs,...,Cy and let the product of
voltages along C; have order m; in the voltage group o, i = 1,2,....k. (The
voltage on a minus directed edge is understood to be the group inverese of the
voltage on its reverse edge.) Then the derived graph G has mll + n%+...+ mlk
SAWs.

Proof The proof is based on the following theorem from [5]: Let C be
a k-cycle in the base space of an ordinary voltage graph (G, ) such that the



product of voltages along C has order m in the voltage group «. Then each
component of the preimage p~1(C) is a k- m-cycle and there are |a|/m such
components. |

Corollary 14 Let G be an Eulerian embedded graph, which is Fulerian di-
rected according to its SAW. Given any cyclic voltage graph on G such that
the product of voltages along the directed edges generates the group, then the
covering graph is Eulerian embedded.

Cayley graphs are regular coverings of bouquets of circles. A regular
embedding of a Cayley graph is given by lifting the rotation of the bouquet
of circles to the Cayley graph. The rotation is called special, if the SAW in
the bouquet of circles is Eulerian. The following Corollary is thus an easy
consequence of the Corollary 14.

Corollary 15 Given any regular embedding of an even Cayley graph, it is
Eulerian if and only if the group is cyclic, the rotation is special and the
product of the generators along the SAW in the bouquet of circles generates
the group.

Figure 6: A triangular embedding of By in the double torus.

Example 1 Figure 6 shows the embedding of the bouquet of 9 circles By in
the double torus. Its edges are directed and have voltages from the group Zig.
The covering graph of this voltage graph is a triangular embedding of Kig
and thus a minimal genus embedding.

The number of SAWs in the embedding of By is 2, the products of voltages
along the SAWs are 10 and 3 in Zyg, and are relatively prime to 19. By
the theorem 13, the triangular embedding of Kig, obtained from (Byg, Z19),
contains two SAWs and we conclude that the Eulerian genus of Kig differs
from its ordinary genus by at most 1.

10



The construction can be generalized to all complete graphs on 12¢ + 7
vertices, which was done by G. Ringel in 1961 (see [10] or [5]). With help of a
computer we have constructed the graphs Bg;3, which give us the triangular
embeddings of Kjo:47 as covering graphs. We calculated the numbers of
SAWs in Bgiy3, t = 1,...,150, and the products of voltages along the SAWs.
Part of the results is given in the tables 1 and 2. It is interesting, that there
exist also large ¢ such that the Eulerian genus of K917 differs from the
ordinary genus of Kjo;y7 by at most 1.

t= 1 234567 8 9 10 11 12 13 14 15 16
s(Bete3—S41) |2 3 6 3 2 7 4 56 7 2 9 6 3 14 3
t= 17 18 19 20 21 22 23 24 25 26 27 28 29 30
sBas—S41) | 2 9 2 3 6 9 6 15 2 3 6 5 8 9

Table 1: Numbers of SAWSs in the graphs Bggy3.

t= | Group | Products of voltages along the SAWs
1 | Zyg 10 3

2 | Zsn 20 18 5

3 | Zuss 17 20 6 12 7 20

4 | Zss 13 0 9

) Ze7 12 11

6 | Zrg 38 57 20 2 22 13 37
7 | Zg % 15 1 15

8 | Zios 8 42 50 63 17

9 | Ziis 20 35 20 32 19 54

10 | Zyo7 63 110 46 48 95 112 21
11 | Zy39 94 23

12 | Zi51 121 132 22 97 29 128 42 25 71

Table 2: Products of voltages along the SAWs in the graphs Bg;3.

6 Conclusion and open problems

The natural question is which Eulerian graphs have their Eulerian genus
equal to the ordinary genus. Another question that can be posed is the
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following: which 2-cell embeddings of graphs have their connected and four-
valent medial graphs Eulerian embedded? Finally, which graphs have at
least one orientable embedding such that the corresponding medial graph is
Eulerian embedded?
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