
University of Ljubljana

Institute of Mathematics, Physics and Mechanics
Department of Mathematics

Jadranska 19, 1000 Ljubljana, Slovenia

Preprint series, Vol. 38 (2000), 717

WORST CASE CONSTANT TIME
PRIORITY QUEUE

Andrej Brodnik Svante Carlsson
Johan Karlsson J. Ian Munro

ISSN 1318-4865

August 28, 2000

Ljubljana, August 28, 2000



Worst Case Constant Time Priority Queue

Andrej Brodnik ∗ † Svante Carlsson † Johan Karlsson †

J. Ian Munro ‡

Abstract

We present a new data structure of size 3M +o(M) bits for solving
the “discrete priority queue” problem. When this data structure is
used in combination with a new memory topology it provides an O(1)
worst case time solution.

1 Introduction

In this paper we reexamine the well known “discrete priority queue” problem
of van Emde Boas et al [12]. Operating over the bounded universe of inte-
gers M = [0, ..,M − 1], the usual operations of insert and extractmin are
supported, as are the additional operations of extracting any value and find-
ing Predecessor(e) and Successor(e). These operations determine, respec-
tively, the largest element present that is less than e, and the smallest greater
than e. The problem is referred to by Mehlhorn et al. [7] as the union-split-
find problem. Under this terminology, one thinks of [0, ..,M − 1] as being
partitioned into subranges that can be further subdivided or merged, and
that one can ask for the subrange containing a given value. More formally
we define the data type as:

Definition 1 The discrete extended priority queue problem is to maintain
a set, N of size N with elements drawn from an ordered bounded universe
M = [0..M − 1], and support the following operations:

∗Department of Theoretical Computer Science, Institute of Mathematics, Physics, and
Mechanics, Ljubljana, Slovenia

†Department of Computer Science and Electrical Engineering, Lule̊a Uni-
versity of Technology, Lule̊a, Sweden, (Andrej.Brodnik, Svante.Carlsson,
Johan.Karlsson@SM.LUTh.SE)

‡Department of Computer Science, University of Waterloo, Ontario, Canada,
(IMunro@daisy.UWaterloo.CA)

1



Insert(e) : N := N ∪ {e}
Delete(e) : N := N\{e}
Member(e) : Find whether e ∈ N
Min : Compute the smallest element of N
Max : Compute the largest element of N
DeleteMin : Delete the smallest element of N
DeleteMax : Delete the largest element of N
Predecessor(e) : Compute the largest element of N < e
Successor(e) : Compute the smallest element of N > e

We will refer to an element e’s predecessor as its left neighbour and its
successor as its right neighbour. When talking about the neighbours of e we
mean the left and the right neighbour. We let m denote lg M .

Lower Bounds and some Matching Upper Bounds

Under the pointer machine model (cf. [10]) Mehlhorn et al. proved an amor-
tized lower bound of Ω(lg lg M) [7] for our problem. Recently, Beame and
Fich [2] gave a lower bound of Ω(

√
lg N/ lg lg N) under the communication

game model (cf. [8,14]) which also apply to the cell probe (cf. [15]) and RAM
(cf. [11]) models. They also gave a matching upper bound for the static ver-
sion of our problem. Andersson and Thorup [1] gave a data structure and
an algorithm with a matching worst case time for the dynamic version.

Our Model of Computation

Our model is based on the RAM model of computation which includes
branching and the arithmetic operations addition and subtraction. We
will also need bitwise Boolean operations and multiplication/division (cf.
MBRAM [11]). However, we do not want the model to be unrealistic and
therefore we restrict the model to only use bounded registers. The registers
we use are at least m bits wide; i.e. a memory locations can store at least
m-bit values and all operations are defined for arguments with at least m
bits. This model of computation is implemented by any standard computer
today.

Operations to search for Least (Most) Significant Bit (LSB, MSB) can
be implemented to run in O(1) time in our model, using a technique called
Word-Size-Parallelism [3]. Hence, we let these operations be defined in the
model as well.

A final, and crucial, aspect of our model of computation, is the notion
of a word of memory. Under the standard model, a word is a sequence of
bits and each bit is in only one word. We will consider a model in which a
single bit may be in several different words. The notion of a “random access
machine with byte overlap” (RAMBO).

2



2 Stratified Trees

The basis of the lg lg M solution of van Emde Boas et al. [12] is a structure
they called a stratified tree. Indeed, the stratified tree is often referred to
informally as the “van Emde Boas” structure. We stick with the name
originally given.

Definition 2 A stratified tree is a complete binary tree on M in which:

• Each leaf representing an element of N is tagged and contains pointers
to its predecessor and successor;

• Nodes can be active (tagged) and if so they contain:

– pointers to the smallest and largest active node or leaf in each
subtree.

– an indication if there exist branching nodes on the path from the
node to the root or not.

A simple boolean flag is used to tag a node. To find neighbours and in-
sert/delete elements in a stratified tree, a binary search is performed on
the path from the leaf to the root to find the proper internal node or leaf
(see [12] for details). This yields a O(lg lg M) worst case time for all the
discrete extended priority queue operations, which matches the lower bound
of Mehlhorn et al.

We cannot lower the worst case time to constant time for the operations
in any of the above models of computation. Therefore, we appeal to a new,
but implementable model.

3 The Split Tagged Tree

In a complete binary tree that has leaves for every element in a universe M
(cf. trie) we define:

Definition 3 An internal node as a splitting node if there is at least one
tagged leaf in each of its subtrees.

The splitting node ν as a left (right) splitting node of e if e is a leaf in
the left (right) subtree of ν. The first left (right) splitting node on a path
from e to the root is the lowest left (right) splitting node of e.

The splitting nodes are the only internal nodes of the Split Tagged Tree
(STT ) that store additional information. In detail:

Definition 4 A Split Tagged Tree is a complete binary tree on M in which:

• Each leaf representing an element of N is tagged;

• A splitting node is tagged and has pointers to the leaf representing the
largest (smallest) element x (y) in its left (right) subtree, where x ∈ N
(y ∈ N ); and

3



• There is a special supernode, placed on top of the tree. It is tagged if
the set contains at least one element. If the supernode is tagged it con-
tains pointers to the leaves representing the minimum and maximum
elements.

The supernode is both a left and a right splitting node for all the elements
in the set. Hence, all elements, even minimum and maximum, have both
left and right splitting nodes. This somehow simplifies the operations on the
STT because the supernode has a role similar to the sentinel in linked lists.

Since leaves represent elements of M, we will refer to the leaves and the
corresponding elements interchangeably.

The leaves only need a tag and hence are stored in a boolean array
leaves of STT in Algorithm 1. Therefore the pointers to the leaves are
simple indices into the array. On the other hand, the internal nodes and the
supernode are represented by the structure STT node. They are stored in
standard heap order in an array nodes of STT where the supernode is stored
at the location 0. The fields left and right of the supernode point at the
maximum and the minimum elements respectively.

typedef struct {
boolean tag; /* Tag */
int left; /* Largest element in left subtree */
int right; /* Smallest element in right subtree */

} STT node;
typedef struct {
STT node nodes[M]; /* Array of internal nodes */
boolean leaves[M]; /* Array of leaf tags */

} STT;

Algorithm 1: An efficient representation of the STT.

A key feature of the stratified tree is that nodes are tagged in a manner
such that the lowest ancestor of a tagged leaf can be found by a binary
search. This property does not need to hold for the STT as we will use
a novel memory architecture to permit constant time search and still find
the analogous nodes. The STT does, however, have a number of crucial
properties.

Lemma 1 Let e ∈ N and let νl be its lowest left (right) splitting node.
Then, νl is the only of e’s left (right) splitting nodes that points at e.

Proof: The proof is given in terms of the left splitting node. From
Definition 4 we know that an element f is pointed at by a splitting node if
f is the largest element in the left subtree of the node.

Assume that an element z ∈ N exists such that z �= e is the largest
element in the left subtree of νl. Since both e and z are in the left subtree of
νl, the lowest common ancestor ν of e and z, is also in the left subtree of νl.

4



By Definition 3 ν is a splitting node. Moreover, ν is a left splitting node of
e since e is in the left subtree of ν which contradicts our initial assumption
that νl is e’s lowest left splitting node.

Finally, by a counting argument and the first part of this lemma we see
that if the element e is pointed at by two left splitting nodes there exists
an element z ∈ N , such that z is not pointed at, which contradicts the first
part of this lemma. QED

Lemma 1 implies that in the STT there is a constant number of nodes
that have pointers to an element e ∈ N . Moreover, the nodes containing
the pointers in question are the lowest left and lowest right splitting nodes
of e. We proceed by showing how to find the neighbours of e:

Lemma 2 Let νl and νr be e’s lowest left and lowest right splitting nodes
respectively, and let x ∈ N be the left (right) neighbour of e, hence x < e
(e < x). Then, if e ∈ N a pointer at νr (νl) refer to x; and if e �∈ N then
either a pointer in νl or in νr points to x.

Proof: Again we focus on the left neighbour. If e ∈ N , this lemma
follows from Definitions 3 and 4 and Lemma 1. If e �∈ N , let y ∈ N be e’s
right neighbour, hence x < e < y, and let ν be the lowest common ancestor
of x and y. By definition, ν is also a splitting node, and since x < e < y it is
a splitting node on the path from e to the root. Since x and y are neighbours
in N , x is the largest element in the left subtree of ν and y is the smallest
element in the right subtree of ν. Consequently, ν has a pointer to x, which
is e’s left neighbour. To prove that ν is either νl or νr assume ν is a left
splitting node of e but not νl. Then by Lemma 1 we know that ν has to be
below νl since ν has a pointer to x, which contradict our initial assumption
that νl is the lowest left splitting node of e. If ν is a right splitting node of
e the proof is symmetrical. QED

Finally, we show that at the insertion of an element e, it is sufficient to
find either the lowest left or the lowest right splitting node of e, to decide
where the new splitting node shall be (see Figure 1). We state the lemma
in terms of the left splitting node:

Lemma 3 Let νl be the lowest left splitting node of e �∈ N and let z ∈ N be
the largest element in the left subtree of νl. If z < e then no element v ∈ N
exists in the right subtree of the lowest common ancestor ν of z and e and; if
e < z then no element v ∈ N exists in the left subtree of the lowest common
ancestor ν of e and z.

Proof: If z < e, assume an element v ∈ N , such that v is in the right
subtree of ν, exists, hence z < v. However, since all three elements are in
the left subtree of νl this contradicts the assumption that z is the largest
element ∈ N in the subtree. If e < z, assume an element v ∈ N exists in
the left subtree of ν, then by Definition 3 is ν a splitting node. Since all
of e, z, v are in the left subtree of νl, ν has to be in the left subtree of νl.

5



ν

z e e z

νr

νr

νl

νl

ν

Figure 1: The two scenarios before insertion of e.

Hence ν is lower than νl and ν is a left splitting node of e contradicting the
assumption about νl. QED

We proceed to describe how to answer queries and perform updates in
the STT. Queries about neighbours can be answered using Lemma 2. By a
counting argument at an insertion of element e �∈ N , exactly one internal
node becomes a splitting node and one leaf gets tagged. The leaf is the
leaf corresponding to e. To find the new splitting node we get the element
z pointed at by the lowest left splitting node νl of e. If z < e then, by
Lemma 3, the lowest common ancestor ν of e and z should be e’s new
lowest right splitting node with one pointer to z and one to e, and νl should
be updated to point at e instead of z. If e < z then, by Lemma 3, the lowest
common ancestor ν of e and z should be e’s new lowest left splitting node
with one pointer to e and one to e’s right neighbour found in e’s lowest right
splitting node νr. νr should be updated to point at e instead of e’s right
neighbour.

By a similar reasoning we see that deletion is done by removing the tags
in the leaf and in the lower of the left and right lowest splitting nodes, and
by updating the pointers in the other node.

Since only a constant number of nodes need to be updated, the time to
update (and also to search) the STT is asymptotically bounded by the time
to traverse the tree. The tree is of height lg M + 1, which implies that the
time to update and search the tree is O(lg M) in our and pointer machine
models.

Yggdrasil implementation of RAMBO

We have worked our way from the stratified tree, in which the lowest tagged
node can be found in O(lg lg M) time, to a perhaps simpler situation that
would appear to require a sequential scan of the nodes up a path. At this

6



point we resort to a change in a model and consequently an improvement in
the hardware to achieve a constant time solution.

The RAMBO model of computation is a RAM model in which, in one
part of the memory, registers can share bits; i.e. bytes overlap (cf. RAMBO
introduced by Fredman et al. [6] and further described by Brodnik [4]). One
particular implementation of the RAMBO called Yggdrasil can help us to
solve our problem (see [9]).

In the Yggdrasil memory layout, registers overlap as paths from root
to leaf in a complete binary tree (see Figure 2). In particular, we think of
the bits Bk(k=1,..,M−1) as being enumerated in standard heap order. (The
root is B1, the children of Bi are B2i and B2i+1, and the leaves are bits
BM/2 through BM−1.) The most significant bit of any register is the root
bit, B1. (By convention, we call this bit lg M − 1, and so, bit 0 is the least
significant.) The bits of register i correspond to those along the path from
the root to leaf i (i.e. bit M/2 + i). This means:

reg[i].bit[j] = Bk where
k = (i div 2j) + 2m−j−1 (1)

We now store the tags of the STT in the Yggdrasil memory reg (see

reg[5]

0

2

1

3 B1

B2 B3

B4 B5 B6 B7

B8 B9

10 2 3 4 5 6 7

B11 B12 B13 B14 B15

Register:

Bit j in register:

B10

Figure 2: Overlapped memory Yggdrasil.

Algorithm 2), the tree of internal pointers in an array nodes, while the tags
of the leaves are stored in the boolean array leaves.

To find the lowest splitting node νk of the element e we read the regis-
ter reg[e div 2], find the least significant set bit j and compute k using
Equation 1. Since the path from the root to e can be deduced from the
binary representation of e we can use in the computation e or e to mask the
register value and get in constant time the lowest right or left splitting node
respectively.

7



typedef struct {
int left; /* Largest element in left subtree */
int right; /* Smallest element in right subtree */

} STT node;
typedef struct {
Yggdrasil reg[M/2]; /* Register with byte overlapping */
STT node nodes[M]; /* Array of internal nodes */
boolean leaves[M]; /* Array of leaf tags */

} STT;

Algorithm 2: Representation of the STT with Yggdrasil memory

The lowest common ancestor νk of the elements e and f is the last
common node on the paths from the root to e and f respectively. Hence,
the node νk corresponds to the least significant common bit j in the binary
representations of e and f . Let i = e div 2 then Equation 1 gives

k = ((e div 2) div 2j) + 2m−j−1

= (e div 2j+1) + 2m−j−1 (2)

The least significant common bit j is next to, toward the top, the most
significant non common bit of e and f , i.e.:

j = MSB(e XOR f) + 1 (3)

Now we can find both the lowest splitting nodes of an element and the
lowest common ancestor of two elements in constant time. Following point-
ers and updating those and the tags can also be done in constant time.
Hence, given Yggdrasil memory, updates and queries can be performed in
constant time. The Yggdrasil memory has been developed in hardware by
Priqueue AB, as a SDRAM memory module according to the PC100 stan-
dard [5].

The STT contains quite some redundant information – the leaves can
be removed since the leaf is tagged if and only if it is pointed at by an
internal node. Next, the information in the internal nodes can be stored
using pointers of variable length. This reduces the space requirements from
2M lg M + M + O(lg M) bits to 2M + O(lg M) bits of conventional mem-
ory for the discrete extended priority queue problem. However, reducing
the size increases the constant for the time. We can further reduce the
space by using perfect hashing to store tagged internal nodes similarly to
Willard’s approach for stratified trees [13]. This gives a space requirement
of O(N lg M) bits of ordinary memory and M bits of Yggdrasil memory.

The above discussion leads to our main result:

Theorem 1 Using the Split-Tagged-Tree together with the Yggdrasil mem-
ory we can solve the discrete extended priority queue problem in O(1) worst
case time per operation using only 2M + O(lg M) bits of ordinary memory

8



and M bits of Yggdrasil memory. This can be reduced to O(N lg M) bits
of ordinary memory and M bits of Yggdrasil memory but the time is then
degraded to O(1) per operation with a high probability.

To solve our problem with support for either predecessor or successor,
but not both, we can simply remove the pointer to one or the other element
in the nodes. This saves half of the ordinary memory and it reduces the
constant for updates times.

References

[1] A. Andersson and M. Thorup. Tight(er) worst-case bounds on dynamic
searching and priority queues. Manuscript to apper in STOC2000.

[2] P. Beame and F. E. Fich. Optimal bounds for the predecessor problem.
In Proceedings of the Thirty-First Annual ACM Symposium on Theory
of Computing, pages 295–304, New York, May 1–4 1999. ACM Press.

[3] A. Brodnik. Computation of the least significant set bit. In Proceedings
Electrotechnical and Computer Science Conference, volume B, pages
7–10, Portorož, Slovenia, 1993.

[4] A. Brodnik. Searching in Constant Time and Minimum Space
(Minimæ Res Magni Momenti Sunt). PhD thesis, University of
Waterloo, Waterloo, Ontario, Canada, 1995. (Also published as tech-
nical report CS-95-41.).

[5] A. Brodnik, J. Karlsson, R. Leben, M. Miletić, M. Špegel, and A. Trost.
Design of high performance memory module on PC100. In Proceedings
Electrotechnical and Computer Science Conference, Slovenia, 1999.

[6] M. L. Fredman and M. E. Saks. The cell probe complexity of dynamic
data structures. In 21st ACM Symposium on Theory of Computing,
pages 345–354, 1989.

[7] K. Mehlhorn, S. Näher, and H. Alt. A lower bound on the complexity of
the union-split-find problem. SIAM Journal on Computing, 17(6):1093–
1102, 1988.

[8] P. B. Miltersen. Lower bounds for Union-Split-Find related problems
on random access machines. In Proceedings of the Twenty-Sixth An-
nual ACM Symposium on the Theory of Computing, pages 625–634,
Montréal, Québec, Canada, 23–25 May 1994.

[9] Encyclopedia Mythica. Yggdrasil. http://www.pantheon.org/
mythica/articles/y/yggdrasil.html.

[10] A. Schönhage. Storage modifications machines. SIAM Journal on Com-
puting, 9(3):490–508, August 1980.

9



[11] P. van Emde Boas. Machine models and simulations. In J. van Leeuwen,
editor, Handbook of Theoretical Computer Science, volume A: Algo-
rithms and Complexity, pages 3–66. Elsevier/MIT Press, Amsterdam,
1990.

[12] P. van Emde Boas, R. Kaas, and E. Zijlstra. Design and implementation
of an efficient priority queue. Mathematical Systems Theory, 10:99–127,
1977.

[13] D. E. Willard. Log-logarithmic worst-case range queries are possible in
space Θ(N). Information Processing Letters, 17(2):81–84, 24 August
1983.

[14] A. Yao. Some complexity questions related to distributive comput-
ing. In Proceedings of the 11th Annual ACM Symposium on Theory of
Computing, pages 209–213, 1979.

[15] A. Yao. Should tables be sorted? Journal of the ACM, 28(3):614–628,
July 1981.

10


