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UNIFORM PRIMENESS OF CLASSICAL BANACH LIEALGEBRAS OF COMPACT OPERATORSR. Stra�sek and B. ZalarAbstract. The concept of associative ultraprime algebras was developed byM. Mathieu who also showed that it is equivalent to a certain norm estimatewhich we call uniform primeness. The topic was further pursued by severalauthors in both associative and Jordan Banach algebras. In the present notewe give a formal de�nition of uniformly prime Banach Lie algebra and provethat classical Banach Lie algebras of compact operators, in the sense of de laHarpe, are uniformly prime.1. IntroductionFinite dimensional Lie algebras are much studied objects because of their con-nection with various parts of mathematics and even physics. The theory of BanachLie algebras however is much less developed than that of its associative or Jordancounterparts. Perhaps the only class which has complete and satisfactory structuretheory is that of Lie H�- algebras ( see [Ca6],[Cu1] ). They turn out to be directsums of simple components which can be constructed from the class of HilbertSchmidt operators. They belong therefore to a larger class of classical Banach Liealgebras of compact operators in the sense of P. de la Harpe ( see [Ha1]). We chosethis framework for our present work. Some additional references for other recentlytreated topics in Banach Lie algebras are [Au1],[Be1],[Be2],[Be3],[Vi1].A very interesting topic in the theory of associative Banach algebras and JordanBanach algebras is that of ultraprimeness or uniform primeness ( see [Ar1], [Ca1],[Ca2], [Ca3], [Ca4], [Ca5], [Ma1], [Ma2], [Vi1] ). It was introduced by M. Math-ieu. Its original de�nition included ultra�lters hence the name ultraprimeness. Anequivalent de�nition can be given which involves only metric estimates and couldbe called uniform primeness.Suppose that A is Banach algebra of a given class ( associative, Jordan, alter-native, Lie, ...) and A(a; b) : A �! A an algebraic operator, suitable for a givenclass, depending on two parameters. By an algebraic operator we mean an operatorwhich can be expressed as a polynomial of left and right multiplication operators.Then A is called uniformly prime if the estimate1991 Mathematics Subject Classi�cation. Primary 46; Secondary 46H70, 46K70, 17B65,47B07, 47L20 .Key words and phrases. Hilbert space, Banach Lie algebra, compact operators, ultraprime-ness, uniform primeness, orthogonal algebra, symplectic algebra.1



2 R. STRA�SEK AND B. ZALARkA(a; b)k � � kak kbkis valid for some constant � > 0 and all a; b 2 A: For the class of associative algebrasthis algebraic operator is the so called elementary operatorA(a; b)x =Ma;b x = axb:For the class of Jordan algebras the proper A(a; b) is the so called Jacobson-McCrimmon operatorA(a; b)x = Ua;b x = a � (b � x) + b � (a � x)� (a � b) � xwhere � denotes the Jordan algebra product.A simple observation, valid for all classes of Banach algebras, is the following.The concept of primeness is always the same; namely the product of nonzero idealsmust be nonzero. Now if A is uniformly prime and I;J � A nonzero ideals, wecan pick nonzero a 2 I and b 2 J . Since I;J are ideals, algebraic operator A(a; b)maps A into IJ . Since kA(a; b)k � � kak kbk > 0; A(a; b) is nonzero. Consequentlyits range and thus IJ are also nonzero. This means that uniformly prime algebrais always prime. The converse is not true. Counterexamples can be given forassociative, Jordan and Lie algebras using the class of Hilbert-Schmidt operators.The purpose of our paper is to give a formal de�nition of uniformly primeBanach Lie algebra and to prove that classical Banach Lie algebras of compactoperators are uniformly prime.2. De�nitions and main resultWe denote by (A; [; ]) a Lie algebra with Lie bracket product [x; y]. This productsatis�es two identities [x; x] = 0 ( anticommutativity )[[x; y] ; z] + [[z; x] ; y] + [[y; z] ; x] = 0 ( Jacobi identity ).If A is also a Banach space, we call it a Banach Lie algebra if k[a; b]k � 2 kak kbkholds for all a; b 2 A: Note that any associative Banach algebra gives rise to aBanach Lie algebra if we de�ne [x; y] = xy � yx:Let (A; [; ]) be a Banach Lie algebra. Given any a; b 2 A we de�ne the algebraicoperator L(a; b) : A �! Aby L(a; b)x = [ a; [b; x]] .We say that A is uniformly prime if there exists a positive constant � such that theuniform estimate kL(a; b)k � � kak kbk



UNIFORM PRIMENESS 3holds for all a; b 2 A: Here L(a; b) is an operator acting on a Banach space and weconsider its usual operator norm.The classical Lie algebras are built from complex n� n matrices and classicalBanach Lie algebras of compact operators are their natural extension to in�nitedimension ( in�nite matrices ). We give the de�nitions, following the classicalmonograph of P. de la Harpe [Ha1], page 90.Let H be an in�nite dimensional complex Hilbert space. Then the classicalBanach Lie algebra is the space of compact operators C(H), equipped with theoperator norm and product [X;Y ] = XY � Y X: It is denoted by gl(H; C1):Suppose that H is equipped with a conjugation x 7�! x. This is a conjugatelinear mapping which is isometric and satis�es x = x: The simplest example ( onC 2 ) is (z1; z2) 7�! (z1; z2). We de�ne the transpose of an operator S : H �! H bySTx = S� (x)where S� is the usual adjoint. Then the classical orthogonal Banach Lie algebra ofcompact operators is o(H; ; C1) = �S 2 C(H) : ST = �S	 ;equipped with operator norm and product [X;Y ] = XY �Y X: The fact that [X;Y ]actually lies in o(H; ; C1) is not di�cult to verify ( see [Ha1] ).Now suppose that Hilbert space H is equipped with anticonjugation J . Thisis a conjugate linear isometric mapping J : H �! H satisfying J(Jx) = �x. Thesimplest example ( on C 2 ) is (z1; z2) 7�! (z2;�z1). Then the classical symplecticBanach Lie algebra of compact operators issp(H; J; C1) = fX 2 C(H) : JX�J = Xgequipped with operator norm and product [X;Y ] = XY �Y X: Again it can be veri-�ed that the Lie bracket of two elements from sp(H; J; C1) is again in sp(H; J; C1).It is our purpose in the sequel to prove that all classical Banach Lie algebras,de�ned above, are uniformly prime. More precisely we shall proveTheorem 1. Let H be a complex Hilbert space of in�nite dimension. Then wehave kL(A;B)k � 23 �p2� 1� kAk kBk for gl(H; C1);kL(A;B)k � 16 kAk kBk for o(H; ; C1)and kL(A;B)k � 16 kAk kBk for sp(H; J; C1).3. Proof for rectangular caseIn this section we present the proof of Theorem 1 for the case of algebragl(H; C1); which is modeled on a space C (H) of compact operators. Since L(A;B) :C (H)�!C (H) is de�ned byL(A;B)X = [A; [B;X ]] ,we have L(A;B)X = (ABX +XBA)� (AXB +BXA) .(1)



4 R. STRA�SEK AND B. ZALARNow we use the result on elementary operators from [St1] which is stated forall standard operator algebras and is therefore valid for C (H).Proposition 1. (see [16]) The norm of the operator X 7�! AXB + BXA isat least 2�p2� 1� kAk kBk .As the proof is not short, we do not repeat it here. From Proposition 1 andidentity (??) we obtain immediateCorollary 1. For Lie algebra gl(H; C1) the following estimatekL(A;B)k � 2�p2� 1� kAk kBk � kABk � kBAkis valid for all A;B 2 gl(H; C1):It is now necessary to provide one estimate more in order to combine it withCorollary 1. This can be done using the fact that �nite rank operators are densein C(H) and some manipulation with rank one operators. We use rather standardnotation a
 b; given a; b 2 H, for operator (a
 b) (x) = hx; bi a. Here hx; bi is theinner product of H.Proposition 2. For Lie algebra gl(H; C1) the following estimatekL(A;B)k � max fkABk ; kBAkgis valid for all A;B 2 gl(H; C1):Proof. First we assume that A;B are �nite rank operators. As H is in�nitedimensional, there exists a unit vector e 2 (ImA+ ImB)? : Let a 2 H be arbitrarynonzero vector. Then the norm of the operator X = a 
 e is kakkek = kak, as iswell known and easy to see. AsXAx = hAx; ei a 2 hImA; ei a = 0;XBx = hBx; ei a 2 hImB; ei a = 0;we have XA = XB = 0: SinceL(A;B)X=ABX +XBA�AXB �BXA = ABX ,we have kL(A;B)k � kABXkkXk = kABa
 ekkak = kABakkakand thus, as a is arbitrary, kABk � kL(A;B)k : This imply thatkBAk = 

(BA)�

 = kA�B�k � kL(A�; B�)k :From the de�nition of L(A;B) we can easily calculate thatL(A�; B�)X� = (L(A;B)X)� ;and so the norms of L(A�; B�) and L(A;B) are the same. This concludes the prooffor �nite ranks. Since every compact operator is a limit of a sequence of �nite rankoperators, and L(A;B) is continuous in A and B, we can pass to the limit andeasily conclude the proof in general case.



UNIFORM PRIMENESS 5Proof of the first statement of Theorem 1. If we add up the estimatesfrom Corollary 1 and Proposition 2, we obtain3 kL(A;B)k � 2�p2� 1�kAk kBk � kABk � kBAk+ kABk+ kBAk == 2�p2� 1�kAk kBkand so kL(A;B)k � � kAk kBk ;where � = 23 �p2� 1� := 0: 276:4. Proof for orthogonal caseLet A = o(H; ; C1) � C(H): For A;B 2 A, we know the estimate of theoperator L(A;B) : C(H)�!C(H), from the previous section. This is not enough,because the de�nition of uniform primeness forces us to compute the norm of itsrestrictionL(A;B) : A �! A. We follow the general pattern of the previous section.The results of [St1] however cannot be used so we must provide the analogousestimate as follows.Proposition 3. Let A;B 2 A: The norm of the operator L1(A;B) : A �! A,de�ned by L1(A;B)X = AXB +BXA satis�es the inequalitykL1 (A;B)k � 12 kAk kBk :In order to prove this we need the following simple facts about the conjugationa 7�! a, with respect to which o(H; ; C1) is de�ned.Lemma 1. Let A 2 o(H; ; C1) be arbitrary. Then
Ah; k� = � 
Ak; h� and
Ah; h� = 0 for all h; k 2 H.Proof. By the de�nition of o(H; ; C1) we have Ah = �A�h. Since h 7�! his conjugate linear isometry, the identity hh; hi = 
h; h� can be linearized intohh; ki = 
k; h�. Thus 
Ah; k� = 
h;A�k� = �h;A�k� == Dh;�AkE = � 
Ak; h� .The second statement is only specialization of the �rst one to the case h = k:Lemma 2. Let h; k 2 H be orthogonal unit vectors. Then the rank 2 operatorX = h
 k � k 
 h lies in the Lie algebra o(H; ; C1) and has norm 1.Proof. Given any x 2 H, we haveX�x = �h
 k � k 
 h�� x = �k 
 h� h
 k�x == hx; hi k � hx; kih = 
h; x� k � 
k; x� h == 
x; h� k � 
x; k� h = �k 
 h� h
 k�x = �Xx.So X 2 o(H; ; C1) by the de�nition.



6 R. STRA�SEK AND B. ZALARSince h is orthogonal to k and h is orthogonal to k, the norm can be easilycomputed.Lemma 3. Let H be a Hilbert space and A;B bounded operators on H: Thensupkhk�1 kAhk kBhk � 12 kAk kBk :Proof. Without loss of generality we may assume that kAk = kBk = 1: Takeany " with 0 < " < 1: Then there exist vectors h; k 2 H such that khk = kkk = 1and kAhk ; kBkk > 1 � ": If we multiply one of them by a suitable constant, wemay assume that the quantity r := hAh;Aki is nonnegative. Note that this clearlyimplies that h+ k 6= 0. SincekA�Ah� hk2 = 1 + kA�Ahk2 � 2 kAhk2 � 2� 2 (1� ")2 = 2" (2� ") ;we obtain kA�Ah� hk <p2" (2� "):This further impliesjhAh;Aki � hh; kij = jhA�Ah� h; kij � kA�Ah� hk <p2" (2� ")and so hh; ki = hh; ki � hAh;Aki+ hAh;Aki ;jhh; kij � hAh;Aki+p2" (2� ") = r +p2" (2� ")implies kA (h+ k)k2k(h+ k)k2 = kAhk2 + kAkk2 + 2r2 + 2Re (hh; ki) >> (1� ")2 + 2r2 + 2 jhh; kij > (1� ")2 + 2 jhh; kij � 2p2" (2� ")2 + 2 jhh; kij == 1 + 2 jhh; kij � f(")2 + 2 jhh; kij = 12 + jhh; kij2 + 2 jhh; kij � f(")2 + 2 jhh; kij :We therefore obtained that given " > 0; there are norm one vectors h"; k" such that



A� h" + k"kh" + k"k�



2 > 12 � f(")2 + 2 jhh"; k"ij > 12 � f(")2where f(") tends to zero as "! 0: If we interchange the roles of h" and k" we alsoobtain 



B� h" + k"kh" + k"k�



2 > 12 � f(")2 ;which implies 



A� h" + k"kh" + k"k�



 



B� h" + k"kh" + k"k�



 > 12 � f(")2and by sending "! 0 we conclude the proof.



UNIFORM PRIMENESS 7Remark 1. The above estimate is in general the best possible. This can beseen by taking any H of dimension at least 2 and orthogonal unit vectors a; b 2 H.Then, given A = a
 a and B = b
 b we havekAhk2 + kBhk2 = jhh; aij2 + jhh; bij2 � khk2 = 1and so kAhk kBhk � 12 �kAhk2 + kBhk2� � 12 :Proof of Proposition 3. Let h; k 2 H be orthogonal unit vectors. ByLemma 2 the operator X = h 
 k � k 
 h is in o(H; ; C1) and has norm 1.Consequently kL1 (A;B)k � kAXB +BXAk : By a direct computation we getU := AXB +BXA = �Ah
Bk �Bh
Ak +Ak 
Bh+Bk 
Ah:By Lemma 1 we have 
Ah; h� = 
Bh; h� = 0 and soUh = � 
h;Bk�Ah� 
h;Ak�Bh:This implies, using Lemma 1,
Uh; k� = � 
Bk; h� 
Ah; k�� 
Ak; h� 
Bh; k� == 2 
Ah; k� 
Bh; k� :Thus 2 ��
Ah; k� 
Bh; k��� = ��
Uh; k��� � kUk � kL1 (A;B)kand this is valid for all k of norm 1 which are orthogonal to h:The case when Ah = 0 or Bh = 0 is trivial, so we assume for the moment thatAh 6= 0 and Bh 6= 0. Let us denote1kAhk kBhk hAh;Bhi = rei':Then k = 1p2 (1 + r) � AhkAhk + e�i' BhkBhk�is a unit vector which is, by Lemma 1, orthogonal to h: By the estimate of theprevious paragraph we havekL1 (A;B)k � 22 (1 + r) �����Ah; AhkAhk + ei' BhkBhk����� �����Bh; AhkAhk + ei' BhkBhk����� == 11 + r (kAhk+ r kAhk) (kBhk+ r kBhk) == kAhk kBhk (1 + r) � kAhk kBhk :Since this estimate is trivial when Ah = 0 or Bh = 0 we �nally havekL1 (A;B)k � supkhk�1 kAhk kBhk :Using Lemma 3, we conclude the proof.In order to conclude the proof of our theorem for the orthogonal case, we mustprove analogous statement to Proposition 2.



8 R. STRA�SEK AND B. ZALARProposition 4. For Lie algebra o(H; ; C1) the following estimatekL(A;B)k � max fkABk ; kBAkgis valid for all A;B 2 o(H; ; C1):Remark 2. Note that L(A;B) in this proposition is not the same as L(A;B) inProposition 2 but its restriction to the subspace o(H; ; C1) � C(H): We thereforecannot use Proposition 2 directly.Proof. As in the proof of Proposition 2 we may assume thatA;B 2 o(H; ; C1)are �nite rank operators. Since H has in�nite dimension, there is a unit vectorh 2 (ImA+ ImB)? : Let k 2 H be any unit vector orthogonal to h: Then, byLemma 2, X = h
 k � k 
 h lies in o(H; ; C1): Now we compute
(L(A;B)X) �ABk� ; h� ;using (??) to expand L(A;B): Since h is orthogonal to images of A and B; fromeight terms of the previous expression, seven are zero and the only remaining oneis 
�h
 k�BA �ABk� ; h� = 
BA �ABk� ; k� hh; hi = 
BA �ABk� ; k� :Since A;B 2 o(H; ; C1), we have A� (a) = �Aa and B� (a) = �Ba for all a 2 H.This implies 
BA �ABk� ; k� = 
A �ABk� ; B�k� == � 
A �ABk� ; Bk� = � 
ABk;A�Bk� == 
ABk;ABk� = kABkk2 :Hence kABkk2 = 
(L(A;B)X) �ABk� ; h� �� kL(A;B)k kXk kABkk khk = kL(A;B)k kABkkand so kABkk � kL(A;B)kfor all those unit vectors k which can be orthogonal to some nonzero vector fromthe subspace (ImA+ ImB) : But since this subspace has in�nite dimension ( hencedim � 2 ), any k can occur, so we havekABk = supkkk=1 kABkk � kL(A;B)k :Since o(H; ; C1) is closed for taking adjoints, we can conclude the proof in thesame way as the proof of Proposition 2.Proof of the second statement of Theorem 1. If we denoteL(A;B) = �L1(A;B) + L2(A;B);where L1(A;B)X = AXB +BXA and L2(A;B)X = ABX +XBA; we obviouslyhave kL2(A;B)k � 2max fkABk ; kBAkg



UNIFORM PRIMENESS 9so, by Proposition 4, kL2(A;B)k � 2 kL(A;B)k :Thus, by Proposition 3,12 kAk kBk � kL1(A;B)k � kL(A;B)k+ kL2(A;B)k � 3 kL(A;B)k :5. Proof for symplectic caseLet J denote an anticonjugation on an in�nite dimensional complex Hilbertspace H. Recall that J2 = �Id and J is conjugate linear isometry. Recall also thatsp(H; J; C1) = fX 2 C (H) : JX�J = Xg : Let us denote XS = JX�J:Lemma 4. Given any orthogonal unit vectors h; k 2 H, the rank two operatorX = h
 Jk + k 
 Jh lies in sp(H; J; C1) and has norm 1.Proof. The statement about the norm follows from khk = kkk = 1 andhh; ki = hJk; Jhi = 0: Given a; b 2 H, we have(a
 b)S x = J (a
 b)� Jx = J (b
 a) Jx == J(hJx; ai b) = hJx; ai Jb = ha; Jxi Jb == �hJJa; Jxi Jb = �hx; Jai Jb = � (Jb
 Ja) xso (a
 b)S = �Jb
 Ja:Thus (h
 Jk + k 
 Jh)S = �J2k 
 Jh� J2h
 Jk = k 
 Jh+ h
 Jk:Proposition 5. Let A;B 2 sp(H; J; C1). ThenkL(A;B)k � max fkAB)k ; kBA)kg :Proof. We can proof this in almost the same way as Proposition 4. First wecan pass to the case whenA;B have �nite rank. Then we choose h 2 (ImA+ ImB)?and k orthogonal to h, both of norm 1. We take X = k
Jh+h
Jk and computeexpression 
(L(A;B)X) �ABk� ; h� : Since almost all terms are zero, we have
(L(A;B)X) �ABk� ; h� = kABkk2 ;from which kABkk � kL(A;B)k follows. All other steps are the same as in theproof of Proposition 4.A result for sp(H; J; C1) which is parallel to Proposition 3 for o(H; ; C1)cannot be proved in the same way. The main reason is that proof of Proposition3 rests on the fact that for A 2 o(H; ; C1) and conjugation x 7�! x we havehAx; xi = 0. This is not true for anticonjugation J: Namely hAx; Jxi need not bezero for A 2 sp(H; J; C1).



10 R. STRA�SEK AND B. ZALARProposition 6. Let A;B 2 sp(H; J; C1) and denoteL1(A;B) : sp(H; J; C1) �! sp(H; J; C1)the operator given by L1(A;B)X = AXB +BXA:Then we have kL1(A;B)k � 12 kAk kBk :Proof. Take any unit vector h 2 H: Since Jh is also a unit vector, the operatorX = h 
 Jh has norm 1. Since XS = � �J2h
 Jh� = h 
 Jh = X , we haveX 2 sp(H; J; C1): We can therefore compute L1(A;B)X; which isAh
B�Jh+Bh
A�Jh:Since JA�J = A, we have A�J = �JA and B�J = �JB: This givesL1(A;B)X = �Ah
 JBh�Bh
 JAh:Now we compute hL1(A;B)X JBh;Ahi which turns out to be�kAhk2 kBhk2 � jhAh;Bhij2 :Thus kAhk2 kBhk2 � jhL1(A;B)X JBh;Ahij �� kL1(A;B)k kAhk kBhkand so kL1(A;B)k � supkhk=1 kAhk kBhk :An application of Lemma 3 concludes the proof.The third statement of Theorem 1 now follows from Proposition 5 and Propo-sition 6 in exactly the same way as the second statement of Theorem follows fromProposition 3 and Proposition 4.6. A counterexample and concluding remarksIn P. de la Harpe book [Ha1] Lie algebras built from Schatten classes Cp (H)equipped with corresponding p�norms are also considered. They provide examplesof Banach Lie algebras which are prime but not uniformly prime. More precisely,we haveObservation 1. Let H be an in�nite dimensional complex Hilbert space andC2 (H) the class of Hilbert-Schmidt operators equipped with the norm kAk2 =pTr (AA�). Let gl(H; C2) denotes a Banach Lie algebra modeled on this spacewith the product [A;B] = AB � BA: Then gl(H; C2) is prime but not uniformlyprime.



UNIFORM PRIMENESS 11Proof. Since C2 (H) is norm dense in C (H) Theorem 1 implies that fornonzero A;B 2 C2 (H) ; operator L(A;B) : C2 (H) �! C2 (H) is also nonzero.This clearly implies that gl(H; C2) is prime Lie algebra.In order to show that gl(H; C2) is not uniformly prime, it su�ces to �nd asequence of elements such that kPnk2 !1 whilekL (Pn; Pn)k = sup kL (Pn; Pn) Xk2kXk2 � 4for all n: This clearly makes estimate4 � kL (Pn; Pn)k � � kPnk22impossible for any positive �:In fact, we can take Pn to be orthogonal projection on n�dimensional subspaceof H. Then Pn = P �n and P 2n = Pn so kPnk22 =pTr (Pn) = pn �!1 .Given any X 2 gl(H; C2) we have L (Pn; Pn) X = PnX +XPn � 2PnXPn: Ifwe consider the operator L1(X) = PnX , we havekL1(X)k22 = Tr (PnXX�Pn) = Tr (X�PnX) :Since X�X = X�PnX +X� (1� Pn)X and both operators on the right hand sideare positive, we havekL1(X)k22 = Tr (X�PnX) � Tr (X�X) = kXk22and so kL1k � 1: In a similar way one can prove that L2(X) = XPn and L3(X) =PnXPn are also bounded in norm by 1, so we have kL (Pn; Pn)k � 4 for all n:As our �nal remark we wish to note that we were not able to �nd operatorswhere the proved constants 23 �p2� 1� and 16 would actually be attained, so weconsider the problem of determining the best constant of uniform (ultra) primenessfor Lie algebras gl(H; C); o(H; ; C1) and sp(H; J; C1) still open.References[1] P. Ara and M. Mathieu, On ultraprime Banach algebras with nonzero socle, Proc. Roy. IrishAcad. Sect. A 91 (1991), no.1, 89-98.[2] B. Aupetit and M. Mathieu, The continuity of Lie homomorphisms, Studia Math. 138 (2000),no.2, 193-199[3] M.I. Berenguer and A.R. Villena, Continuity of Lie derivations on Banach algebras, Proc.Edinburgh Math. Soc. (2) 41 (1998), no.3, 625-630[4] M.I. Berenguer and A.R. Villena, Continuity of Lie isomorphisms of Banach algebras, Bull.London Math. Soc. 31 (1999), no.1, 6-10[5] M.I. Berenguer and A.R. Villena, On the range of a Lie derivation on a Banach algebra,Comm. Algebra 28 (2000), no.2, 1045-1050[6] M. Cabrera and P. Rodriguez, Nonassociative ultraprime normed algebras, Extracta Math.5 (1990), no.3, 127-129[7] M. Cabrera and P. Rodriguez, Nonassociative ultraprime normed algebras, Quart. J. Math.Oxford Ser. (2) 43 (1992), no.169, 1-7[8] M. Cabrera and P. Rodriguez, Non-degenerately ultraprime Jordan-Banach algebras, Proc.London Math. Soc. (3) 69 (1994), no.3, 576-604[9] M. Cabrera and J. Martinez, Inner derivations on ultraprime normed real algebras, Arch.Math. (Basel) 68 (1997), no.3, 221-227[10] M. Cabrera and J. Martinez, Inner derivations on ultraprime normed algebras, Proc. Amer.Math. Soc. 125 (1997), no.7, 2033-2039
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