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Abstract

Let G be a 2-edge-connected graph with o vertices of odd degree.
It is well-known that one should (and can) add o

2 edges to G in order
to obtain a graph which admits a nowhere-zero 2-flow. We prove that
one can add to G a set of ≤ � o

4�, �1
2� o

5��, and �1
2� o

7�� edges such that
the resulting graph admits a nowhere-zero 3-flow, 4-flow, and 5-flow,
respectively.

1 Introduction

Graphs in this paper may contain multiple edges and loops. A vertex of G
is odd (even) if its degree is odd (even). We denote by o(G) the number
of odd vertices of G. Let G be a graph such that no component of G is a
cycle. Then there is a unique graph G′ which is homeomorphic to G and has
no vertices of degree 2. We say that G′ is obtained from G by suppressing
vertices of degree 2, and we denote this by G′ ∝ G.

Let Γ be an Abelian group, let D be an orientation of a graph G and
f : E(G) → Γ. The pair (D, f) is a Γ-flow in G if the following condition is
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satisfied at every vertex v ∈ V (G):

∑
e∈E+(v)

f(e) =
∑

e∈E−(v)

f(e),

where E+(v) and E−(v) denote the sets of outgoing and ingoing edges (with
respect to the orientation D) incident with v, respectively.

A flow (D, f) is nowhere-zero if f(e) �= 0 for every e ∈ E(G). If Γ ∼= Z

and −k < f(e) < k then (D, f) is a k-flow. The concept of nowhere-zero
flows was introduced and studied by Tutte [9]. For a 2-edge-connected graph
G and a group Γ of order k, Tutte [8] proved that G admits a nowhere-zero
k-flow if and only if it admits a nowhere-zero Γ-flow. Seymour [7] proved
that every 2-edge-connected graph admits a nowhere-zero 6-flow. We refer
to [10] for further results on flows in graphs.

Let φ+
k (G) be the minimum number of edges whose addition to G gives

rise to a graph which admits a nowhere-zero k-flow. Similarly, let φ−
k (G) be

the minimum number of edges whose deletion from G leaves a graph with
a nowhere-zero k-flow. Clearly, φ+

k (G) ≤ φ−
k (G) since we achieve a similar

effect by doubling an edge as we do by deleting it.
Let G be a 2-edge-connected graph with o = o(G) vertices of odd degree.

It is obvious that we should and that we can add o
2

edges to G in order to
obtain an Eulerian graph, i.e. a graph which admits a nowhere-zero 2-flow.
Thus, φ+

2 (G) = o
2
. We shall prove that φ+

3 (G) ≤ � o
4
�, φ+

4 (G) ≤ �1
2
� o

5
��, and

φ+
5 (G) ≤ �1

2
� o

7
��, respectively. It is also shown that upper bounds which

are linear in o(G) are best possible for 3-flows and 4-flows. They are also
best possible for 5-flows if the Tutte 5-Flow-Conjecture is not true (otherwise
φ5(G) = 0 for 2-edge-connected graphs). Some additional comments on the
tightness and importance of these bounds are collected at the end of the
paper.

We will use the following lemma of Fleischner [4] (see also [10]):

Lemma 1.1 (Splitting Lemma) Let G be a 2-edge-connected graph, let v
be a vertex of G of degree ≥ 4, and let e0, e1, e2 be edges incident with v which
do not form an edge-cut of G. Let Gi (i = 1, 2) be the graph constructed from
G by splitting v into vertices v1 and v2 such that v1 is incident with e0 and
ei and v2 is incident with all other edges at v. Then one of G1 and G2 is
2-edge-connected.

2 3-flows

Theorem 2.1 Let G be a loopless cubic multigraph on n vertices. Then,
φ+

3 (G) ≤ �n
4
�.
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Proof. Suppose that the theorem is false and G is a counterexample with
minimum number of vertices. Suppose that G = G1 ∪ G2, where G1 and G2

are vertex disjoint graphs. Let ni = |V (Gi)|, i = 1, 2. By the minimality

φ+
3 (G) ≤ φ+

3 (G1) + φ+
3 (G2) ≤

⌊
n1

4

⌋
+

⌊
n2

4

⌋
≤

⌊
n1 + n2

4

⌋
.

This shows that G is connected. Let C = v1v2 · · · vkv1 be a shortest cycle in
G. For i = 1, . . . , k, denote by v′

i the neighbor of vi distinct from vi+1 and
vi−1. (All indices are considered modulo k.) If v′

i does not exist, then k = 2
and G has two vertices only. In this case, the claim clearly holds.

If k = 2, choose C such that v′
1 �= v′

2 whenever possible. If v′
1 �= v′

2, let
G′ = G − V (C) + v′

1v
′
2. By the induction hypothesis, there is a set F of at

most �n−2
4
� edges such that G′

F := G′ + F has a nowhere-zero 3-flow. Then,
clearly GF := G + F also has a nowhere-zero 3-flow.

In the sequel we shall apply the induction hypothesis several times. We
shall always denote by G′ the smaller graph and then use F , G′

F , and GF in
the same way as above.

Suppose now that k = 2 and v′
1 = v′

2. Let v′′
1 be the neighbor of v′

1

distinct from v1 and v2. Let G′ be the cubic graph which is homeomorphic
to G − {v1, v2, v

′
1}. Then G′ has n − 4 vertices. If it had a loop, then the

two edges of G−{v1, v2, v
′
1} incident with v′′

1 would be parallel edges, and we
would choose them as the cycle C since their neighbors are distinct vertices.
Therefore, G′ is loopless, and we can apply the induction hypothesis to G′.
It is easy to see that a nowhere-zero 3-flow of G′

F can be extended to a
nowhere-zero 3-flow of GF + v′′

1v1.
Suppose now that k = 3. If v′

1 = v′
2 = v′

3, then G = K4 for which
φ+

3 (K4) = 1. Assume now that v′
1 = v′

2 �= v′
3. Let v′′

1 be as above. If v′′
1 �= v′

3,
let G′ ∝ G − V (C) − v′

1 + v′
3v

′′
1 . We apply the induction hypothesis to G′

and get an edge set F , |F | ≤ �n−4
4
�, such that G′

F has a nowhere-zero 3-flow.
Finally, the nowhere-zero 3-flow of G′

F can be extended to a nowhere-zero
3-flow of GF + v1v

′
3. If v′′

1 = v′
3, let G′ ∝ G − V (C) − v′

1 − v′′
1 . Let v′′′

1 be the
third neighbor of v′′

1 . It is easy to see that the flow of G′
F can be extended

to a nowhere-zero 3-flow of GF + v′′′
1 v1.

The remaining case for k = 3 is when v′
1, v

′
2, v

′
3 are all distinct. Here we

let G′ ∝ G − V (C) + v′
2v

′
3. Again, G′ is a loopless cubic graph on n − 4

vertices and the 3-flow of G′
F can be extended to GF + v′

1v2.
From now on we assume that k ≥ 4. First we deal with the case when

v′
i = v′

j , for a pair of distinct indices i, j, 1 ≤ i < j ≤ k. We may assume

that i = 1 and j ≤ �k+1
2
�. Consider the cycle C ′ = v1v2 · · · vjv

′
1v1. Since its

length is j + 1 ≥ k, we get k = 4 and j = 3. We have two subcases. First,
suppose that also v′

2 = v′
4. Let G′ ∝ G − V (C) − v′

1 − v′
2 (if v′′

1 �= v′′
2), and

G′ ∝ G− V (C)− v′
1 − v′

2 − v′′
1 (if v′′

1 = v′′
2), respectively. If v′′

1 = v′
2, then also

v′′
2 = v′

1 and G = K3,3. Since K3,3 has a nowhere-zero 3-flow, we may assume
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that v′′
1 �= v′

2 and that G′ is nonempty. It has n− 8 vertices. It is easy to see
that G′ has no loops (otherwise it would have a cycle of length ≤ 3). Now,
GF + v′′

1v
′
2 + v′

1v
′′
2 and GF + v′′′

1 v′
1 + v′′

1v
′
1 (respectively) admits an extension

of the flow of G′
F to a nowhere-zero 3-flow.

The second subcase is when v′
1 = v′

3 but v′
2 �= v′

4. We may assume that
v′′

1 �= v′
2. Let G′ ∝ G− V (C)− v′

1 + v′′
1v

′
2. By the induction hypothesis, there

is an edge set F , |F | ≤ �n−6
4
�, such that G′

F has a nowhere-zero 3-flow. This
flow can be extended to a nowhere-zero 3-flow in GF + v2v

′
4.

From now on we may assume that v′
i �= v′

j if i �= j. If k is even, put
G′ ∝ G − V (C). If k is odd, let G′ ∝ G − V (C) + v′

1v
′
2. Suppose that G′

has a loop. A loop in G′ corresponds to a cycle C ′ of G such that precisely
one vertex of C ′ has degree 3 in G − V (C) (or G − V (C) + v′

1v
′
2), and other

vertices of C ′ have degree 2. Since C ′ has length ≥ k, it contains a path P ′

of length k − 2 such that V (P ′) ⊆ {v′
1, . . . , v

′
k}.

Suppose that v′
iv

′
j ∈ E(P ′). Then viv

′
iv

′
jvj and a segment of C form a

cycle in G of length ≤ k
2

+ 3. This implies that k
2

+ 3 ≥ k, i.e. k ≤ 6.
If k = 6, then i = j ± 3, so P ′ cannot exist. Similarly, if k = 5, then
P ′ = v′

iv
′
i+2v

′
i+4v

′
i+6 (indices modulo 5). In particular, V (P ′) contains either

v′
1 or v′

2. A contradiction, since v′
1 and v′

2 have degree 3 in G− V (C) + v′
1v

′
2.

The remaining possibility is when k = 4. In that case, we let G′′ ∝ G −
V (C)+ v′

1v
′
2 + v′

3v
′
4 and apply the induction hypothesis on G′′. The resulting

nowhere-zero 3-flow in G′′
F either gives rise to a nowhere-zero 3-flow in GF

or in GF + v1v3.
Now, we return to the general case where we may assume that G′ is

loopless. Observe that n − |V (G′)| = 4�k
2
�. So, after applying the induc-

tion hypothesis to G′, we may add further �k
2
� edges to GF in order to

get a graph with a nowhere-zero 3-flow. If k is even, we add the edges
v′

1v
′
2, v

′
3v

′
4, . . . , v

′
k−1v

′
k. If k is odd we add the edges v′

3v
′
4, . . . , v

′
k−2v

′
k−1, and

v′
kv1. In both cases, it is easy to see that a nowhere-zero 3-flow of G′

F gives
rise to a nowhere-zero 3-flow in GF with the additional �k

2
� edges.

By Lemma 1.1 and Theorem 2.1 we obtain the following result.

Corollary 2.2 Let G be a 2-edge-connected multigraph with o = o(G) odd
vertices. Then we can add ≤ � o

4
� edges such that the new graph G admits a

nowhere-zero 3-flow.

3 4-flows

The next lemma known as Parity Lemma is due to Blanuša [2].

Lemma 3.1 (Parity Lemma) Let G be a cubic graph and let c : E(G) →
{1, 2, 3} be an edge-coloring of G. If a cutset T consists of n edges such that
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ni edges of T are colored i (i = 1, 2, 3), then

n1 ≡ n2 ≡ n3 ≡ n (mod 2).

A minimal 4-coloring of a cubic graph G is an edge-coloring c : E(G) →
{1, 2, 3, 4} such that |c−1(4)| is minimum. Let G be a cubic graph and let
c : E(G) → {1, 2, 3, 4} be a minimal 4-coloring of G. Denote by Ei the set
of all edges of color 4 which are incident with precisely two edges of color i.
Since c is minimal, it is easy to see that {E1, E2, E3} is a partition of c−1(4).

The following lemma is a well known consequence of the Parity Lemma
(see, e.g., [7]). For the sake of completeness, we include its proof.

Lemma 3.2 Let c be a minimal 4-coloring of a cubic graph G. Then |E1| ≡
|E2| ≡ |E3| (mod 2).

Proof. Delete from G the edges colored 4. Let G1 and G2 be two disjoint
copies of this graph. Add an edge between every vertex from G1 which is of
degree two and the corresponding vertex from G2. Finally, color each such
edge with the free color 1, 2, or 3. We obtain a cubic graph with an edge
3-coloring. There is a cutset of order 2(|E1|+ |E2|+ |E3|) between G1 and G2.
In this cutset, precisely |Ei+1|+ |Ei+2| (indices modulo 3) edges are colored i
for i = 1, 2, 3. By Lemma 3.1, |Ei+1| + |Ei+2| ≡ 2(|E1| + |E2| + |E3|) ≡ 0
(mod 2). It follows that |Ei+1| ≡ |Ei+2| (mod 2). This completes the proof.

Proposition 3.3 Let G be a connected simple cubic graph of order n, and
let c be a minimal 4-coloring of G. Then |c−1(4)| ≤ 1

5
n.

Proof. Let c′ : E(G) → {1, 2, 3} be a 3-coloring of G, which colors as many
edges of G as possible. If c′ cannot be extended to a 4-edge-coloring of G,
then we have two incident uncolored edges, say vu and vw. Let the third
neighbor of v be z. We may assume that c′(vz) = 3. Then both colors 1
and 2 are already used at the edges incident with u, and the same holds at
w. Let P be the maximal path which contains the edge vz and whose edges
are colored by colors 1 and 3. Note that the other endvertex of this path
could be u or w. Now, change the color of every edge on P from 1 to 3, and
vice versa. It is not hard to see that we can extend the resulting partial edge
coloring of G to vu or vw, a contradiction.

So, c′ can be extended to a 4-edge-coloring c̄ of G. In particular, c̄ is
a minimal 4-coloring of G and |c−1({1, 2, 3})| = |c′−1({1, 2, 3})|. Albertson
and Haas [1] proved that such a coloring colors at least 13

15
of the edges of G.

Since c′ colors at least 13
15

of the edges of G, |c−1(4)| ≤ 2
15
|E(G)| = 1

5
n.
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Theorem 3.4 Let G be a 2-edge-connected graph with o = o(G) odd vertices.
Then we can add ≤ �1

2
� o

5
�� edges such that the new graph admits a nowhere-

zero 4-flow.

Proof. Suppose that the claim is false and G is a counterexample with
|E(G)| + |V (G)| as small as possible. Let n = |V (G)|.

We claim that G is a simple cubic graph. Since G is 2-edge-connected,
there are no vertices of degree 1. It is easy to see that G has no vertices
of degree 0 or 2. Otherwise, we obtain a smaller counterexample. Suppose
now that v is a vertex in G of degree ≥ 4. By the Splitting Lemma, we
can split this vertex such that the resulting graph is 2-edge-connected. Note
that this graph has one or two vertices of degree 2. Let G∗ be the graph
obtained by suppressing the vertices of degree 2. Then, |E(G∗)|+ |V (G∗)| <
|E(G)| + |V (G)| and o(G) = o(G∗). It is easy to see that if we can add at
most �1

2
� o

5
�� edges to G∗ in order to obtain a graph which admits a nowhere-

zero 4-flow, then we can do it also in G. So, G∗ contradicts the minimality of
G. This shows that G is a cubic graph. Since G is 2-edge-connected, it has
no loops. If it contains a double edge joining vertices u, v, we delete one of
these edges and obtain a smaller counterexample. This completes the proof
of the claim.

Since G is a cubic graph, n = o. Let c be a minimal 4-coloring of G. By
Lemma 3.2, |E1| ≡ |E2| ≡ |E3| (mod 2). By Proposition 3.3, |E1| + |E2| +
|E3| ≤ �n

5
�.

Suppose first that the sets Ei are of even cardinality. Partition each Ei

into pairs. Consider one of such pairs, e1 = u1v1 ∈ Ei and e2 = u2v2 ∈ Ei,
where the edges incident with uj are colored i and i+1 (modulo 3), j = 1, 2.
Then, we add the edge u1u2 and color it by color i. Recolor the edges e1

and e2 by color i + 1. We repeat the same procedure for all selected pairs.
If we interpret colors 1, 2, 3 as the nonzero elements of Z2 ×Z2, we see that
we constructed a graph with a nowhere-zero Z2 × Z2-flow. We have added
1
2
(|E1| + |E2| + |E3|) ≤ 1

2
� o

5
� edges.

If E1, E2, E3 have odd cardinalities, then we do the same procedure with
pairs. At the end, we are left with three edges ei = uivi ∈ Ei (i = 1, 2, 3).
We may assume that edges incident with ui are colored i and i + 1 (modulo
3). So the colors at vi are i and i − 1 (modulo 3). Add two edges v1v2 and
u2u3. Now, we color the edges e3 and v1v2 by color 1, the edge e2 with 2,
and color e1 and u2u3 by color 3. As above, we see that we thus constructed
a graph with a nowhere-zero Z2 × Z2-flow. The number of added edges is
� |E1|+|E2|+|E3|

2
� ≤ �1

2
� o

5
��.



the electronic journal of combinatorics 8 (2001), #R00 7

4 5-flows

Theorem 4.1 Let G be a 2-edge-connected graph with o = o(G) odd vertices.
Then we can add �1

2
� o

7
�� or fewer edges such that the new graph admits a

nowhere-zero 5-flow.

Proof. Suppose that the claim is false and G is a counterexample with
|E(G)| + |V (G)| as small as possible. Let n = |V (G)|. By the similar
arguing as in the proof of Theorem 3.4, we may assume that G is a simple
cubic graph.

Now, we will prove that G is of girth ≥ 6. Let C = x0x1 · · ·xr−1x0 be a
cycle of G with r minimum. Suppose that r ≤ 5. Let us contract the edges
x2ix2i+1 for i = 0, . . . , � r

2
� − 1. If r ≤ 4, let G′ denote the resulting graph.

Suppose now that r = 5. Then we first apply the Splitting Lemma at both
new vertices of degree 4 such that e1 = x0x4 (resp. e1 = x3x4) and such that
e0 corresponds to the edge of G − E(C) incident with x0 (resp x3). Denote
the resulting graph by G′. Since G′ is 2-edge-connected, there are only two
possibilities (up to the obvious left-right symmetry) for the structure of G′

locally at the vertices of C. See Figure 1(a) and (b).

x1 x1 x1
x2

x2
'

x2

x0 x0 x0
x3

x3
'

x3

x4 x4 x4

(a) (b) (c)

�
�

���

�

�

�

0

Figure 1: The two possibilities for G′ when r = 5.

By the minimality of G, we can prove that G′ admits a nowhere-zero
5-flow by adding a set F of at most �1

2
�o−r

7
�� edges. Equivalently, G′

F admits
a nowhere-zero Z5-flow (D′, φ′), φ′ : E(G′) ∪ F → Z5. If r ≤ 4, then φ′

determines a Z5-flow (D, φ1) of GF which agrees with (D′, φ′) on E(G′)∪F .
Note that φ1 is nonzero on (E(G) ∪ F ) \ E(C). If r = 5, then we claim
that φ′ determines a Z5-flow (D, φ1) of GF which agrees with (D′, φ′) on
(E(G)∩E(G′))∪F , which is nonzero on (E(G)∪F )\E(C), and such that φ1

takes at most four distinct values on E(C), where all edges of C are assumed
to be oriented “clockwise”. In the first case of Figure 1, the claim is obvious.
We just set φ1(e) = φ′(e) for e ∈ E(G′)∪F and set φ1(x0x1) = φ1(x2x3) = 0.
In the second case of Figure 1, we consider the edges x1x

′
2, x′

2x4, and the
two edges incident with x′

3 as being the edges x1x2, x3x4, and edges incident
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with x2 and x3, respectively, as indicated in Figure 1(c). The flow condition
may be violated at x2 and x3 but there is a unique value for φ1(x2x3) such
that we get a flow. (Also, we set φ1(x1x5) = 0.) All vertices of C except x4

give rise to vertices of degree 2 in G′. Therefore, no edges of F are incident
with them. This implies that the φ1-flow on the edges x1x2 and x3x4 is the
same as the φ′-flow through the vertex x′

2 of G′. Consequently, φ1 takes at
most four distinct values on E(C).

Returning to the general case r ≤ 5, let i ∈ Z5 be a value which does
not occur as a φ1-value on E(C). Recall that the orientation D orients C
clockwise. So, there is a Z5-flow (D, φ2) of GF which is 0 on (E(G)\E(C))∪F
and such that φ2(e) = i for edges on C. Now, (D, φ1 − φ2) is a nowhere-zero
Z5-flow of GF . This contradiction shows that r ≥ 6.

Since G is a 2-edge-connected cubic graph, it has a 2-factor Q by the
Petersen theorem. Since every cycle in Q is of length ≥ 6, we can color at
least 6

7
of the edges of Q using colors 1 and 2. Color every edge of the 1-factor

E(G)−E(Q) by color 3. Thus, we have a partial 3-edge-coloring of G, which
colors at least 19

21
of the edges of G. So, the number of uncolored edges is

≤ � 2
21
|E(G)|� = � o

7
�.

In a similar way as in Theorem 3.4, we can add at most �1
2
� o

7
�� edges to

G in order to a obtain a graph which admits a nowhere-zero 5-flow. (In fact,
we even get a nowhere-zero 4-flow in this case.)

5 Concluding remarks

We will conclude the paper with the following remarks. First, in all results
of the paper, we are restricted to 2-edge-connected graphs. It is not hard to
construct graphs with cutedges for which bounds from the theorems are not
valid.

Another obvious question is: “How good is the bound of Theorem 4.1.”
The 5-Flow-Conjecture of Tutte [9] namely asserts that φ+

5 = 0 for every
2-edge-connected graph. The following proposition answers this question.

Proposition 5.1 Let k ∈ {3, 4, 5}. For every integer s there is a 2-edge-
connected graph G with o(G) ≥ s such that

(a) If k = 3, then φ+
k (G) ≥ 1

8
o(G).

(b) If k = 4, then φ+
k (G) ≥ 1

20
o(G).

(c) If k = 5, and the 5-Flow-Conjecture is false, then there is a constant
c > 0 such that φ+

k (G) ≥ c · o(G).
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Proof. Let G be a 2-edge-connected graph without a nowhere-zero k-flow.
Let e = uv be an edge of G0. Take s copies of G0 − e and form the graph G
by joining the copy vi of v in the ith copy of G0 − e with the copy ui+1 of u
in the (i + 1)st copy of G0 − e, i = 1, 2, . . . , s (indices modulo s). Then G is
2-edge-connected and o(G) ≥ s. If φ+

k (G) < s
2
, then there is an edge set F

such that GF has a nowhere-zero k-flow and there is a copy of G0 − e such
that no edge of F is incident with its vertices. Then it is easy to see that the
flow of GF gives rise to a nowhere-zero k-flow of G0, a contradiction. This
shows that

φ+
k (G) ≥ s

2
≥ 1

2|V (G0)| o(G). (1)

Finally, let G0 = K4 if k = 3, let G0 be the Petersen graph if k = 4, and
let G0 be a hypothetical counterexample to the Tutte 5-Flow-Conjecture if
k = 5. Then (1) implies the proposition.

Let k ∈ {2, 3, 4, 5}. One can ask how hard it is to calculate φ+
k (G) and

φ−
k (G) for a given graph G. As we already said, φ+

2 (G) = o(G)
2

. Calculating
φ−

2 (G) is equivalent to finding a Chinese postman tour in G (see Lemma 8.1.4
in [10]). Edmonds and Johnson [3] proved that the Chinese postman problem
is solvable by a polynomial time algorithm. The decision problem whether
φ+

4 (G) = 0 is an NP-complete problem. This follows by the fact that it is an
NP-complete problem to decide whether a (cubic) graph is 3-edge-colorable.

The decision whether φ+
5 (G) = 0 or not is either trivial (if the 5-Flow-

Conjecture holds) or NP-complete, as proved by Kochol [5]. Similar conclu-
sion holds for 3-flows, depending on the Tutte 3-Flow-Conjecture (cf. Ko-
chol [5]).
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