
University of Ljubljana

Institute of Mathematics, Physics and Mechanics
Department of Mathematics

Jadranska 19, 1000 Ljubljana, Slovenia

Preprint series, Vol. 39 (2001), 742

WALECKI TOURNAMENTS:
PART IV

Janez Aleš
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Abstra
t.
Wale
ki tournaments were de�ned by Alspa
h in 1966. They are regular tournamentswhi
h admit Hamilton dire
ted 
y
le de
omposition. Hen
e, they speak in favor ofKelly's 
onje
ture from 1964. The enumeration of Wale
ki tournaments was presentedas an open problem in a paper by Alspa
h in 1989. These two problems led us tostudy the ar
 stru
ture of zero and odd pattern Wale
ki tournaments in the pre
edingpapers. In this paper we determine the ar
 stru
ture of subtournaments of even patternWale
ki tournaments. Some of them are almost regular, or the s
ores of their verti
esdi�er for at most two. A spe
i�
 permutation is proven to be an automorphism ofeven pattern Wale
ki tournaments.
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1 Introdu
tion
In the pre
eding papers we studied the ar
 stru
ture of Wale
ki tournamentswith zero and odd pattern. In this paper we determine the ar
 stru
ture of sub-tournaments of even pattern Wale
ki tournaments. Proving te
hniques di�erfrom the ones used in the odd pattern 
ase. An appropriate power of permuta-tion � is proven to be an automorphism of even pattern Wale
ki tournaments.Also, subtournaments indu
ed by the outset or inset of the vertex t(0) are eitheralmost regular or have of their verti
es di�er by at most 2.
2 Even pattern
In this paper we 
onsider Wale
ki tournamentsW (e) for n even, e = ff : : : ff 2En, f 2 Er, and n=2r odd. Spe
ial form of e implies various symmetries in the
orresponding Wale
ki tournament.
Proposition 2.1 Let m = 2r and let n be even. If e = ff : : : ff 2 En, f 2 Er,and n=2r is odd, then ei = ei+m, 1 � i � n�m, and ei = ei+n=2, 1 � i � n=2,
Proof. Sin
e n=2r is odd we have

e = ff : : : fff| {z }n=2r fff : : : ff| {z }n=2r :
The 
onstru
tion of Wale
ki tournaments and f 2 Er imply the result. 2

In order to determine subtournaments of W (e) that are isomorphi
 to someWale
ki tournament with even pattern, we pro
eed in a manner similar to theodd pattern 
ase (see Ale�s [4℄).
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Theorem 2.2 Let n be even, e = ff : : : ff 2 En, and f 2 Er. Let T denotethe Wale
ki tournament W (e) and let M1;M2; : : : ;Mn=m be the m-set partitionof V (W (e))� ft(0)g. If ` is an even integer su
h that 2 � ` � n=r � 2, then
T hft(0)g [Mn=2r�`=2+1 [Mn=2r�`=2+2 [ � � � [Mn=2r+`=2i �=W (ff : : : ff| {z }` ):

Proof. Let ` be an even integer su
h that 2 � ` � n=r�1. Let e0 = ff : : : ff 2E`r. In the following � is �rst 
onsidered as a permutation in S2n+1 used inthe 
onstru
tion of W (e). Se
ondly, it is 
onsidered as a permutation in S2`r+1and is denoted by � . Similarly, t(i) denotes a vertex of W (e) and t(i) denotes avertex of W (e0). Note that the verti
es of the subtournament W (e0) are 
hosenin W (e) 
onse
utively on the 
ir
umferen
e starting from vertex t(n�`r+1).We de�ne a fun
tion
 : ft(0)g [Mn=2r�`=2+1 [Mn=2r�`=2+2 [ � � � [Mn=2r+`=2 �! V (W (e0))

by  (t(0)) = t(0) and  (t(n+i)) = t(`r+i), for �`r + 1 � i � `r. Clearly,  is abije
tion. We will show that the Hamilton dire
ted 
y
le *H 0k inW (e0) is a unionof  -images of dire
ted paths belonging to Hamilton dire
ted 
y
les *Hn�`r+kand *Hk in W (e). The proof is similar to the proof of Theorem 3.2 from [4℄. Weomit the details.Let *Pn�`r+k denote the dire
ted path [t(0); t(n�`r+k); : : : ; t(n�`r+2k)℄ on *Hn�`r+kand let *P k denote the dire
ted path [t(n�`r+2k); : : : ; t(n+k); t(0)℄ on *Hk. We have (*P n�`r+k) =*P 0n�`r+k and  (*P k) =*P 0k. Now, n and ` are even, and e has evenpattern. This implies that if ek = 0, then en�`r+k = 0 and *H 0k=*P 0n�`r+k [ *P 0k(see Figure 1). If ek = 1, then en�`r+k = 1 and *H 0k=(P 0k [ (P 0n�`r+k. This
ompletes the proof. 2 3



Even pattern Wale
ki tournaments not only 
ontain even pattern subtourna-ments, but also odd pattern ones, as the following result demonstrates.Theorem 2.3 Let n � 6 and let e = ff : : : ff 2 En, and f 2 Er. Let T denotethe Wale
ki tournament W (e) and let M1;M2; : : : ;Mn=m be the m-set partitionof V (W (e))� ft(0)g. If ` is an odd integer su
h that 1 � ` � n=2r, then
T hft(0)g [M1 [M2 [ � � � [M`i �=W (ff : : : ff| {z }` ):

Proof. The proof is similar to that of the odd pattern (see Theorem 4.5from [4℄) the only di�eren
e being that instead of 1 � ` � n=r we now have1 � ` � n=2r. 2
Even pattern Wale
ki tournaments also 
ontain proper zero pattern Wale
kisubtournaments.Theorem 2.4 For n 2 Z+ , n � 6, e = ff : : : ff 2 En, f 2 Er, n=2r even,and n=2r > 1, h = (0; 0; : : : ; 0) 2 En=2r, and R` = ft(2rk+`) j 0 � k � n=r � 1g,

W (e)hft(0)g [R`i �=W (h);
where ` is an integer su
h that 1 � ` � 2r.Proof. Let T denote W (e)hft(0)g [ R`i with the 
orresponding de�ning bi-nary sequen
e e0 = (e`; e2r+`; : : : ; en�2r+`) = (f`; f`; : : : ; f`) for some ` su
h that1 � ` � 2r. Sin
e W (e) �= W (e) we may assume that f` = 0. All ar
s in T areeither de�ned with binary sequen
e elements e2ri+` for some i, 1 � i � n=2r�1,or e2rj+r+` for some j, 0 � j � n=2r � 2. These elements equal either f` or4



fr+` = f `. We omit the details. 2
3 Automorphism �m
We remind the reader of the de�nition of the permutation � and � 2 S2n+1 (seeAle�s [2℄): � = (1 2 4 � � � 2n � 4 2n � 2)(3 5 7 � � � 2n � 3 2n � 1 2n)(0) and� = (1 2 � � � 2n)(0):
Proposition 3.5 If m divides n, then

�m(t(i)) = 8>><>>:
�m(t(i) if 1 � i � n�m;�m�n(t(i)) if n�m+ 1 � i � n;�n�m(t(i)) if n+ 1 � i � n+m;��m(t(i)) if n+m+ 1 � i � 2n: (3.1)

Proof. The result follows dire
tly from the de�nitions of permutations � and� . 2
In the following three results we prove that �m is an element of the auto-morphism group of 
ertain Wale
ki tournaments with even pattern. The resultis a generalization of the proof of Theorem 5.23 from [2℄.

Lemma 3.6 Let n be even, e = ff : : : ff 2 En, f 2 Er, and m = 2r. If 1 �i � n�m� 1, then �m is dominan
e-preserving on *Hi and ��m is dominan
e-preserving on *Hi+m.Proof. Let m = 2r. Sin
e e = ff : : : ff 2 En and f 2 Er, we have ei = ei+mfor 1 � i � n�m. The result now follows from the de�nition of the Hamiltondire
ted 
y
les *H1; *H2; : : : ; *Hn 
omprising W (e). 2
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Lemma 3.7 Let n be even, e = ff : : : ff 2 En, f 2 Er, and m = 2r. Considerthe Hamilton dire
ted 
y
le *Hi, 1 � i � n, in the Wale
ki tournament W (e).Let u and w be end verti
es of any ar
 on *Hi of the form u = v(�i�1(2j+1)) andw = v(�i�1(2j+2)), 0 � j � n �m � 1, or u = v(�i�1(2j)) and w = v(�i�1(2j+1)),1 � j � n � m � 1. De�ne % by letting % = ��m on v(�i�1(2j+1)), 1 � j �n�m� 1, and % = �m on v(�i�1(2j)), 1 � j � n�m� 1. Then % is dominan
e-preserving on the ar
 joining u and w.
Proof. The ar
 joining %(u) and %(w) also lies on *Hi. Moreover, %(u) �! %(w)if and only if u �! w whi
h follows from the way *Hi is 
onstru
ted. Morerigorously, the fa
t that 2j + 2m+ 2 � 2n, and the 
hain of equalities

%(u) = %(v(�i�1(2j+1))) = ��m(v(�i�1(2j+1)))
= v(��m(�i�1(2j+1))) = v(�i�1(��m(2j+1))) = v(�i�1(2j+2m+1))and %(w) = %(v(�i�1(2j+2))) = �m(v(�i�1(2j+2)))= v(�m(�i�1(2j+2))) = v(�i�1(�m(2j+2))) = v(�i�1(2j+2m+2))imply that the ar
 joining %(v(�i�1(2j+1))) and %(v(�i�1(2j+2))) lies on the Hamil-ton dire
ted 
y
le *Hi, 1 � j � n � m � 1. Ar
s on the Hamilton dire
ted
y
le *Hi are either of the form v(�i�1(k)) �! v(�i�1(k+1)) or v(�i�1(k+1)) �!v(�i�1(k)), depending on ei. Therefore, v(�i�1(2j+1)) �! v(�i�1(2j+2)) if and onlyif %(v(�i�1(2j+1))) �! %(v(�i�1(2j+2))).Similarly, we prove the remaining 
ase. We have %(v(�i�1(2j))) = v(�i�1(2j+2m))and %(v(�i�1(2j+1))) = v(�i�1(2j+2m+1)); it follows that the ar
 joining %(v(�i�1(2j)))
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and %(v(�i�1(2j+1))) lies on the Hamilton dire
ted 
y
le *Hi, 1 � j � n�m� 1.Furthermore, v(�i�1(2j)) �! v(�i�1(2j+1)) 2*Hi if and only if %(v(�i�1(2j))) �!%(v(�i�1(2j+1))) 2*Hi, for 1 � j � n �m � 1. This proves that % is dominan
e-preserving on the ar
 joining u and w. 2
Lemma 3.8 Let n be even, e = ff : : : ff 2 En, f 2 Er, and m = 2r. Considerthe Hamilton dire
ted 
y
le *Hi, 1 � i � n, in the Wale
ki tournament W (e).Let u and w be end verti
es of any ar
 on *Hi of the form u = v(�i�1(2j+1)) andw = v(�i�1(2j+2)), n�m+1 � j � n�2, or u = v(�i�1(2j)) and w = v(�i�1(2j+1)),n�m+1 � j � n�1. De�ne % by letting % = �n�m on v(�i�1(2j+1)), n�m+1 �j � n � 1, and on v(�i�1(2n)). Furthermore, de�ne % = �m�n on v(�i�1(2j)),n �m + 1 � j � n � 1. Then % is dominan
e-preserving on the ar
 joining uand w.
Proof. Sin
e 2j�2(n�m) � 2 we have %(v(�i�1(2j+1))) = v(�i�1(2j�2(n�m)+1))and %(v(�i�1(2j+2))) = v(�i�1(2j�2(n�m)+2)); whi
h implies that the ar
 joining%(v(�i�1(2j+1))) and %(v(�i�1(2j+2))) lies on the Hamilton dire
ted 
y
le *Hi, forn�m+1 � j � n� 1. Moreover, v(�i�1(2j+1)) �! v(�i�1(2j+2)) 2*Hi if and onlyif %(v(�i�1(2j+1))) �! %(v(�i�1(2j+2))) 2*Hi.We also need to 
onsider ar
s joining verti
es v(�i�1(2n�1)) and v(�i�1(2n)).Sin
e %(v(�i�1(2n�1))) = v(�n�m+i�1(2n�1)) and %(v(�i�1(2n))) = v(�n�m+i�1(2n));the ar
 joining %(v(�i�1(2n�1))) and %(v(�i�1(2n))) lies on the Hamilton dire
ted
y
le *Hn�m+i whenever 1 � i � m. Moreover, sin
e en�m+i = em(n=m�1)+i =ei, the Hamilton dire
ted 
y
les *Hi and *Hn�m+i have the same orientation
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for 1 � i � m. It follows that v(�i�1(2n�1)) �! v(�i�1(2n)) 2*Hi if and only if%(v(�i�1(2n�1))) �! %(v(�i�1(2n))) 2 *Hn�m+i, for 1 � i � m.If m+1 � i � n then the 
onsidered ar
 lies on the Hamilton dire
ted 
y
le*Hi�m. Sin
e ei�m = ei, the Hamilton dire
ted 
y
les *Hi�m and *Hi have thesame orientation. It follows that v(�i�1(2n�1)) �! v(�i�1(2n)) 2*Hi if and only if%(v(�i�1(2n�1))) �! %(v(�i�1(2n))) 2*Hi�m, for m+ 1 � i � n.Similarly we prove the remaining 
ase. Sin
e %(v(�i�1(2j))) = v(�i�1(2j�2(n�m)))and %(v(�i�1(2j+1))) = v(�i�1(2j�2(n�m)+1)); the ar
 joining %(v(�i�1(2j))) and%(v(�i�1(2j+1))) lies on the Hamilton dire
ted 
y
le *Hi, n�m+ 1 � j � n� 1.Moreover, v(�i�1(2j)) �! v(�i�1(2j+1)) 2*Hi if and only if %(v(�i�1(2j))) �!%(v(�i�1(2j+1))) 2*Hi. This proves that % is dominan
e-preserving on the ar
joining u and w. 2
Theorem 3.9 Let n be even and let � 2 S2n+1, where� = (1 2 4 � � � 2n� 4 2n� 2)(3 5 7 � � � 2n� 3 2n� 1 2n)(0):
If e = ff : : : ff 2 En, f 2 Er, n=2r is odd, and m = 2r, then �m is an elementof the automorphism group Aut(W (e)).
Proof. We want to show that �m is dominan
e-preserving on all ofW (e). Letus partition the verti
es of V (W (e))� ft(0)g into four sets: U 0 = ft(1); t(2); : : : ;t(n�m)g, U 00 = ft(n�m+1); t(n�m+2); : : : ; t(n)g,W 0 = ft(n+m); t(n+m+1); : : : ; t(2n)g,and W 00 = ft(n+1); t(n+2); : : : ; t(n+m�1)g. Let U = U 0 [ U 00 and W =W 0 [W 00.By de�nition, �m �xes t(0). It 
y
li
ally permutes the verti
es of U . That is,for a �xed integer i, 0 � i � m�1, it 
y
li
ally permutes verti
es t(i+jm), 1 � j �8



n=m. The stru
ture of e then implies that �m is dominan
e-preserving on thear
s joining t(0) and verti
es in U . Similarly, �m 
y
li
ally permutes the verti
esofW , that is, it 
y
li
ally permutes verti
es t(i+mj), n=m � j � 2n=m�1, where1 � i � m. The stru
ture of e implies that �m is dominan
e-preserving on thear
s joining t(0) and verti
es in W . Therefore, �m is dominan
e-preserving onthe ar
s in
ident with t(0).Note that �m restri
ted to U 0 has the same a
tion as �m. It then followsfrom Lemma 3.6 that �m is dominan
e-preserving on any ar
 both of whoseend verti
es lie in U 0. Similarly, �m is dominan
e-preserving on any ar
 both ofwhose end verti
es lie in W 0.By Lemma 3.7, �m is dominan
e-preserving on any ar
 with one end vertexin U 0 and the other end vertex inW 0 be
ause �m a
ts like �m on U 0 and ��m onW 0. Similarly, �m a
ts like �m�n on U 00 and �n�m on W 00. Hen
e, Lemma 3.8implies that �m is dominan
e-preserving on any ar
 between U 00 and W 00.It remains to show that �m is dominan
e-preserving on the ar
s with exa
tlyone end vertex in either U 00 orW 00. There are many 
ases to 
onsider. We proveone and leave the rest to the reader. Let 0 � i � m� 1.Case 1. Let us �rst 
onsider ar
s joining verti
es v(�n+i(1)) 2 W 00 andv(�j(1)) 2W 0 [ U 0. We 
onsider two sub
ases depending on the parity of j � i.Case 1.1. Let j � i be even. We divide the proof into two more sub
asesdepending on the range of index j.Case 1.1.1. Let n+m � j � 2n� 1. Sin
e n+ i < j, we 
an use determinethe Hamilton dire
ted 
y
le that 
ontains the ar
 joining v(�n+i(1)) = v(2(n�i)+1)
9



and v(�j(1)) = v(2(2n�j)+1). Let
k = i+ j + n2 + 1: (3.2)

Sin
e n + 1 � n + m=2 + 1 � k � (3n + m)=2 � 2n, the Hamilton dire
ted
y
le *Hk�n 
ontains the 
onsidered ar
. We have to determine the orientationof this ar
. Sin
e (�3n + 1)=2 � (i � j � n)=2 � �n � 1=2 and sin
e � hasperiod 2n, we have 1 � (n + 1)=2 � (i � j + 3n)=2 � n � 1=2 < n. Now,� j(1) = �k�n�1(i� j + 3n+ 1) and �n+i(1) = �k�n�1(i� j + 3n). Thus,
ek�n = 0 if and only if v(�n+i(1)) �! v(�j(1)) 2*Hk�n : (3.3)

Now let us 
onsider the �m images of v(�n+i(1)) and v(�j(1)). Clearly,
�m(v(�n+i(1))) = v(�2n�m+i(1)) (3.4)

and �m(v(�j(1))) = v(�j�m(1)): (3.5)Using j�m < 2n�m+ i we determine the index of the Hamilton dire
ted 
y
le
ontaining v(�2n�m+i(1)) and v(�j�m(1)). If
` = i+ j2 + n�m+ 1 (3.6)

then the 
onsidered ar
 lies on the Hamilton dire
ted 
y
le *H`�n sin
e n +1 � (3n � m)=2 + 1 � ` � 2n � m=2 � 2n. Moreover, sin
e j � i is even,�n� 1=2 � (i� j)=2 � �(n+ 1)=2 < 0 implies v(�2n�m+i(1)) = v(�`�n�1(j�i+1))and v(�j�m(1)) = v(�`�n�1(j�i)): Therefore,
e`�n = 1 if and only if �m(v(�n+i(1))) �! �m(v(�j(1))) 2*H`�n : (3.7)
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To determine the orientation of the 
onsidered ar
s one needs to 
ompare ek�nand e`�n. Using equations (3.2) and (3.6) we 
onsider two 
ases depending onthe value of k. The bounds for k are n+m=2+1 � k � (3n+m)=2. If k � 3n=2,then Proposition 2.1 and inequalities n=2 �m=2 + 1 � k � n=2 �m � n �mand n=2 +m=2 + 1 � k � n=2 � n imply e`�n = ek�n: Similarly, 3n=2 + 1 � kimplies e`�n = ek�n: Therefore, �m is dominan
e-preserving on the 
onsideredar
s (see Figure 2).Case 1.1.2. 0 � j � n�m� 1.Case 1.2. Let j�i be odd. We divide the proof into two sub
ases dependingon the range of index j: n+m � j � 2n� 1 and 0 � j � n�m� 1.Case 2. Next we 
onsider ar
s joining verti
es v(�n�m+i(1)) 2 U 00 andv(�j(1)) 2W 0 [ U 0. There are two sub
ases depending on the parity of j � i.Case 2.1. Let j � i be even. We divide the proof into two more sub
asesdepending on the range of index j: n+m � j � 2n� 1 and 0 � j � n�m� 1.Case 2.2. Let j�i be odd. We divide the proof into two sub
ases dependingon the range of index j: n+m � j � 2n� 1 and 0 � j � n�m� 1.Now, �m is dominan
e-preserving on the 
onsidered ar
s. Therefore, �m isdominan
e-preserving on all of W (e). This 
ompletes the proof. 2
The signi�
an
e of the permutation �m for the automorphism groups of Wale
kitournaments with odd pattern 
an be re
ognized immediately from the oddpattern sequen
es. By 
ontrast, the fa
t that �m is a permutation in the auto-morphism group of some Wale
ki tournaments with even pattern for n odd waspreviously unknown. However, on
e even pattern sequen
es were determined

11



as a potential sour
e of Wale
ki tournaments with non-trivial automorphismgroups, permutation �m be
ame a natural 
andidate for their generator.
4 Almost regular subtournaments
In order to prove that vertex t(0) must be �xed for any automorphism of aWale
ki tournament T with even pattern we prove that the subtournamentindu
ed by the outsets of verti
es on the 
ir
umferen
e do not have the samestru
ture as T hN+(v(0))i.
Theorem 4.10 Let T = W (e) for e = ff : : : ff 2 En, n even, andf = (0; 0; : : : ; 0) 2 Er. Let v 2 V (T ) � ft(0)g. If r � 2, then there exists avertex in the subtournament T hN+(v)i whose s
ore equals n=2r. If r = 1, thenthere exists a vertex in the subtournament T hN+(v)i whose s
ore equals 1.
Proof. Let T denote W (e). Sin
e T �= T it suÆ
es to prove the theoremfor verti
es in N+(t(0)). Furthermore, sin
e �2r 2 Aut(T ), it suÆ
es to provethe theorem for the verti
es in N+(t(0)) \M1 and N+(t(0)) \Mn=r. Let M 0 =M1 [M3 [ � � � [Mn=r and M 00 =M2 [M4 [ � � � [Mn=r�1:We �rst 
onsider t(1) 2 N+(t(0)) \ M1. We will 
ount the verti
es inN+(t(1)) \ N+(t(2)). First we determine the verti
es in N+(t(1)). Sin
e f =(0; 0; : : : ; 0) Theorem 3.2 from [4℄ implies

N+(t(1)) \M1 = ft(2i+2) j 0 � i � r � 1g; (4.8)
and N+(t(1)) \M2 = ft(2r+2i+1) j 0 � i � r � 1g: (4.9)

12



Let X 0 = N+(t(1)) \M 0 and X 00 = N+(t(1)) \M 00. The even pattern of thesequen
e e implies
X 0 = ft(4rj+2i+2) j 0 � i � r � 1; 0 � j � n=2r � 1g (4.10)

and X 00 = ft(4rj+2i+1) j 0 � i � r � 1; 0 � j � n=2r � 1g: (4.11)Clearly, N+(t(1)) = X 0 [X 00 and jN+(t(1))j = n.Next we determine verti
es in N+(t(2)). Sin
e f = (0; 0; : : : ; 0) it followsthat N+(t(2)) \M1 = ft(2i+1) j 1 � i � r � 1g [ ft(2r)g; (4.12)N+(t(2)) \M2 = ft(2r+2i+2) j 0 � i � r � 2g; (4.13)N+(t(2)) \M3 = ft(4r+2i+1) j 0 � i � r � 1g [ ft(6r)g; (4.14)and N+(t(2)) \Mn=r = ft(2n�2r+2i+2) j 0 � i � r � 1g: (4.15)Let Y 0 denote N+(t(2)) \M 0 and let Y 00 denote N+(t(2)) \M 00. We use equa-tions (4.12) and (4.14) to prove the following two statements. Let Y 0 = ~Y 0 [ ~~Y 0where ~Y 0 = N+(t(2)) \M1 = ft(2i+1) j 1 � i � r � 1g [ ft(2r)g (4.16)and ~~Y 0 = N+(t(2)) \ (M 0 �M1) =ft(4rj+2i+1) j 0 � i � r � 1; 1 � j � n=2r � 1g[[ft(4rj+2r) j 1 � j � n=2r � 1g: (4.17)
The even pattern of the sequen
e e and equations (4.13) and (4.15) imply

Y 00 = ft(4rj+2r+2i+2) j 0 � i � r � 2; 0 � j � n=2r � 2g[ (4.18)13



[ft(2n�2r+2i+2) j 0 � i � r � 2g [ ft(2n)g:Clearly, N+(t(2)) = Y 0 [ Y 00 and jN+(t(2))j = n.By 
omparing the parity of powers of � in equations (4.10), (4.11), (4.16),(4.17), and (4.18) for verti
es in N+(t(1)) and N+(t(2)), we dedu
e X 00\Y 00 = ;.Moreover, setting j = 0 and i = r�1 in equation (4.10) implies X 0\ ~Y 0 = ft(2r)gand X 0 \ ~~Y 0 = ft(4rj+2r) j 1 � j � n=2r � 1g:Furthermore, set i = r � 1 in equation (4.10) and let 1 � j � n=2r � 1 whi
himplies
N+(t(1)) \N+(t(2)) = ft(2r)g [ ft(4rj+2r) j 1 � j � n=2r � 1g:

Hen
e, the s
ore of vertex t(2) in T hN+(t(1))i equals n=2r. The proofs for theremaining verti
es of N+(t(0)) \ M1 and for the verti
es in N+(t(0)) \ Mn=rare similar and we omit them. Sin
e �2r 2 Aut(T ), s(�2r(t(2))) = n=2r inN+(�2r(t(1))). Applying a similar argument n=2r times for ea
h orbit for �2rproves the result.The proof above suÆ
es to show that T hN+(t(1))i is not almost regular ifr � 2. The ar
 stru
ture of T hN+(t(1))i is di�erent in the 
ase when r = 1, thatis, when e = (0; 1; 0; 1; : : : ; 0; 1; 0) 2 En. We 
onsider N+(t(1)) \ N+(t(2n�1)).The pattern of e implies
N+(t(1)) = ft(4i+2); t(4i+3) j 0 � i � n=2� 1g (4.19)

and
N+(t(2n�1)) = ft(0)g [ ft(2)g [ ft(4(i+1)); t(4(i+1)+1) j 0 � i � n=2� 2g: (4.20)14



By 
omparing the parity of powers of � in equations (4.19) and (4.20) for verti
esin N+(t(1)) and N+(t(2n�1)) we dedu
e that N+(t(1)) \ N+(t(2n�1)) = ft(2)g:Hen
e, the s
ore of vertex t(2n�1) in T hN+(v(1))i equals 1. Sin
e �2 2 Aut(T ),s(�2(t(2n�1))) = 1 in N+(�2(t(1))). Using a similar argument n=2 times for ea
horbit for �2 proves the result. 2
Examples of tournaments for Theorem 4.10 are T6 =W (010101) for r = 1, withthe s
ore sequen
e of T6hN+(t(1))i being (s(t(11)); s(t(2)); s(t(12)); s(t(6)); s(t(10));s(t(7))) = (1; 2; 2; 2; 3; 5); and T9 = W (000111000) for r = 3 with the s
oresequen
e of T9hN+(t(1))i being (s(t(2)); s(t(4)); s(t(15)); s(t(7)); s(t(17)); s(t(5));s(t(14)); s(t(12))) = (2; 3; 3; 3; 4; 4; 4; 5).Next we 
onsider the subtournaments of a Wale
ki tournament W (e) withan even pattern (e = ff : : : ff 2 En and f 2 Er) indu
ed by N+(t(0)) andN�(t(0)). Sin
e n is even, W (e)hN+(t(0))i 
an not be regular. Moreover, itis not ne
essarily almost regular in general. For example, in the tournamentT8 = W (00011110) with n = 8 and r = 4 the s
ore sequen
e of T8hN+(t(0))i is(s(t(1)); s(t(3)); s(t(15)); s(t(2)); s(t(14)); s(t(13)); s(t(12)); s(t(8))) = (2; 3; 3; 4; 4; 4;4; 4). W (e)hN+(t(0))i is not ne
essarily almost regular even in the 
ase whenf has zero pattern . An example of su
h a Wale
ki tournament is T 08 =W (01010101) with n = 8 and r = 1 whose subtournament T 08hN+(t(0))i has thes
ore sequen
e (s(t(3)); s(t(7)); s(t(1)); s(t(16)); s(t(14)); s(t(5)); s(t(12)); s(t(10))) =(2; 2; 4; 4; 4; 4;4; 4). Noti
e, that the s
ores in T 08hN+(t(0))i di�er by at most 2. This turnsout to be true in general if f has a zero pattern. We prove a slightly stronger
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statement for the spe
ial 
ase when n=2r and r are odd in the following result.
Theorem 4.11 Let n � 6, n even, and let W (e) be a Wale
ki tournamentwhere e = ff : : : ff 2 En. The bounds on a s
ore of vertex v 2 N+(t(0)) in thesubtournament W (e)hN+(t(0))i are

n=2� 2 � s(v) � n=2:
Moreover, if n=2r and r are odd, then the subtournaments W (e)hN+(t(0))i arealmost regular.
Proof. Let W (e) be a tournament as stated in the 
onditions of the theoremand let U =M1 [M2 [ � � � [Mn=2r and W =Mn=2r+1 [Mn=2r+2 [ � � � [Mn=r.Assume �rst that n=2r and r are odd.We �rst 
onsider the 
ase when r = 1, that is, e = (0; 1; 0; 1; : : : ; ; 0; 1) 2 En.The pattern of e implies that the out-neighbours of v(0) are

N+(t(0)) \ U = ft(2i+1) j 0 � i � n=2� 1g (4.21)
and N+(t(0)) \W = ft(n+2i+2) j 0 � i � n=2� 1g: (4.22)Sin
e e has even pattern, Theorem 2.3 implies

W (e)hft(0)g [ Ui �=W (ff : : : ff| {z }n=2 ):
Moreover, sin
e n=2, is odd Theorem 5.11 from [4℄ implies thatW (e)hft(0)g[Uiis a regular tournament of degree n=2 and W (e)hN+(t(0)) \ Ui is a regulartournament of degree (n=2 � 1)=2. Similar to the previous proof we 
an provejN+(t(0)) \ N+(t(1))j = n=2 � 1. Sin
e �2 2 Aut(W (e)), we have jN+(t(0)) \16



N+(v)j = n=2�1 for all verti
es v 2 N+(t(0))\U . One 
an also prove jN+(t(0))\N+(t(2n))j = n=2. Sin
e �2 2 Aut(W (e)), we have jN+(t(0)) \ N+(v)j = n=2for all verti
es v 2 N+(t(0)) \W . This proves that W (e)hN+(t(0))i is almostregular in the 
ase when r = 1.Assume next r � 3 and r odd. Sin
e e has even pattern, Theorem 2.3 implies
W (e)hft(0)g [ Ui �=W (ff : : : ff| {z }n=2 ):

Moreover, sin
e n=2 is odd, Theorem 5.11 from [4℄ implies thatW (e)hN+(t(0))\Ui is a regular tournament of degree (n=2� 1)=2. Therefore,
jN+(t(0)) \N+(t(1)) \ U j = (n=2� 1)=2: (4.23)

We leave it to the reader to prove
jN+(t(0)) \N+(t(1)) \W j = (n=2� 1)=2: (4.24)

Equations (4.23) and (4.24) imply jN+(t(0))\N+(t(1))j = n=2� 1. Sin
e �2r 2Aut(W (e)), we have jN+(t(0)) \ N+(v)j = n=2 � 1 for all verti
es v 2 Ot(1),where Ot(1) is the orbit of t(1) for the permutation �2r. Similarly we obtainjN+(t(0)) \ N+(t(2n))j = n2 . Hen
e, the s
ore of t(2n) in the subtournamentW (e)hN+(t(0))i equals n=2. We have determined the s
ores of verti
es t(1) 2M1and t(2n) 2 Mn=r. Similarly we 
an determine s
ores for all verti
es in M1 andMn=r. The s
ores of the verti
es in ea
h of the two sets alternate between n=2�1and n=2. Then �2r 2 Aut(W (e)) implies that the number of verti
es with s
oren=2 is n=2, whi
h proves that W (e)hN+(t(0))i is almost regular.In the 
ase when n=2r or r is even, the subtournament on the outset ofvertex t(0) is not ne
essarily almost regular. However, we will prove that the17



s
ores di�er by at most 2. Let Y = N+(t(0)) \ N+(t(1)). In a way similar tothe proof of Theorem 5.12 from [4℄, one 
an prove jY \ (Mi [Mi+1)j = r; for1 � i � n=2r � 1. Now jMi [Mi+1j = 4r, for 1 � i � n=2r � 1, whi
h implies
jY \ U j � n=4: (4.25)

Also, jY \ (Mi [Mi+1)j = r, for n=2r + 1 � i � n=r � 1 implying
jY \W j � n=4: (4.26)

We dedu
e that n=4� 1 � jY \ U j (4.27)and n=4� 1 � jY \W j: (4.28)Equations (4.25), (4.26), (4.27), and (4.28) imply n=2�2 � s(t(1)) = jN+(t(0))\N+(t(1))j � n=2. A similar argument 
an be applied to any vertex v 2 N+(t(0))\M1 v 2 N+(t(0)) \Mn=r. Sin
e �2r 2 Aut(W (e)), bounds for the s
ores of anyvertex v 2 N+(t(0)) are n=2� 2 � s(t(1)) � n=2. This 
ompletes the proof. 2
5 Transitive subtournaments and multiple fanstru
ture
Let U =M1[M2[� � �[Mn=2r andW =Mn=2r+1[Mn=2r+2[� � �[Mn=r. In a waysimilar to the odd pattern 
ase we partition the verti
es of V (W (e))� ft(0)g =U [W into sets Q1; Q2; : : : ; Qm � U and R1; R2; : : : ; Rm � W of 
ardinalityn=m, where m = 2r. These sets are orbits for the permutation �m. However,
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�m is an automorphism of W (e) only in the 
ase (see Ale�s [4℄) when n=m isodd. For this reason we 
all them pre-orbits.We remind the reader of the de�nition of the permutation � 2 S2r a
t-ing on the set f1; 2; : : : ; 2rg: � = (1 r+ 1)(2 r+2) � � � (r 2r). Pre-orbitsfor �m 
an then be denoted by Q�fk (k), Q�fk (k), R�fk (k), R�fk (k), for 1 �k � r. For a 
learer understanding of the stru
ture of pre-orbits, we writea vertex representative belonging to either m-set M1 or Mn=2r+1 for ea
h pre-orbit: t(rfk+k) 2 Q�fk (k) \M1; t(rfk+k) 2 Q�fk (k) \M1; t(n+rfk+k) 2 R�fk (k) \Mn=2r+1; t(n+rfk+k) 2 R�fk (k) \Mn=2r+1; where 1 � k � r. All verti
es for aparti
ular pre-orbit 
an then be obtained by applying �m n=2r � 1 times on avertex representative. It follows that Q�fk (k), R�fk (k) � N+(v(0)), and Q�fk (k),R�fk (k) � N�(v(0)). Therefore,
N+(v(0)) = r[k=1�Q�fk (k) [R�fk (k)� (5.29)

and N�(v(0)) = r[k=1�Q�fk (k) [R�fk (k)� : (5.30)The multiple fan ar
 stru
ture that is present in Wale
ki tournaments withodd pattern also o

urs in the even pattern 
ase. We omit proofs sin
e they aresimilar to the proofs of Theorem 4.7 from [4℄.
Theorem 5.12 Let n � 6, n even, and let T denote the Wale
ki tournamentW (e) for e 2 En. If e = ff : : : ff 2 En, then the pre-orbits Q1; Q2; : : : ; Qm andR1; R2; : : : ; Rm for the permutation �m indu
e regular subtournaments T hQ1i;T hQ2i; : : : ; T hQmi; T hR1i; T hR2i; : : : ; T hRmi. If ` is an integer su
h that 1 �` � m, the subtournaments T hQ`\N+(t(1))i, T hQ`\N�(t(1))i, T hR`\N+(t(1))i,19



and T hR` \N�(t(1))i are transitive. Furthermore, ar
s between Q` \N+(t(1))and Q` \ N�(t(1)), and ar
s between R` \ N+(t(1)) and R` \ N�(t(1)) have amultiple fan stru
ture.
Theorem 5.13 Let n � 6, e = ff : : : ff 2 En, f 2 Er, and 1 � k < l � 2r =m. Let Yk and Y` be two pre-orbits from the set fQ�fi (i); Q�fj (j); R�fi (i); R�fj (j)g� N+(t(0)), where 1 � i; j � m. The ar
s between any two of their four layersY 0k, Y 00k , Y 0̀, and Y 00` have a multiple fan stru
ture.
Corollary 5.14 Let n � 6, e = ff : : : ff 2 En, f 2 Er, and 1 � k < l � 2r =m. Let Yk and Y` be two pre-orbits from the set fQ�fi (i); Q�fj (j); R�fi (i); R�fj (j)g� N�(t(0)), where 1 � i; j � m. The ar
s between any two of their four layersY 0k, Y 00k , Y 0̀, and Y 00` have a multiple fan stru
ture.
6 Resear
h problems
We have 
hara
terized the ar
 stru
ture of subtournaments of Wale
ki tourna-ments with zero, odd, and even pattern (see Ale�s [2, 4℄). That is, for all Wale
kitournaments with periodi
 patterns. However, the ar
 stru
ture of subtourna-ments of aperiodi
 Wale
ki tournaments still remains unknown. Automorphismgroups of Wale
ki tournaments for initial 
ases and zero pattern were also de-termined (see Ale�s [3℄).We suspe
t that automorphism groups of Wale
ki tournaments with odd oreven pattern are 
y
li
 groups generated by �2r or �2r, where e = ff : : : f ore = ff : : : ff , respe
tively, and f 2 Er. Moreover, we have a strong belief thatthe automorphism groups of Wale
ki tournaments with aperiodi
 pattern aretrivial. Computational results (see Ale�s [3℄) support our predi
tions.20
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t(0)

t(1)t(2)
t(k�1)t(k)t(k+1)t(k+2)t(2k�1)t(2k)t(2k+1)t(2k+2)

t(`r+k�1)t(`r+k)t(`r+k+1)t(`r+k+2)
t(2`r)t(2`r�1) *P 0n�`r+k*P 0k

Figure 1: The diagram shows Hamilton dire
ted 
y
le *H 0k 
onstru
ted fromdire
ted paths *P 0n�`r+k and (P 0k from the proof of Theorem 2.2.
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v(0)=t(0)

v(2m+1)=t(2n-m+1)

v(1)=t(1)

v(2(m-i)+1)=t(2n-m+i+1)

v(2(2n-j)+1)=t(j+1)

v(2(2n-j+m)+1)=t(j-m+1)

v(2(n-m+1)+1)=t(n+2m)

v(2(n-i)+1)=t(n+i+1)
v(2n)=t(n+1)Figure 2: The diagram shows the a
tion of permutation �m 2 S2n+1 from Case1.1.1 with ek�n = 0 in the proof of Theorem 3.9.
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