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LIGHT SUBGRAPHS IN PLANAR GRAPHS OF
MINIMUM DEGREE 4 AND EDGE-DEGREE 9

B. MOHAR∗, R. ŠKREKOVSKI∗, AND H.-J. VOSS

Abstract. Let G be the class of simple planar graphs of minimum
degree ≥ 4 in which no two vertices of degree 4 are adjacent. A
graph H is light in G if there is a constant w such that every graph
in G which has a subgraph isomorphic to H also has a subgraph
isomorphic to H whose sum of degrees in G is ≤ w. Then we also
write w(H) ≤ w. It is proved that the cycle Cs is light if and only
if 3 ≤ s ≤ 6, where w(C3) = 21 and w(C4) ≤ 35. The 4-cycle
with one diagonal is not light in G, but it is light in the subclass
of all triangulations. The star K1,s is light if and only if s ≤ 4. In
particular, w(K1,3) = 23. The paths Ps are light for 1 ≤ s ≤ 6,
and heavy for s ≥ 8. Moreover, w(P3) = 17 and w(P4) = 23.

1. Introduction

The weight of a subgraph H of a graph G is the sum of the valences
(in G) of its vertices. Let G be a class of graphs and let H be a
connected graph such that infinitely many members of G contain a
subgraph isomorphic to H . Then we define w(H,G) to be the smallest
integer w such that each graph G ∈ G which contains a subgraph
isomorphic to H has a subgraph isomorphic to H of weight at most w.
If w(H,G) exists then H is called light in G, otherwise H is heavy in
G. For brevity, we write w(H) if G is known from the context.

Fabrici and Jendrol’ [6] showed that all paths are light in the class
of all 3-connected planar graphs. They further showed that no other
connected graphs are light in the class of all 3-connected planar graphs.
Fabrici, Hexel, Jendrol’ and Walther [7] proved that the situation re-
mains unchanged if the minimum degree is raised to four, i.e. in this
class of graphs only the paths are light. Mohar [15] showed that the
same is true for 4-connected planar graphs.

Borodin [3] proved that the 3-cycle C3 is light in the class of plane
triangulations without vertices of degree 4. Moreover, C3 is light in
the class of all plane triangulations containing no path of k degree 4
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vertices. But for arbitrary 3-connected plane graphs without vertices
of degree 4, the triangle is not light. This is shown by the pyramids.
So, we shall suppress vertices of degree 3 and consider the class of
(simple) planar graphs of minimum degree ≥ 4 in which no two vertices
of degree 4 are adjacent. More generally, the latter condition can be
relaxed by requiring that there are no k-paths (k ≥ 1) consisting of
degree-4 vertices.

Lebesgue [12] showed that every 3-connected plane graph of mini-
mum degree at least four contains a 3-face with one of the following
valency triples: 〈4, 4, j〉, j ∈ [4, +∞); 〈4, 5, j〉, j ∈ [5, 19]; 〈4, 6, j〉,
j ∈ [6, 11]; 〈4, 7, j〉, j ∈ [7, 9]; 〈5, 5, j〉, j ∈ [5, 9]; and 〈5, 6, j〉, j ∈ [6, 7].
This implies that C3 is light with w(C3) ≤ 28 if there are no adjacent
4-vertices. We show, in particular, that w(C3) = 21.

1. Let us consider plane graphs of minimum degree 5. In this class
w(C3) = 17 by Borodin [2]. More is known for triangulations: C4

and C5 are light by Jendrol’ and Madaras [10] and w(C4) = 25 and
w(C5) = 30 by Borodin and Woodall [4]; C6, . . . , C10 are light by
Jendrol’ et al. [11] and Madaras and Soták [14]. The cycles Cs (s ≥ 11),
are not light [11]. By our results, the cycles C4, C5, C6 are also light
for arbitrary plane graphs of minimum degree 5. For the cycle lengths
7, . . . , 10 the problem remains to be open.

2. In our paper we mainly consider plane graphs of minimum degree
≥ 4 which contain no adjacent 4-vertices. It is shown that the cycles Cs

(3 ≤ s ≤ 6) are light, and for the 3-cycle the precise weight is w(C3) =
21. The cycles Cs, s ≥ 7, are not light (not even in triangulations).
This is shown by the graph obtained from K2,n by replacing each face
of K2,n by the graph shown in Fig. 1(a) such that the top and the
bottom vertex are identified with vertices of degree n in K2,n.

(a) (b) (c)

Figure 1. Long cycles are not light
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3. Consider plane graphs of minimum degree ≥ 4 that contain no path
with k degree-4 vertices (k ≥ 3 is fixed). If we restrict to triangulations,
the 3-cycle C3 is light by Borodin [3] with w(C3) ≤ max(29, 5k + 8).
But in general, this was investigated by H.-J. Voss. He obtained the
following results: C3 is also light by showing that there is always a
3-cycle with maximum vertex degree ≤ 12k. The cycle C4 is light for
k ∈ {3, 4}; there is always a C4 with maximum degree ≤ 48. For
k ≥ 23, the 4-cycle is not light. This is shown by the graph obtained
from the K2,n by inserting the line graph of the dodecahedron into each
4-face F and adding some new edges as shown in Fig. 1(b). This graph
does not contain a path with 23 degree-4 vertices. For 5 ≤ k ≤ 22, the
lightness of C4 is an open problem.

The cycle Cs is not light for any s ≥ 5 and k ≥ 3. This is shown by
the graph obtained from K2,n by inserting two adjacent 4-vertices into
each face as shown in Fig. 1(c).

4. As mentioned above, the only light subgraphs in the class of all
4-connected plane graphs are the paths [15]. Hence, we consider again
the plane graphs of minimum degree ≥ 4 containing no path with k
degree-4 vertices. If k = 1 the graphs have minimum degree ≥ 5. In
this class the star K1,s is light if and only if s ≤ 4 by Jendrol’ and
Madaras [10] (they also require 3-connectivity of graphs). Moreover,
w(K1,3) = 23 by [10] and w(K1,4) = 30 by Borodin and Woodall [4].
For k = 2 we shall prove that w(K1,3) = 23 and that K1,4 is light. The
star K1,3 is light for any k ≥ 3; we prove that there is always a K1,3

with maximum degree ≤ 12k. For s ≥ 4 the star K1,s is not light:
Consider the graph obtained from K2,2n by replacing every second face
by the graph shown in Fig. 1(c) and by adding a diagonal into each
other face of K2,2n.

5. As mentioned above, the s-path Ps is light in the class of all 3-
connected planar graphs. Little is known about the precise weight
of Ps. Only for small values of s the exact weight of Ps has been
determined: w(P1) = 5, w(P2) = 13 by Kotzig [13], and w(P3) = 21
by Ando, Iwasaki, and Kaneko [1]. proved w(P1) = 5, w(P2) =
11, and w(P3) = 19, respectively. For triangulations, w(P4) = 23 by
Jendrol’ and Madaras [10]. In the class of all 3-connected plane graphs
of minimum degree ≥ 5 Wernicke [16] and Franklin [8] proved that
w(P2) = 11 and w(P3) = 17, respectively. Here we investigate the class
of all plane graphs of minimum degree ≥ 4 containing no two adjacent
4-vertices. For P3, the weight is w(P3) = 17; and again w(P1) = 5,
and w(P2) = 11. Our results are summarized in the following theorem.
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Observe that we do not require 3-connectivity of graphs (while for non-
lightness we may require 3-connectivity).

Theorem 1.1. Let G be the class of simple planar graphs of minimum
degree ≥ 4 having no adjacent 4-vertices.

(i) The cycle Cs is light if and only if 3 ≤ s ≤ 6, where w(C3) = 21,
and w(C4) ≤ 35.

(ii) The graph K−
4 (K4 minus an edge) is not light in the whole class;

but it is light in the subclass of all triangulations.
(iii) The star K1,s is light if and only if s ≤ 4. In particular, w(K1,3) =

23.
(iv) The paths Ps are light for 1 ≤ s ≤ 6, and heavy for s ≥ 8.

Moreover, w(P3) = 17 and w(P4) = 23.

For each of the graphs H whose lightness is proved in Theorem 1.1
(i.e., C3, C4, C5, C6, K1,3, K1,4, P3, and P4), moreover we prove that ev-
ery G ∈ G contains a subgraph isomorphic to H .

Note that the above theorem resolves the lightness of the stars and
the cycles in the class of simple planar graphs of minimum degree ≥ 4
having no adjacent 4-vertices. But for the paths the lightness of P7 is
the only open question in this class of graphs.

In the proof of Theorem 1.1, we will use the discharging method
which works as follows. Let G be a plane graph. Denote by F (G) the
set of faces of G. Let d(v) denote the degree of the vertex v ∈ V (G), and
let r(f) denote the size of the face f ∈ F (G). Now, assign the charge
c : V (G) ∪ F (G) → R to the vertices and faces of G as follows. For
v ∈ V (G), let c(v) = d(v) − 6 and for f ∈ F (G), let c(f) = 2 r(f) − 6.
We can rewrite the Euler formula in the following form:∑

v∈V (G)

(d(v) − 6) +
∑

f∈F (G)

(2 r(f) − 6) = −12. (1)

This shows that the total charge of vertices and faces of G is negative.
Next, we redistribute the charge of vertices and faces by applying some
rules so that the total charge remains the same. The charge of x ∈
V (G)∪F (G) after applying the rules, will be denoted by c∗(x). It will
also be called the final charge of x. In each claim, after applying the
rules, we will prove that each face and vertex of G has non-negative
final charge if G does not have a light copy of the considered subgraph.
This will contradict (1) and complete the proof.

In order to make proofs easier, we shall allow multiple edges and
loops (where each loop counts 2 in the degree of its endvertex). How-
ever, some restrictions will be imposed. Let α and β be fixed integers



LIGHT SUBGRAPHS 5

(depending on the considered case). The class denoted by G(α, β) con-
sists of all plane (multi)graphs satisfying the following conditions:

(i) There are no faces of size ≤ 2.
(ii) No multiple edge is incident with a vertex of degree 4, and if it is

incident with a vertex of degree 5, then the other endvertex has
degree ≥ α.

(iii) The endvertices of loops are of degree ≥ β.

Considering the class G(α, β) enables us to prove, in each specific case,
that vertices of “large” degree (usually ≥ α− 1) in extreme counterex-
amples are incident only with triangular faces. Roughly speaking, these
conditions enable us to dismiss the 3-connectivity assumption used in
some related works (e.g., [1, 3, 6, 7]).

We will prove in the sequel that w(C3) ≤ 21, w(K1,3) ≤ 23, w(P3) ≤
17, and w(P4) ≤ 23. Equalities in all these cases are shown by the
following examples. It is well known that there exists a 5-connected
triangulation Gd of the plane which contains precisely 12 vertices of
degree 5, all other vertices are of degree 6, and any two vertices of
degree 5 are at distance at least d (cf., e.g., [9, 5]). These examples
show that w(Ps) ≥ 6s − 1 (s ≥ 1) and w(K1,3) ≥ 23. By taking the
barycentric subdivision of Gd and removing all edges joining vertices of
degree 5 in Gd with the vertices corresponding to their incident faces,
we get an example which shows that w(C3) ≥ 21.

In what follows, we will use the following definitions. A vertex of
degree k is said to be a k-vertex and a face of size k is a k-face. Denote
by mk(v) the number of k-vertices adjacent to the vertex v, and let
rk(f) be the number of k-vertices incident with the face f . (In these
definitions, multiple adjacency is considered.) Let u, w be consecutive
neighbors of the vertex v in the clockwise orientation around v. Then
we say that u is a predecessor of w and w is a successor of u with
respect to v. We say that two vertices v and u incident with a face
f are f -adjacent , if it is not possible to add an edge uv in f without
obtaining a face of size ≤ 2.

2. The lightness of P3

Theorem 2.1. w(P3) ≤ 17.

Proof. In this proof, we work with the class G(9, 8). Suppose that the
claim is false and G ∈ G(9, 8) is a counterexample on |V (G)| vertices
with |E(G)| as large as possible. Suppose that f = x1 · · ·xkx1 (k ≥ 4)
is a face of G of size at least 4. Without loss of generality we may
assume that d(x1) ≥ 5. We claim that d(x1) + d(x3) ≤ 11. Otherwise,
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let G′ be the graph obtained from G by adding the edge x1x3 in f . It
is easy to see that G′ ∈ G(9, 8). If P is a 3-path in G′ of weight at most
17, then it must contain the new edge. But the sum of degrees of x1 and
x3 in G′ is at least 14, so P does not exist. Therefore, G′ contradicts
the maximality of |E(G)|. Similarly, d(x2) + d(x4) ≤ 11, etc. This
implies that d(xi) ≤ 7 for i = 1, . . . , k. Consequently, xi 
= xi+1. Also,
x2 
= x4. (Otherwise we would have multiple edges joining x2 and x3.
Moreover, d(x2) ≤ 5 and d(x3) ≤ 7 which contradicts property (ii) of
G(9, 8).) Thus, P = x2x3x4 is a path with w(P ) ≤ 11 + 11− 5 = 17, a
contradiction. This proves that G is a triangulation.

Discharging Rule R. Suppose that v is a vertex with d(v) ≥ 7 and
that u is a 4- or 5-vertex adjacent to v. If d(v) = 7 then v sends 1 to
u. If d(v) > 7, then v sends 2

3
(if d(u) = 4) or 2

5
(if d(u) = 5) to u.

We claim that after applying Rule R, c∗(x) ≥ 0 for every x ∈ V (G)∪
F (G). This is clear for x ∈ F (G). Suppose now that v is a vertex of
G. Let d = d(v). We consider the following cases.

d = 4: Vertex v has at least three neighbors of degree ≥ 7. Thus,
c∗(v) ≥ −2 + 3 · 2

3
= 0.

d = 5: Obviously, v has at least 4 neighbors of degree ≥ 7. From
these neighbors, v receives at least 8

5
. So, it has positive final charge.

d = 6: In this case, v neither sends nor receives any charge. So,
c∗(v) = c(v) = 0.

d = 7: At most one neighbor of v is of degree ≤ 5. Hence, c∗(v) ≥
1 − 1 = 0.

d = 8: If v is incident with a 4-vertex, then it is not incident with
a 5-vertex. In this case, c∗(v) ≥ 2 − 2

3
> 0. If v is not incident

with a 4-vertex, then it is incident with at most five 5-vertices. Then
c∗(v) ≥ 2 − 5 · 2

5
= 0.

d = 9: Note that v has at most one neighbor of degree 4, at most
six neighbors of degree ≤ 5, and at least three neighbors of degree ≥ 6.
Hence, c∗(v) ≥ 3 − 2

3
− 5 · 2

5
> 0.

d ≥ 10: Observe that v has at most �2d
3
� neighbors of degree ≤ 5.

So, c∗(v) ≥ d − 6 − �2d
3
�2

3
≥ 0. This completes the proof.

3. The lightness of P4

Theorem 3.1. w(P4) ≤ 23.

Proof. We shall prove the theorem for the class G(9, 9). Suppose that
the claim is false and G is a counterexample on |V (G)| vertices with
|E(G)| maximum.
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(1) Let f be a face with r(f) ≥ 4 and let x and y be vertices on f ,
which are not f -adjacent. Then d(x) + d(y) ≤ 13. Moreover, if
d(x) = 4 or d(y) = 4, then d(x) + d(y) ≤ 12. In particular, every
vertex v with d(v) ≥ 9 is incident only with 3-faces.

Suppose that (1) is false. Then we can add the edge xy in f . Denote
by G′ the resulting graph. Observe that G′ ∈ G(9, 9) and that every
4-path in G′ which contains the new edge xy has weight at least 24.
Thus, G′ contradicts the maximality of |E(G)|. This proves (1).

(2) No face of size ≥ 5 is incident with a 4-vertex.

Suppose that (2) is false and let f = x1x2 · · ·xkx1 be a face such that
x3 is a 4-vertex and k ≥ 5. Then, x2 
= x4, x1 
= x3, and x3 
= x5. By
(1), d(x2)+ d(x4) ≤ 13 and d(xi) ≤ 8 for every i ∈ {1, . . . , k}. Because
of planarity, either x1 
= x4 or x2 
= x5. We may assume that x1 
= x4.
Since d(x1) ≤ 8 and G ∈ G(9, 9), x1 
= x2. Hence, P = x1x2x3x4 is a
4-path. By (1), d(x1) + d(x4) ≤ 13. Since P is not light, d(x2) ≥ 7.
Consequently, x2 
= x5 (otherwise, we could add the loop joining x2 and
x5 in f , contradicting maximality of |E(G)|). Therefore, we may apply
the same arguments to the path x5x4x3x2 to conclude that d(x4) ≥ 7.
Then d(x2) + d(x4) ≥ 14, a contradiction.

(3) Let f be a 4-face incident with a 4-vertex x. Then, every vertex
of f distinct from x is of degree ≥ 6.

For, suppose that (3) is false. Let f = x1x2x3x4x1, where x = x1.
Since G ∈ G(9, 9) and since d(x2) + d(x4) ≤ 13 by (1), it is easy to see
that all vertices on f are distinct. If d(x3) = 4 or 5, then x2 and x4

contradict (1) (or the path P = x1x2x3x4 is light). So, we may assume
that d(x2) = 5. Since P is not light, it follows by (1) that the degrees
of x3 and x4 are 7 or 8 but not both equal to 7. Let G′ = G + x2x4. It
is easy to see that if G′ has a light P4, then G also has a light P4. This
contradicts the maximality of G.

(4) Let v be a 7- or 8-vertex. Then m4(v) + m5(v) ≤ �d(v)
2
�.

Suppose that (4) is false. Let x1, x2, . . . , xd(v) be the neighbors of v
in the clockwise order around v. We may assume that d(x1) ≤ 5 and
d(x2) ≤ 5. Vertices x1 and x2 are not adjacent. (Otherwise we would
obtain a light P4 in G.) Denote by f the face incident with the walk
x1vx2. Thus, r(f) ≥ 4. Let x be a neighbor of x1 on f different from v.
(We can always choose x. Otherwise, x1 is a 4- or 5-vertex which has
two common edges with the 7- or 8-vertex v, a contradiction.) Since
x1 is not adjacent to x2, x 
= x2. Since the path xx1vx2 is not light,
d(v) + d(x) ≥ 14, a contradiction to (1).

Let us now introduce the discharging rules.
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Rule R1. If f is a face with r(f) ≥ 5 and u is a 5-vertex incident with
f , then f sends 1 to u.

Rule R2. Suppose that f is a 4-face and u is a 4- or 5-vertex incident
with f .

(a) If d(u) = 5, then f sends 2/r5(f) to u.
(b) If d(u) = 4, then f sends 2 to u.

Rule R3. Suppose that v is a 7- or 8-vertex. Then v sends 1
3

to every
adjacent 5-vertex. The remaining charge is then equally redistributed
between the adjacent 4-vertices.

Rule R4. Suppose that v is a vertex with d(v) ≥ 9 and suppose that
u is a 4- or 5-vertex adjacent to v. Let α = c(v)/d(v). Let u− and
u+ be the predecessor and the successor of u with respect to v. Also,
let u−− be the predecessor of u− and u++ be the successor of u+ with
respect to v.

(a) Suppose that d(u) = 4. Vertex v sends 1 to u if one of the following
conditions is satisfied:
(1) u−, u+, u++ are of degree ≥ 6;
(2) u−−, u−, u+ are of degree ≥ 6;
(3) u+ is a 5-vertex and u−−, u−, u++ are of degree ≥ 6;
(4) u− is a 5-vertex and u−−, u+, u++ are of degree ≥ 6.
Otherwise v sends 2α to u.

(b) Suppose that d(u) = 5 and u−, u+ are not both 4-vertices. If
u−, u+, u++ are of degree ≥ 6 or u−−, u−, u+ are of degree ≥ 6
then v sends 2α to u. Otherwise v sends α to u.

Rule R5. Suppose that u is 5-vertex adjacent to a 4-vertex v. Suppose
also that other three neighbors of v are of degree at least 11. Then, v
sends 1

11
to u.

Rule R6. Suppose that v is a 5-vertex adjacent to a 4-vertex u and
m4(v) = 1. Suppose that v has at most one neighbor x distinct from u
which has degree ≤ 8, and if x exists, then u and x are adjacent and
d(x) = 6. Then v sends 1

3
to u. Otherwise, if v has at most two

neighbors of degree ≤ 9, then it sends 1
5

to u.

We claim that after applying Rules R1–R6, c∗(x) ≥ 0 for every
x ∈ V (G) ∪ F (G). Suppose first that f is a face of G. If r(f) = 3
then it neither receives nor sends any charge. So, c∗(f) = c(f) = 0. If
r(f) = 4 then by Rule R2 and (3), c∗(f) = 0 or 2. Finally, assume that
r(f) ≥ 5. By (2), no 4-vertex is incident with f . Observe also that
there are no four consecutive 5-vertices v1v2v3v4 on the boundary of f .
If not, v1v2v3v4 would be a light path or we would have v1 = v4. In the
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latter case, let w be a vertex on f adjacent to v1 and different from v2

and v3. Note that d(w) ≥ 9 (otherwise wv1v2v3 is a light path). But

then w contradicts (1). Hence, c∗(f) ≥ 2r(f) − 6 − �3r(f)
4

� > 0.
Suppose now that v is a vertex of G with c∗(v) < 0. Let d = d(v).

Enumerate the neighbors of v by x1, x2, . . . , xd in the clockwise order
around v. Consider the following cases.

d = 4: Suppose first that v is incident with a face f of size at least
4. By (2), r(f) = 4. Observe that Rule R5 does not apply to v.
(Otherwise, v has three neighbors of degree ≥ 11, which implies that
all faces incident with v are triangles.) By Rule R2, f sends 2 to v,
so c∗(v) ≥ 0. Now, we may assume that all faces incident with v are
triangles. Consider the following subcases.

m7(v) ≥ 2: Let xi and xj be distinct neighbors of v of degree 7.
Then v is the only neighbor of xi of degree ≤ 5. Otherwise, G
contains a light P4. Similarly for xj . By R3, each of xi and xj

sends 1 to v. Thus c∗(v) ≥ 0.
m7(v) = 1: Let x1 be a 7-vertex. Suppose that one of x2, x3, x4 is of

degree ≤ 6. Then, the other two are of degree ≥ 7. If d(x2) = 5
then v and x2 are the only neighbors of x1 of degree ≤ 5. Hence
x1 sends 2

3
to v. If d(x3) ≥ 9 then v receives at least 2

3
from x3.

Suppose now that d(x3) = 8. If x3 has a neighbor of degree ≤ 5
distinct from v and x2, then we have a light P4. Hence, x3 sends
5
3

to v by R3. Same arguments apply at x4, and so c∗(v) ≥ 0.
Similar arguments work if d(x3) = 5 or d(x4) = 5. Hence we may
assume that the neighbor of v of degree ≤ 6 has degree equal to
6. By (4) and Rules R3 and R4, each of the two neighbors of v of
degree ≥ 8 sends at least 1

2
to v. Note that v is the only neighbor

of x1 of degree ≤ 5 (otherwise we obtain a light P4). So, x1 sends
1 to v by R3. Thus, c∗(v) ≥ −2 + 1 + 2 · 1

2
= 0, a contradiction.

Suppose now that x2, x3, x4 are all of degree ≥ 8. If some of these
three vertices is an 8-vertex, then it has no neighbor of degree 4
different from v (otherwise, G has a light P4). So, by Rule R3
(and (4)), each neighbor of v of degree 8 sends at least 1 to v.
And, if some of x2, x3, x4 is of degree ≥ 9, then it sends at least
2
3

to v. Thus, c∗(v) ≥ −2 + 1
3

+ 3 · 2
3

> 0, a contradiction.
m7(v) = 0: We may assume that at least one of x1, x2, x3, x4 is of

degree ≤ 6. Otherwise, each of them sends at least 1/2 to v and
hence c∗(v) ≥ 0. If three neighbors of v have degree ≤ 6, the there
is a light P4. Suppose now that precisely one of them, say x1, has
degree ≤ 6. If xi (i ≥ 2) is of degree 8, then only v and possibly
x1 are its neighbors of degree ≤ 5. Hence xi sends to v at least 4

3
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by Rule R3. If d(xi) ≥ 9, then xi sends ≥ 2
3

to v. If Rule R5 is

applied at v, then d(xi) ≥ 11 (i ≥ 2) and hence xi sends ≥ 10
11

to
v by R4. This implies that c∗(v) ≥ 0. Therefore, v has precisely
two neighbors of degree ≤ 6. Say xi and xj are vertices of degree
≥ 8 and xk and xl are of degree ≤ 6. If at least one of xk, xl is
of degree 5 and one of xi, xj is of degree 8, then we have a light
P4. If xk, xl are 6-vertices and xi is an 8-vertex, then v is the only
neighbor of xi of degree ≤ 5. By Rule R3, xi sends 2 to v, so
c∗(v) ≥ 0. Therefore, we may assume that xi, xj both have degree
≥ 9. By (1), all faces containing xi and xj are of size 3. Now we
consider several possibilities. If d(xk) = d(xl) = 6, then each of xi

and xj sends 1 to v by Rule R4(a) (otherwise, we obtain a light
path which contains xk, v, xl, and a neighbor of xi or xj of degree
≤ 5.) Suppose that d(xk) = 5 and d(xl) = 6. If xk and xl are
not consecutive neighbors of v, then each of xi and xj sends 1 to
v by Rule R4(a). So, we may assume that k = 1, l = 2, i = 3,
and j = 4. Then, by R4(a) and R6, xi sends 1 to v, xj sends ≥ 2

3

and xk sends 1
3

to v. Suppose now that d(xk) = d(xl) = 5. Then
d(xi) ≥ 10 and d(xj) ≥ 10. By Rules R4 and R6, it follows that
each of xk and xl sends ≥ 1

5
and each of xi and xj sends ≥ 4

5
to

v. So, c∗(v) ≥ 0.

d = 5: If v sends a charge to some 4-vertex by Rule R6, then each
neighbor of v of degree ≥ 9 sends ≥ 1

3
to v and each neighbor of degree

≥ 10 sends ≥ 2
5

to v by Rule R4. If v sends 1
5

by Rule R6, then

c∗(v) ≥ −1 +3 · 2
5
− 1

5
≥ 0. Suppose now that v sends 1

3
by Rule R6. If

the vertex x of R6 does not exist, then c∗(v) ≥ −1 + 4 · 1
3
− 1

3
≥ 0. So,

x exists. Let x′ be the neighbor of v which is the successor of x. Since
there is not light P4 in G, x′ sends ≥ 2

3
to v by R4(b). Consequently,

c∗(v) ≥ 0. So, assume that Rule R6 does not apply to v.
Suppose first that v is incident with a face f of size at least 4. Because

of Rule R1 we may assume that f is of size 4. Let vx1wx2 be the
boundary of f . By (3), f is not incident with a 4-vertex. If f is
incident with no more than two 5-vertices, then v receives at least 1
from f by R2. Note that r5(f) 
= 4. So, we may assume that r5(f) = 3.
Hence, f sends 2

3
to v. This implies that the other faces incident with

v are triangles. Note that x3 and x5 are of degree ≥ 9 (otherwise, we
obtain a light P4 in G). Each of these vertices sends at least 1

3
to v, by

Rule R4. Thus, the final charge of v is positive, a contradiction.
Now, we may assume that all faces incident with v are triangles.

Note that v has at least three neighbors of degree at least 7 (else there
would be a light P4). With one exception, each of these neighbors sends
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at least 1
3

to v, so c∗(v) ≥ 0. The exceptional case is when v is adjacent
to two 4-vertices, say x1 and x3, and d(x2) ≥ 9. In this case, x2 sends
no charge to v. Since there is no light P4 in G, x2, x4, and x5 are all
of degree at least 11. By R4, each of x4 and x5 sends ≥ 5

11
to v. The

fourth neighbor of x1 is of degree ≥ 11 (otherwise, we obtain a light
P4). Hence, by R5, v also receives 1

11
from x1. Similarly, v receives 1

11

from x3. Thus, c∗(v) ≥ −1 + 2 · 5
11

+ 2 · 1
11

> 0.

6 ≤ d ≤ 8: If d = 6 then v neither sends nor receives any charge, i.e.
c∗(v) = c(v) = 0. By (3) and R3 it follows that for d = 7 and 8, v has
nonnegative final charge.

d ≥ 9: Let α = d−6
d

. We are interested in the minimal possible
value of c∗(v). Observe that if there are four consecutive neighbors
xi−2, xi−1, xi, xi+1 of v whose degrees are ≥ 6, ≥ 6, 4, ≥ 6, then we may
reset d(xi−1) = 5. After this resetting the value of c∗(v) is unchanged
or decreased. We argue similarly, if the degrees of xi−2, xi−1, xi, xi+1

are ≥ 6, 4, ≥ 6, ≥ 6, respectively. If there are five consecutive vertices
xi−2, xi−1, xi, xi+1, xi+2 whose degrees are ≥ 6, 5, 4,≥ 6,≥ 6, then we
may reset d(xi) = 5. After this the value of v∗(v) do not increase.
We argue similarly, if the degrees of xi−2, xi−1, xi, xi+1, xi+2 are ≥ 6,≥
6, 4, 5,≥ 6. Similarly, if xi−2, xi−1, xi, xi+1 are of degrees ≥ 6, ≥ 6, 5,
≥ 6 or ≥ 6, 5, ≥ 6,≥ 6, then set d(xi−1) = 5 or d(xi) = 5, respectively.
If there are four consecutive neighbors of v which all have degree ≤ 5,
then the first and the fourth are 5-vertices which coincide. Observe
also that there are no five consecutive neighbors of v all of degree ≤ 5.
(Otherwise, in both cases, we obtain a light P4.)

Above observations imply the following. Denote by ki (1 ≤ i ≤ 4) the
number of maximal subwalks with i− 1 edges of the walk x1x2 · · ·xdx1

after deleting the vertices of degree ≥ 6. Denote by k the total number
of such maximal subwalks. (Since G may have parallel edges, it is
possible that two different maximal subwalks have a common vertex.)
Then, k = k1 + k2 + k3 + k4 and k1 + 2k2 + 3k3 + 4k4 + k ≤ d. Finally,
after applying Rule R4,

c∗(v) ≥ d − 6 − 2αk1 − 3αk2 − 4αk3 − 5αk4 ≥ d − 6 − αd = 0.

4. The lightness of C3

Theorem 4.1. w(C3) ≤ 21.

Proof. We shall prove the theorem for the class G(12, 13). Suppose that
the claim is false and G is a counterexample on |V (G)| vertices with
|E(G)| as large as possible.
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We claim that every vertex v ∈ V (G) with d(v) ≥ 11 is incident only
with 3-faces. Suppose not. Then there exists a face f of size ≥ 4 which
is incident with v. Let w be a vertex on f which is not f -adjacent with
v. It is easy to see that the graph G′ = G + vw belongs to G(12, 13)
and that every 3-cycle in G′ has weight ≥ 22. Thus, G′ contradicts the
maximality of |E(G)|.

We have five discharging rules.

Rule R1. From each r-face f (r ≥ 4) send 3
4

to each incident 4-vertex.
After that, send the remaining charge equally distributed to all incident
vertices of degree ≥ 5. There is one exception to this rule. For further
reference it is described as Rule R1’ below.

v1

v3 v4

v2

v''

f ''

v'

f '

f

Figure 2. The Rule R1’

Rule R1’. Suppose that f = v1v2v3v4 is a 4-face where d(v1) = d(v3) =
4, and d(v2) = 5. Suppose also that the other faces containing v2 are of
size 3. Let f ′ and f ′′ be the faces distinct from f containing the edges
v3v4 and v1v4, respectively. Let v′ 
= v3 and v′′ 
= v1 be the neighbors of
v4 incident to f ′ and f ′′, respectively. (See Figure 2.) If f ′ is a 4-face
and d(v′) = 4, then we say that the pair (f, f ′) is admissible. Similarly,
(f, f ′′) is admissible if f ′′ is a 4-face and d(v′′) = 4. Now, send charge
3/4 to each of v1 and v3. If both pairs (f, f ′) and (f, f ′′) are admissible,
send 12/40 to v2 and 8/40 to v4. If only one of (f, f ′) and (f, f ′′) is
admissible, send 11/40 to v2 and 9/40 to v4. Otherwise, apply R1 to
f , i.e., send 10/40 to each of v2 and v4.

It is easy to see that each ≥ 5-vertex incident with a ≥ 4-face f
receives at least 5

12
from f except when f is a 4-face incident with two

vertices of degree 4. In that case, each ≥5-vertex on f receives at least
1
5

from f . If f is not a 4-face exceptional in Rule R1 (so that R1’ does
not apply), then each ≥5-vertex on f receives at least 1

4
from f .
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In Rule R2 below we use the following function φ : Z → R. We let
φ(d) = 0 if d ≤ 6 or d ≥ 12, and we put φ(7) = 1

4
, φ(8) = φ(9) = 1

2
,

φ(10) = 3
4
, φ(11) = 4

5
. Then we have for any d1 ≤ d2 ≤ 11:

(O1) φ(d1) + φ(d2) ≥ 1, if d1 + d2 ≥ 18.
(O2) φ(d1) + φ(d2) ≥ 4

5
, if d1 + d2 ≥ 17.

(O3) φ(d1) + φ(d2) ≥ 1, if d1 + d2 ≥ 17 and (d1, d2) 
= (6, 11).

Rule R2. If v is a vertex with d(v) ≤ 11, then v sends charge φ(d(v))
to each 4- or 5-vertex u adjacent to v such that the edge uv is contained
in at least one 3-face.

Rule R3. If v is a d-vertex with d ≥ 12, then v sends charge deter-
mined below to each neighbor u of degree 4.

(a) If u is incident with precisely two 3-faces, then v sends 1/2 to u.
(b) If u is incident with precisely three 3-faces uvu1, uvu2, and uu2u3,

and d(u2) ≤ 11, then v sends 1/4 to u.
(c) If u is incident with precisely three 3-faces uvu1, uvu2, and uu2u3,

and d(u2) ≥ 12, then v sends 5/8 to u.
(d) If u is incident with four 3-faces, then v sends 1 to u.

Rule R4. If v is a d-vertex with d ≥ 12, then v sends charge deter-
mined below to each neighbor u of degree 5.

(a) Suppose that u is incident with precisely two 3-faces, uvu1 and
uvu2. If all neighbors of u distinct from v are of degree 4, send
7/20 from v to u. If all neighbors of u except v and one of u1, u2

are of degree 4, send 6/20. Otherwise, send 1/4 from v to u.
(b) Suppose that u is incident with precisely three 3-faces uvu1, uvu2,

and uu2u3, and d(u2) ≥ 12. If all neighbors of u except v and u2

are of degree 4 and if the other two faces incident with u are
4-faces, then v sends 11/40 to u; otherwise, v sends 1/4 to u.

(c) Suppose that u is incident with precisely four 3-faces uvu1, uvu2,
uu2u3, and either uu1u4 or uu3u4. Suppose also that d(u2) ≥ 12,
and d(u1) ≥ 12 (if uu1u4 is a face), d(u3) ≥ 12 (if uu3u4 is a face).
Then v sends 1/4 to u.

(d) Suppose that u is incident with precisely four 3-faces uvu1, uvu2,
uu2u3, and uu3u4, where d(u2) ≤ 11. Let f be the ≥ 4-face
containing u. If d(u1) = d(u4) = 4 and Rule R1’ applies in f
where u corresponds to the vertex v2 in R1’ and u1 corresponds
to v3 (if (f, f ′) is admissible) or to v1 (if (f, f ′′) is admissible),
then send 7/20 from v to u. If d(u1) = d(u4) = 4, f is a 4-face
and R1’ does not apply in f as stated above, then send 3/8 from
v to u. If d(u1) 
= 4 or d(u4) 
= 4, or f is not a 4-face, send 7/24
from v to u.
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(e) If u is incident with five 3-faces and at least one of the two vertices
sharing a 3-face with the edge uv has degree ≥ 11, then v sends
1/2 to u.

After applying rules R1 and R1’, all faces have charge 0 and this
charge remains unchanged by other discharging rules. Rule R2 sends
nonzero charge only from vertices of degrees 7, . . . , 11 to vertices of
degree 4 or 5. Rules R3–R4 send charge from ≥ 12-vertices to 4- and
5-vertices, respectively. Along any edge, nonzero charge is sent by at
most one of the rules (or their subcases).

Let v ∈ V (G) and d = d(v). Let d′ denote the number of 3-faces
containing v. Let v1, . . . , vd be the neighbors of v enumerated in the
clockwise order around v, and let di = d(vi), i = 1, . . . , d. We claim
that c∗(v) ≥ 0, and this is proved depending on the value of d.

d = 4 : If c∗(v) < 0, then d′ ≥ 2 because of Rules R1 and R1’. We
distinguish the following four cases:

(a) d′ = 2 and vv1v2 and vv2v3 are 3-faces.
(b) d′ = 2 and vv1v2 and vv3v4 are 3-faces.
(c) d′ = 3 and vv1v2, vv2v3, and vv3v4 are 3-faces.
(d) d′ = 4.
The charge at v after applying R1 and R1’ is equal to −1

2
, −1

2
, −5

4
,

and −2, respectively. Suppose that vivi+1 (1 ≤ i ≤ 3) is an edge of G.
Since vvivi+1 is not light, di + di+1 ≥ 18. If di ≤ 11 and di+1 ≤ 11,
then (O1) implies that vi and vi+1 together send charge ≥ 1 to v. (In
such a case we say that (O1) applies.) Since the vertices on faces of
size ≥ 4 all have degree ≤ 10, case (b) is settled. Similarly in case (a)
if d2 ≤ 11. If d2 ≥ 12, then R3(a) applies. Similarly in case (c): either
(O1) applies twice, (O1) once and R3(b) once, or R3(c) twice. Finally,
in case (d), R3(d) or (O1) are applied at least twice. In each case we
get nonnegative final charge at v.

d = 5 : If c∗(v) < 0, then d′ ≥ 1 by the remark after Rule R1’. If
d′ = 1, then (O2) applies (in addition to the charge received from four
faces), so c∗(v) > 0. We are left with the following six cases:

(a) d′ = 2 and vv5v1 and vv1v2 are 3-faces. If d1 ≤ 11, then (O2)
applies to v1v2 and this easily implies that c∗(v) ≥ 0. Otherwise,
d1 ≥ 12 and the rule R4(a) is used on the edge v1v. Let f1, f2, f3 be
the ≥ 4-faces incident with v (in this clockwise order). If Rule R1’ is
not used in any of them, then v receives charge ≥ 1/4 from each of
them and receives 1/4 by R4(a) from v1. So, c∗(v) ≥ 0. If Rule R1’
was applied at v, then v played the role of v4 in R1’, and faces f1, f2, f3

have played the role(s) of f, f ′, f ′′. In particular, d3 = d4 = 4 and at
least one of d2, d5 is also equal to 4. If d2 
= 4 or d5 
= 4, then at most
two ordered pairs (fi, fj) were admissible in applications of R1’, and
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the total charge received at v from f1, f2, f3 is ≥ 3
4
− 2

40
= 7

10
. In this

case, the remaining 3
10

come from v1 by R4(a). If d2 = d5 = 4, then
there were at most four admissible ordered pairs (fi, fj), and the total
charge received at v from f1, f2, f3 is ≥ 3

4
− 4

40
= 13

20
. In this case, the

remaining 7
20

come from v1 by R4(a), again.
(b) d′ = 2 and vv2v3 and vv4v5 are 3-faces. In this case all neighbors

of v have degree ≤ 10 and (O2) applies twice.
(c) d′ = 3 and vv2v3, vv3v4, and vv4v5 are 3-faces. We are done if

(O2) applies at least once. Otherwise, d(v3) ≥ 12 and d(v4) ≥ 12.
Now, R4(b) applies at v3 and at v4. Denote by f and f ′ the two faces
of size ≥ 4 incident with v. If v receives ≥ 1

4
from each of f and f ′,

then c∗(v) ≥ 0. Otherwise, R1’ has been used in f and f ′, sending 9
40

to v. In that case, d1 = d2 = d5 = 4 and f, f ′ are 4-faces. By R4(b), v
receives 22

40
from v3 and v4 and 18

40
from f and f ′, so c∗(v) = 0.

(d) d′ = 3 and vv5v1, vv1v2, and vv3v4 are 3-faces. Similarly as in
case (b), (O2) applies to v3v4.

(e) d′ = 4 and vv4v5, vv5v1, vv1v2, and vv2v3 are 3-faces. Denote
by f the ≥ 4-face incident with v. For each of the 3-faces vvivi+1, we
have di + di+1 ≥ 17 (indices modulo 5). By (O2) we may assume that
either di ≥ 12 or di+1 ≥ 12 in such a case. Since v3 and v4 are of degree
≤ 10, we have d2 ≥ 12 and d5 ≥ 12. If d1 ≥ 12, then v receives charge
1/4 from each of v1, v2, v5 by R4(c), and receives ≥ 1/4 from f by R1
or R1’. If d1 ≤ 11, then R4(d) was used at v2 and v5. If v receives
at least 5/12 from f , then we are done. Otherwise, by the remark
after Rule R1’, d3 = d4 = 4 and f is a 4-face. If R1’ applies in f by
sending 12

40
(respectively 11

40
) to v, then v receives from v2 and v5 total

charge 7
20

+ 7
20

= 28
40

(respectively 7
20

+ 3
8

= 29
40

), by R4(d), so c∗(v) ≥ 0.
Similarly, if R1’ does not apply in f , then v2 and v5 each send 3

8
to v

by R4(d), so c∗(v) = 0.
(f) d′ = 5. If two consecutive neighbors of v have degree ≥ 12, then

R4(e) applies twice, and we are done. Otherwise, we may assume that
d1 ≤ d2 ≤ 11. By observation (O3), we may assume that d1 = 6 and
d2 = 11. Now, v2 sends 4/5 to v by R2. If R2 applies at some other
vertex of degree between 7 and 11 then, clearly, c∗(v) ≥ 0. Otherwise,
since vv5v1 is not light, d5 ≥ 12. Consequently, d4 ≤ 11 (and hence
d4 ≤ 6), and so d3 ≥ 12. Therefore, Rule 4(e) applies at v3 as well.

d = 6 : Vertices of degree 6 retain their original charge 0.
7 ≤ d ≤ 11 : These vertices may lose charge only by R2. If vvivi+1

is a 3-face, then one of vi, vi+1 has degree > 5, so R2 applies at most
once. Otherwise, R2 may apply at vi and vi+1, but v receives ≥ 1

5
from

the face containing these vertices. We may assume that each edge vvi
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is contained in at least one 3-face. Using these facts, it is easy to see
that the charge at v remains nonnegative. (The “worst case” for d ≥ 8
is when R2 is used on vvi and vvi+2 and the faces containing vi−1vvi

and vi+2vvi+3 (indices modulo d) are of size ≥ 4.) In the extreme case
for d = 10, one also has to observe that charge ≥ 1/4 is sent from the
two faces of size ≥ 4. The details are left to the reader.

d = 12 : By the claim at the beginning of the proof, v is incident
with 3-faces only. Therefore, di +di+1 ≥ 10 for i = 1, . . . , 12 (all indices
modulo 12). In particular, if di = 4, then di+1 ≥ 6. If di = 5, then v
sends ≤ 1/2 to vi. Since v sends charge only to vertices of degrees 4
or 5, this implies that v sends at most 1/2 on average, and hence its
charge does not become negative.

d ≥ 13 : Denote by φi the charge sent from v to vi, i = 1, . . . , d. We
claim that, for each i, there exists an integer t, 1 ≤ t ≤ d, such that

φi + φi+1 + · · ·+ φi+t−1 ≤
{

t
2

+ t
26

, if d = 13
t
2

+ t
14

, if d > 13
(2)

where indices are taken modulo d. In fact, we shall need a strengthening
of (2) when d = 13. We shall prove that one can get t ≤ 6 and

φi + φi+1 + · · ·+ φi+t−1 ≤ t

2
+

t − 0.6

26
(3)

unless di = di+2 = di+4 = 4, di+1 = di+3 = 5, and φi = φi+4 = 1,
φi+2 = 1

2
, φi+1 + φi+3 ≤ 7

10
.

The claim is trivial if di 
= 4 (take t = 1). So we may assume that
i = 1 and d1 = 4. The claim is also obvious if R3(a) or R3(b) is used
for φ1 (t = 1) or if d2 ≥ 6 (t = 2). Hence we may assume that d2 = 5. If
d3 ≥ 6, then t = 3 will do. So, d3 ∈ {4, 5}. In particular, R4(b), R4(c),
R4(e) were not used for φ2. Hence φ2 ≤ 3

8
, so we may also assume that

R3(d) was used for φ1 (otherwise t = 2 would do). In particular, v1 is
contained in four 3-faces. This implies that R4(d) was used for φ2. In
particular, the edge v2v3 is contained in an r-face f , where r ≥ 4, so
neither R3(d) nor R4(e) was used for φ3.

Suppose now that d3 = 5. Then φ2 = 7/24. If R4(a) was used for
φ3, then φ3 ≤ 6

20
since d2 = 5. Then φ1 +φ2 +φ3 ≤ 1+ 7

24
+ 6

20
< 3

2
+ 2.4

26

yields (3). Same holds if φ3 ≤ 11
40

. Hence, we may assume that R4(d)
was used for φ3. Since d2 
= 4, φ3 = 7/24. So, φ1+φ2+φ3 = 3/2+1/12,
and t = 3 will do.

It remains to consider the case when d3 = 4. If R3(c) is used for φ3,
then d4 ≥ 12. Hence, φ4 = 0, and φ1 +φ2+φ3+φ4 ≤ 1+3/8+5/8 = 2,
so t = 4 will do. If R3(b) is used for φ3, then φ1+φ2+φ3+φ4 ≤ 1+3/8+
1/4 + 1/2 = 2 + 1/8, so t = 4 proves (3). Otherwise, R3(a) is used for
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φ3. Then R4(e) is not used for φ4. If φ4 ≤ 1/4, then t = 4 verifies (3).
If R4(b) is used for φ4, then d5 ≥ 12, so φ5 = 0 and t = 5 works. Hence,
we may assume that d4 = 5, φ4 > 1

4
, and that R4(d) or R4(a) is used

for φ4. Then we have φ1+φ2+φ3+φ4 ≤ 1+3/8+1/2+3/8 = 2+4/16,
and we are done if d ≥ 14.

From now on we may w.l.o.g. assume that d = 13. Suppose first
that R4(a) is used for φ4 > 1

4
. If φ4 = 6

20
, then d5 
= 4. If φ5 = 1

2
(Rule

R4(e)), then d6 ≥ 11, so φ6 = 0 and φ1+· · ·+φ6 ≤ 1+3/8+1/2+6/20+
1/2 which yields (3). If φ5 ≤ 3

8
, then t = 5 will do. The remaining case

is when φ4 = 7
20

. Then d5 = 4. If R3(c) is used for φ5, then d6 ≥ 12,
so t = 6 gives (3). If R3(b) is used, then t = 5 works. Finally, having
R3(a) for φ5 implies that φ6 ≤ 3

8
. Hence φ1 + · · · + φ6 ≤ 3 + 2

20
proves

(3).
From now on we may assume that R4(d) is used for φ4. If φ2, φ4 ∈

{3
8
, 7

20
}, then Rule R1’ has been used in f and in the ≥ 4-face f ′ con-

taining v3v4. Therefore φ2 = φ4 = 7
20

. Otherwise, φ2+φ4 ≤ 3
8
+ 7

24
< 7

10
.

In any case, φ1 + φ2 + φ3 + φ4 ≤ 1 + 1/2 + 7/10 = 2 + 1/5. If φ5 ≤ 3
8
,

we take t = 5. If R4(e) is used for φ5, then φ5 = 1
2

and φ6 = 0, so t = 6
works. Similarly if R3(c) is used for φ5. Since R3(a) cannot be used
for φ5, the only remaining possibility is that d5 = 4 and φ5 = 1. This
completes the proof of (3) and characterizes the only exception.

Now we continue with the proof of (2). We apply (3) to i = 5. Let
t1 be the corresponding value of t. (If the exception to (3) occurs, we
take t1 = 4 and say that t1 is exceptional .) Next, we repeat the same
with i = 5 + t1. Let t2 be the corresponding value of t. If neither of
t1, t2 is exceptional, then we let t = 4 + t1 + t2 and (3) implies

φ1 + · · ·+ φt ≤ 2 +
1

5
+

t1 + t2
2

+
t1 + t2 − 1.2

26
≤ t

2
+

t

26
.

Let us observe that any of the cases satisfying (3) uses R3(d) only at
its first edge. Therefore t ≤ 13.

We may assume henceforth that t1 or t2 is exceptional. Suppose first
that t1 is exceptional. Then φ1+ · · ·+φ8 ≤ 4+ 2

5
and φ9 = 1. It suffices

to prove (by taking t = 13) that

φ10 + φ11 + φ12 + φ13 ≤ 8

5
. (4)

We shall make use of the following claims:

(1.1) If di ≤ 5, di+3 ≤ 5, di+1 ≥ 5, and di+2 ≥ 5, then φi+1 + φi+2 ≤ 7
12

.

This is clear if di+1 ≥ 11 or di+2 ≥ 11. Otherwise, neither R4(e) nor
R4(d) with 3

8
or 7

20
is used for φi+1, φi+2. This implies (1.1). The next

claim is also obvious by inspection.
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(1.2) If di ≤ 5, di+2 ≤ 5, di+1 ≥ 5, and all four faces containing the
edges vivi+1 and vi+1vi+2 are 3-faces, then φi+1 = 0.

Returning to the proof of (4), assume first that d11 = 4. If φ11 = 1,
then φ10 = 0 by (1.2) and φ12 + φ13 ≤ 7

12
by (1.1). This implies (4).

Otherwise, φ11 ≤ 5
8

and φ10 ≤ 3
8
. Hence (4) follows in the same way as

before. Similar estimates prove (4) if d12 = 4.
We assume henceforth that di ≥ 5 for i = 10, 11, 12, 13. If φi = 0 for

some i, then φ10 + φ11 + φ12 + φ13 ≤ 3 · 1
2
, so (4) follows. Otherwise,

φi ≤ 7
24

for i = 10, 11, 12, 13. This implies (4) as well.
It remains to consider the case when t2 is exceptional. Then t2 = 4

and t1 ≤ 5. If t1 = 5, then the above proof of (4) shows that t = 13
works for (2). Next, t1 
= 4 since that would imply that d13 = 4 (which
is not possible since d1 = 4 and v1 and v13 are adjacent). Since d9 = 4,
we have t1 ≥ 2. If t1 = 2, then φ6 = 0 by (1.2) and t = 6 works. So,
t1 = 3. Then φ13 = 0 by (1.2), and φ6 + φ7 ≤ 7

12
by (1.1). Hence

φ1 + · · · + φ13 ≤ 2 (2 + 1
5
) + 1 + 7

12
+ 1 < 7,

so t = 13 gives (2). This completes the proof of (2).
The following averaging argument using (2) shows that c∗(v) ≥ 0.

For i = 1, . . . , d, let ti be the integer t in (2). Let n1 = 1 and nj+1 =
nj + tnj

, j = 1, 2, . . . . Let r be an integer, and let q = nr − 1 and
s = �q/d�. It follows by (2) that

q∑
i=1

φi ≤ q

2
+

q

α

where α = 26 if d = 13, and α = 14 if d ≥ 14. Let ϕ =
∑d

i=1 φi. Then∑q
i=1 φi ≥ sϕ, so

s

s + 1
· ϕ ≤ q/(s + 1)

2
+

q/(s + 1)

α
≤ d

2
+

d

α
≤ d

2
+

d − 12

2
= c(v).

Since r and hence s may be arbitrarily large, this shows that ϕ ≤ c(v)
and, consequently, c∗(v) ≥ 0.

5. The lightness of K1,3

Theorem 5.1. w(K1,3) ≤ 23.

Proof. This proof is given for the class G(11, 13). Suppose that the
claim is false and G is a counterexample on |V (G)| vertices with |E(G)|
as large as possible.

We claim that every vertex v ∈ V (G) with d(v) ≥ 11 is incident only
with 3-faces. Suppose not. Then there exists a face f of size ≥ 4 which
is incident with v. Let w be a vertex on f which is not f -adjacent
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with v. In the graph G′ = G + vw, every subgraph H ∼= K1,3 which
contains the edge vw has weight w(H) ≥ 12 + 5 + 4 + 4 = 25. Thus,
G′ contradicts the maximality of |E(G)|.
Rule R1. Suppose that f is a face with r(f) ≥ 4 and u is a 4- or
5-vertex incident with f . Then f sends 1

2
to u.

Rule R2. Suppose that u is a 4-vertex adjacent to a vertex v with
d(v) ≥ 7.

(a) If d(v) = 7 and m4(v) = 1, then v sends 2
3

to u.

(b) If d(v) = 7 and m4(v) = 2, then v sends 1
2

to u.
(c) In all other cases, v sends 1 to u.

Rule R3. Suppose that u is a 5-vertex adjacent to a vertex v with
7 ≤ d(v) ≤ 10.

(a) If d(v) = 7 and m4(v) = 1, then v sends 1
3

to u.

(b) In all other cases, v sends c(v)−m4(v)
m5(v)

to u.

Rule R4. Suppose that u is a 5-vertex adjacent to an 11-vertex v. Let
u− and u+ be the predecessor and successor of u with respect to v.

(a) If d(u−) ≤ 5 and d(u+) ≥ 6 or vice-versa, then v sends 1
2

to u.

(b) In all other cases, v sends 1
3

to u.

Rule R5. Suppose that u is a 5-vertex adjacent to a vertex v with
d(v) ≥ 12. Let u− and u+ be the predecessor and successor of u with
respect to v.

(a) If d(u−) = 4 and d(u+) = 5 or vice-versa, then v sends 1
4

to u.
(b) If d(u−) = d(u+) = 4, then v sends no charge to u.
(c) In all other cases, v sends 1

2
to u.

In Rules R4 and R5, multiple adjacency is allowed. In other words,
a 5-vertex receives a charge as many times as it is adjacent to a vertex
of degree ≥ 11. Since G has no light K1,3, the following holds for any
vertex v of G:

(a) If d(v) ≤ 11 then m4(v) ≤ 2.
(b) If d(v) ≤ 10 and m4(v) = 2, then m5(v) = 0.
(c) If d(v) ≤ 9 and m4(v) = 1, then m5(v) ≤ 1.
(d) If d(v) ≤ 8 then m4(v) + m5(v) ≤ 2.

Using (a)–(d) and Rule R3, we can calculate c̄, the minimal possible
charge which a 5-vertex receives from a neighbor v with 7 ≤ d(v) ≤ 10.
The values of c̄ depending on d(v) and m4(v) are given in Table 1.

Next, we claim that after applying Rules R1–R5, c∗(x) ≥ 0 for every
x ∈ V (G) ∪ F (G). Suppose first that f ∈ F (G). If r(f) = 3 then it
neither receives nor sends any charge. So, c∗(f) = c(f) = 0. And, if
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d(v) 7 7 8 8 9 9 10 10
m4(v) 0 1 0 1 0 1 0 1

c̄ 1/2 1/3 1 1 1/3 2 2/5 1/3

Table 1. The minimal charge c̄

r(f) ≥ 4, then c∗(f) ≥ 2r(f) − 6 − r(f)
2

≥ 0 (by R1). This proves the
claim.

Suppose now that v is a vertex of G with c∗(v) < 0. Under this
assumption, we will obtain a contradiction. Let d = d(v) and let
x1, x2, . . . , xd be the neighbors of v in the clockwise order around v.
Consider the following cases.

d = 4: By Rule R2, v has at most one neighbor of degree ≥ 8
and at most three neighbors of degree 7. Otherwise, its final charge
is nonnegative. If m7(v) ≤ 1 then G has a light K1,3 whose central
vertex is v. If m7(v) = 2, then v has exactly one neighbor of degree
≥ 8. Otherwise, v is a central vertex of a light K1,3. Now, by Rule
R2, c∗(v) ≥ −2 + 1

2
+ 1

2
+ 1 = 0. Finally, if m7(v) = 3 then the fourth

neighbor of v, say x4, has degree 6. We may assume that v is incident
only with 3-faces. Otherwise, by Rule R1, c∗(v) ≥ 0. By Rule R2, at
least one of x1, x2, x3 sends 1

2
to v (otherwise, c∗(v) = −2 + 3 · 2

3
= 0).

Denote one such vertex by x. By Rule R2(b), x is a 7-vertex and it
has another neighbor of degree 4. Hence, we obtain that G has a light
K1,3 whose central vertex is x, a contradiction.

d = 5: Note that v has at least three neighbors of degree ≥ 7
(multiplicity is considered) and at most two neighbors of degree 4. We
may assume that v is incident only with 3-faces. Otherwise, v receives
1
2

from some face and it receives from adjacent vertices totally ≥ 1
2

by
Rules R3–R5. If m4(v) = 0 then each neighbor of v of degree at least
7 sends at least 1

3
to v. Thus, c∗(v) ≥ −1 + 3 · 1

3
.

If m4(v) = 1 then we may assume that d(x1) = 4. It is easy to
see that v receives 1

4
or ≥ 1

3
from each neighbor of degree ≥ 7. So,

assume that some neighbor sends 1
4

to v. By R5, let this neighbor be
x2. Hence, d(x2) ≥ 12 and d(x3) = 5. Now, we see that d(x4) ≥ 10
and d(x5) ≥ 10. By Rules R3–R5, each of x4 and x5 sends at least 3

8

to v. So, c∗(v) ≥ −1+ 1
4
+ 6

8
= 0. (The minimum 3

8
of charge, which x5

sends to v, is obtained by R3(b) when d(x5) = 10, m4(x5) = 1. Note
that in this case m5(x5) ≤ 8 since x4 is a neighbor of x5 of degree > 5.
Similar conclusion holds for x4.)
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Finally, if m4(v) = 2 then we may assume that x1 and x3 are 4-
vetices and x2, x4, x5 are vertices of degree at least 11. Now, by Rules
R4 and R5, each of x4 and x5 sends 1

2
to v. This implies that c∗(v) ≥ 0.

6 ≤ d ≤ 10: If d = 6 then it neither sends nor receives charge. So,
c∗(v) = c(v) = 0. If d = 7 then m4(v) + m5(v) ≤ 2. It is easy to verify
that c∗(v) ≥ 0. Suppose now that 8 ≤ d ≤ 10. If m5(v) = 0 then
m4(v) ≤ 2 and hence c∗(v) = d − 6 − m4(v) ≥ 0. And, if m5(v) > 0,
then using Rule R3(b) it is easy to show that c∗(v) = 0.

d = 11: We are looking for the minimum possible value of c∗(v).
Denote by m−

5 the number of vertices which receive 1
2

from v and denote

by m+
5 the number of vertices which receive 1

3
from v (multiplicity is

considered). Then, c∗(v) = 5 − m4(v) − 1
2
m−

5 − 1
3
m+

5 .
We may assume that m−

5 = 0 by the following observation. Suppose
that xi receives 1

2
from v. Then, we may assume that d(xi+1) ≥ 6,

d(xi) = 5, and d(xi−1) ≤ 5. Reset d(xi+1) = 5. It is easy to verify
using Rule R4 that after this resetting c∗(v) cannot increase. Finally,
m4(v) ≤ 2 implies that

c∗(v) = 5 − m4(v) − m+
5 (v)

3
≥ 5 − m4(v) − 11 − m4(v)

3
≥ 0.

d ≥ 12: We are interested in the minimum possible value of c∗(v).
Denote by m−

5 the number of vertices which receive 1
2

from v and denote
by m+

5 the number of vertices which receive 1
4

from v (multiplicity is

considered). Then, c∗(v) = d−6−m4(v)− 1
2
m−

5 − 1
4
m+

5 . We may assume
that for each xi, d(xi) ≤ 5. Otherwise, we can reset d(xi) = 5. By
Rule R5, it is not hard to check that after this resetting, c∗(v) remains
unchanged or decreases. We may also assume that there are no three
consecutive neighbors xi−1, xi, xi+1 of v all of degree 5. Otherwise, we
can reset d(xi) = 4. Observe that after this c∗(v) never increases.
Finally, we may assume that v has two consecutive neighbors both of
degree 5, say x1 and xd. Otherwise, every second neighbor of v is a
4-vertex and by Rules R2 and R5(b), c∗(v) = d − 6 − d

2
≥ 0.

A (5, 4)-chain is a walk y1, y2, . . . , y2k+1 whose vertices have de-
grees 5, 4, 5, 4, . . . , 5, respectively. The possibility that some vertex
can have multiple appearance in a (5, 4)-chain is not excluded. By the
above assumptions, we can split x1x2 · · ·xd into k different (5, 4)-chains
P1, . . . , Pk. Suppose that the length of Pi is 2li +1, i = 1, . . . , k. Then

c∗(v) = d − 6 −
k∑

i=1

(
li +

1

2

)
= d − 6 − d

2
≥ 0.
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6. The lightness of C4

Theorem 6.1. w(C4) ≤ 35.

Proof. This proof is given for the class G(22, 23). Suppose that the
claim is false and G is a counterexample on |V (G)| vertices with |E(G)|
as large as possible. First, we claim that every vertex v ∈ V (G) with
d(v) ≥ 21 is incident only with 3-faces. Suppose not. Then there exists
a face f of size ≥ 4 which is incident with v. Let w be a vertex on
f which is not f -adjacent with v. In the graph G′ = G + vw every
4-cycle which contains the edge vw has weight ≥ 22 + 5 + 4 + 5 = 36.
Since G′ ∈ G(22, 23), this implies that G′ is also a counterexample, a
contradiction to the maximality of |E(G)|.

The discharging rules are as follows.

Rule R1. Suppose that f is a face and u is a vertex incident with f .

(a) If d(u) = 4 and r(f) ≥ 4, then f sends 1 to u.
(b) If d(u) = 5 and r(f) ≥ 6, then f sends 1 to u.
(c) If d(u) = 5 and 4 ≤ r(f) ≤ 5, then f sends 1

2
to u.

Rule R2. Suppose that u is a 5-vertex adjacent to a vertex v of degree
10. Then v sends 4

10
to u.

Rule R3. Suppose that u is a 4- or 5-vertex adjacent to a vertex v of
degree 11.

(a) If d(u) = 4 and uv is in two 3-faces, then v sends 10
11

to u.

(b) If d(u) = 4 and uv is in precisely one 3-face, then v sends 5
11

to u.
(c) If d(u) = 5 and uv is in two 3-faces, then v sends 5

11
to u.

Rule R4. Suppose that u is a 4- or 5-vertex adjacent to a vertex v of
degree ≥ 12.

(a) If d(u) = 4 and uv is in two 3-faces, then v sends 1 to u.
(b) If d(u) = 4 and uv is in precisely one 3-face, then v sends 1

2
to u.

(c) If d(u) = 5 and uv is in two 3-faces, then f sends 1
2

to u.

Now, we shall prove that after applying R1–R4, c∗(x) ≥ 0 for every
x ∈ V (G) ∪ F (G).

Let f be a face of G. If f is a 3-face, then c∗(f) = c(f) = 0. If
r(f) ≥ 6, then f has charge 2(r(f) − 3) ≥ r(f). By Rule R1 the face
f sends to each incident vertex a charge ≤ 1, hence c∗(f) ≥ 0. If
r(f) = 5, then c(f) = 4. The face f has at most two 4-vertices. So,
two of its vertices receive ≤ 1 and three receive ≤ 1

2
. Hence, c∗(f) ≥ 0.

Finally, suppose that r(f) = 4. Then, f has charge 2. All vertices on
f have degree ≤ 21. Therefore, no edge on f is a loop, and if v is a
≤ 5-vertex on f , its two neighbors on f are distinct vertices of G. In
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particular, if f has two 4-vertices, then f is bounded by a 4-cycle. Since
its weight is ≥ 36, the other two vertices are of degree ≥ 6. Similarly,
if f has a 4-vertex and (at least) two vertices of degree 5. This implies
that f sends a charge ≤ 2 to its neighbors, and so c∗(f) ≥ 0.

Let v be a vertex of G and let d = d(v). Denote by v1, . . . , vd

the neighbors of v in the clockwise order around v. We consider the
following cases.

d = 4: Suppose first that v is incident with two ≥ 4-faces. Then by
Rule R1(a) these two faces send 2 to v, and so c∗(v) ≥ 0.

Let v be incident with precisely one face f of size ≥ 4. Assume that
f contains v1 and v2. If d(v2) ≥ 12 or d(v3) ≥ 12 or v1 and v2 are both
of degree ≥ 12, then the vertices of degree ≥ 12 send a charge ≥ 1
to v according to Rule R4. By R1(a), f sends 1 to v. Consequently,
c∗(v) ≥ 0.

Suppose now that v has at most one neighbor (say v1) of degree ≥ 12
incident with f . Since vv2v3v4v is a 4-cycle in G, two vertices among
v2, v3, v4 have degree 11 (and the third one has degree 10 or 11). By
Rules R3(a) and R3(b), the 11-neighbors of v send a charge ≥ 15

11
to v.

By R1(a), f sends 1 to v, and thus c∗(v) ≥ 0.
Let v be incident with four 3-faces. If v is adjacent with two vertices

of degree ≥ 12 then by Rule R4(a) these vertices send 2 to v, and
c∗(v) ≥ 0. If v is adjacent with at most one vertex of degree ≥ 12,
then v is incident with at least three vertices of degree ≥ 11 (otherwise
there would be a light 4-cycle). By Rules R3 and R4, these vertices
send a charge ≥ 3 · 10

11
> 2 to v, and c∗(v) ≥ 0.

d = 5: If v is incident with one face of size ≥ 6 then by Rule R1(b)
this face sends 1 to v, and c∗(v) ≥ 0. If v is incident with two faces of
size ≥ 4, then these faces send ≥ 1 to v, and so c∗(v) ≥ 0.

Let v be incident with precisely one face f of size 4 or 5. Suppose
that f contains v1 and v2. If one of v3, v4, v5 has degree ≥ 12, then
c∗(v) ≥ 0 by R1 and R4(c). Otherwise, C = vv2v3v4v is a 4-cycle.
Then, C contains an 11-vertex w and a vertex w′ of degree ≥ 10. Then
v receives a charge ≥ 1

2
+ 5

11
+ 4

10
> 1 from f , w, and w′, so c∗(v) ≥ 0.

Suppose that v is incident only with 3-faces. If two neighbors of v
have degree ≥ 12, then by R4(c) these vertices send 1 to v, and so
c∗(v) ≥ 0. If at most one neighbor of v has degree ≥ 12 then two
neighbors have degree ≥ 11 and a third neighbor has degree ≥ 10. By
Rules R2 and R3 these three neighbors send a charge ≥ 2 · 5

11
+ 4

10
> 1

to v, and c∗(v) ≥ 0.

6 ≤ d ≤ 9: The vertex v sends no charge to other vertices, and so
c∗(v) ≥ 0.
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d = 10: The vertex v has initial charge 4, and by Rule R2, it sends to
each neighbor a charge ≤ 4

10
. Hence, c∗(v) ≥ 0.

11 ≤ d ≤ 21: If vi is a 4-neigbour of v such that vvi−1vi and vvivi+1

(all indices modulo d) are 3-faces, then both vi−1 and vi+1 have degree
≥ 5, and one of them has degree ≥ 6 (otherwise, vvi−1vvi+1 would be
a light 4-cycle).

Suppose that d ≥ 12. Each vi receives a charge ≤ 1
2

from v, except
when d(vi) = 4 and vvi−1vi and vvivi+1 are 3-faces. In the exceptional
case v sends 1 to u. If d(vi−1) ≥ 6 and d(vi+1) ≥ 6, then v sends no
charge to them. If one of these vertices, say vi−1, is a 5-vertex such that
vvi−1 is incident with a face of size ≥ 4, then v sends no charge to vi−1

and vi+1. In both cases, we may think of the charge 1 sent from v to vi

being sent 1
2

along the edge vvi and 1
4

along vvi+1 and 1
4

along vvi−1. If

d(vi−1) = 5, d(vi+1) ≥ 6, and vvi−2vi−1v is a 3-face, then v sends 1
2

to
vi−1. Since vvi−2vi−1vi is a 4-cycle if d(vi−2) ≤ 5, we have d(vi−2) ≥ 6.
Again, we may think of v sending 1

2
directly to vi,

1
4

to vi via vi−2, and
1
4

to vi via vi+1. Then again, along any edge vvj (1 ≤ j ≤ d) a charge

≤ 1
2

is sent from v. Consequently, v sends a charge ≤ d · 1
2
≤ d − 6 to

its neighbors. This implies that c∗(v) ≥ 0.
If d = 11 then multiply all charges used above with 10

11
. Again,

d · 5
11

≤ d − 6, and so c∗(v) ≥ 0.

d = 22: Then all faces containing v are of size 3. Let φi be the charge
sent from v to vi (i = 1, . . . , d). Let vi be a neighbor of v. We claim
that either φi ≤ 1

2
or φi + φi+1 ≤ 1 or φi + φi+1 + φi+2 ≤ 2. If none

of the first two inequalities hold, then d(vi) = 4 and d(vi+1) = 5.
If d(vi+2) = 4, then vvivi+1vi+2 is a light 4-cycle. This implies that
d(vi+2) ≥ 5, and the last inequality holds. Now, it is easy to see that
the total charge sent from v to its neighbors is ≤ 7 · 2+ 1

2
, so c∗(v) > 0.

d ≥ 23: Similarly as above, we have φi + φi+1 ≤ 3
2
. This implies that

the total change sent from v to its neighbors is ≤ 3
2
· �d

2
� ≤ d − 6, and

so c∗(v) ≥ 0.

Let K−
4 denote the 4-cycle with one diagonal. The following example

shows that K−
4 is not light. Let Ws be a wheel with center x, cycle

y1y2 · · · ys and spokes xyi for 1 ≤ i ≤ s. Let W ′
s be a copy of Ws with

vertices x′, y′
1, . . . , y′

s, and let Hs be the graph obtained from Ws ∪W ′
s

by adding new vertices z1, . . . , zs which are joined to Ws and W ′
s by the

edges ziyi, ziyi+1, ziy
′
i, and ziy

′
i+1 for all 1 ≤ i ≤ s (indices modulo s).

The graph Hs is 3-connected, planar, of minimum degree 4 and without
adjacent 4-vertices. On the other hand, every K−

4 in Hs contains an
s-vertex.
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However, the proof of Theorem 6.1 shows that

Corollary 6.2. In the subclass of triangulations with minimum degree
4 and without adjacent 4-vertices, the graph K−

4 is light with w(K−
4 ) ≤

35.

7. The lightness of K1,4, C5, and C6

In this section we shall show that K1,4, C5, and C6 are light in the
class G of all planar graphs of minimum degree ≥ 4 having no adjacent
4-vertices. Let H be a plane graph. With ϕ(H) we denote the smallest
integer with the property that each graph G ∈ G contains a subgraph
K isomorphic to H such that all vertices of K have degree ≤ ϕ(H).
(If such an integer does not exist, we write ϕ(H) = ∞.)

Theorem 7.1. ϕ(K1,4) ≤ 107, ϕ(C5) ≤ 107, and ϕ(C6) ≤ 107.

Proof. For brevity, let ω := 108. A vertex v and a face f are said to
be big if d(v) ≥ ω and r(f) ≥ 4, respectively.

Suppose that there is a counterexample for the stated bounds. We
may assume that

(0) G is 2-connected (and hence every facial walk is a cycle of G).

If G has more than one block (2-connected component), let B be an
endblock of G and let v be the cutvertex of G contained in B. We may
assume that v is on the outer face of B. Let u be another vertex of B on
the outer face of B. Take ω distinct copies Bi of B (i = 0, 1, . . . , ω−1),
and denote by vi and ui the copies of v and u (respectively) in Bi. Let G′

be the graph obtained from B0∪B1∪· · ·∪Bω−1 by identifying all copies
of v into a single vertex, and adding edges u0ui for i = 1, . . . , ω − 1.
Then G′ is a 2-connected planar graph with minimum degree ≥ 4
and no two adjacent 4-vertices. If H is a connected subgraph of G′

containing no vertices of degree ≥ ω, then H determines an isomorphic
subgraph in B − v (hence in G), and its degrees in G are also < ω.
This proves (0).

Suppose now that a big vertex v is incident with a big face. By
adding edges incident with v we can triangulate the big face, and the
resulting graph is still a counterexample to our theorem. Hence, we
can achieve the following property:

(1) Every vertex v ∈ V (G) with d(v) ≥ ω is incident only with 3-faces.

Observe that in order to achieve (1), we may have introduced parallel
edges. So, we shall work in a slightly bigger class G ′ ⊇ G of graphs
obtained from G by triangulating neighborhoods of large vertices. So,
we may have parallel edges, but every parallel edge has at least one big
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endvertex. Moreover, after replacing all parallel edges by single edges,
we get a graph in the class G. We make some further assumptions:

(2) Among all counterexamples in G ′ satisfying (0) and (1), we select
one with minimum number of vertices. Subject to this assump-
tion, we choose one with maximum number of edges. Further-
more, among all embeddings of G in the plane we select one with
minimum number of pairs (v, f), where v ∈ V (G) is a 4-vertex
and f is a big face incident with v.

Now we consider the following discharging rules:

Rule R1. Suppose that f is a face with r(f) ≥ 6 and e is an edge
on f incident with a 3-face Δ. Let v be the vertex of Δ which is not
an endvertex of e. Suppose first that the neighbor faces of Δ different
from f are triangles.

(a) If d(v) = 4 and r(f) ≥ 6 then f sends 1
2

to v.

(b) If d(v) = 5 and r(f) ≥ 7 then f sends 1
6

to v.

Suppose now that precisely one neighbor face Δ′ of Δ is a 3-face and
Δ′ is adjacent to two triangles incident with v.

(c) If d(v) = 4 and r(f) ≥ 7 then f sends 1
4

to v.

Rule R2. Suppose that f is a face with r(f) ≥ 7 and e is an edge on
f incident with a 3-face Δ. Suppose that a neighbor face Δ′ of Δ is a
triangle. Let u denote the common vertex of f , Δ, and Δ′, and let v be
the vertex of Δ′ not in Δ. Suppose that d(v) = 4, that v is contained
in at least three 3-faces, and if it is contained in three 3-faces, then it
has no big neighbors.

(a) If d(u) = 7, then f sends 1
6

to v.
(b) If d(u) = 6, then f sends 1

2
to v.

(c) If d(u) = 5 and four faces incident with u are triangles, then f
sends 1

4
to v via e (i.e., f sends 1

2
to v via the two edges of f

incident with u).

Rule R3. Suppose that f is a face and u is a vertex incident with f .

(a) If d(u) = 4 and r(f) ≥ 4 then f sends 1 to u.
(b) If d(u) = 5 and r(f) = 4 then let c denote the charge which

remains at f after the application of Rule R3(a). Then f sends
the remaining charge c equally distributed to all 5-vertices on f .

(c) If d(u) = 5 and r(f) = 5 then f sends 2
3

to u.
(d) If d(u) = 5, r(f) ≥ 6 and none of the Rules R1 and R2 applies in

f for the two edges which are f -incident with u, then f sends 1
to u.
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(e) If d(u) = 5, r(f) ≥ 6 and at least one of the Rules R1 and R2
applies at an edge which is f -incident with u, then f sends 1

2
to

u.

Rule R4. Suppose that u is a 4- or 5-vertex adjacent to a vertex v of
degree ≥ ω.

(a) If d(u) = 4 then v sends 1 to u.
(b) If d(u) = 5, let u1 and u2 (respectively u′

1 and u′
2) be the first and

the second successor (respectively predecessor) of u with respect
to the local clockwise rotation around v. If the following three
conditions are satisfied

(b1) d(u1) ≥ 6 or d(u′
1) ≥ 6;

(b2) if d(u1) = 4 then d(u2) ≥ 6, and if d(u′
1) = 4 then d(u′

2) ≥ 6;
(b3) u1u

′
1 ∈ E(G);

then v sends 2
3

to u. In all other cases, v sends 1
2

to u.

Rule R5. Suppose that f = vxy and Δ = xyu are distinct 3-faces
with the common edge xy. Suppose that d(v) ≥ ω.

(a) If d(u) = 4 and Δ is adjacent to three 3-faces, then v sends 1
2

to
u.

(b) If d(u) = 5 and Δ is adjacent to three 3-faces, then v sends 1
6

to
u.

(c) If d(u) = 4 and Δ is a adjacent to precisely two 3-faces, then v
sends 1

4
to u.

Rule R6. Suppose that w is a 6- or 7-vertex adjacent with at least six
3-faces. Let vi, i = 1, . . . , d(w), be the neighbors of w in the clockwise
order around w such that the possible face f ′ of size ≥ 4 lies between
v6 and v7. Suppose that v1 is big, v2 and v3 are not big, d(v4) = 4, v5

is again big, and v6 and the possible vertex v7 have arbitrary degrees.

(a) If d(w) = 6 then v1 sends 1
2

to v4 via w.

(b) If d(w) = 7 then v1 sends 1
6

to v4 via w.

Rule R7. Suppose that the edge uv belongs to two 3-faces.

(a) Suppose that d(v) = 7 and d(u) = 4. If v has at most two
neighbors of degree 4, then v sends 1

2
to u. If v has more than

two neighbors of degree 4, then v sends 1
3

to u.

(b) If 8 ≤ d(v) ≤ ω − 1 and d(u) = 4 then v sends 1
2

to u.

Rule R8. Suppose that u is a 5-vertex adjacent to a 4-vertex v. If the
edge uv belongs to two 4-faces, then v sends 1

2
to u.
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Rule R9. Suppose that v is a 4-vertex which bears a positive charge
c > 0 after applying all previous rules and has r > 0 neighbors of
degree 5. Then v sends c

r
to every neighbor of degree 5.
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Figure 3. Discharging rules for the proof of Theorem
7.1. ∗Additional details or requirements are provided in
the text.

For the reader’s convenience, the rules R1–R9 are represented in
Figure 3. The numbers at vertices or faces represent their degree or
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size, respectively, and the sign “+” (or “–”) at the number means that
the degree or size is ≥ (or ≤, respectively) to the given number.

We shall prove that after applying Rules R1–R9, c∗(x) ≥ 0 for every
x ∈ V (G)∪F (G). Let us first consider vertices. Let v be a vertex of G
and let d = d(v). We introduce the following notation. Let v1, . . . , vd

be the neighbors of v in the clockwise order around v. For i = 1, . . . , d,
let fi be the face containing vi, v, and vi+1 (indices modulo d). If fi is
a 3-face, let f ′

i be the other face containing the edge vivi+1. If f ′
i is a

3-face as well, let ui denote its vertex distinct from vi and vi+1. If fi

is not a 3-face, let v′
i be the vertex distinct from v which is fi-adjacent

to vi. In the sequel, we will consider subcases depending on d.

d = 4: If v is incident with four or three big faces or with two opposite
big faces, then by Rule R3(a), v receives a charge at least 4, 3, or 2,
and by R8, v sends at most 2, 1, or 0, respectively. Hence, c∗(v) ≥ 0.
If v is only incident with two adjacent big faces then by Rule R3(a)
the vertex v receives the charge 2 and by Rule R8 the vertex v sends a
positive charge, namely 1

2
, if and only if the two big faces are 4-faces.

The vertices on big faces have degree < ω. If the fourth neighbor of
v has degree < ω, then the neighborhood of v contains a light C5 and
a light K1,4. We may assume that the two 4-faces are f2 = vv2v

′
2v3v

and f3 = vv3v
′
3v4v. Then C = vv3v

′
3v4v1v2v is a light 6-cycle unless

v′
3 = v2. In the latter case, v′

2 
= v4 (by planarity) and, consequently,
C = vv3v

′
2v2v1v4v is a light 6-cycle. The remaining case is when v has

a big neighbor sending 1 to v, in which case c∗(v) ≥ 0.
Next, we consider the case when v is incident with precisely one big

face, say f4. If a neighbor of v is big, it sends 1 to v; the second 1 is sent
by the big face. Hence we may assume that v has no big neighbors. In
the subcases C5 and K1,4 the neighborhood N(v) of v contains both a
C5 and a K1,4, a contradiction. It remains to consider the subcase C6.
For i = 1, 2, 3, consider the face f ′

i . Suppose that f ′
i is a 3-face. Suppose

that d(ui) < ω. If i = 2, then vv1v2u2v3v4v is a light 6-cycle. If i = 1,
then vv1u1v2v3v4v is a light 6-cycle except when u1 = v4. However, in
that case we may reembed the edge v1u1 into the face f4. Since we lost
the pair (v, f4) counted in the last minimality condition assumed in (2),
there must be a new pair (v′, f ′), where d(v′) = 4 and r(f ′) ≥ 4. In
that case, v1u1v

′ would originally be a 3-face, and C = v1v
′u1v3v2vv1

would be a light C6. Similarly if i = 3; then u3 = v1 would be an
exception which could be dismissed in the same way as above. The
conclusion is that ui is a big vertex and sends 1

4
or 1

2
to v regarding to

the Rules R5(c) and R5(a) (if i = 1, 3 or i = 2, respectively).
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Suppose now that f ′
i is a big face. If r(f ′

i) = 6, then f ′
i determines

a light C6 by (0) and (1). If r(f ′
i) = 5, let f ′

i = viu
′
ixu′′

i vi+1vi. Then
viu

′
ixu′′

i vi+1vvi is a light C6 if x 
= v. If x = v, then f ′
i = f4 and hence

u′
i = v1 and u′′

i = v4. In each case we get a loop or parallel edges
joining two vertices of degree < ω, a contradiction. Suppose now that
r(f ′

i) = 4, f ′
i = viu

′
iu

′′
i vi+1vi. If i = 2 then either Q1 = viu

′
iu

′′
i vi+1vi+2vvi

or Q2 = viu
′
iu

′′
i vi+1vvi−1vi is a light C6. If i = 1 then Q1 is a light C6

unless u′
1 = v3. However, in that case v3u

′′
1v2v1vv4v3 is a light C6.

Similarly if i = 3. We may thus assume that r(f ′
i) ≥ 7. The big face f ′

i

sends 1
4

or 1
2

to v according to the Rules R1(c) and R1(a). This shows
that the three faces neighboring the three triangles incident with v and
not containing v send the total charge ≥ 1 to v. The second 1 is sent
to v from f4. Hence, c∗(v) ≥ 0.

It remains to consider the case when v is incident with four 3-faces.
If v has two big neighbors, then v receives the charge 2 from them by
R4(a). Suppose firstly that v has no big neighbors. (Then we may
restrict ourselves to the case C6 since the neighborhood of v contains
light C5 and K1,4.) As above we see that each face f ′

i (or its big vertex
ui) sends 1

2
to v by R1(a) (or R5(a)). Consequently, v receives the total

charge 2 from f ′
1, f ′

2, f ′
3, and f ′

4.
Suppose secondly, v has precisely one big neighbor, say v2. For

i = 1, . . . , 4, denote by u′
i the vertex which is f ′

i -adjacent to vi and
distinct from vi+1. Since f3 ∪ f4 ∪ f ′

3 ∪ f ′
4 contains no light K1,4, C5 or

C6 (respectively), at least one of f ′
3 and f ′

4, say f ′
4, is a face of size ≥ 4

or a triangle with the big vertex u′
4. In the subcase of K1,4, the faces f ′

3

and f ′
4 are both triangles (otherwise we would get a light K1,4 centered

at v4), and u′
3, u

′
4 are both big vertices. Then each of them sends 1

2
to

v by R5(a). Hence c∗(v) ≥ 0. In the subcase of C5, faces f ′
3 and f ′

4

cannot be of size 4 or 5. If f ′
3 is a triangle and u′

3 is not big, then there
is a light C5. Similarly if f ′

4 is a triangle and u′
4 is not big. Hence, v

receives 1 from v2,
1
2

from u′
3 (by R5(a)) or from f ′

3 (by R1(a)), and 1
2

from u′
4 or f ′

4. This completes the C5 case.
We are left with the subcase C6. By the above, v receives 1 from v2

and 1
2

from f ′
4 or u′

4. Since it does not receive another 1
2

from f ′
3 or u′

3,
f ′

3 is a 3-face and u′
3 is of degree < ω. If v3 has degree ≥ 8 then by

Rule R7(b), v receives 1
2

from v3. Hence, d(v3) ∈ {5, 6, 7}. Let f be
the neighbor face of f ′

3 containing the edge v3u
′
3.

Suppose first that f has size ≥ 4. Then it has size ≥ 7. (Otherwise
G would contain a light C6; observe that f may contain v4 if r(f) = 5.
In that case, the light C6 goes through v as well.) If d(v3) = 7, then by
Rules R7(a) and R2(a) the vertex v receives 1

3
from v3 and 1

6
from f .

So, v receives the total charge 2 from the vertices v2, v3, and the faces
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f ′
4 and f , and c∗(v) ≥ 0. If d(v3) = 6 then by Rule R2(b), v receives

the total charge 2 from v2, f ′
4, and f . Next, suppose that d(v3) = 5.

Since f ′
2 is incident with the big vertex v2, it is a 3-face. Therefore v

receives 1
2

from f by Rule R2(c). In all cases c∗(v) ≥ 0.
Finally, let f be a triangle, say f = v3u

′
3z. Suppose first that z is a

big vertex. If z belongs to f ′
2, then it sends 1

2
to v by R5(a). If z is not

in f ′
2, then we may assume that d(v3) ∈ {6, 7}. If d(v3) = 6 then by

Rule R6(a) the vertex z sends 1
2

to v. If d(v3) = 7 then by Rule R6(b)

the vertex z sends 1
6

to v, and by Rule R7(a) the vertex v3 sends 1
3

to
v. In all cases v receives the total charge 2 from v2, f

′
4, f , z, and v3.

This proves that z is not a big vertex. Now, v1v4u
′
3zv3vv1 is a light C6

unless z = v1, which we assume henceforth.
Since f ′

1, f
′
2 are incident with the big vertex v2, they are triangles.

By R5(a) we may assume that vertices u′
1 and u′

2 are not big. Because
of R7 we may also assume that none of v1, v3, v4 has degree ≥ 8, and
if it is of degree 7, it has three neighbors of degree 4. Suppose that in
the local clockwise ordering of edges incident with v1, the edges v1v3

and v1v are consecutive. Then f ′
1 = v1v2v3v1 where the edge v2v3 is

not an edge of f3. Since the two parallel edges joining v2 and v3 do not
form a face, there is an edge between them in the clockwise ordering of
edges around v3. Since d(v3) ≤ 7, there is precisely one such edge v3v

′.
Since all faces incident with v2 are triangles, v′ and v2 are joined by
more than one edge in parallel. Therefore, d(v′) ≥ 5 and consequently,
v3 has at most two neighbors (v and possibly u′

3) of degree 4. This
contradiction shows that there is an edge between v1v3 and v1v. In
particular, v1 has at least 6 distinct neighbors. The same conclusion
can be made for v3.

Let G′ be the graph obtained from G − v by adding the edge v2v4.
Clearly, G′ is 2-connected and has no light C6. All vertices of G′ have
the same degree as in G except v1 and v3 whose degrees have been
decreased by one. The conclusions of the previous paragraph imply that
G′ ∈ G′ is a “legal” counterexample, contrary to (2). This completes
the proof in the case when d = 4.

d = 5: If two faces incident with v have size ≥ 5 then by R3(c)–(e)
the vertex v receives a charge ≥ 1

2
from each of these faces, i.e., a total

charge ≥ 1. If two neighbors of v are big, then v receives total charge
≥ 1 by R4(b). Hence we may assume that at most one face incident
with v and at most one neighbor of v have size ≥ 5 or degree ≥ ω,
respectively. This implies that the neighborhood of v contains a light
K1,4. So we may henceforth consider only the cases C5 and C6. Up to
symmetries, it is sufficient to consider the following six cases.
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Case 1. The faces f1, f2, f5 are of size ≥ 4.

Case 1.1. f1, f2, f5 all have size 4. If d(v1) = d(v2) = 4 then by Rule
R8 the vertices v1 and v2 send charge 1 to v. If d(v1) = 4 and d(v2) ≥ 5
then v1 sends 1

2
to v by R8, and each of f1 and f2 sends charge ≥ 1

3
to v by R3(b). If d(v1) ≥ 5 and d(v2) ≥ 5 then by Rule R3(b) each of
f1, f2, and f5 sends charge ≥ 1

3
to v. In all cases v receives charge ≥ 1.

Case 1.2. f1 and f2 are 4-faces, f5 has size ≥ 5. If d(v2) = 4 then
v2 sends 1

2
to v by R8, so v receives charge ≥ 1 from f5 and v2. If

d(v2) ≥ 5 then by Rule R3(b) both faces f1 and f2 send ≥ 1
3

to v, so v
receives total charge ≥ 1 from f1, f2, and f5.

Case 1.3. f1 has size ≥ 5, f2 and f5 are 4-faces. If f1 has size ≥ 6
then by R3(d) f1 sends 1 to v. Hence we may assume that f1 is of
size 5. If f3 or f4 has size ≥ 4 then we repeat the proof of Case 1.2
with f1, f2, f3 or f4, f5, f1 instead of f5, f1, f2, respectively. So, we may
assume that f3 and f4 have size 3. Then C = vv2v

′
2v3v4v is a 5-cycle,

and C ′ = vv2v
′
2v3v4v5v is a 6-cycle (if v′

2 
= v5) or C ′ = vv3v4v5v
′
5v1v is

a 6-cycle (if v′
2 = v5 since then v3 
= v′

5 by planarity). The cycles C and
C ′ are light unless v4 is a big vertex. So, v receives charge ≥ 1 from f1

and v4.

Case 2. f2, f3, f5 are big faces, and f1 and f4 are 3-faces. Since all
neighbors of v are on big faces, they have degree < ω by (1). At least
two of f2, f3, f5 are 4-cycles, and therefore G contains a light C5. If
r(f5) = 4, then f1 ∪ f4 ∪ f5 contains a light C6. If r(f5) > 4, then
r(f2) = r(f3) = 4. Now, f2∪f3 contains a C6 unless v′

2 = v4 or v′
3 = v2.

By symmetry we may assume that v′
2 = v4. Observe that in this case,

v′
3 
= v2 and v1 
= v′

3 by planarity. Hence C = vv1v2v
′
2v

′
3v3v is a light

C6. This completes the proof.

Case 3. f1 and f4 are big faces, f1 is a 4-face, and f2, f3, f5 are 3-
faces. All neighbors of v distinct from v3 are light because they lie in
big faces. Faces f1 and f5 induce a subgraph with a light C5. So, only
in the C6-case the investigations have to be continued. Faces f1, f2, f5

induce a subgraph with a C6. Hence, v3 is a big vertex.
If the size of f4 is ≥ 5 then by Rules R3(c)–(e) and R4(b), the face

f4 and the vertex v3 send charge ≥ 1 to v. Consequently, f1 and f4 are
4-faces. Since f5 is a triangle, one of v1, v5 has degree ≥ 5. Hence we
may assume that f1 contains at most one vertex of degree 4. Then f1

sends charge ≥ 1
3

to v by R3(b). If f4 contains at most one vertex of

degree ≥ 4, then f4 sends ≥ 1
3

to v as well. So, v receives ≥ 1
2
+ 1

3
+ 1

3
> 1

from v3, f1, and f4. Next, suppose that f4 contains two 4-vertices, v4

and v5. Let f ∗, f ∗ 
= f3, denote the neighbor face of f4 containing v4.
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If f ∗ = v4w
′v′

4 is a 3-face then v1vv4w
′v′

4v5v1 is a 6-cycle (if w′ 
= v1) or
v1v

′
1v2vv5v

′
4w

′ is a 6-cycle (if w′ = v1). Therefore the vertex w′ is big
and sends 1 to v4 by Rule R4(a). If f ∗ is a big face, then f ∗ sends 1 to
v4 by R3(a). By Rules R4(a) and R3(a), each of v3 and f4 sends 1 to
v4. So, in all cases v4 receives a total charge ≥ 3. The vertex v4 may
send 1

2
to v′

4 by R8. In any case, it sends a charge ≥ 1
6

to v (by Rule
R9) since v4 has at most three non-big neighbors. Thus, v receives a
total charge ≥ 1

2
+ 1

3
+ 1

6
= 1 from v3, f1, and v4, respectively.

Case 4. f2 and f3 are the only big faces, and f2 is a 4-face. Suppose
that a neighbor u of v is a big vertex. If the size of f3 is at least 5 then
by Rule R3(c)–(e), the face f3 sends ≥ 1

2
to v. So, v receives ≥ 1 from

the unique big vertex and f3. Now, let f3 be a 4-face. If d(v3) = 4, then
v receives 1

2
from the big neighbor and 1

2
from v3 by R8. If d(v3) ≥ 5,

then v receives 1
2

from the big neighbor and 1
3

from each of f2 and f3

by R3(b).
The other possibility is that none of v1, . . . , v5 is big. Then the

neighborhood of v contains a light C5. It also contains a light C6

unless v′
2 = v5. In that case, v5 is adjacent to v4, v, v1, v2, and v3.

In particular, d(v5) ≥ 5. If r(f3) ≤ 6, then G contains a light C6.
Therefore r(f3) ≥ 7 and v receives ≥ 1

2
from f3 by R3(d) or R3(e).

We are done if Rule R3(d) is applied. Otherwise, Rule R1 or R2 has
been applied from f3 via edges incident with v. Since r(f2) = 4 and
d(v5) ≥ 5, the only possibility is that the charge 1

6
was sent from f3

via the edge vv4 to the 5-vertex v5. For R1(b) to be applied, the face
f ′

4 must be a triangle. Since d(v5) = 5, f ′
4 = v4v5v3v4. Having the edge

v3v4, there is a light C6, a contradiction.

Case 5. f5 is the only big face incident with v. The faces f1, f2, f3, f4

induce a subgraph containing both a C5 and a C6. Hence, v has a
big neighbor u not belonging to f5. If f5 has size ≥ 5 then by Rules
R3(c)–(e) the face f5 sends ≥ 1

2
to v, and v receives ≥ 1 from f5 and u.

If f5 is a quadrangle then the neighborhood of v contains a light C5. It
also contains a light C6 unless v2 or v4 is a big vertex and v3 = v′

5. In
that case we may assume that v2 is big. Observe that G has another
embedding in the plane in which the local clockwise order around v
is v1, v5, v4, v2, v3. In that embedding we have the 4-face vv4v1v2v in
which we can add an additional edge v4v2 without creating a light C6.
This contradicts (2).

Case 6. v is incident only with 3-faces. Then precisely one neighbor of
v is a big vertex, say v3. In the C5 case the neighborhood of v contains
a light C5, a contradiction. Consider the C6-case. If f ′

i , i ∈ {1, 4, 5}
has size 4, 5, or 6, then G contains a light C6, a contradiction. Hence,
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f ′
i is a triangle or a face of size ≥ 7. If f ′

i is a triangle and ui is a big
vertex, then ui sends 1

6
to v by Rule R5(b). If f ′

i is a face of size ≥ 7

then f ′
i sends 1

6
to v by Rule R1(b). So, the vertex v receives the total

charge 1
2

+ 1
6

+ 1
6

+ 1
6

= 1 from v3, f ′
1, f ′

4, and f ′
5, unless one of f ′

i is
a 3-face and ui is not big. In that case we get a light C6 unless ui is
a neighbor of v. This is not possible for i = 5. By symmetry we may
assume that i = 1 and u1 = v4. Now, v receives 1

6
+ 1

6
from f ′

4 (or u4)

and f ′
5 (or u5). We claim that v receives the additional charge 2

3
from

v3 by Rule R4(b). The condition (b3) of that rule is satisfied because
of the edge v2v4. If d(v4) ≥ 6, then (b1) is satisfied as well. Now, if
d(v2) = 4, then the successor of v2 around v3 is v4, whose degree is ≥ 4
by assumption. Hence, also (b2) is satisfied. It remains to consider
the case when d(v4) < 6. Since v4 is adjacent to v, v1, v2, v3, and v5, it
must be d(v4) = 5. Consider the face F containing consecutive edges
v3v4 and v4v2. By (1), F is a 3-face. Since v3 has neighbors distinct
from v2, v, v4, the third edge of F is a parallel edge joining v2 and v3.
Since these two parallel edges do not form a 2-face and since G is 2-
connected, there is an edge incident with v2, which lies between the
two parallel edges in the local clockwise order around v2. This implies
that d(v2) ≥ 6, and hence (b1) and (b2) hold. The proof of this case is
complete.

d = 6: In this case, v neither sends nor receives charge. So, c∗(v) = 0.

d = 7: By Rule R7(a), v sends 1
3

or 1
2

to a 4-neighbor u if the edge vu
is incident with two triangles. Since v can have only three 4-neighbors
with this property, it sends a charge ≤ 1 to its neighbors.

8 ≤ d ≤ ω − 1: By Rule R7(b), the vertex v sends 1
2

to a 4-neighbor v
if the edge vu is incident with two triangles. Hence, v sends a charge,
namely 1

2
, to at most every second neighbor. So, v sends a total charge

≤ d
2
· 1

2
≤ d − 6 to its neighbors.

d ≥ ω: By (1), v is incident only with 3-faces. The initial charge
of v is d − 6. In order to count the total charge which receives the
neighborhood of the vertex v from v, we assign to each neighbor vi of
v the sum of charges, denoted by φi, consisting of the charge p directly
sent from v to vi (by R4) or through vi (by R6), a half of the charge
q− sent from v over the edge vi−1vi (by R5), and a half of the charge
q+ sent from v over the edge vivi+1 (by R5). Thus, φi = p+ 1

2
(q− + q+)

is assigned to vi. Obviously, the sum of all charges assigned to the
neighbors of v equals the total charge sent from v to its neighborhood.
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We have to investigate the applications of the Rules R4, R5, and R6
at v. Let vi be an arbitrary neighbor of v. Our goal is to prove that
φi ≤ 1 − 1

18
(in average). Consider the following subcases.

d(vi) ≥ 8: Then p = 0, q+ ≤ 1
2
, q− ≤ 1

2
. Thus, φi ≤ 1

2
.

d(vi) = 7: If v sends 0 through vi, then φi ≤ 1
2
. If v sends 1

6
through

vi by R6(b), then ui or ui−1 is adjacent to a 4-vertex, and d(ui) ≥ 5 or
d(ui−1) ≥ 5. Hence, q+ + q− ≤ 1

6
+ 1

2
. So, φi ≤ 1

6
+ 1

2
(1

6
+ 1

2
) = 1

2
.

d(vi) = 6: If v sends 0 through vi, then φi ≤ 1
2
. If v sends 1

2
through

vi by Rule R6(a), the vertex vi is only incident with 3-faces, and the
neighbor of vi opposite to v has degree 4. Hence, d(ui−1) ≥ 5, d(ui) ≥
5, and by Rule R6(a) one of these vertices has degree ≥ ω. Thus,
φi ≤ 1

2
+ 1

2
· 1

6
= 7

12
.

d(vi) = 5: The vertex v sends 1
2

(poor case) or 2
3

(rich case) to vi by

Rule R4(b). Let us first assume that v sends 1
2

through vivi+1 (say)
to the vertex ui by Rule R5(a). Then d(ui) = 4 and, if it sends > 0
through vi−1vi to ui−1, then ui−1 is a neighbor of ui. So, d(ui−1) ≥ 5,
and v sends ≤ 1

6
to ui−1. In this case and in all other cases, φi ≤

1
2

+ 1
2
· (1

2
+ 1

6
) = 5

6
< 1− 1

18
(in the poor case), and φi ≤ 1 (in the rich

case). Assuming the rich case, suppose first that d(vi+1) ≥ 6. Then
φi + φi+1 ≤ 1 + 7

12
< 2 − 2

18
. If d(vi+1) = 5, then the rich case cannot

occur at vi+1 since the condition (b3) cannot be satisfied at vi and at
vi+1 simultaneously. Therefore, φi + φi+1 ≤ 1 + 5

6
. If d(vi+1) = 4, then

d(vi+2) ≥ 6 by (b2). The estimate in the next case below shows that
φi+1 ≤ 1+ 1

6
. Consequently, φi +φi+1 +φi+2 ≤ 1+(1+ 1

6
)+ 7

12
< 3− 3

18
.

d(vi) = 4: The vertex v sends 1 to vi, and q+ ≤ 1
6
, q− ≤ 1

6
. Thus,

φi ≤ 1+ 1
6
. If d(vi+1) ≥ 6 then φi+1 ≤ 7

12
, and φi +φi+1 ≤ (1+ 1

6
)+ 7

12
=

2 − 1
4
. Next, assume that d(vi+1) = 5. Suppose first that we have the

rich case at vi+1. Then, by (b1) in R4(b), d(vi+2) ≥ 6, and hence
φi + φi+1 + φi+2 ≤ (1 + 1

6
) + 1 + 7

12
< 3 − 3

18
. Otherwise, v sends 1

2

to vi+1. If v sends ≤ 1
6

through vi+1vi+2, then φi+1 ≤ 1
2

+ 1
6

= 2
3
, and

φi + φi+1 ≤ (1 + 1
6
) + 2

3
= 2 − 1

6
. If v sends 1

2
through vi+1vi+2, this

charge is sent to a neighbor of vi+2 of degree 4, so d(vi+2) ≥ 5. Hence,
φi+1 ≤ 5

6
and φi+2 ≤ 5

6
, so φi + φi+1 + φi+2 ≤ 1 + 1

6
+ 5

6
+ 5

6
= 3 − 1

6
.

We conclude that the average charge assigned to neighbours of v
is ≤ 1 − 1

18
. Hence, the total charge sent from v to its neighbors

is ≤ (1 − 1
18

) · d ≤ d − 6. Therefore, the resulting charge c∗(v) is
nonnegative.

Suppose now that f is a face of G. Consider the following cases.
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r(f) = 4: The 4-face f with initial charge c(f) = 2 has at most two
4-vertices and by Rules R3(a) and (b), c∗(f) ≥ 0.

r(f) = 5: The 5-face f with initial charge c(f) = 4 has at most two
4-vertices and by Rules R3(a) and (c), c∗(f) ≥ 0.

r(f) = 6: The 6-face f has initial charge c(f) = 6. If by Rule R1(a)
the face f sends the charge 1

2
across an edge e = uv, then d(u) ≥ 5

and d(v) ≥ 5, and by Rule R3(e), u and v each receive ≤ 1
2

from f .
Otherwise, by Rules R3(a) and R3(d), a 4- or 5-vertex receives 1 from
f . This implies that f sends a charge ≤ 6 to its neighboring vertices
and faces, and c∗(f) ≥ 0.

r(f) ≥ 7: Let the bounding cycle of the face f be oriented, and u+ and
u− be the successor and the predecessor of the vertex u, respectively.
Let f(u), f(u) 
= f , denote the face incident with the edge uu+. If f(u)
is a 3-face, let w denote the vertex of f(u) with w 
∈ {u, u+}. Further,
in this case let f+(u) and f−(u+) denote the neighboring faces of f(u)
incident with uw and wu+, respectively. The notation f+(u) or f−(u+)
is only of importance if these faces are triangles. If such a face is not
triangle then it receives charge 0 from f .

The initial charge of f is 2r(f) − 6. In order to count the total
charge which is sent to the neighborhood of f from f , we assign to
each vertex u on f the sum φu of charges consisting of the charges sent
to u, w, f−(u), and f+(u). Obviously, the sum of all charges assigned
to the vertices incident with f equals the total charge sent from f to
its neighborhood. We have to investigate the applications of the Rules
R1, R2, and R3 to f . Let u be an arbitrary vertex incident with f .
Consider the following subcases.

d(u) ≥ 8: Then f sends 0 to u, 0 to f−(u), 0 to f+(u), and ≤ 1
2

to w.

So, φu ≤ 1
2
.

d(u) = 7: Then f sends 0 to u, ≤ 1
6

to f−(u), ≤ 1
6

to f+(u), and ≤ 1
2

to w. So, φu ≤ 1 − 1
6
.

d(u) = 6: Then f sends 0 to u, ≤ 1
2

to each of f−(u) and f+(u) (by

R2(b)) and ≤ 1
2

to w. However, if 1
2

or 1
4

is sent to w, then d(w) = 4,
so 0 is sent to f+(u). Consequently, φu ≤ 1. Otherwise, φu ≤ 1 as well,
except in the following case: 1

2
is sent to f−(u) and to f+(u) and 1

6
is

sent to w. In that case, φu = 1 + 1
6
.

d(u) = 5: If f sends 1 to u then by Rule R3(d) the face f sends 1 to u
and 0 to {w, f−(u), f+(u)}. So, φu = 1. Next, suppose that f sends 1

2

to u. If f sends 0 to f+(u) then f sends 1
2

to u, 0 to f−(u), 0 to f+(u)
and ≤ 1

2
to w. So, φu ≤ 1. If f sends 1

4
to f+(u) then by Rule R2(c) a



LIGHT SUBGRAPHS 37

neighbor of w has degree 4. Hence, d(w) ≥ 5, and f sends 1
2

to u, 1
4

to

f−(u), 1
4

to f+(u), and 0 or 1
6

to w. So, φu ≤ 1 + 1
6
.

We remark that φu = 1 + 1
6

if and only if f sends 1
2

to u, 1
4

to f−(u),
1
4

to f+(u), and 1
6

to w. Then, by Rule R2(c), u is incident with four
3-faces. If none of the neighbors of u is big, we have light K1,4, C5, and
C6 in the neighborhood of u. Hence, w− (as the only possibility) has
degree ≥ ω.

d(u) = 4: Since d(u) = 4 the degree d(w) ≥ 5. Hence, f sends 1 to u,
0 to f−(u), 0 to f+(u), and ≤ 1

6
to w. So φu ≤ 1 + 1

6
. We remark that

φu = 1 + 1
6

only when d(w) = 5 and f sends 1
6

to w. Otherwise φu = 1.
Since to each vertex u on the boundary of f a charge ≤ 1 + 1

6
is

assigned, the total charge sent by f is ≤ (1 + 1
6
)d(v). This is not

larger than the initial charge 2(r(f) − 3) if r(f) ≥ 8. Hence, the final
charge c∗(f) ≥ 0. Finally, let r(f) = 7. If to one vertex u on the
boundary of f a charge ≤ 1 is assigned then the total charge sent by
f is ≤ 1 + (1 + 1

6
)(r(f) − 1). This is again not larger than the initial

charge, and c∗(f) ≥ 0. Suppose that to each vertex on the boundary
of f the charge 1 + 1

6
is assigned. Then all these vertices have degrees

4, 5, or 6. Then there is a 5- or 6-vertex u such that u+ is also a 5- or
6-vertex. Suppose first that d(u) = 5. By our remark in the proof of
case “d(u) = 5” the vertex w− has degree ≥ ω. Hence, a charge ≤ 1 is
assigned to u−, a contradiction.

Suppose now that d(u) = 6. As remarked in the “d(u) = 6” case, 1
2

is sent to f−(u) and to f+(u), and 1
6

is sent to w. Let w− and w+ be

the vertices of degree 4 in f−(u) and f+(u) to which 1
2

is sent. By Rule
R2(b), w+ is contained in at least three 3-faces. Since w− is of degree
4, it is not a neighbor of w+. Therefore, w+ is contained in precisely
three 3-faces, say xyw+, yww+, and wuw+. By the requirement in Rule
R2(b), the vertices x, y are not big. Since φu+ = 1+ 1

6
, f sends 1

2
also to

f−(u+). Hence, the fifth neighbor of w, denote it by x′, has degree 4.
(The other neighbors of w are u+, u, w+, and y.) In particular, x′ 
= x
since x is adjacent to the 4-vertex w+. Now, the neighborhood of w
contains light K1,4, and C5. Moreover, uw+xywx′u+u is a light 6-cycle.
This contradiction shows that c∗(f) ≥ 0 and completes the proof of the
theorem.
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