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Uroš Milutinović
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Approximation of maps into Lipsomb's spae byembeddingsUro�s Milutinovi�University of Maribor, PEF,Koro�ska esta 160, 2000 Maribor, Sloveniauros.milutinovi�uni-mb.siMay 19, 2001AbstratLet J (�) be Lipsomb's one-dimensional spae (f. [4℄) and Ln(� ) =fx 2 J (�)n+1 : at least one oordinate of x is irrational g � J (�)n+1Lipsomb's n-dimensional universal spae of weight � � �0. ModifyingLipsomb's deompositions onstruted in [4℄ and using the indexing teh-niques developed in [6, 2, 7℄ we prove:Let X be a metrizable spae, dimX � n, wX � � , f : X �! J (� )n+1a ontinuous map, and " a positive number. Then there is an embedding : X �! Ln(�) suh that d(f;  ) � ".Also, in the separable ase an analogous result is obtained, in whihthe lassi triangular Sierpi�nski urve (homeomorphi to J (3)) is usedinstead of J (�0) (strengthening the results of [2℄).Keywords: overing dimension, (generalized) Sierpi�nski urve, universal spae,Lipsomb's universal spae, embedding, deompositions of topologial spaesMath. Subj. Class. (2000): 54F451 Introdution and de�nitionsIn [3, 4℄ S. L. Lipsomb has de�ned the spae J (�) as a fator-spae of gener-alized Baire's 0-dimensional spae and used it in his onstrution of a universaln-dimensional metrizable spae of weight � , � � �0, whih was de�ned as asubspae of J (�)n+1. In [6, 7℄ it was proved that J (�) is homeomorphi to ageneralized Sierpi�nski urve �(�) (for all ardinal numbers � 6= 0, inluding the�nite ones; � = 3 yields the lassi triangular Sierpi�nski urve | ompare [5℄).Also, Lipsomb's embedding theorem is proved in [6, 7℄ by the use of a speialindexing of ertain deompositions of metrizable spaes. Here we use similartehniques to prove the theorem stated in the abstrat.1



We shall use the notation of [2℄ whih is in turn based on the notation of[1, 3℄ (with a few slight modi�ations).jX j denotes the ardinal number of the set X .Let � � �0 be a ardinal number and let � be a �xed set suh that j�j =� . Then Baire's generalized 0-dimensional spae (of weight �) is the set �N(N = f1; 2; 3; : : :g) of all sequenes of elements of � equipped with the produttopology (while � is equipped with the disrete topology).For � = (�1; : : : ; �m; : : :); � = (�1; : : : ; �m; : : :) the equivalene relation � isde�ned as follows ([3, 4℄):� � �() � = � or9j 2 N suh that :i)8k; k < j =) �k = �k;ii) 8s 2 N; �j = �j+s;iii) 8s 2 N; �j+s = �j .In the ase � 6= � suh a j is uniquely determined and is alled the tail indexof � and �. We also say that the two sequenes are interwoven.We shall make use of an analogous equivalene relation de�ned on �m by(�1; : : : ; �m) � (�1; : : : ; �m)() (�1; : : : ; �m) = (�1; : : : ; �m)or 9j 2 f1; : : : ; m � 1 g suh thati)8k; k < j =) �k = �k;ii) 8l 2 fj + 1; : : : ;mg; �j = �l;iii) 8l 2 fj + 1; : : : ;mg; �l = �j .Lipsomb's spae J (�) is de�ned as the quotient spae J (�) = �N=�.The equivalene lass of (�1; : : : ; �m; : : :) is denoted by[�1; : : : ; �m; : : :℄. Anequivalene lass may be a singleton | in whih ase it is alled an irrationalpoint of J (�) | or a dyad | in whih ase it is alled a rational point of J (�).This onstrution generalizes the onstrution of the segment [0; 1℄ from theCantor middle-third set by identifying the adjaent end points in the Cantorspae. J (�) is a one-dimensional metrizable spae of weight � ([3℄).The generalized Sierpi�nski urve �(�) was de�ned in [6℄ as a subspae of theHilbert spae `2(�) = f(x�) 2 R� : P�2� x2� <1g as follows.Let e�, � 2 �, be de�ned by e�� = Æ�;� (the Kroneker symbol) for 8� 2 �,and let '� : `2(�) �! `2(�) be de�ned by('�(x))� = � (x� + 1)=2; � = �x�=2; � 6= �be the homotheties with the oeÆients 1=2 and the enters e�, � 2 �.Let � = f(x�) 2 `2(�) : P�2� x� = 1 & 8�; 0 � x� � 1g. Then � = Cl� =f(x�) 2 `2(�) : P�2� x� � 1 & 8�; 0 � x� � 1g.Then �nally �m = [(�1;:::;�m)2�m '�1 Æ � � � Æ '�m�and �(�) = \m2N�m:2



Call the images of the points e�, � 2 �, via all '�1 Æ � � � Æ '�n (with theexeption of the points e�) the rational points of �(�), and all other points theirrational points of �(�). In [6, 7℄ it was proved that � : J (�) �! �(�) de�nedby �([�1; : : : ; �m; : : :℄) = \m2N'�1 Æ � � � Æ '�m� (1)is a homeomorphism whih sends rational points to rational points and irrationalpoints to irrational points.In the rest of the paper we shall use the homeomorphism � to identify the twospaes freely. In partiular, J (�) is metrizied by the metri inherited from `2(�).J (�)n+1 is equipped with the metri d(x; y) = maxfd(xj ; yj) :j = 1; : : : ; n+1g.The onstrutions of J (�) and of �(�) make sense for �nite � , too, when`2(�) is replaed by Rk, for an appropriate k 2 N. The funtion �, de�ned by(1), is in this ase again a homeomorphism preserving rationality/irrationalityof the points. Note that �(3) is the lassi triangular Sierpi�nski urve.Lipsomb's universal spae Ln(�) (for the lass of metrizable spaes of di-mension � n and weight � �) is the following subspae of J (�)n+1:Ln(�) = fx 2 J (�)n+1 : at least one oordinate of x is irrational g:(In this de�nition, as in all other situations, we shall not distinguish J (�)from �(�), so if it will suit our purposes, we shall interpret Ln(�) as fx 2�(�)n+1 : at least one oordinate of x is irrational g.)Let U be a family of subsets of X , x 2 X . The loal order of U at x isde�ned as lordxU = inffk :x has a neighborhood interseting k elements of Ug 2f0; 1; 2; : : : ;1g. The loal order of U is de�ned as lordU = supflordxU :x 2 Xg.BdU = SU2U BdU , where BdU denotes the boundary of the set U ; ClU =SU2U ClU , where ClU denotes the losure of the set U .A deomposition of the spae X is a pairwise disjoint loally �nite family ofopen nonempty subsets of X whose losures over X .2 The main theoremIn this setion we are going to state and prove the main result of the paper thatfor any map from an n-dimensional metrizable spae of weight � into J (�)n+1there is an embedding of that spae into Ln(�) arbitrarily lose to the map.As in [2℄ we shall onstrut speial sequenes of deompositions and then usean indexing similar to one obtained in [2℄ in order to onstrut an approximationof the given map by an embedding.The main tool enabling us to perform the indutive onstrution of suhsequenes of deompositions is the following Lipsomb's lemma (the notation ismodi�ed to �t ours; ompare [6, 2℄):Lemma 1 ([4, Lemma 4, p.152℄) Let n 2 f0; 1; 2; : : :g. Let X be a metri spaesuh that dimX = n, wX = � � �0. 3



Let X = X1 [ X2 [ � � � [ Xn+1, where X1; : : : ; Xn+1 are pairwise disjoint0-dimensional subsets of X.Let T be an arbitrary open overing of X. For eah j, 1 � j � n+1, let Vjbe a deomposition of X suh that jVj j � � and lordVj � 2. Let Fj , jFj j � � ,be a disrete losed family suh thatBdVj =[Fj ; (2)and let for eah k 2 f1; : : : ; n+ 1g and distint j1; : : : ; jk 2 f1; : : : ; n+ 1gdim(BdVj1 \ � � � \ BdVjk) � n� k (3)hold.Let Oj = fOF : F 2 Fjg be an open family suh that F � OF for eahF 2 Fj .Then for eah j, 1 � j � n + 1; there are disrete families WSj , WBj , andWQj of ardinality � � , whih are disjoint in pairs, suh thatWj =WSj [WBj [WQjis a deomposition of X satisfying (for eah j, 1 � j � n+ 1):(a) lordWj � 2;(b) fClW :W 2 WSj g re�nes T ; Sn+1j=1 WSj overs X;() if x 2 BdWj then there are distint elements W1, W2 in Wj suh thatx 2 BdW1 \ BdW2;(d) Wj overs Xj (hene BdWj misses Xj);(e) BdWj \ BdVj = ;;(f) WSj [WQj re�nes Vj ;(g) WSj [WBj is a disrete family;(h) WBj = fWF :F 2 Fjg (the indexing is faithful, i.e. injetive) and F �WF �ClWF � OF for eah F 2 Fj.If X is a metrizable spae of dimension dimX = n, it may be presented inthe form X = X1 [X2 [ � � � [Xn+1, where X1; : : : ; Xn+1 are pairwise disjoint0-dimensional (or empty) subsets of X . We �x one suh presentation and use itthroughout the paper.Besides Lemma 1 the main tool in performing the indutive onstrution inthe proof of the main result, is the following lemma:Lemma 2 ([2, Lemma 3℄) Let families V, F , WB, WS of subsets of X, whereF = fBdV1 \ BdV2 : V1; V2 2 V ; V1 6= V2; BdV1 \ BdV2 6= ;g; (4)satisfyi) V is a deomposition, jVj � � , lordV � 2;4



ii) x 2 BdV () there exist distint members V1, V2 of V, suh that x 2BdV1 \ BdV2;iii) BdV = SF ;iv) F is a disrete losed family of ardinality � � ;v) WB [WS is an open disrete family, WB \WS = ;;vi) (BdWB [ BdWS) \ BdV = ;;vii) WS re�nes V;viii) for eah F = BdV1 \ BdV2 2 F there is an element W 2 WB, suh thatF �W � ClW � V1 [ F [ V2 (sine it is uniquely determined we denoteit WF ); WB = fWF : F 2 Fg;ix) WB, WS are families of ardinality � � ;x) for any W 2 WB [WS and x 2 BdW , and for any neighborhood U of x,U \ (X nClW ) 6= ;:Then, if we de�neWR = fV nCl(WS [WB) : V 2 V ; V nCl(WS [WB) 6= ;g;W =WS [WB [WR;~V = fV \W : V 2 V ; W 2 W ; V \W 6= ;g;~F = fBdV1 \ BdV2 : V1; V2 2 ~V ; V1 6= V2; BdV1 \ BdV2 6= ;g;it holds true that ~V, ~F satisfy i) { iv), as well as the additional properties:~F = F [ fBdW :W 2 WSg [ f(BdWF ) \ Vk; k = 1; 2 :F 2 F ;WF 2 WB ; V1; V2 2 V ; V1 6= V2;WF � V1 [ F [ V2g;and ~V =WS [WR [ fV \W : V 2 V ; W 2 WB ; V \W 6= ;g;and W satis�esa) W is a deomposition and lordW � 2 [ompare D1℄,b) x 2 BdW () there exist distint members W1, W2 of W, suh that x 2BdW1 \ BdW2 [ompare D2℄,) WR \ (WS [WB) = ; and WR is an open disrete family [ompare D3℄,d) BdW \ BdV = ; [ompare D4℄, 5



e) W of ardinality � � [ompare D10℄. (The list of the properties D1 { D13appears on the page 6.)Proof. Though the lemma was formulated and proved in [2℄ for the ountablease only, it plainly holds true for any � � �0. The same proof works wordby word after replaing the ountability onditions by the ondition, that theappropriate families are of ardinality � � . The ardinality bounds are thenobviously satis�ed, and in the proofs of all other properties separability has notbeen used.The same omment applies to other itations of results from [2℄, when usedin the urrent paper.The plan for the proof of the main result is this: using Lemmas 1, 2 andstarting from appropriate deompositions V1;j and families of losed sets F1;j ,as well as appropriate overings Ti;j (all open balls of suÆiently small radii)and families Oi;j (suÆiently narrow neighborhoods of elements of Fi;j , i.e. theballs of small radii around the sets), we shall indutively get the deompositionsVi;j , Wi;j , and the families of losed subsets Fi;j , i 2 N, 1 � j � n + 1, suhthat for all i, j:D1 Vi;j , Wi;j are deompositions of X and lordVi;j � 2, lordWi;j � 2;D2 x 2 BdWi;j () there exist distint members W1, W2 of Wi;j , suh thatx 2 BdW1 \ BdW2;D3 Wi;j =WSi;j[WBi;j[WRi;j , whereWSi;j ,WBi;j ,WRi;j are disrete families whihare disjoint in pairs, and WSi;j [ WBi;j is a disrete family (supersriptsS;B;R ome from small, boundary and remnant, and those are what weall the elements of the families | the terminology is motivated by theirproperties);D4 BdWi;j \ BdVi;j = ;;D5 WSi;j re�nes Vi;j , i.e. every element of WSi;j is a subset of an element of Vi;j ;D6 WRi;j = fV nCl(WSi;j [WBi;j) : V 2 Vi;j ; V nCl(WSi;j [WBi;j) 6= ;g;D7 Fi;j = fBdV1 \ BdV2 : V1; V2 2 Vi;j ; V1 6= V2; BdV1 \ BdV2 6= ;g;D8 for eah F = BdV1 \BdV2 2 Fi;j there is an element W 2 WBi;j , suh thatF �W � ClW � V1 [ F [ V2 (sine it is uniquely determined we denoteit by WF ); WBi;j = fWF : F 2 Fi;jg;D9 Vi+1;j = fV \W : V 2 Vi;j ; W 2 Wi;j ; V \W 6= ;g;D10 all the families have at most � elements;D11 the intersetion of the elements from WBk;j , k � i, ontaining a �xedF 2 Fi;j , is F ;D12 BdWi;j \Xj = ;, for all i 2 N and all j, 1 � j � n+ 1;6



D13 [n+1j=1WSi;j overs X , for all i 2 N;D14 diamW < 1=i, for all i 2 N, all j, 1 � j � n+ 1, and all W 2 WSi;j .The deompositions Vi;j play an essential role | using an appropriate in-dexing of the families Vi;j , i 2 N, for a �xed j, we shall de�ne a funtion j : X �! �(�), suh that  = ( 1; : : : ;  n+1) will be the required embedding : X �! Ln(�) � �(�)n+1, d(f;  ) � ".In [6, 2, 7℄ no ontrol on loseness of the embedding to a given map wasrequired, and therefore it was suÆient to take V1;j = fXg and F1;j = ;. Ourmain | and most diÆult | task in this paper is to onstrut V1;j and F1;j insuh a way that d( ; f) � " will be obtained at the end.Now we are able to proveTheorem 3 Let X be a metrizable spae, dimX = n, wX � � , f : X �!J (�)n+1 a ontinuous map, and " a positive number. Then there is an embed-ding  : X �! Ln(�) suh that d(f;  ) � ".Proof. Reall that � = Cl� � `2. The equality diam'�1 Æ � � � Æ '�m� =diam�=2m is a simple onsequene of the fat that mappings '� are homothetieswith the oeÆient 1=2 (for details see [6℄).Choose m so that diam�=2m < "=2. Then for any �1, �2, . . . ,�m from � itis true that diam'�1 Æ � � � Æ '�m� < "=2.For eah j = 1; : : : ; n + 1 let fj = pj Æ f , where pj : J (�)n+1 �! J (�)denotes the projetion onto the jth fator.We are going to modify the onstrution of deompositions and their index-ing from [2℄ in suh a way, that we will obtain mappings  j : X �! J (�), whihwill satisfy the inequalities d(fj ;  j) � ", and suh that  = ( 1; : : : ;  n+1) willbe an embedding of X into Ln(�).Reall that �m = [(�1;:::;�m)2�m'�1 Æ � � � Æ '�m�. We shall interpret thefuntions fj as funtions into �m. Also, Cl, Int, et. will apply to �m if theyare used in the range spae.In order to simplify notation, let us denote K = �m. If � = (�1; : : : ; �m),let S� denote S� = '�1 Æ � � � Æ '�m�:Also, for any � 2 K, let T� denoteT� = �m n [�2Knf�gS� = S� n [�2Knf�gS�:Using Lemmas 4, 11, 12, and 13 of [6℄ we see that all S� are losed in � (andhene in �m, too) and form a loally �nite family and that all T� are open in�m. The same Lemmas imply that eah T� is obtained from S� by removingall the mth level verties1 (with the exeption of verties e� of �) and thatT = fT� :� 2 Kg is a deomposition of �m (sine ClT� = S�) with lordT = 2.1Points of the form '�1 Æ � � � Æ '�me�. 7



In fat, exatly the mth level verties have the loal order 2; all other pointshave the loal order 1.Also, lordfClT� : � 2 Kg = 2, hene, for eah j,lordff�1j (Cl T�) : � 2 Kg � 2: (5)Note that all we are doing now is done for a �xed j, but, to keep notation assimple as possible, we will not use that j as an additional index until the veryend of the proof, where we are going to use all indies simultaneously. The onlyexeptions are fj 's and Xj 's, where the omission of j ould ause an ambiguity(f and X already have its meaning).For any nonempty set f�1j (ClT� \ ClT�0), � 6= �0, we want to introdue anopen subset 
�;�0 of X , in suh a way that all Cl 
�;�0 would form a disretefamily, and that f�1j (ClT� \ ClT�0) � 
�;�0 �(f�1j (Cl T�) \ f�1j (Cl T�0)) [ f�1j (T�) [ f�1j (T�0) �f�1j (ClT� [ ClT�0) (6)would hold true.Let us explain in some detail how this an be done, sine it is of the funda-mental importane for our work.In Lemma 4 of [6℄ it is proved thata) '�1Æ � � � Æ'�n�\'�1Æ � � � Æ'�n� 6= ; () (�1; : : : ; �n) � (�1; : : : ; �n) or�1 = �1; � � � ; �n�1 = �n�1.b) If two di�erent n-tuples (�1; : : : ; �n); (�1; : : : ; �n) are equivalent, with thetail index k � n� 1, then '�1Æ � � � Æ'�ke�k+1 = '�1Æ � � � Æ'�k�1'�k+1e�k is theonly point of '�1 Æ � � � Æ '�n� \ '�1 Æ � � � Æ '�n� .) If two di�erent n-tuples (�1; : : : ; �n),(�1; : : : ; �n) satisfying a) are notequivalent then '�1Æ � � � Æ'�ne�n = '�1Æ � � � Æ'�n�1'�ne�n is the only point of'�1 Æ � � � Æ '�n� \ '�1 Æ � � � Æ '�n�.Therefore, for any � 6= �0, � = (�1; : : : ; �n), �0 = (�1; : : : ; �n), with nonemptyf�1j (Cl T� \ ClT�0), it holds true that (�1; : : : ; �n+2) = (�1; : : : ; �n; �n; �n)and (�1; : : : ; �n+2) = (�1; : : : ; �n; �n; �n) are interwoven in ase b), and that(�1; : : : ; �n+2) = (�1; : : : ; �n; �n; �n) and (�1; : : : ; �n+2) = (�1; : : : ; �n; �n; �n)are interwoven in ase ). In both ases '�1 Æ � � � Æ '�n+2� [ '�1 Æ � � � Æ '�n+2�is a losed neighborhood of ClT� \ ClT�0 .De�ning
�;�0 = f�1j (Int�m('�1 Æ � � � Æ '�n+2� [ '�1 Æ � � � Æ '�n+2�));we obtain a disrete open family, satisfying (6).This follows from the fat that the sets '�1Æ � � � Æ'�n+2�['�1Æ � � � Æ'�n+2�form a disrete family and from the fat thatClT� \ ClT�0 � '�1 Æ � � � Æ '�n+2� \ '�1 Æ � � � Æ '�n+2� �Int�m('�1 Æ � � � Æ '�n+2� [ '�1 Æ � � � Æ '�n+2�) �8



'�1 Æ � � � Æ '�n+2� [ '�1 Æ � � � Æ '�n+2� �(ClT� \ ClT�0) [ T� [ T�0 � ClT� [ ClT�0 :See Fig. 1, where the shaded regions represent the originals in the ase m = 1).
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Figure 1: De�ning 
�;�0 for m = 1.In doing this, we will not distinguish 
�;�0 from 
�0;� (i.e. we shall hoosethe same set in both ases).Let us now introdue the following onvention: if f�1j (ClT� \ ClT�0) is anempty set, then we de�ne 
�;�0 = ;. Obviously, the above property (6) is stillsatis�ed.For eah pair of distint indies �, �0 (using 0-dimensionality of Xj) wehoose an open set O�;�0 satisfying:f�1j (ClT� \ ClT�0) � O�;�0 � ClO�;�0 � 
�;�0 (7)and BdO�;�0 \Xj = ;:Again we take O�;�0 = O�0;�, and if f�1j (ClT� \ ClT�0) = ;, then we putO�;�0 = ;.Obviously, the sets O�;�0 form a disrete familyN = fO�;�0 : �; �0 2 K; � 6= �0g: (8)De�ne U� = f�1j (T�) [ [�0 6=�O�;�0 : (9)The disreteness of N impliesClU� = Cl f�1j (T�) [ [�0 6=�ClO�;�0 :9



In fat ClU� = f�1j (T�) [ [�0 6=�ClO�;�0 (10)sine Cl f�1j (T�) n f�1j (T�) � f�1j (ClT�) n f�1j (T�) =f�1j (ClT� n T�) = f�1j ( [�0 6=�(ClT� \ ClT�0)) =[�0 6=� f�1j (ClT� \ ClT�0) � [�0 6=�ClO�;�0 :The family U = fU� : � 2 Kg is an open over of X , sinef�1j (ClT�) = f�1j (ClT� n T�) [ f�1j (T�) =f�1j (T�) [ [�0 6=� f�1j (ClT� \ ClT�0) � f�1j (T�) [ [�0 6=�O�;�0 = U�and S�2K ClT� = �m.For any nonempty ClO�;�0 , the set 
�;�0 is the neighborhood of ClO�;�0meeting exatly two elements of the family U . If a point x of X does not belongto any ClO�;�0 , then for some � 2 K it belongs toU� n [�0 6=�ClO�;�0 = ClU� n [�0 6=�ClO�;�0 : (11)This set is a neighborhood of x, interseting exatly one member of the familyU (namely, U�). Therefore, lordU � 2: (12)Let � 6= �0. Then (S�6=�0 O�0;�) \ (S� 6=�O�;�) = O�;�0 , beause of the dis-reteness ofN (see (8)). Therefore, O�;�0 � U�\U�0 . Also f�1j (T�\T�0) � O�;�0by (7). Further, for � 6= �; �0, by (6) and (7), f�1j (T�) \ O�0;� � f�1j (T�) \�(f�1j (ClT�0) \ f�1j (ClT�)) [ f�1j (T�0) [ f�1j (Cl T�)� � f�1j (T�\ClT�0\Cl T�)[f�1j (T� \ T�0) [ f�1j (T� \ T�) = ;. Therefore f�1j (T�) \ S�6=�0 O�0;� � O�;�0 .Analogously f�1j (T�0)\S�6=�O�;� � O�;�0 . Therefore, U� \U�0 � O�;�0 , henewe have established U� \ U�0 = O�;�0 : (13)Using analogous reasoning, one an see that alsoClU� \ ClU�0 = ClO�;�0 : (14)Now, �x a well order < on K. After that we de�neV� = U� n [�<�ClO�;� : (15)10



V� is open, due to the disreteness of N .Let V = fV� : � 2 K; V� 6= ;g: (16)Sine V� � U�, it follows lordV � 2.Let �0 < �. Then V� \V�0 � U�\U�0 = O�;�0 , by (13). Sine V� \O�;�0 = ;by (15), it follows V� \ V�0 = ;. Therefore, the elements of V are disjoint inpairs. To prove that V is a deomposition of X , it remains only to prove thatClV = X: (17)Simultaneously we shall prove thatClV� \ClV�0 = BdV� \ BdV�0 � BdO�;�0 (18)holds if � 6= �0.Let x be an element of X and let� = minf� 2 K : x 2 ClU�g: (19)The minimum exists, sine ClU = X , thereforex 2 ClU�;and x 62 ClU� , for every � < �. Consequently, x 62 ClO�;� by (10). Hene, ifx 2 U�, it follows x 2 V� by (15).Suppose x 62 V�. Then, by (9), (10), and (15), we see that x 2 (ClU�)nV� =�U� [S�0 6=�ClO�;�0� n �U� nS�0<�ClO�;�0� � S�0 6=�ClO�;�0 . Beause ofthe disreteness of N (8), there is a uniquely determined �0 6= �, suh thatx 2 ClO�;�0 . Then, by (10), x 2 ClU�0 , and by the minimality of � (19), itfollows � < �0. Sine, by (9) and (15), O�;�0 � V�, it followsClO�;�0 � ClV�; (20)hene x 2 ClV�. In this ase x 2 BdV�.Therefore, we have proved that V is a deomposition of X .Sine V� \V�0 = ;, it follows ClV� \ClV�0 = BdV� \BdV�0 , for any �0 6= �.Let x 2 BdV� \ BdV�0 , for �0 6= �. Without loss of generality, we mayassume � < �0. Then � = minf� 2 K : x 2 ClU�g beause of (12), sinex 2 ClU� and x 2 ClU�0 . Therefore, as above it follows x 2 ClO�;�0 . Fromx 2 O�;�0 it follows x 2 U� and �nally x 2 V�, a ontradition with x 2 BdV�.Therefore x 2 BdO�;�0 .The last inlusion in (18) is important, sine it implies thatBdV \Xj = ;; (21)and this in turn implies that property (3) of Lemma 1 will be satis�ed for thefamilies we are now onstruting (more detailed explanation follows after a fewlines). 11



There is only one more modi�ation needed. Replaing any V 2 V byV + = IntClVwe preserve all properties of V mentioned above, inluding (21), while making(2) ful�lled.Now the families V (obtained for di�erent j = 1; : : : ; n + 1) may play therole of V1;j , j = 1; : : : ; n + 1, i.e. they may be taken as the initial stage in theindutive onstrution announed on the page 6.This means that the families V1;j , j = 1; : : : ; n+ 1, satisfy the properties ofthe families Vj of Lemma 1, and that if we take fBdV1\BdV2 6= ; :V1; V2 2 V1;jgfor Fj , so obtained families satisfy all the onditions of Lemma 1. Taking allopen balls of the diameter less then 1 for Tj , and open balls of the diameter 1around all the elements of Fj for Oj , applying Lemma 1 we get WS1;j , WB1;j .It may again be neesary to replae the elements W of WS1;j , WB1;j by W+ =IntClW (see Lemma 6 of [2℄ for the details of the proof why this may be done) inorder to make sure that all the required properties of V , F , WB , WS in Lemma2 will be satis�ed if we take them to be V1;j , F1;j , WB1;j , WS1;j , respetively.(While replaing W by W+ we shall preserveWS1;j , WB1;j as the symbols for thenew families, in order to simplify the notation.)Now Lemma 2 gives us families WR, W , ~V , ~F , whih we rename to WR1;j ,W1;j , V2;j , F2;j .So obtained V2;j , F2;j (in plae of V , F) now satisfy all the requirements ofLemma 1, and the proes ontinues that way while the whole in�nite sequenesare obtained. (Doing this we take all open balls of the diameter less then 1=ifor Tj , and open balls of the diameter 1=i around all the elements of Fj for Oj .)It an easily be seen that the families Vi;j , Fi;j , and Wi;j , i 2 N, j =1; : : : ; n + 1, obtained that way satisfy the properties D1{D14. It is also veryimportant for our goal (proving the theorem) that they are onstrued indu-tively beginning from the families V1;j , obtained by the above onstrution.Our next goal is to onstrut an indexing of the elements of the families Vi;jsatisfying the following properties:I1 Eah element of V1;j is indexed by an element � 2 K = �m. Eah elementof Vi;j , i � 2, is indexed by an element of �m+i�1.I2 Let i be the �rst index suh that F 2 Fi;j (i.e. F 2 Fi;j n Fi�1;j if i � 2, orF 2 F1;j if i = 1). If F = BdV1 \ BdV2 6= ;, for V1; V2 2 Vi;j , V1 6= V2,then V1, V2 are indexed by (�1; : : : ; �k ; �), (�1; : : : ; �k; �), � 6= �.For any l > i, F 2 Fl;j . Let F = Bd ~V1 \ Bd ~V2, ~V1; ~V2 2 Vl;j .Suppose ~V1 � V(�1;:::;�k;�) and ~V2 � V(�1;:::;�k;�). Then ~V1 is indexedby (�1; : : : ; �k; �; �; : : : ; �) 2 �m+l�1, and similarly ~V2 is indexed by theinterwoven element (�1; : : : ; �k; �; �; : : : ; �) 2 �m+l�1.I3 If V 2 Vi;j , i � 2, is indexed by an index having two or more identialiphers at the end, then there is an F 2 Fk;j , k < i, suh that F =BdV1 \ BdV2 6= ;, V1; V2 2 Vi;j , V1 6= V2, and either V = V1 or V = V2.12



I4 If V 2 Vi;j , i � 1, is indexed by (�1; : : : ; �l), and if V 0 2 Vk;j , k >i, is indexed by (�1; : : : ; �m+k�1), then V 0 � V implies (�1; : : : ; �l) =(�1; : : : ; �l).This will be done indutively.By (16) the elements of V1;j are indexed by elements of K. Now, the in-dutive onstrution goes as follows. Given the indexing of Vi;j , the indexingof Vi+1;j is uniquely determined up to the last oordinate of (m + i)-tuples,aording to the property I4. Then, indies of elements of Vi+1;j obtained fromboundary sets of Wi;j are uniquely determined by I2. All other elements V ofVi+1;j may be indexed as follows: if V � V(�1;:::;�m+i�1) 2 Vi;j , then V is indexedby (�1; : : : ; �m+i�1; �), where � 2 � n f�1; : : : ; �m+i�1g. Sine V(�1;:::;�m+i�1)ontains at most � small and remnant sets from Vi+1;j and sine the ardinalityof � n f�1; : : : ; �m+i�1g is � , this an be done.It must be heked only that the interweaving may be done at the initialstage. Let F = ClV(�1;:::;�m) \ ClV(�1;:::;�m) 6= ;be an arbitrary element of F1;j . Let us introdue � = (�1; : : : ; �m), �0 =(�1; : : : ; �m). Then F � BdO�;�0 and � 6= �0 This implies that O�;�0 isnonempty. Then f�1j (ClT� \ ClT�0) 6= ;, and hene ClT� \ ClT�0 6= ;. Fi-nally, using Lemma 4 of [6℄, we onlude that (�1; : : : ; �m) � (�1; : : : ; �m) (ase1) or (�1; : : : ; �m�1) = (�1; : : : ; �m�1) (ase 2) (as already mentioned). Now, itis obvious that we may ontinue interweaving in the �rst ase, and may start anew one in the seond.An element V(�1;:::;�m+i�1) of Vi;j will be denoted in the rest of the paper byV j(�1;:::;�k), for the sake of emphasis, sine we now simultaneously onsider allthe families.Let j 2 f1; 2; : : : ; n+ 1g be �xed.A) To a point x 2 X nSi2N(SFi;j), a unique sequene �1; �2; : : : may beassigned in suh a way, that x 2 V j(�1;:::;�k) for any k � m.B) If x 2 F 2 Fi;j n Fi�1;j , i � 2, or x 2 F 2 F1;j , where F = BdV1 \BdV2 6= ;, V1; V2 2 Vi;j , V1 6= V2, and V1, V2 are indexed aording to I2, then[�1; : : : ; �k; �; �; : : : ; �; : : :℄ = [�1; : : : ; �k; �; �; : : : ; �; : : :℄ is assigned to x.Then,  j : X �! J (�) is de�ned by j(x) = [�1; : : : ; �k ; : : :℄in Case A), and j(x) = [�1; : : : ; �k ; �; �; : : : ; �; : : :℄ = [�1; : : : ; �k; �; �; : : : ; �℄in Case B).It is obvious that the funtion  j is well-de�ned and that points belongingto Si2N(SFi;j) = Si2N BdVi;j are mapped to rational points, and all otherpoints to irrational points of J (�) (by properties I3 and D11).13



Exatly as in [6℄ or [2℄ (i.e. by proving that the family f 1; � � � ;  n+1g sepa-rates points and losed sets) it follows that = ( 1; � � � ;  n+1) : X �! Ln(�)is an embedding.It only remains to prove that d(fj ;  j) � ".From the de�nition of  j it follows thatx 2 V� =)  j(x) 2 S�: (22)Let x 2 X be an arbitrary point. As before, hoose (�1; : : : ; �m) = � =minf� : x 2 ClU�g.If x 2 f�1j (T�), then x 2 U� and by (15) it follows x 2 V�. Therefore by(22)  j(x); fj(x) 2 S�;and d( j(x); fj(x)) � " follows from the fat that diamS� = diam�=2m < ".If x 62 f�1j (T�), then there is a �0 > � suh that x 2 ClO�;�0 6= ;; andsine ClO�;�0 � 
�;�0 � (f�1j (ClT�) \ f�1j (ClT�0)) [ f�1j (T�) [ f�1j (T�0) �f�1j (Cl T� [ ClT�0) it follows that fj(x) 2 S� [ S�0 . From ClO�;�0 � ClV�, by(22) if follows  j(x) 2 S�. Hene j(x); fj(x) 2 S� [ S�0 :But S� and S�0 have a point in ommon, hene diam(S� [ S�0) � 2 diamS� �2 diam�=2n < ".Corollary 4 Let X be a metrizable spae, dimX � n, wX � � , f : X �!J (�)n+1 a ontinuous map, and " a positive number. Then there is an embed-ding  : X �! Ln(�) suh that d(f;  ) � ".Proof. Apply Theorem 3 to the disjoint union of X and In, with f extendedto the union by, say, a onstant map on In.3 The separable aseJ (3) is the lassi triangular Sierpi�nski urve ([6℄). Let Ln = fx 2 J (3)n+1 :at least one oordinate of x is irrational g.In [2℄ the following theorem has been announed:Theorem 5 Let X be a separable metrizable spae, dimX � n, f : X �!J (3)n+1 a ontinuous map, and " a positive number. Then there is an embedding : X �! Ln suh that d(f;  ) � ".Proof. The proof may be obtained by ombining the proofs of [2℄ and thepresent paper. First we follow the onstrution of the families Wi;j , Vi;j , Fi;jas desribed above for the ase � = f1; 2; 3g | we identify J (3) with �(3).14
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