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Abstract.

Walecki tournaments were defined by Alspach in 1966. They are regular tournaments
which admit Hamilton directed cycle decomposition. Hence, they speak in favor of
Kelly’s conjecture from 1964. The enumeration of Walecki tournaments was presented
as an open problem in a paper by Alspach in 1989. These two problems led us to
study the arc structure of zero and odd pattern Walecki tournaments in the preceding
papers. In this paper we determine the arc structure of subtournaments of even pattern
Walecki tournaments. Some of them are almost regular, or the scores of their vertices
differ for at most two. A specific permutation is proven to be an automorphism of

even pattern Walecki tournaments.
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1 Introduction

In the preceding papers we studied the arc structure of Walecki tournaments
with zero and odd pattern. In this paper we determine the arc structure of sub-
tournaments of even pattern Walecki tournaments. Proving techniques differ
from the ones used in the odd pattern case. An appropriate power of permuta-
tion 7 is proven to be an automorphism of even pattern Walecki tournaments.
Also, subtournaments induced by the outset or inset of the vertex ¢(0) are either

almost regular or have of their vertices differ by at most 2.
2 Even pattern

In this paper we consider Walecki tournaments W (e) for n even, e = ff... ff €
E,, f € E., and n/2r odd. Special form of e implies various symmetries in the

corresponding Walecki tournament.

Proposition 2.1 Let m = 2r and let n be even. Ife = ff...ff € E,, f € E,,

and n/2r is odd, then e; = €;1m, 1 <i<n—m, and e; = €;1n/2, 1 <1< n/2,

PROOF. Since n/2r is odd we have

e=ff.. . fIffff.. fF.

n/2r n/2r

The construction of Walecki tournaments and f € E, imply the result. O

In order to determine subtournaments of W (e) that are isomorphic to some
Walecki tournament with even pattern, we proceed in a manner similar to the

odd pattern case (see Ales [4]).



Theorem 2.2 Let n be even, e = ff...ff € E,, and f € E,. Let T denote
the Walecki tournament W (e) and let My, Mo, ..., My, m be the m-set partition

of V(W(e)) — {t}. If £ is an even integer such that 2 < ¢ < n/r — 2, then

T{{t)} U My /11 U My jar—gjasa U UMy o) S W(FF... ff).
—_—
¢

PROOF. Let ¢ be an even integer such that 2 < ¢ < n/r—1. Lete' = ff...ff €
Ey,.. In the following 7 is first considered as a permutation in Sg,41 used in
the construction of W (e). Secondly, it is considered as a permutation in Sg¢pr41
and is denoted by 7. Similarly, £(:;) denotes a vertex of W (e) and (i) denotes a
vertex of W (e'). Note that the vertices of the subtournament W (e') are chosen
in W (e) consecutively on the circumference starting from vertex t(n—¢r+1).

We define a function

Y {t0)} UMy 2r—p/241 UMy or_gjop2 U UMy o020 — V(W (')

by ¥ (t(0)) = t(0) and 9 (t(n+4)) = t(er+i), for —fr +1 < i < fr. Clearly, 9 is a
bijection. We will show that the Hamilton directed cycle FI; in W(e') is a union
of 1-images of directed paths belonging to Hamilton directed cycles Fln,ng
and I?k in W(e). The proof is similar to the proof of Theorem 3.2 from [4]. We

omit the details.

—

Let Py,—¢r+k denote the directed path [t(0), t(n—tr+k), . . ., t(n—tr+2k)] O Hyp—prik

and let Fk denote the directed path [t(n—er+2k), . .., t(n+k), £(0)] on Flk. We have

N —/

N —/
Y(Pn—tr+k) =Pp_pr 41 and Y(Py) =Py. Now, n and £ are even, and e has even

—/ —/ —/

pattern. This implies that if e, = 0, then e, ¢, = 0 and H =P, 4., U Py

P P

—/
(see Figure 1). If e, = 1, then e,_p1x = 1 and Hp=Py U P,,_4.,4- This

completes the proof. O



Even pattern Walecki tournaments not only contain even pattern subtourna-

ments, but also odd pattern ones, as the following result demonstrates.

Theorem 2.3 Letn > 6 andlete = ff...ff € E,, and f € E,. Let T denote
the Walecki tournament W (e) and let My, Ms, . .., My, /n, be the m-set partition

of V(W(e)) — {tm}. If £ is an odd integer such that 1 < ¢ < n/2r, then

T{tO}UM UMy U---UM)=W(ff...ff).
4

PrROOF. The proof is similar to that of the odd pattern (see Theorem 4.5
from [4]) the only difference being that instead of 1 < ¢ < n/r we now have

1<¢<mn/2r. O

Even pattern Walecki tournaments also contain proper zero pattern Walecki

subtournaments.

Theorem 2.4 Forn € Zt,n > 6, e = ff...ff € E,, f € E., n/2r even,

and n/2r > 1, h = (0,0,...,0) € E,/o,, and Ry = {t(2rk+0) | 0 < k < n/r — 1},
W(e){{to} U Re) = W(h),
where £ is an integer such that 1 < £ < 2r.

ProOF. Let T denote W(e){({t)} U R,) with the corresponding defining bi-
nary sequence € = (eg, €244, -+, €n—2r42) = (fo, fo,- .., fo) for some £ such that
1 < ¢ < 2r. Since W(e) = W (e) we may assume that f, = 0. All arcs in T" are
either defined with binary sequence elements es;.;4¢ for some 4, 1 < i < n/2r—1,

Or egyj4r4¢ for some j, 0 < 7 < n/2r — 2. These elements equal either fp or



frae= 72. We omit the details. O

3 Automorphism o™”

We remind the reader of the definition of the permutation o and 7 € S, 41 (see
Ales 2]): 0 =(124 ---2n—42n—2)(357--- 2n—3 2n — 1 2n)(0) and

T=(12 .- 2n)(0).

Proposition 3.5 If m divides n, then

T (t(3) if1<i<n-—m,
i TmM(tw) ifn—m+1<i<n,
o™ (t) = (@) ifn+1<i<n+m,
T™(@) fn+m+1<i<2n.

(3.1)

PROOF. The result follows directly from the definitions of permutations o and

T. 0O

In the following three results we prove that ¢™ is an element of the auto-
morphism group of certain Walecki tournaments with even pattern. The result

is a generalization of the proof of Theorem 5.23 from [2].

Lemma 3.6 Let n be even, e = ff...ff € E,, f € E,, and m = 2r. If1 <

m

N
it <n—m—1, then 7™ is dominance-preserving on H; and 7~ is dominance-

—

preserving on Hiyp,.

PROOF. Let m =2r. Sincee = ff...ff € E, and f € E,, we have ¢; = e; 1,
for 1 <1 < n — m. The result now follows from the definition of the Hamilton

directed cycles H1, Ho, ..., H, comprising W(e). O



Lemma 3.7 Letn be even, e = ff...ff € E,, f € E,, and m = 2r. Consider
the Hamilton directed cycle ﬁi, 1 < i < n, in the Walecki tournament W (e).
Let u and w be end vertices of any arc on I;Z of the form u = v(+-*(2j+1)) and
w=vr"425+2), 0 < j<n—m—1, or u=v(r""125) and w = v(ri~1(2j+1)),

m

1 <j<n—m-—1. Define p by letting o = 7™ on v(ri"*(2j+1)), 1 < j <
n—m-—1,and o=7" onv(="(25)), 1 < j<n—m—1. Then o is dominance-

preserving on the arc joining u and w.

PROOF. The arc joining o(u) and g(w) also lies on E, Moreover, g(u) — o(w)
if and only if u — w which follows from the way H; is constructed. More

rigorously, the fact that 25 + 2m + 2 < 2n, and the chain of equalities
o(u) = o(v(r=*(2j+1)) = 7~ " (v(r=*(2j+1)))

= V(TN (24D) = V(T (T 24H) = V(T (2+2m 1)

and

o(w) = o(v(=~1(2j+2))) = 7" (v(r * (25+2)))
= v(rm(riT1(2j+42))) = V(ri L (F™(2542))) = v(ri "1 (2j+2m+2))

imply that the arc joining g(v(r*~1(2j+1))) and o(v(+*~*(2j+2))) lies on the Hamil-
ton directed cycle I}i, 1< j<n—m-—1. Arcs on the Hamilton directed
cycle PIZ are either of the form v(+i~'(k)) — V(' 1(k+1)) or v(r* '(k+1)) —
v(r*~'(k)), depending on e;. Therefore, v(ri=*(2j+1)) — v(r~1(2j+2)) if and only
if o(v(r*=1(2j+1))) — o(v(r' 1 (2+2))).

Similarly, we prove the remaining case. We have g(v(=i=1(25))) = v(+*~1(2j+2m))

and o(v(+*~1(2j+1))) = v(+*~*(2j+2m+1)), it follows that the arc joining o(v(+*1(25)))



and o(v(r*~1(2j+1))) lies on the Hamilton directed cycle Fli, 1<j<n-m-1.
Furthermore, v(+i-1(2j)) — v(=*~1(2j+1)) eﬁi if and only if o(v(=i1(2j))) —
o(v(ri 1 (2j+1))) Efli, for 1 < j < mn—m—1. This proves that o is dominance-

preserving on the arc joining v and w. O

Lemma 3.8 Letn be even, e = ff...ff € E,, f € E,, and m = 2r. Consider
the Hamilton directed cycle Ei, 1 < i < n, in the Walecki tournament W (e).
Let u and w be end vertices of any arc on Fli of the form u = v(=*~*(2j+1)) and
w = v(r71(2j+2)), n—m+1 < j <n—2, oru = v(r"1(25) and w = v(ri~1(25+1)),
n—m+1 < j < n-—1. Define g by letting o = 7"~ ™ on v(r'~*(2j+1)), n—m—+1 <

j < n—1, and on v(ri"*(2n)). Furthermore, define o = ™™ "

on v(r*1(25)),
n—m+1<j<n—1. Then g is dominance-preserving on the arc joining u

and w.

PROOF. Since 2j—2(n—m) > 2 we have o(v(r=1(2j+1))) = v(ri~(2j—2(n—m)+1))
and o(v(ri71(2j+2))) = v(r*~}(2j—2(n-m)+2)), which implies that the arc joining
o(v(ri=1(2j+1))) and p(v(r*~'(2j+2))) lies on the Hamilton directed cycle Ei, for
n—m+1<j <n—1. Moreover, v(ri~(2j+1)) — v(+*71(2j+2)) EFIi if and only
if o(v(ri=(2+1)) —> o(v(r'~ (2i+2) EHi-

We also need to consider arcs joining vertices v(r~!(2n—1)) and v(r?~(2n)).
Since o(v(r'~1(2n-1))) = v(r"~"+i~1(2n-1)) and @(v(r'~1(2n))) = V(""" (2n)),
the arc joining p(v(r*~*(2n—1))) and p(v(r*~(2n))) lies on the Hamilton directed
cycle ﬁn,mﬂ' whenever 1 < i < m. Moreover, since €, _m+i = €m(n/m—1)+i =

€;, the Hamilton directed cycles H; and H,_.,+; have the same orientation



for 1 < i < m. It follows that v(ri=*(2n—1)) — vV(+*~'(2n)) Efli if and only if
o(v(ri1(2n-1))) — o(v(=*"1(2n))) € ffn_eri, for1 <i<m.

If m+1 < i < n then the considered arc lies on the Hamilton directed cycle
f[i_m. Since e;_,, = e;, the Hamilton directed cycles PI,-_m and I_{\Z have the
same orientation. It follows that v(r:~*(2n—1)) — v(r*~(2n)) eﬁi if and only if
o(v(ri-*(2n—1))) —> o(v(=*"1(2n))) efji_m, form+1<i<n.

Similarly we prove the remaining case. Since g(v(r*~1(2))) = v(r* "} (2j—2(n—m)))
and o(v(ri~1(2j+1))) = v(r* '(2j—2(n—m)+1)), the arc joining g(v(r*~1(2j))) and
o(v(ri=1(2j+1))) lies on the Hamilton directed cycle ;Ii, n-m+1<j<n-1
Moreover, v(ri=1(2j)) — v(ri~1(2j+1)) efji if and only if o(v(=*'(25)) —
o(v(ri1(2j+1))) Efli. This proves that ¢ is dominance-preserving on the arc

joining v and w. O

Theorem 3.9 Let n be even and let o € Sy, 11, where
c=(124---2n—-42n—-2)(357--- 2n — 3 2n — 1 2n)(0).

Ife=ff...ff € E,, f € E,,n/2r is odd, and m = 2r, then c™ is an element

of the automorphism group Aut(W (e)).

PROOF. We want to show that ¢™ is dominance-preserving on all of W (e). Let
us partition the vertices of V(W (e)) — {t(0)} into four sets: U’ = {t(1),t(2),...,
tin—m)}, U" = {t(n—m+1), t(n-m+2),...,t(m)}, W' = {t(ntm), t(ntm+1),...,t@2n)},
and W = {t(n+1), t(n+2), ..., t(n+m-1)}. Let U=U'UU" and W = W' UW".
By definition, ¢™ fixes t(0). It cyclically permutes the vertices of U. That is,

for a fixed integer 7, 0 < i < m—1, it cyclically permutes vertices t(i+jm), 1 < j <



n/m. The structure of e then implies that ¢™ is dominance-preserving on the
arcs joining ¢(0) and vertices in U. Similarly, o™ cyclically permutes the vertices
of W, that is, it cyclically permutes vertices t(i+mj), n/m < j < 2n/m—1, where
1 < i < m. The structure of e implies that ¢™ is dominance-preserving on the
arcs joining ¢(0) and vertices in W. Therefore, ™ is dominance-preserving on
the arcs incident with £(0).

Note that o™ restricted to U’ has the same action as 7™. It then follows
from Lemma 3.6 that ¢™ is dominance-preserving on any arc both of whose
end vertices lie in U’. Similarly, c™ is dominance-preserving on any arc both of
whose end vertices lie in W'.

By Lemma 3.7, 0™ is dominance-preserving on any arc with one end vertex

in U’ and the other end vertex in W’ because o™ acts like 7™ on U’ and 7—™

on
W'. Similarly, o™ acts like 7 " on U"” and 7" ™ on W". Hence, Lemma 3.8
implies that ¢™ is dominance-preserving on any arc between U” and W".

It remains to show that ¢™ is dominance-preserving on the arcs with exactly
one end vertex in either U” or W". There are many cases to consider. We prove
one and leave the rest to the reader. Let 0 < ¢ <m — 1.

CASE 1. Let us first consider arcs joining vertices v(r"+i(1)) € W' and
v(+i(1)) € W' UU’'. We consider two subcases depending on the parity of j — 7.

CASE 1.1. Let j — ¢ be even. We divide the proof into two more subcases
depending on the range of index j.

CasiE 1.1.1. Let n+m < j < 2n — 1. Since n +i < j, we can use determine

the Hamilton directed cycle that contains the arc joining v(+"+(1)) = v(2(n—i)+1)



and v(+7 (1)) = v(2(2n—j)+1). Let

1+j+n
2

k= +1. (3.2)

Sincen+1<n+m/2+1<k < (3n+m)/2 < 2n, the Hamilton directed
cycle ;kan contains the considered arc. We have to determine the orientation
of this arc. Since (—3n+1)/2 < (i —j —n)/2 < —n — 1/2 and since 7 has
period 2n, we have 1 < (n+1)/2 < (i —j +3n)/2 < n—-1/2 < n. Now,

I(1) =7k — 54+ 3n+ 1) and 77+(1) = 7F"~1(i — j 4+ 3n). Thus,
ex—n = 0 if and only if v(="*+i (1)) — v(+7 (1)) eﬁk_n . (3.3)
Now let us consider the ¢™ images of v(r"*%(1)) and v(+7(1)). Clearly,
o™ (v(r (1) = v i) (3.4)
and
o™ (v (1)) = V(I (). (3.5)

Using j —m < 2n—m+i we determine the index of the Hamilton directed cycle
containing v(r2»~"+i(1)) and v(+7 - (1)). If

i+7

6:2

+n—m+1 (3.6)

then the considered arc lies on the Hamilton directed cycle Hy—,, since n +
1< Bn-m)/24+1< ¢ < 2n—m/2 < 2n. Moreover, since j — i is even,
—n—1/2<(i—j7)/2 < —(n+1)/2 < 0 implies v(=2"~"*i(1)) = v(r* "1 (j—i+1))

and v(ri-™(1)) = v(+*~"~1(j—i)). Therefore,

er—n = 1 if and only if o™ (v(r"ti(1))) — o™ (v(r7(1))) eflg,n . (3.7)

10



To determine the orientation of the considered arcs one needs to compare ex_n,
and e;_,. Using equations (3.2) and (3.6) we consider two cases depending on
the value of k. The bounds for k are n+m/2+1 < k < (3n+m)/2. If k < 3n/2,
then Proposition 2.1 and inequalities n/2 —m/24+1<k—-n/2—-m <n—-m
and n/2+m/2+1<k—n/2 <nimply ej_p, = €x_p. Similarly, 3n/2 +1 < k
implies ey _,, = €;_,. Therefore, ¢™ is dominance-preserving on the considered
arcs (see Figure 2).

Case1.1.2. 0<j<n—m—1.

CASE 1.2. Let j—i be odd. We divide the proof into two subcases depending
on the range of index j: n+m<j<2n—land 0<j<n—-m-—1.

CASE 2. Next we consider arcs joining vertices v(r"~™+i(1)) € U"” and
v(+7(1)) € W/ UU'. There are two subcases depending on the parity of j — 1.

CAsE 2.1. Let j — ¢ be even. We divide the proof into two more subcases
depending on the range of index j: n4+m < j<2n—land 0<j<n-—-m-—1.

CASE 2.2. Let j—i be odd. We divide the proof into two subcases depending
on the range of index j: n+m<j<2n—land 0<j<n—-m-—1.

Now, ¢™ is dominance-preserving on the considered arcs. Therefore, o™ is

dominance-preserving on all of W(e). This completes the proof. O

The significance of the permutation 7™ for the automorphism groups of Walecki
tournaments with odd pattern can be recognized immediately from the odd
pattern sequences. By contrast, the fact that o™ is a permutation in the auto-
morphism group of some Walecki tournaments with even pattern for n odd was

previously unknown. However, once even pattern sequences were determined

11



as a potential source of Walecki tournaments with non-trivial automorphism

groups, permutation ¢” became a natural candidate for their generator.
4 Almost regular subtournaments

In order to prove that vertex t(0) must be fixed for any automorphism of a
Walecki tournament 7' with even pattern we prove that the subtournament
induced by the outsets of vertices on the circumference do not have the same

structure as T (N (v(0))).

Theorem 4.10 Let T = W(e) for e = ff...ff € E,, n even, and
f=1(0,0,...,0) € E.. Let ve V(T)—{tm}. Ifr > 2, then there ezists a
vertex in the subtournament T(N ™ (v)) whose score equals n/2r. If r =1, then

there ezists a vertex in the subtournament T(N*(v)) whose score equals 1.

PROOF. Let T denote W(e). Since T = T it suffices to prove the theorem
for vertices in N (¢(0)). Furthermore, since o*" € Aut(T), it suffices to prove
the theorem for the vertices in N (t(0)) N My and N*(t0)) N M, . Let M’ =
My UMsU---UM,, and M" = My UMy U---U M,,_;.

We first consider t(1) € N7t (t©0)) N M;. We will count the vertices in
N*t(t1)) N Nt (t2)). First we determine the vertices in Nt (t(1)). Since f =

(0,0,...,0) Theorem 3.2 from [4] implies
NT(tm)N My = {t@i+2) |0 <i<r—1}, (4.8)

and

NT(tw) N My = {t@r+2i+1) |0 < i <r —1}. (4.9)

12



Let X’ = N*(t(1)) N M’ and X" = N*(t(1)) N M"”. The even pattern of the

sequence e implies

X' ={t@arj+2i42) | 0<i<r—-1,0<j <n/2r -1} (4.10)

and

X" ={t@rj+2i+1) |0<i<r—-1,0<j <n/2r —1}. (4.11)

Clearly, N*(t(1)) = X' U X" and |[N*(t(1))| = n.

Next we determine vertices in N*(¢(2)). Since f = (0,0,...,0) it follows

that
Nt (t@) N My = {tei+n |1 <i<r—-1}U{ten}, (4.12)
NT(t2) N My = {t@r+2i+2) | 0 < i <r — 2}, (4.13)
N7T(t2)) N Mz = {t@ar+2i+1) | 0 < i <7 — 1} U {ten)}, (4.14)

and
NT(t@) N My, = {t@n-2r+2i42) | 0 < i <7 — 1} (4.15)

Let Y’ denote N7 (t(2)) N M’ and let Y denote Nt (t(2)) N M". We use equa-

tions (4.12) and (4.14) to prove the following two statements. Let Y/ = Y’ UY”

where
Y' = N*t(t@) N M, = {tei+n |1 <i<r—1}U{ten} (4.16)
and
Y = Nt(t@)n (M — M) =
{t@arjr2ien) |0<i<r—1,1<j<n/2r—1}U (4.17)

U{t@rj+2r) |1 < j <n/2r—1}.

The even pattern of the sequence e and equations (4.13) and (4.15) imply
Y" = {t@rj+er+2i+2) |0 <i<r—2,0<j <n/2r —2}U (4.18)

13



U{ten—2r+2i+2) | 0 <4 <7 —2} U {t(2n)}.

Clearly, N*(t(2)) = Y'UY"” and |[N*(t2)| = n.

By comparing the parity of powers of 7 in equations (4.10), (4.11), (4.16),
(4.17), and (4.18) for vertices in Nt (t(1)) and N T (¢(2)), we deduce X" NY" = .
Moreover, setting j = 0 and i = r—1 in equation (4.10) implies X'NY" = {t(2r)}
and

X'NY' = {trj+ar) | 1 < j <n/2r —1}.

Furthermore, set ¢ = r — 1 in equation (4.10) and let 1 < j < n/2r — 1 which

implies
NT(tm) N NT(t@) = {ten} U {tarj+2r) |1 < j <n/2r —1}.

Hence, the score of vertex t(2) in T(N*(#(1))) equals n/2r. The proofs for the
remaining vertices of N*(¢(0)) N M; and for the vertices in N (¢(0)) N M,/
are similar and we omit them. Since 02" € Aut(T), s(c?"(t(2))) = n/2r in
N7T(0?"(t(1))). Applying a similar argument n/2r times for each orbit for 02"
proves the result.

The proof above suffices to show that (N7 (t(1))) is not almost regular if
r > 2. The arc structure of (N7 (£(1))) is different in the case when r = 1, that
is, when e = (0,1,0,1,...,0,1,0) € E,. We consider N T (¢(1)) N N (¢t(2n-1)).

The pattern of e implies
NT(t()) = {t@i+2), t@i+3) | 0 <i < n/2 — 1} (4.19)
and
NT(ten—1)) = {t©@} U {t@} U {t@i+n), taa+n+1) | 0 < i < n/2 — 2}. (4.20)

14



By comparing the parity of powers of 7 in equations (4.19) and (4.20) for vertices
in N*(t(1)) and N*(¢@2n-1)) we deduce that Nt (t1)) N NT(t2n-1)) = {t2)}.
Hence, the score of vertex t(2n—1) in T{(N*(v(1))) equals 1. Since 02 € Aut(T),
s(0?(t(zn-1))) = 1in N*(0?(¢(1))). Using a similar argument n/2 times for each

orbit for o2 proves the result. O

Examples of tournaments for Theorem 4.10 are T = W(010101) for » = 1, with
the score sequence of Ts (N1 (¢(1))) being (s(t(11)), s(t(2)), s(t(12)), s(t(6)), s(t(10)),
s(tm)) = (1,2,2,2,3,5), and Ty = W(000111000) for » = 3 with the score
sequence of To(N T (t(1))) being (s(t(2)), s(t)), s(t(15)), s(t(n)), s(tn), s(t5)),
s(ts)), s(ta2)) = (2,3,3,3,4,4,4,5).

Next we consider the subtournaments of a Walecki tournament W (e) with
an even pattern (e = ff...ff € E, and f € E,) induced by N*(t(0)) and
N~(t(0)). Since n is even, W(e)(NT(£(0))) can not be regular. Moreover, it
is not necessarily almost regular in general. For example, in the tournament
Ts = W(00011110) with n = 8 and r = 4 the score sequence of Tg(NT(¢(0))) is
(s(tm), s(t®), s(t(9)), s(t2), s(ta), s(t13)), s(t12)), s(t(8))) = (2,3,3,4,4,4,
4,4). W(e)(N7T(t(0))) is not necessarily almost regular even in the case when
f has zero pattern . An example of such a Walecki tournament is T§ =
W (01010101) with n = 8 and 7 = 1 whose subtournament T§(N*(¢(0))) has the
score sequence (s(t(3)), s(t(7)), s(t(1)), s(t(16)), s(t(14)), s(t)), s(t(12)), s(t0))) =
(2,2,4,4,4,4,

4,4). Notice, that the scores in Tg(N*(¢(0))) differ by at most 2. This turns

out to be true in general if f has a zero pattern. We prove a slightly stronger

15



statement for the special case when n/2r and r are odd in the following result.

Theorem 4.11 Let n > 6, n even, and let W(e) be a Walecki tournament
where e = ff ... ff € E,. The bounds on a score of vertex v € Nt (t(0)) in the

subtournament W (e)(N*(t(0))) are
n/2—2 < s(v) < n/2.

Moreover, if n/2r and r are odd, then the subtournaments W (e)(N T (t(0))) are

almost regular.

PROOF. Let W(e) be a tournament as stated in the conditions of the theorem
and let U =M1 UMaU---UMy/5, and W = My, j2p41 UMy j2pi0U--- UM, .
Assume first that n/2r and r are odd.

We first consider the case when r = 1, that is, e = (0,1,0,1,...,,0,1) € E,,.

The pattern of e implies that the out-neighbours of v(0) are
Nt (to)NU = {tei+1) | 0<i<n/2 — 1} (4.21)

and

NT(t©)NW = {tm+2i+2) | 0 < i < n/2 —1}. (4.22)

Since e has even pattern, Theorem 2.3 implies

W(e)({t}UU) =W(ff...[f).
n/2

Moreover, since n/2, is odd Theorem 5.11 from [4] implies that W (e)({t(0)} UU)
is a regular tournament of degree n/2 and W(e)(N*(¢t©)) N U) is a regular
tournament of degree (n/2 — 1)/2. Similar to the previous proof we can prove

|INT(t0) N Nt(t1))| = n/2 — 1. Since 0? € Aut(W(e)), we have |NT(t0)) N
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N+ (v)] =n/2—1 for all vertices v € N (¢(0))NU. One can also prove [Nt (¢(0))N
N7 (t(zn))] = n/2. Since 0? € Aut(W(e)), we have [NT(t©0)) N N*(v)| = n/2
for all vertices v € NT(t(0)) N W. This proves that W (e)(N T (¢(0))) is almost
regular in the case when r = 1.

Assume next r > 3 and r odd. Since e has even pattern, Theorem 2.3 implies

W(e)({t@}UU) =W(ff...[f).
n/2

Moreover, since n/2 is odd, Theorem 5.11 from [4] implies that W (e)(IN " (t(0))N

U) is a regular tournament of degree (n/2 — 1)/2. Therefore,

INT(to) NNt (tow)NU| = (n/2—1)/2. (4.23)
We leave it to the reader to prove

INT(t@) N NT(tw)NW|=(n/2—1)/2. (4.24)

Equations (4.23) and (4.24) imply |N*(¢t0)) N N*(¢t1))] = n/2 — 1. Since o*" €
Aut(W (e)), we have |[NT(t(0)) N N*(v)] = n/2 — 1 for all vertices v € Oy),

where Oy(1) is the orbit of #(1) for the permutation o?r

. Similarly we obtain
INT(t0) N NT(tzn))| = %. Hence, the score of t(2n) in the subtournament
W (e){N*(t0))) equals n/2. We have determined the scores of vertices t(1) € M;
and t(2n) € M,,/,. Similarly we can determine scores for all vertices in M; and
M., /r. The scores of the vertices in each of the two sets alternate between n/2-1
and n/2. Then 02" € Aut(W (e)) implies that the number of vertices with score
n/2 is n/2, which proves that W (e)(N*(t(0))) is almost regular.

In the case when n/2r or r is even, the subtournament on the outset of

vertex t(0) is not necessarily almost regular. However, we will prove that the
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scores differ by at most 2. Let Y = NT(£0)) N N (¢(1)). In a way similar to
the proof of Theorem 5.12 from [4], one can prove |Y N (M; U M;;1)| = r, for

1<i<n/2r—1. Now |M; UM;| =4r, for 1 <i<n/2r — 1, which implies

Y NU| < n/4. (4.25)

Also, |[Y N (M; U M;yq1)| =r, for n/2r +1 <i < n/r —1 implying

Y NnW| <n/4 (4.26)
We deduce that
n/4—1<|YNU| (4.27)
and
n/4—1<|YnW|. (4.28)

Equations (4.25), (4.26), (4.27), and (4.28) imply n/2—2 < s(t1)) = [N (t0))N
N7T(t))] < n/2. A similar argument can be applied to any vertex v € N (¢(0))N
M; v € N*(t0)) N M,,. Since o*" € Aut(W (e)), bounds for the scores of any

vertex v € Nt ((0)) are n/2 — 2 < s(t(1)) < n/2. This completes the proof. O

5 Transitive subtournaments and multiple fan
structure

Let U = M1UM2U . 'UMn/QT and W = Mn/2T+1UMn/27’+2U' . UMn/T Ina way

similar to the odd pattern case we partition the vertices of V(W (e)) — {t(0)} =

U UW into sets Q1,Q2,...,Qmyn C U and Ry, Ry, ..., R,;, C W of cardinality

n/m, where m = 2r. These sets are orbits for the permutation ™. However,
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o.m

is an automorphism of W (e) only in the case (see Ale$ [4]) when n/m is
odd. For this reason we call them pre-orbits.

We remind the reader of the definition of the permutation { € So, act-
ing on the set {1,2,...,2r}: ¢ = (1 r4+1)(2 7+2)---(r 2r). Pre-orbits
for ¢™ can then be denoted by chk(k), ch(k), Ret (k) RCE(k)’ for 1 <
k < r. For a clearer understanding of the structure of pre-orbits, we write
a vertex representative belonging to either m-set M; or M, 2, for each pre-
orbit: t(rfi+k) € chk(k) N My, t(rFe+k) € Qgg(k) N My, t(n+rfitk) € Resy g N
My, 241, t(ntr fitk) € ch(k) N M, 2741, where 1 < k < r. All vertices for a

particular pre-orbit can then be obtained by applying ¢™ n/2r — 1 times on a

vertex representative. It follows that Q5. (1), Resi(xy € N7 (v(0)), and ch(k),

Ry ENT (v(0)). Therefore,
N+(U(0)) = U (chk(k) U R(fk (k)) (529)
k=1
and
N~ (00) = | (Qriy U Reriqry) - (5.30)
k=1

The multiple fan arc structure that is present in Walecki tournaments with
odd pattern also occurs in the even pattern case. We omit proofs since they are

similar to the proofs of Theorem 4.7 from [4].

Theorem 5.12 Let n > 6, n even, and let T denote the Waleck: tournament
W(e) fore € E,. Ife= ff...ff € E,, then the pre-orbits Q1, Qa,. .., Qmn and
Ri, Ra,..., Ry, for the permutation o™ induce regular subtournaments T{(Q),
T(Q2),..., T(Qm), T(R1), T(Ra),...,T(Ry,). If £ is an integer such that 1 <

¢ < m, the subtournaments T(QNNT(t(1))), T(QeNN~(t(1))), T(RNNT(t(1))),
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and T{(Ry N N~ (t(1))) are transitive. Furthermore, arcs between Q, N Nt (t(1))
and Q¢ N N~ (t(1)), and arcs between R, N NT(t(1)) and R, N N~ (t(1)) have a

multiple fan structure.

Theorem 5.13 Letn >6,e=ff...ff€E,, fEE,, and1 <k <1< 2r=
m. LetYy and Y, be two pre-orbits from the set {QCfi (i) chj ) Reti iy Rij (j)}

C N*(t0)), where 1 < i,5 < m. The arcs between any two of their four layers

Y, Y/, Y/, and Y, have a multiple fan structure.

Corollary 5.14 Letn>6,e=ff...ff€E,, fEE,, and1 <k <1< 2r=

m. Let Yy and Yy be two pre-orbits from the set {ngT(i)’ Q R R

iy Berio Bei )b
C N~ (t(0)), where 1 < 1,5 < m. The arcs between any two of their four layers

Y., Y/, Y/, and Y, have a multiple fan structure.
6 Research problems

We have characterized the arc structure of subtournaments of Walecki tourna-
ments with zero, odd, and even pattern (see Ales [2, 4]). That is, for all Walecki
tournaments with periodic patterns. However, the arc structure of subtourna-
ments of aperiodic Walecki tournaments still remains unknown. Automorphism
groups of Walecki tournaments for initial cases and zero pattern were also de-
termined (see Ales [3]).

We suspect that automorphism groups of Walecki tournaments with odd or
even pattern are cyclic groups generated by 72" or ¢%", where e = ff...f or
e=ff...ff, respectively, and f € E,. Moreover, we have a strong belief that
the automorphism groups of Walecki tournaments with aperiodic pattern are

trivial. Computational results (see Ales [3]) support our predictions.

20



References

[1] J. Ales, Automorphism groups of Walecki tournaments, doctoral disserta-

tion, Simon Fraser University, Burnaby 1999.
[2] J. Ales, Walecki tournaments: Part I, Discrete Mathematics, submitted.
[3] J. Ales, Walecki tournaments: Part II, Discrete Mathematics, submitted.
[4] J. Ales, Walecki tournaments: Part III, Discrete Mathematics, submitted.
[5] J. Ales, Bijections between X-classes, in preparation.

[6] B. Alspach, A class of tournaments, doctoral dissertation, University of

California, Santa Barbara 1966.

[7] B. Alspach, Research Problems: Problem 99, Discrete Mathematics T8

(1989), 327.

[8] J.W. Moon, Topics on tournaments, Holt, Reinhart and Winston 1968.

21



e t)
: \\\
WO
t(er+k+2) .u\ .
\ \ \
t(er+k+1) .\‘\ \
M _
t(er+k) k\\ Vo t(k-1)
\ -
t(er+k—1) N | _tw)
Vo t(k+1)
.. \ \ _
\\t \ - ® t(k+2)
t(2k+2) _ i t(2k—1)
t(2k+1) t(2k)

Figure 1: The dlagram shows Hamilton directed cycle H , constructed from

directed paths Pn eryr and Pk from the proof of Theorem 2.2.
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v(D)=t(1)
v@2(m-i)+1)=t(2n-m+i+1)

v@m+1)=t(2n-m+1)

V(2(2n-)+1)=t(+1)

v(0)=t(0)

v22n-j+m)+1)=t(j-m+1)

v2(n-m+1)+1)=t(n+2m)

v(2(n-i)+1)=t(n+i+1) v(2n)=t(n+1)

Figure 2: The diagram shows the action of permutation ™ € Ss,,+1 from Case
1.1.1 with ex_,, = 0 in the proof of Theorem 3.9.
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