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Abstrat.
Waleki tournaments were de�ned by Alspah in 1966. They are regular tournamentswhih admit Hamilton direted yle deomposition. Hene, they speak in favor ofKelly's onjeture from 1964. The enumeration of Waleki tournaments was presentedas an open problem in a paper by Alspah in 1989. These two problems led us tostudy the ar struture of zero and odd pattern Waleki tournaments in the preedingpapers. In this paper we determine the ar struture of subtournaments of even patternWaleki tournaments. Some of them are almost regular, or the sores of their vertiesdi�er for at most two. A spei� permutation is proven to be an automorphism ofeven pattern Waleki tournaments.
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1 Introdution
In the preeding papers we studied the ar struture of Waleki tournamentswith zero and odd pattern. In this paper we determine the ar struture of sub-tournaments of even pattern Waleki tournaments. Proving tehniques di�erfrom the ones used in the odd pattern ase. An appropriate power of permuta-tion � is proven to be an automorphism of even pattern Waleki tournaments.Also, subtournaments indued by the outset or inset of the vertex t(0) are eitheralmost regular or have of their verties di�er by at most 2.
2 Even pattern
In this paper we onsider Waleki tournamentsW (e) for n even, e = ff : : : ff 2En, f 2 Er, and n=2r odd. Speial form of e implies various symmetries in theorresponding Waleki tournament.
Proposition 2.1 Let m = 2r and let n be even. If e = ff : : : ff 2 En, f 2 Er,and n=2r is odd, then ei = ei+m, 1 � i � n�m, and ei = ei+n=2, 1 � i � n=2,
Proof. Sine n=2r is odd we have

e = ff : : : fff| {z }n=2r fff : : : ff| {z }n=2r :
The onstrution of Waleki tournaments and f 2 Er imply the result. 2

In order to determine subtournaments of W (e) that are isomorphi to someWaleki tournament with even pattern, we proeed in a manner similar to theodd pattern ase (see Ale�s [4℄).
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Theorem 2.2 Let n be even, e = ff : : : ff 2 En, and f 2 Er. Let T denotethe Waleki tournament W (e) and let M1;M2; : : : ;Mn=m be the m-set partitionof V (W (e))� ft(0)g. If ` is an even integer suh that 2 � ` � n=r � 2, then
T hft(0)g [Mn=2r�`=2+1 [Mn=2r�`=2+2 [ � � � [Mn=2r+`=2i �=W (ff : : : ff| {z }` ):

Proof. Let ` be an even integer suh that 2 � ` � n=r�1. Let e0 = ff : : : ff 2E`r. In the following � is �rst onsidered as a permutation in S2n+1 used inthe onstrution of W (e). Seondly, it is onsidered as a permutation in S2`r+1and is denoted by � . Similarly, t(i) denotes a vertex of W (e) and t(i) denotes avertex of W (e0). Note that the verties of the subtournament W (e0) are hosenin W (e) onseutively on the irumferene starting from vertex t(n�`r+1).We de�ne a funtion
 : ft(0)g [Mn=2r�`=2+1 [Mn=2r�`=2+2 [ � � � [Mn=2r+`=2 �! V (W (e0))

by  (t(0)) = t(0) and  (t(n+i)) = t(`r+i), for �`r + 1 � i � `r. Clearly,  is abijetion. We will show that the Hamilton direted yle *H 0k inW (e0) is a unionof  -images of direted paths belonging to Hamilton direted yles *Hn�`r+kand *Hk in W (e). The proof is similar to the proof of Theorem 3.2 from [4℄. Weomit the details.Let *Pn�`r+k denote the direted path [t(0); t(n�`r+k); : : : ; t(n�`r+2k)℄ on *Hn�`r+kand let *P k denote the direted path [t(n�`r+2k); : : : ; t(n+k); t(0)℄ on *Hk. We have (*P n�`r+k) =*P 0n�`r+k and  (*P k) =*P 0k. Now, n and ` are even, and e has evenpattern. This implies that if ek = 0, then en�`r+k = 0 and *H 0k=*P 0n�`r+k [ *P 0k(see Figure 1). If ek = 1, then en�`r+k = 1 and *H 0k=(P 0k [ (P 0n�`r+k. Thisompletes the proof. 2 3



Even pattern Waleki tournaments not only ontain even pattern subtourna-ments, but also odd pattern ones, as the following result demonstrates.Theorem 2.3 Let n � 6 and let e = ff : : : ff 2 En, and f 2 Er. Let T denotethe Waleki tournament W (e) and let M1;M2; : : : ;Mn=m be the m-set partitionof V (W (e))� ft(0)g. If ` is an odd integer suh that 1 � ` � n=2r, then
T hft(0)g [M1 [M2 [ � � � [M`i �=W (ff : : : ff| {z }` ):

Proof. The proof is similar to that of the odd pattern (see Theorem 4.5from [4℄) the only di�erene being that instead of 1 � ` � n=r we now have1 � ` � n=2r. 2
Even pattern Waleki tournaments also ontain proper zero pattern Walekisubtournaments.Theorem 2.4 For n 2 Z+ , n � 6, e = ff : : : ff 2 En, f 2 Er, n=2r even,and n=2r > 1, h = (0; 0; : : : ; 0) 2 En=2r, and R` = ft(2rk+`) j 0 � k � n=r � 1g,

W (e)hft(0)g [R`i �=W (h);
where ` is an integer suh that 1 � ` � 2r.Proof. Let T denote W (e)hft(0)g [ R`i with the orresponding de�ning bi-nary sequene e0 = (e`; e2r+`; : : : ; en�2r+`) = (f`; f`; : : : ; f`) for some ` suh that1 � ` � 2r. Sine W (e) �= W (e) we may assume that f` = 0. All ars in T areeither de�ned with binary sequene elements e2ri+` for some i, 1 � i � n=2r�1,or e2rj+r+` for some j, 0 � j � n=2r � 2. These elements equal either f` or4



fr+` = f `. We omit the details. 2
3 Automorphism �m
We remind the reader of the de�nition of the permutation � and � 2 S2n+1 (seeAle�s [2℄): � = (1 2 4 � � � 2n � 4 2n � 2)(3 5 7 � � � 2n � 3 2n � 1 2n)(0) and� = (1 2 � � � 2n)(0):
Proposition 3.5 If m divides n, then

�m(t(i)) = 8>><>>:
�m(t(i) if 1 � i � n�m;�m�n(t(i)) if n�m+ 1 � i � n;�n�m(t(i)) if n+ 1 � i � n+m;��m(t(i)) if n+m+ 1 � i � 2n: (3.1)

Proof. The result follows diretly from the de�nitions of permutations � and� . 2
In the following three results we prove that �m is an element of the auto-morphism group of ertain Waleki tournaments with even pattern. The resultis a generalization of the proof of Theorem 5.23 from [2℄.

Lemma 3.6 Let n be even, e = ff : : : ff 2 En, f 2 Er, and m = 2r. If 1 �i � n�m� 1, then �m is dominane-preserving on *Hi and ��m is dominane-preserving on *Hi+m.Proof. Let m = 2r. Sine e = ff : : : ff 2 En and f 2 Er, we have ei = ei+mfor 1 � i � n�m. The result now follows from the de�nition of the Hamiltondireted yles *H1; *H2; : : : ; *Hn omprising W (e). 2
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Lemma 3.7 Let n be even, e = ff : : : ff 2 En, f 2 Er, and m = 2r. Considerthe Hamilton direted yle *Hi, 1 � i � n, in the Waleki tournament W (e).Let u and w be end verties of any ar on *Hi of the form u = v(�i�1(2j+1)) andw = v(�i�1(2j+2)), 0 � j � n �m � 1, or u = v(�i�1(2j)) and w = v(�i�1(2j+1)),1 � j � n � m � 1. De�ne % by letting % = ��m on v(�i�1(2j+1)), 1 � j �n�m� 1, and % = �m on v(�i�1(2j)), 1 � j � n�m� 1. Then % is dominane-preserving on the ar joining u and w.
Proof. The ar joining %(u) and %(w) also lies on *Hi. Moreover, %(u) �! %(w)if and only if u �! w whih follows from the way *Hi is onstruted. Morerigorously, the fat that 2j + 2m+ 2 � 2n, and the hain of equalities

%(u) = %(v(�i�1(2j+1))) = ��m(v(�i�1(2j+1)))
= v(��m(�i�1(2j+1))) = v(�i�1(��m(2j+1))) = v(�i�1(2j+2m+1))and %(w) = %(v(�i�1(2j+2))) = �m(v(�i�1(2j+2)))= v(�m(�i�1(2j+2))) = v(�i�1(�m(2j+2))) = v(�i�1(2j+2m+2))imply that the ar joining %(v(�i�1(2j+1))) and %(v(�i�1(2j+2))) lies on the Hamil-ton direted yle *Hi, 1 � j � n � m � 1. Ars on the Hamilton diretedyle *Hi are either of the form v(�i�1(k)) �! v(�i�1(k+1)) or v(�i�1(k+1)) �!v(�i�1(k)), depending on ei. Therefore, v(�i�1(2j+1)) �! v(�i�1(2j+2)) if and onlyif %(v(�i�1(2j+1))) �! %(v(�i�1(2j+2))).Similarly, we prove the remaining ase. We have %(v(�i�1(2j))) = v(�i�1(2j+2m))and %(v(�i�1(2j+1))) = v(�i�1(2j+2m+1)); it follows that the ar joining %(v(�i�1(2j)))
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and %(v(�i�1(2j+1))) lies on the Hamilton direted yle *Hi, 1 � j � n�m� 1.Furthermore, v(�i�1(2j)) �! v(�i�1(2j+1)) 2*Hi if and only if %(v(�i�1(2j))) �!%(v(�i�1(2j+1))) 2*Hi, for 1 � j � n �m � 1. This proves that % is dominane-preserving on the ar joining u and w. 2
Lemma 3.8 Let n be even, e = ff : : : ff 2 En, f 2 Er, and m = 2r. Considerthe Hamilton direted yle *Hi, 1 � i � n, in the Waleki tournament W (e).Let u and w be end verties of any ar on *Hi of the form u = v(�i�1(2j+1)) andw = v(�i�1(2j+2)), n�m+1 � j � n�2, or u = v(�i�1(2j)) and w = v(�i�1(2j+1)),n�m+1 � j � n�1. De�ne % by letting % = �n�m on v(�i�1(2j+1)), n�m+1 �j � n � 1, and on v(�i�1(2n)). Furthermore, de�ne % = �m�n on v(�i�1(2j)),n �m + 1 � j � n � 1. Then % is dominane-preserving on the ar joining uand w.
Proof. Sine 2j�2(n�m) � 2 we have %(v(�i�1(2j+1))) = v(�i�1(2j�2(n�m)+1))and %(v(�i�1(2j+2))) = v(�i�1(2j�2(n�m)+2)); whih implies that the ar joining%(v(�i�1(2j+1))) and %(v(�i�1(2j+2))) lies on the Hamilton direted yle *Hi, forn�m+1 � j � n� 1. Moreover, v(�i�1(2j+1)) �! v(�i�1(2j+2)) 2*Hi if and onlyif %(v(�i�1(2j+1))) �! %(v(�i�1(2j+2))) 2*Hi.We also need to onsider ars joining verties v(�i�1(2n�1)) and v(�i�1(2n)).Sine %(v(�i�1(2n�1))) = v(�n�m+i�1(2n�1)) and %(v(�i�1(2n))) = v(�n�m+i�1(2n));the ar joining %(v(�i�1(2n�1))) and %(v(�i�1(2n))) lies on the Hamilton diretedyle *Hn�m+i whenever 1 � i � m. Moreover, sine en�m+i = em(n=m�1)+i =ei, the Hamilton direted yles *Hi and *Hn�m+i have the same orientation

7



for 1 � i � m. It follows that v(�i�1(2n�1)) �! v(�i�1(2n)) 2*Hi if and only if%(v(�i�1(2n�1))) �! %(v(�i�1(2n))) 2 *Hn�m+i, for 1 � i � m.If m+1 � i � n then the onsidered ar lies on the Hamilton direted yle*Hi�m. Sine ei�m = ei, the Hamilton direted yles *Hi�m and *Hi have thesame orientation. It follows that v(�i�1(2n�1)) �! v(�i�1(2n)) 2*Hi if and only if%(v(�i�1(2n�1))) �! %(v(�i�1(2n))) 2*Hi�m, for m+ 1 � i � n.Similarly we prove the remaining ase. Sine %(v(�i�1(2j))) = v(�i�1(2j�2(n�m)))and %(v(�i�1(2j+1))) = v(�i�1(2j�2(n�m)+1)); the ar joining %(v(�i�1(2j))) and%(v(�i�1(2j+1))) lies on the Hamilton direted yle *Hi, n�m+ 1 � j � n� 1.Moreover, v(�i�1(2j)) �! v(�i�1(2j+1)) 2*Hi if and only if %(v(�i�1(2j))) �!%(v(�i�1(2j+1))) 2*Hi. This proves that % is dominane-preserving on the arjoining u and w. 2
Theorem 3.9 Let n be even and let � 2 S2n+1, where� = (1 2 4 � � � 2n� 4 2n� 2)(3 5 7 � � � 2n� 3 2n� 1 2n)(0):
If e = ff : : : ff 2 En, f 2 Er, n=2r is odd, and m = 2r, then �m is an elementof the automorphism group Aut(W (e)).
Proof. We want to show that �m is dominane-preserving on all ofW (e). Letus partition the verties of V (W (e))� ft(0)g into four sets: U 0 = ft(1); t(2); : : : ;t(n�m)g, U 00 = ft(n�m+1); t(n�m+2); : : : ; t(n)g,W 0 = ft(n+m); t(n+m+1); : : : ; t(2n)g,and W 00 = ft(n+1); t(n+2); : : : ; t(n+m�1)g. Let U = U 0 [ U 00 and W =W 0 [W 00.By de�nition, �m �xes t(0). It ylially permutes the verties of U . That is,for a �xed integer i, 0 � i � m�1, it ylially permutes verties t(i+jm), 1 � j �8



n=m. The struture of e then implies that �m is dominane-preserving on thears joining t(0) and verties in U . Similarly, �m ylially permutes the vertiesofW , that is, it ylially permutes verties t(i+mj), n=m � j � 2n=m�1, where1 � i � m. The struture of e implies that �m is dominane-preserving on thears joining t(0) and verties in W . Therefore, �m is dominane-preserving onthe ars inident with t(0).Note that �m restrited to U 0 has the same ation as �m. It then followsfrom Lemma 3.6 that �m is dominane-preserving on any ar both of whoseend verties lie in U 0. Similarly, �m is dominane-preserving on any ar both ofwhose end verties lie in W 0.By Lemma 3.7, �m is dominane-preserving on any ar with one end vertexin U 0 and the other end vertex inW 0 beause �m ats like �m on U 0 and ��m onW 0. Similarly, �m ats like �m�n on U 00 and �n�m on W 00. Hene, Lemma 3.8implies that �m is dominane-preserving on any ar between U 00 and W 00.It remains to show that �m is dominane-preserving on the ars with exatlyone end vertex in either U 00 orW 00. There are many ases to onsider. We proveone and leave the rest to the reader. Let 0 � i � m� 1.Case 1. Let us �rst onsider ars joining verties v(�n+i(1)) 2 W 00 andv(�j(1)) 2W 0 [ U 0. We onsider two subases depending on the parity of j � i.Case 1.1. Let j � i be even. We divide the proof into two more subasesdepending on the range of index j.Case 1.1.1. Let n+m � j � 2n� 1. Sine n+ i < j, we an use determinethe Hamilton direted yle that ontains the ar joining v(�n+i(1)) = v(2(n�i)+1)
9



and v(�j(1)) = v(2(2n�j)+1). Let
k = i+ j + n2 + 1: (3.2)

Sine n + 1 � n + m=2 + 1 � k � (3n + m)=2 � 2n, the Hamilton diretedyle *Hk�n ontains the onsidered ar. We have to determine the orientationof this ar. Sine (�3n + 1)=2 � (i � j � n)=2 � �n � 1=2 and sine � hasperiod 2n, we have 1 � (n + 1)=2 � (i � j + 3n)=2 � n � 1=2 < n. Now,� j(1) = �k�n�1(i� j + 3n+ 1) and �n+i(1) = �k�n�1(i� j + 3n). Thus,
ek�n = 0 if and only if v(�n+i(1)) �! v(�j(1)) 2*Hk�n : (3.3)

Now let us onsider the �m images of v(�n+i(1)) and v(�j(1)). Clearly,
�m(v(�n+i(1))) = v(�2n�m+i(1)) (3.4)

and �m(v(�j(1))) = v(�j�m(1)): (3.5)Using j�m < 2n�m+ i we determine the index of the Hamilton direted yleontaining v(�2n�m+i(1)) and v(�j�m(1)). If
` = i+ j2 + n�m+ 1 (3.6)

then the onsidered ar lies on the Hamilton direted yle *H`�n sine n +1 � (3n � m)=2 + 1 � ` � 2n � m=2 � 2n. Moreover, sine j � i is even,�n� 1=2 � (i� j)=2 � �(n+ 1)=2 < 0 implies v(�2n�m+i(1)) = v(�`�n�1(j�i+1))and v(�j�m(1)) = v(�`�n�1(j�i)): Therefore,
e`�n = 1 if and only if �m(v(�n+i(1))) �! �m(v(�j(1))) 2*H`�n : (3.7)

10



To determine the orientation of the onsidered ars one needs to ompare ek�nand e`�n. Using equations (3.2) and (3.6) we onsider two ases depending onthe value of k. The bounds for k are n+m=2+1 � k � (3n+m)=2. If k � 3n=2,then Proposition 2.1 and inequalities n=2 �m=2 + 1 � k � n=2 �m � n �mand n=2 +m=2 + 1 � k � n=2 � n imply e`�n = ek�n: Similarly, 3n=2 + 1 � kimplies e`�n = ek�n: Therefore, �m is dominane-preserving on the onsideredars (see Figure 2).Case 1.1.2. 0 � j � n�m� 1.Case 1.2. Let j�i be odd. We divide the proof into two subases dependingon the range of index j: n+m � j � 2n� 1 and 0 � j � n�m� 1.Case 2. Next we onsider ars joining verties v(�n�m+i(1)) 2 U 00 andv(�j(1)) 2W 0 [ U 0. There are two subases depending on the parity of j � i.Case 2.1. Let j � i be even. We divide the proof into two more subasesdepending on the range of index j: n+m � j � 2n� 1 and 0 � j � n�m� 1.Case 2.2. Let j�i be odd. We divide the proof into two subases dependingon the range of index j: n+m � j � 2n� 1 and 0 � j � n�m� 1.Now, �m is dominane-preserving on the onsidered ars. Therefore, �m isdominane-preserving on all of W (e). This ompletes the proof. 2
The signi�ane of the permutation �m for the automorphism groups of Walekitournaments with odd pattern an be reognized immediately from the oddpattern sequenes. By ontrast, the fat that �m is a permutation in the auto-morphism group of some Waleki tournaments with even pattern for n odd waspreviously unknown. However, one even pattern sequenes were determined
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as a potential soure of Waleki tournaments with non-trivial automorphismgroups, permutation �m beame a natural andidate for their generator.
4 Almost regular subtournaments
In order to prove that vertex t(0) must be �xed for any automorphism of aWaleki tournament T with even pattern we prove that the subtournamentindued by the outsets of verties on the irumferene do not have the samestruture as T hN+(v(0))i.
Theorem 4.10 Let T = W (e) for e = ff : : : ff 2 En, n even, andf = (0; 0; : : : ; 0) 2 Er. Let v 2 V (T ) � ft(0)g. If r � 2, then there exists avertex in the subtournament T hN+(v)i whose sore equals n=2r. If r = 1, thenthere exists a vertex in the subtournament T hN+(v)i whose sore equals 1.
Proof. Let T denote W (e). Sine T �= T it suÆes to prove the theoremfor verties in N+(t(0)). Furthermore, sine �2r 2 Aut(T ), it suÆes to provethe theorem for the verties in N+(t(0)) \M1 and N+(t(0)) \Mn=r. Let M 0 =M1 [M3 [ � � � [Mn=r and M 00 =M2 [M4 [ � � � [Mn=r�1:We �rst onsider t(1) 2 N+(t(0)) \ M1. We will ount the verties inN+(t(1)) \ N+(t(2)). First we determine the verties in N+(t(1)). Sine f =(0; 0; : : : ; 0) Theorem 3.2 from [4℄ implies

N+(t(1)) \M1 = ft(2i+2) j 0 � i � r � 1g; (4.8)
and N+(t(1)) \M2 = ft(2r+2i+1) j 0 � i � r � 1g: (4.9)
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Let X 0 = N+(t(1)) \M 0 and X 00 = N+(t(1)) \M 00. The even pattern of thesequene e implies
X 0 = ft(4rj+2i+2) j 0 � i � r � 1; 0 � j � n=2r � 1g (4.10)

and X 00 = ft(4rj+2i+1) j 0 � i � r � 1; 0 � j � n=2r � 1g: (4.11)Clearly, N+(t(1)) = X 0 [X 00 and jN+(t(1))j = n.Next we determine verties in N+(t(2)). Sine f = (0; 0; : : : ; 0) it followsthat N+(t(2)) \M1 = ft(2i+1) j 1 � i � r � 1g [ ft(2r)g; (4.12)N+(t(2)) \M2 = ft(2r+2i+2) j 0 � i � r � 2g; (4.13)N+(t(2)) \M3 = ft(4r+2i+1) j 0 � i � r � 1g [ ft(6r)g; (4.14)and N+(t(2)) \Mn=r = ft(2n�2r+2i+2) j 0 � i � r � 1g: (4.15)Let Y 0 denote N+(t(2)) \M 0 and let Y 00 denote N+(t(2)) \M 00. We use equa-tions (4.12) and (4.14) to prove the following two statements. Let Y 0 = ~Y 0 [ ~~Y 0where ~Y 0 = N+(t(2)) \M1 = ft(2i+1) j 1 � i � r � 1g [ ft(2r)g (4.16)and ~~Y 0 = N+(t(2)) \ (M 0 �M1) =ft(4rj+2i+1) j 0 � i � r � 1; 1 � j � n=2r � 1g[[ft(4rj+2r) j 1 � j � n=2r � 1g: (4.17)
The even pattern of the sequene e and equations (4.13) and (4.15) imply

Y 00 = ft(4rj+2r+2i+2) j 0 � i � r � 2; 0 � j � n=2r � 2g[ (4.18)13



[ft(2n�2r+2i+2) j 0 � i � r � 2g [ ft(2n)g:Clearly, N+(t(2)) = Y 0 [ Y 00 and jN+(t(2))j = n.By omparing the parity of powers of � in equations (4.10), (4.11), (4.16),(4.17), and (4.18) for verties in N+(t(1)) and N+(t(2)), we dedue X 00\Y 00 = ;.Moreover, setting j = 0 and i = r�1 in equation (4.10) implies X 0\ ~Y 0 = ft(2r)gand X 0 \ ~~Y 0 = ft(4rj+2r) j 1 � j � n=2r � 1g:Furthermore, set i = r � 1 in equation (4.10) and let 1 � j � n=2r � 1 whihimplies
N+(t(1)) \N+(t(2)) = ft(2r)g [ ft(4rj+2r) j 1 � j � n=2r � 1g:

Hene, the sore of vertex t(2) in T hN+(t(1))i equals n=2r. The proofs for theremaining verties of N+(t(0)) \ M1 and for the verties in N+(t(0)) \ Mn=rare similar and we omit them. Sine �2r 2 Aut(T ), s(�2r(t(2))) = n=2r inN+(�2r(t(1))). Applying a similar argument n=2r times for eah orbit for �2rproves the result.The proof above suÆes to show that T hN+(t(1))i is not almost regular ifr � 2. The ar struture of T hN+(t(1))i is di�erent in the ase when r = 1, thatis, when e = (0; 1; 0; 1; : : : ; 0; 1; 0) 2 En. We onsider N+(t(1)) \ N+(t(2n�1)).The pattern of e implies
N+(t(1)) = ft(4i+2); t(4i+3) j 0 � i � n=2� 1g (4.19)

and
N+(t(2n�1)) = ft(0)g [ ft(2)g [ ft(4(i+1)); t(4(i+1)+1) j 0 � i � n=2� 2g: (4.20)14



By omparing the parity of powers of � in equations (4.19) and (4.20) for vertiesin N+(t(1)) and N+(t(2n�1)) we dedue that N+(t(1)) \ N+(t(2n�1)) = ft(2)g:Hene, the sore of vertex t(2n�1) in T hN+(v(1))i equals 1. Sine �2 2 Aut(T ),s(�2(t(2n�1))) = 1 in N+(�2(t(1))). Using a similar argument n=2 times for eahorbit for �2 proves the result. 2
Examples of tournaments for Theorem 4.10 are T6 =W (010101) for r = 1, withthe sore sequene of T6hN+(t(1))i being (s(t(11)); s(t(2)); s(t(12)); s(t(6)); s(t(10));s(t(7))) = (1; 2; 2; 2; 3; 5); and T9 = W (000111000) for r = 3 with the soresequene of T9hN+(t(1))i being (s(t(2)); s(t(4)); s(t(15)); s(t(7)); s(t(17)); s(t(5));s(t(14)); s(t(12))) = (2; 3; 3; 3; 4; 4; 4; 5).Next we onsider the subtournaments of a Waleki tournament W (e) withan even pattern (e = ff : : : ff 2 En and f 2 Er) indued by N+(t(0)) andN�(t(0)). Sine n is even, W (e)hN+(t(0))i an not be regular. Moreover, itis not neessarily almost regular in general. For example, in the tournamentT8 = W (00011110) with n = 8 and r = 4 the sore sequene of T8hN+(t(0))i is(s(t(1)); s(t(3)); s(t(15)); s(t(2)); s(t(14)); s(t(13)); s(t(12)); s(t(8))) = (2; 3; 3; 4; 4; 4;4; 4). W (e)hN+(t(0))i is not neessarily almost regular even in the ase whenf has zero pattern . An example of suh a Waleki tournament is T 08 =W (01010101) with n = 8 and r = 1 whose subtournament T 08hN+(t(0))i has thesore sequene (s(t(3)); s(t(7)); s(t(1)); s(t(16)); s(t(14)); s(t(5)); s(t(12)); s(t(10))) =(2; 2; 4; 4; 4; 4;4; 4). Notie, that the sores in T 08hN+(t(0))i di�er by at most 2. This turnsout to be true in general if f has a zero pattern. We prove a slightly stronger
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statement for the speial ase when n=2r and r are odd in the following result.
Theorem 4.11 Let n � 6, n even, and let W (e) be a Waleki tournamentwhere e = ff : : : ff 2 En. The bounds on a sore of vertex v 2 N+(t(0)) in thesubtournament W (e)hN+(t(0))i are

n=2� 2 � s(v) � n=2:
Moreover, if n=2r and r are odd, then the subtournaments W (e)hN+(t(0))i arealmost regular.
Proof. Let W (e) be a tournament as stated in the onditions of the theoremand let U =M1 [M2 [ � � � [Mn=2r and W =Mn=2r+1 [Mn=2r+2 [ � � � [Mn=r.Assume �rst that n=2r and r are odd.We �rst onsider the ase when r = 1, that is, e = (0; 1; 0; 1; : : : ; ; 0; 1) 2 En.The pattern of e implies that the out-neighbours of v(0) are

N+(t(0)) \ U = ft(2i+1) j 0 � i � n=2� 1g (4.21)
and N+(t(0)) \W = ft(n+2i+2) j 0 � i � n=2� 1g: (4.22)Sine e has even pattern, Theorem 2.3 implies

W (e)hft(0)g [ Ui �=W (ff : : : ff| {z }n=2 ):
Moreover, sine n=2, is odd Theorem 5.11 from [4℄ implies thatW (e)hft(0)g[Uiis a regular tournament of degree n=2 and W (e)hN+(t(0)) \ Ui is a regulartournament of degree (n=2 � 1)=2. Similar to the previous proof we an provejN+(t(0)) \ N+(t(1))j = n=2 � 1. Sine �2 2 Aut(W (e)), we have jN+(t(0)) \16



N+(v)j = n=2�1 for all verties v 2 N+(t(0))\U . One an also prove jN+(t(0))\N+(t(2n))j = n=2. Sine �2 2 Aut(W (e)), we have jN+(t(0)) \ N+(v)j = n=2for all verties v 2 N+(t(0)) \W . This proves that W (e)hN+(t(0))i is almostregular in the ase when r = 1.Assume next r � 3 and r odd. Sine e has even pattern, Theorem 2.3 implies
W (e)hft(0)g [ Ui �=W (ff : : : ff| {z }n=2 ):

Moreover, sine n=2 is odd, Theorem 5.11 from [4℄ implies thatW (e)hN+(t(0))\Ui is a regular tournament of degree (n=2� 1)=2. Therefore,
jN+(t(0)) \N+(t(1)) \ U j = (n=2� 1)=2: (4.23)

We leave it to the reader to prove
jN+(t(0)) \N+(t(1)) \W j = (n=2� 1)=2: (4.24)

Equations (4.23) and (4.24) imply jN+(t(0))\N+(t(1))j = n=2� 1. Sine �2r 2Aut(W (e)), we have jN+(t(0)) \ N+(v)j = n=2 � 1 for all verties v 2 Ot(1),where Ot(1) is the orbit of t(1) for the permutation �2r. Similarly we obtainjN+(t(0)) \ N+(t(2n))j = n2 . Hene, the sore of t(2n) in the subtournamentW (e)hN+(t(0))i equals n=2. We have determined the sores of verties t(1) 2M1and t(2n) 2 Mn=r. Similarly we an determine sores for all verties in M1 andMn=r. The sores of the verties in eah of the two sets alternate between n=2�1and n=2. Then �2r 2 Aut(W (e)) implies that the number of verties with soren=2 is n=2, whih proves that W (e)hN+(t(0))i is almost regular.In the ase when n=2r or r is even, the subtournament on the outset ofvertex t(0) is not neessarily almost regular. However, we will prove that the17



sores di�er by at most 2. Let Y = N+(t(0)) \ N+(t(1)). In a way similar tothe proof of Theorem 5.12 from [4℄, one an prove jY \ (Mi [Mi+1)j = r; for1 � i � n=2r � 1. Now jMi [Mi+1j = 4r, for 1 � i � n=2r � 1, whih implies
jY \ U j � n=4: (4.25)

Also, jY \ (Mi [Mi+1)j = r, for n=2r + 1 � i � n=r � 1 implying
jY \W j � n=4: (4.26)

We dedue that n=4� 1 � jY \ U j (4.27)and n=4� 1 � jY \W j: (4.28)Equations (4.25), (4.26), (4.27), and (4.28) imply n=2�2 � s(t(1)) = jN+(t(0))\N+(t(1))j � n=2. A similar argument an be applied to any vertex v 2 N+(t(0))\M1 v 2 N+(t(0)) \Mn=r. Sine �2r 2 Aut(W (e)), bounds for the sores of anyvertex v 2 N+(t(0)) are n=2� 2 � s(t(1)) � n=2. This ompletes the proof. 2
5 Transitive subtournaments and multiple fanstruture
Let U =M1[M2[� � �[Mn=2r andW =Mn=2r+1[Mn=2r+2[� � �[Mn=r. In a waysimilar to the odd pattern ase we partition the verties of V (W (e))� ft(0)g =U [W into sets Q1; Q2; : : : ; Qm � U and R1; R2; : : : ; Rm � W of ardinalityn=m, where m = 2r. These sets are orbits for the permutation �m. However,
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�m is an automorphism of W (e) only in the ase (see Ale�s [4℄) when n=m isodd. For this reason we all them pre-orbits.We remind the reader of the de�nition of the permutation � 2 S2r at-ing on the set f1; 2; : : : ; 2rg: � = (1 r+ 1)(2 r+2) � � � (r 2r). Pre-orbitsfor �m an then be denoted by Q�fk (k), Q�fk (k), R�fk (k), R�fk (k), for 1 �k � r. For a learer understanding of the struture of pre-orbits, we writea vertex representative belonging to either m-set M1 or Mn=2r+1 for eah pre-orbit: t(rfk+k) 2 Q�fk (k) \M1; t(rfk+k) 2 Q�fk (k) \M1; t(n+rfk+k) 2 R�fk (k) \Mn=2r+1; t(n+rfk+k) 2 R�fk (k) \Mn=2r+1; where 1 � k � r. All verties for apartiular pre-orbit an then be obtained by applying �m n=2r � 1 times on avertex representative. It follows that Q�fk (k), R�fk (k) � N+(v(0)), and Q�fk (k),R�fk (k) � N�(v(0)). Therefore,
N+(v(0)) = r[k=1�Q�fk (k) [R�fk (k)� (5.29)

and N�(v(0)) = r[k=1�Q�fk (k) [R�fk (k)� : (5.30)The multiple fan ar struture that is present in Waleki tournaments withodd pattern also ours in the even pattern ase. We omit proofs sine they aresimilar to the proofs of Theorem 4.7 from [4℄.
Theorem 5.12 Let n � 6, n even, and let T denote the Waleki tournamentW (e) for e 2 En. If e = ff : : : ff 2 En, then the pre-orbits Q1; Q2; : : : ; Qm andR1; R2; : : : ; Rm for the permutation �m indue regular subtournaments T hQ1i;T hQ2i; : : : ; T hQmi; T hR1i; T hR2i; : : : ; T hRmi. If ` is an integer suh that 1 �` � m, the subtournaments T hQ`\N+(t(1))i, T hQ`\N�(t(1))i, T hR`\N+(t(1))i,19



and T hR` \N�(t(1))i are transitive. Furthermore, ars between Q` \N+(t(1))and Q` \ N�(t(1)), and ars between R` \ N+(t(1)) and R` \ N�(t(1)) have amultiple fan struture.
Theorem 5.13 Let n � 6, e = ff : : : ff 2 En, f 2 Er, and 1 � k < l � 2r =m. Let Yk and Y` be two pre-orbits from the set fQ�fi (i); Q�fj (j); R�fi (i); R�fj (j)g� N+(t(0)), where 1 � i; j � m. The ars between any two of their four layersY 0k, Y 00k , Y 0̀, and Y 00` have a multiple fan struture.
Corollary 5.14 Let n � 6, e = ff : : : ff 2 En, f 2 Er, and 1 � k < l � 2r =m. Let Yk and Y` be two pre-orbits from the set fQ�fi (i); Q�fj (j); R�fi (i); R�fj (j)g� N�(t(0)), where 1 � i; j � m. The ars between any two of their four layersY 0k, Y 00k , Y 0̀, and Y 00` have a multiple fan struture.
6 Researh problems
We have haraterized the ar struture of subtournaments of Waleki tourna-ments with zero, odd, and even pattern (see Ale�s [2, 4℄). That is, for all Walekitournaments with periodi patterns. However, the ar struture of subtourna-ments of aperiodi Waleki tournaments still remains unknown. Automorphismgroups of Waleki tournaments for initial ases and zero pattern were also de-termined (see Ale�s [3℄).We suspet that automorphism groups of Waleki tournaments with odd oreven pattern are yli groups generated by �2r or �2r, where e = ff : : : f ore = ff : : : ff , respetively, and f 2 Er. Moreover, we have a strong belief thatthe automorphism groups of Waleki tournaments with aperiodi pattern aretrivial. Computational results (see Ale�s [3℄) support our preditions.20
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t(0)

t(1)t(2)
t(k�1)t(k)t(k+1)t(k+2)t(2k�1)t(2k)t(2k+1)t(2k+2)

t(`r+k�1)t(`r+k)t(`r+k+1)t(`r+k+2)
t(2`r)t(2`r�1) *P 0n�`r+k*P 0k

Figure 1: The diagram shows Hamilton direted yle *H 0k onstruted fromdireted paths *P 0n�`r+k and (P 0k from the proof of Theorem 2.2.

22



v(0)=t(0)

v(2m+1)=t(2n-m+1)

v(1)=t(1)

v(2(m-i)+1)=t(2n-m+i+1)

v(2(2n-j)+1)=t(j+1)

v(2(2n-j+m)+1)=t(j-m+1)

v(2(n-m+1)+1)=t(n+2m)

v(2(n-i)+1)=t(n+i+1)
v(2n)=t(n+1)Figure 2: The diagram shows the ation of permutation �m 2 S2n+1 from Case1.1.1 with ek�n = 0 in the proof of Theorem 3.9.
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