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Abstract
In this paper� a baby�example of a modality free classical linear logic

enriched with ��bounded structural rules is presented� The corresponding
embedding theorem into classical linear logic is proved yielding also the

cut�elimination property of the system considered�
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� Introduction

In this paper we present a modality�free axiomatic system of classical linear
logic CLL�a� enriched with ��bounded structural rules� The system is based
on two�fold sequents� the idea taken from Girards LU ���� separating a
structural part from a linear part� Solely in the structural part ��bounded
structural rules may act on an even number of copies of formulas while in the
the linear part applications of logical rules speci�ed below can be made� The
two parts may also communicate with each other by the so called switching
rules� It is easy to give a generalization of CLL�

a
corresponding to any given

n � �� and hence left to a reader� Moreover� as shown recently� the systems
considered can be turned into equivalent usual sequent calculus formulation
by applying the respective switching rule acting from a structural to a linear
part� However� it is the so�called auxiliary system CLL�a that helped to
remedy all the di�ciencies of our previous attempts in formalizing logic
with bounded structural rules� in particular the lack of the cut�elimination
property� In what follows� we show that CLL�a can faithfully be embedded
into classical linear logic �CLL�� as well as any of its generalized versions�
The same holds true for the corresponding cut�free subsystems� and hence
we may conclude that also the systems CLLn

a
enjoy the cut�elimination

property� Moreover� relying on CLLn
a
�derivable and provably equivalent

formulas� displayed below for n � �� we can specify the modi�ed expressive
power of the multiplicative connectives� i�e� tensor ��� and� dually par �

�
��

More precisely� given n � �� then for any � � k � n� k copies of a formula
A linked by � �denoted by Ak� expresses availability of exactly k copies
of A simultaneously� Anm for m � � expresses availability of an arbitrary
number of copies A �including zero�� while Anm�l with � � l � n expresses
availability of at least l copies of A respectively� This means that up to a
given n � behaves normally as inCLL� An and its multiples mimic precisely
�A and Anm�l act as �A�Al inCLL� Later on� it will be seen that this is the
e�ect of n�bounded structural rules as well as properly modi�ed right ��rule
and dually� left

�
�rule� To sum up� given n � � the expressive power of the

additive connectives in CLLn
a
remains the same as in CLL� On the other

hand� by the multiplicative connectives we can express arbitrary many and
at least one� if n � �� and exactly �� ��� � exactly n � �� arbitrary many
�including zero� as well as at least �� ��� � at least n� �� if n � ��
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� Auxiliary Axiomatic System with Bounded Struc�

tural Rules

The auxiliary axiomatic system CLL�
a
is based on the following concept of a

two�fold sequent� �j� � �j�� where � and � may run over �nite multisets
of an even number of copies of formulas �including the empty set� and ��
� denote arbitrary �nite multisets of formulas in the language of classical
linear logic without the modalities� We shall refer to � and � as structural
parts and to � and � as linear parts of a sequent considered� Following
the standard notation� if any of the parts is uninhabited it will simply be
denoted by a blank� Moreover� throughtout the below� we shall use the fol�
lowing abbreviations� given n � � and a formula A� let An and nA denote
n copies of A linked by � and

�
respectively for any ordering of brackets

�for n � �� A� and �A being just A�� Let further A�n� denote a multiset of
n copies of A� and accordingly given a multiset �� let �n � fAn�A � �g�
n� � fnA�A � �g and ��n� �� fA�n��A � �g�

Axioms

jA � Aj j� � j j � �j j�� � � �j j� � ���j

Logical rules

�j� � �j�

�j�� � � �j�

�j� � �j�

�j� � ���j�

�j� � A��j�

�j��	A � �j�

�j�� A � �j�

�j� � 	A��j�

�j�� B � �j�

�j�� B�C � �j�

�j�� C � �j�

�j�� B�C � �j�

��j� � B��j�� ��j� � C��j��

�����j� � B�C��j�����

�j� � B��j�

�j� � B 
 C��j�

�j� � C��j�

�j� � B 
 C��j�

��j�� B � �j�� ��j�� C � �j��

�����j�� B 
 C � �j�����

Left ��rule and right
�
�rule�

�



�j�� B�C � �j�

�j�� B � C � �j�

�j� � B�C��j�

�j� � B
�
C��j�

Restricted version of the right ��rule�

��j�� � B���j�� ��j�� � C���j��

�����j����� � B � C������j�����

except when B is of the form A�k�� and C is of the form A�m��

for any k�m �N�

Promoted right ��rule�

��j�� � A�k�����j�� ��j�� � A�m�����j��

�������
���
� ��

���
� j � A��k�m���j�

���
� ��

���
� ������

for any k�m � N�

Restricted version of the left
�
�rule�

��j��� B � ��j�� ��j��� C � ��j��

�����jB
�
C������ � �����j�����

except when B is of the form ��k � ��A and C is of the form ��m� ��A
for any k�m � N�

Promoted left
�
�rule�

��j��� ��k � ��A � ��j�� ��j��� ��m� ��A � ��j��

�������
���
� ��

���
� j��k �m� ��A � j�

���
� ��

���
� ������

for any k�m �N�

Stuctural rules

Left and right contraction rules�

�� A��n�j�� �j�

�� A��k�j�� �j�

�j� � �jA��n���

�j� � �jA��k���

for any n � k � ��

Left and right weakening rules�

�j� � �j�

�� A��n�j� � �j�

�j� � �j�

�j� � �jA��n���

for any n � ��

Left detensoring rule and right deparing rule�

	



�� �An����j� � �j�

�� A��n�j� � �j�

�j� � �j�nA������

�j� � �jA��n���

for any n � ��

Switching rules

Switching from a linear part to a structural part�

�j�� A � �j�

�� A���j� � �j�

�j� � �� Aj�

�j� � �jA�����

Switching from a structural part to a linear part�

�� A��n�j� � �j�

�jA�n�� � �j�

�j� � �jA��n���

�j� � �nA��j�

Cut rule�

��j�� � A���j�� ��j��� A � ��j��

�����j����� � �����j�����

To continue with� within CLL�a the following are provably equivalent for
any n � � and any formula A�

A� �a A�n and dually� �A �a �nA
A� �a A�n�� and dually� �A �a ��n� ��A

We shall display below some derivations of the �rst equivalence given� The
rest being equally trivial�

jA� � A�j jA� � A�j

jA�� A� � A�j jA� � A�j

j�A���n� � A�nj

�A����n�j � A�nj

A��n�j � A�nj

A���j � A�nj

jA� � A�nj

where a double line indicates several successive applications of a speci�c rule
of inference�
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jA � Aj jA � Aj

A���� A���j � A�j jA � Aj

A���� A���jA � A�j jA � Aj

A���� A���� A���� A���j � A�j jA � Aj
� � � � � � � � � � � �
� � � � � � � � � � � �

A��n�j � A�nj

A���j � A�nj

jA� � A�nj

where the dot lines indicate several successive interchanging applications
of restricted and promoted right ��rules� Analogously� a derivation for any
other ordering of brackets covered by A�n can easily be made�

For the other turnstile direction of the equivalence under consideration�
it su�ces to make the following derivation�

jA� � A�j

�A�����j � A�j

A���j � A�j

A��n�j � A�j

jA�n � A�j

In case n � � there is no application of weakening rule�

Finally� notice also that for any n � � also jA � A � A�n��j� and dually
j��n� ��A � A

�
Aj are CLL�a�derivable�

To sum up� this indeed means that for any n � � the following are
CLL�a�derivable�

jA�A � Anj� and dually� jnA � A
�
Aj�

� Embedding of the System with ��Bounded Struc�

tural Rules into Classical Linear Logic

In what follows we shall show that the axiomatic systems CLL�
a
can faith�

fully be embedded into CLL� For that purpose we shall �rst de�ne a trans�
lation between the sets of formulas of the underlying languages�

�



DEFINITION ��� A translation ���t � ForCLL�
a

� ForCLL is given in�

ductively as follows�

 P t � P � for any propositional letter�

 �t � �� �t � �� �t � � and �t � ��

 �	A�t � 	At�

 �A�B�t � At�Bt�

 �A
B�t � At 
Bt

 �A�B�t �

���
��

�Ct � if A�B is of the form C�k� with k � �
�Ct � Ct � if A�B is of the form C�k��� with k � �
At �Bt � otherwise

 �A
�
B�t �

���
��

�Ct � if A
�
B is of the form �kC� with k � �

�Ct
�
Ct � if A

�
B is of the form ��k � ��C� with k � �

At
�
Bt � otherwise

In what follows� we shall use some more abbreviations� given a multiset �� let
�t � fAt�A � �g� i�e� �t is the corresponding multiset of translated copies
of formulas in �� moreover� given multisets � and � of an even number of
copies of formulas� let ��t and ��t be the sets of modalized translations of
formulas in � and � by ��� and ��� respectively�

We are now ready to state the

THEOREM ��� �Embedding Theorem� CLL�a �� CLL in the follow�

ing sense�

�j� �CLL�
a

�j� iff ��t��t �CLL �t� ��t�

Proof� �soundness�� by induction on the lenght of CLL�a�derivations�
We shall here display some cases of the induction step considering promoted
rigt � rules� as well as structural and switching rules�

For the promoted right ��rule as the last applied rule within a CLL�
a
�

derivation we are to distinguish two cases� one of them displayed below�

��j�� � A�k�����j�� ��j�� � A�m�����j��

�������
���
� ��

���
� j � A��k�m���j�

���
� ��

���
� ������

for k�m � ��






��t
���

t
� ��A

t �At��t
�� ��

t
�

��t
�� ��

t
� ��A

t �At� ��t
�� ��

t
�

��t
�� ��

t
� ����A

t �At�� ��t
�� ��

t
�

��t
�� ��

t
� ����A

t �At�� ��t
�� ��

t
� ���At �At� ��At

��t
�� ��

t
� ��A

t� ��t
�� ��

t
�

��t
�� ��

t
�� ��

t
�� ��

t
�j ��At� ��t

�� ��
t
�� ��

t
�� ��

t
�

Next� assuming that the last applied rule in a CLL�a�derivation is one of
the structural rules� say contraction or detensoring� while a reader may try
his�her skill with weakening�

Left contraction rule�

�� A��n�j� � �j�

�� A��k�j� � �j�

for any n � k � ��

��t� �At��t � �t� ��t

�� �At��t � �t� ��t

Left detensoring rule�

�� �An����j� � �j�

�� A��n�j� � �j�

for any n � ��

��t� ��An�t��t � �t� ��t

��t� �At��t � �t� ��t

To see that the rule just obtained is indeed CLL�derivable under the induc�
tion hypothesis that its premiss is CLL�derivable a reader is to spell out the
following two cases�
if n � �k� then �A�k�t ��At� and if n � �k � �� then �A�k���t ��At �At�

Switching from a linear part to a structural part�

�j�� A � �j�

�� A���j� � �j�

��t��t� At � �t� ��t

��t� �At��t � �t� ��t

 



Switching from a structural part to a linear part�

�� A��n�j� � �j�

�jA�n�� � �j�

��t� �At��t � �t� ��t

��t� �At��t � �t� ��t

�faithfullness��
Assume now that ��t��t � �t� ��t is CLL�derivable� Then we want to show
that the sequent �j� � �j� is CLL�a�derivable or equivalently� as easily
seen� that the sequent j���� � �� ��j is CLL�

a
�derivable� The proof goes

by induction on the lenght of a CLL�derivation replacing just all modalized
occurrences of formulas �A and �A in it by A�A and A

�
A respectively�

We shall here consider just some cases of the induction step involving
the modality �� The rest is trivial�

Assume the last applied rule of a CLL�derivation is ��weakening�

��t��t � �t� ��t

��t��t� �At � �t� ��t

covered by applications of CLL�
a
�switching rule from structural to linear

part and weakening rule�

j���� � �� ��j

A���j���� � �� ��j

j��� A�A�� � �� ��j

Assuming the last applied rule of a CLL�derivation is ��contraction�

��t��t� �At� �At � �t� ��t

��t��t� �At � �t� ��t

covered by applications of CLL�
a
�switching rule� left contraction rule� de�

tensoring rules and successive applications of the other switching rule� as
shown below�

j����� A�A�A�A��� ��j

�A�����j���� � �� ��j

A���j���� � �� ��j

A���j���� � �� ��j

j����� A�A � �� ��j

!



Assume the last applied rule of a CLL�derivation of is left deriliction�

��t��t� At � �t� ��t

��t��t� �At � �t� ��t

covered exactly by applications of both CLL�a�switching rules� as witnessed
below�

j����� A � ���j

A���j���� � �� ��j

j����� A�A � �� ��j

Assume the last applied rule of a CLL�derivation is right promotion�

��t � At� ��t

��t���At� ��t

covered by applications of CLL�a�switching rules� left and right contraction
rules� applications of detensoring rule� and an application of promoted right
� rule with the same premisses� as displayed below�

j�� � A� ��j j�� � A� ��j

�������j � A�Aj�������

����j � A�Aj����

����j � A�Aj����

j�� � A�A���j

�

As an important consequence of the proof of faithfulness of the em�
bedding CLL�a �� CLL and the fact that CLL enjoys the cut�elimination
property we end up with the following

COROLLARY ��� The cut�free system of CLL�a can faithfully be embed�

ded into CLL�

COROLLARY ��� The system CLL�
a

enjoys the cut�elimination prop�

erty�

��
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