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tLet J (�) be Lips
omb's one-dimensional spa
e (
f. [4℄) and Ln(� ) =fx 2 J (�)n+1 : at least one 
oordinate of x is irrational g � J (�)n+1Lips
omb's n-dimensional universal spa
e of weight � � �0. ModifyingLips
omb's de
ompositions 
onstru
ted in [4℄ and using the indexing te
h-niques developed in [6, 2, 7℄ we prove:Let X be a metrizable spa
e, dimX � n, wX � � , f : X �! J (� )n+1a 
ontinuous map, and " a positive number. Then there is an embedding : X �! Ln(�) su
h that d(f;  ) � ".Also, in the separable 
ase an analogous result is obtained, in whi
hthe 
lassi
 triangular Sierpi�nski 
urve (homeomorphi
 to J (3)) is usedinstead of J (�0) (strengthening the results of [2℄).Keywords: 
overing dimension, (generalized) Sierpi�nski 
urve, universal spa
e,Lips
omb's universal spa
e, embedding, de
ompositions of topologi
al spa
esMath. Subj. Class. (2000): 54F451 Introdu
tion and de�nitionsIn [3, 4℄ S. L. Lips
omb has de�ned the spa
e J (�) as a fa
tor-spa
e of gener-alized Baire's 0-dimensional spa
e and used it in his 
onstru
tion of a universaln-dimensional metrizable spa
e of weight � , � � �0, whi
h was de�ned as asubspa
e of J (�)n+1. In [6, 7℄ it was proved that J (�) is homeomorphi
 to ageneralized Sierpi�nski 
urve �(�) (for all 
ardinal numbers � 6= 0, in
luding the�nite ones; � = 3 yields the 
lassi
 triangular Sierpi�nski 
urve | 
ompare [5℄).Also, Lips
omb's embedding theorem is proved in [6, 7℄ by the use of a spe
ialindexing of 
ertain de
ompositions of metrizable spa
es. Here we use similarte
hniques to prove the theorem stated in the abstra
t.1



We shall use the notation of [2℄ whi
h is in turn based on the notation of[1, 3℄ (with a few slight modi�
ations).jX j denotes the 
ardinal number of the set X .Let � � �0 be a 
ardinal number and let � be a �xed set su
h that j�j =� . Then Baire's generalized 0-dimensional spa
e (of weight �) is the set �N(N = f1; 2; 3; : : :g) of all sequen
es of elements of � equipped with the produ
ttopology (while � is equipped with the dis
rete topology).For � = (�1; : : : ; �m; : : :); � = (�1; : : : ; �m; : : :) the equivalen
e relation � isde�ned as follows ([3, 4℄):� � �() � = � or9j 2 N su
h that :i)8k; k < j =) �k = �k;ii) 8s 2 N; �j = �j+s;iii) 8s 2 N; �j+s = �j .In the 
ase � 6= � su
h a j is uniquely determined and is 
alled the tail indexof � and �. We also say that the two sequen
es are interwoven.We shall make use of an analogous equivalen
e relation de�ned on �m by(�1; : : : ; �m) � (�1; : : : ; �m)() (�1; : : : ; �m) = (�1; : : : ; �m)or 9j 2 f1; : : : ; m � 1 g su
h thati)8k; k < j =) �k = �k;ii) 8l 2 fj + 1; : : : ;mg; �j = �l;iii) 8l 2 fj + 1; : : : ;mg; �l = �j .Lips
omb's spa
e J (�) is de�ned as the quotient spa
e J (�) = �N=�.The equivalen
e 
lass of (�1; : : : ; �m; : : :) is denoted by[�1; : : : ; �m; : : :℄. Anequivalen
e 
lass may be a singleton | in whi
h 
ase it is 
alled an irrationalpoint of J (�) | or a dyad | in whi
h 
ase it is 
alled a rational point of J (�).This 
onstru
tion generalizes the 
onstru
tion of the segment [0; 1℄ from theCantor middle-third set by identifying the adja
ent end points in the Cantorspa
e. J (�) is a one-dimensional metrizable spa
e of weight � ([3℄).The generalized Sierpi�nski 
urve �(�) was de�ned in [6℄ as a subspa
e of theHilbert spa
e `2(�) = f(x�) 2 R� : P�2� x2� <1g as follows.Let e�, � 2 �, be de�ned by e�� = Æ�;� (the Krone
ker symbol) for 8� 2 �,and let '� : `2(�) �! `2(�) be de�ned by('�(x))� = � (x� + 1)=2; � = �x�=2; � 6= �be the homotheties with the 
oeÆ
ients 1=2 and the 
enters e�, � 2 �.Let � = f(x�) 2 `2(�) : P�2� x� = 1 & 8�; 0 � x� � 1g. Then � = Cl� =f(x�) 2 `2(�) : P�2� x� � 1 & 8�; 0 � x� � 1g.Then �nally �m = [(�1;:::;�m)2�m '�1 Æ � � � Æ '�m�and �(�) = \m2N�m:2



Call the images of the points e�, � 2 �, via all '�1 Æ � � � Æ '�n (with theex
eption of the points e�) the rational points of �(�), and all other points theirrational points of �(�). In [6, 7℄ it was proved that � : J (�) �! �(�) de�nedby �([�1; : : : ; �m; : : :℄) = \m2N'�1 Æ � � � Æ '�m� (1)is a homeomorphism whi
h sends rational points to rational points and irrationalpoints to irrational points.In the rest of the paper we shall use the homeomorphism � to identify the twospa
es freely. In parti
ular, J (�) is metrizied by the metri
 inherited from `2(�).J (�)n+1 is equipped with the metri
 d(x; y) = maxfd(xj ; yj) :j = 1; : : : ; n+1g.The 
onstru
tions of J (�) and of �(�) make sense for �nite � , too, when`2(�) is repla
ed by Rk, for an appropriate k 2 N. The fun
tion �, de�ned by(1), is in this 
ase again a homeomorphism preserving rationality/irrationalityof the points. Note that �(3) is the 
lassi
 triangular Sierpi�nski 
urve.Lips
omb's universal spa
e Ln(�) (for the 
lass of metrizable spa
es of di-mension � n and weight � �) is the following subspa
e of J (�)n+1:Ln(�) = fx 2 J (�)n+1 : at least one 
oordinate of x is irrational g:(In this de�nition, as in all other situations, we shall not distinguish J (�)from �(�), so if it will suit our purposes, we shall interpret Ln(�) as fx 2�(�)n+1 : at least one 
oordinate of x is irrational g.)Let U be a family of subsets of X , x 2 X . The lo
al order of U at x isde�ned as lordxU = inffk :x has a neighborhood interse
ting k elements of Ug 2f0; 1; 2; : : : ;1g. The lo
al order of U is de�ned as lordU = supflordxU :x 2 Xg.BdU = SU2U BdU , where BdU denotes the boundary of the set U ; ClU =SU2U ClU , where ClU denotes the 
losure of the set U .A de
omposition of the spa
e X is a pairwise disjoint lo
ally �nite family ofopen nonempty subsets of X whose 
losures 
over X .2 The main theoremIn this se
tion we are going to state and prove the main result of the paper thatfor any map from an n-dimensional metrizable spa
e of weight � into J (�)n+1there is an embedding of that spa
e into Ln(�) arbitrarily 
lose to the map.As in [2℄ we shall 
onstru
t spe
ial sequen
es of de
ompositions and then usean indexing similar to one obtained in [2℄ in order to 
onstru
t an approximationof the given map by an embedding.The main tool enabling us to perform the indu
tive 
onstru
tion of su
hsequen
es of de
ompositions is the following Lips
omb's lemma (the notation ismodi�ed to �t ours; 
ompare [6, 2℄):Lemma 1 ([4, Lemma 4, p.152℄) Let n 2 f0; 1; 2; : : :g. Let X be a metri
 spa
esu
h that dimX = n, wX = � � �0. 3



Let X = X1 [ X2 [ � � � [ Xn+1, where X1; : : : ; Xn+1 are pairwise disjoint0-dimensional subsets of X.Let T be an arbitrary open 
overing of X. For ea
h j, 1 � j � n+1, let Vjbe a de
omposition of X su
h that jVj j � � and lordVj � 2. Let Fj , jFj j � � ,be a dis
rete 
losed family su
h thatBdVj =[Fj ; (2)and let for ea
h k 2 f1; : : : ; n+ 1g and distin
t j1; : : : ; jk 2 f1; : : : ; n+ 1gdim(BdVj1 \ � � � \ BdVjk) � n� k (3)hold.Let Oj = fOF : F 2 Fjg be an open family su
h that F � OF for ea
hF 2 Fj .Then for ea
h j, 1 � j � n + 1; there are dis
rete families WSj , WBj , andWQj of 
ardinality � � , whi
h are disjoint in pairs, su
h thatWj =WSj [WBj [WQjis a de
omposition of X satisfying (for ea
h j, 1 � j � n+ 1):(a) lordWj � 2;(b) fClW :W 2 WSj g re�nes T ; Sn+1j=1 WSj 
overs X;(
) if x 2 BdWj then there are distin
t elements W1, W2 in Wj su
h thatx 2 BdW1 \ BdW2;(d) Wj 
overs Xj (hen
e BdWj misses Xj);(e) BdWj \ BdVj = ;;(f) WSj [WQj re�nes Vj ;(g) WSj [WBj is a dis
rete family;(h) WBj = fWF :F 2 Fjg (the indexing is faithful, i.e. inje
tive) and F �WF �ClWF � OF for ea
h F 2 Fj.If X is a metrizable spa
e of dimension dimX = n, it may be presented inthe form X = X1 [X2 [ � � � [Xn+1, where X1; : : : ; Xn+1 are pairwise disjoint0-dimensional (or empty) subsets of X . We �x one su
h presentation and use itthroughout the paper.Besides Lemma 1 the main tool in performing the indu
tive 
onstru
tion inthe proof of the main result, is the following lemma:Lemma 2 ([2, Lemma 3℄) Let families V, F , WB, WS of subsets of X, whereF = fBdV1 \ BdV2 : V1; V2 2 V ; V1 6= V2; BdV1 \ BdV2 6= ;g; (4)satisfyi) V is a de
omposition, jVj � � , lordV � 2;4



ii) x 2 BdV () there exist distin
t members V1, V2 of V, su
h that x 2BdV1 \ BdV2;iii) BdV = SF ;iv) F is a dis
rete 
losed family of 
ardinality � � ;v) WB [WS is an open dis
rete family, WB \WS = ;;vi) (BdWB [ BdWS) \ BdV = ;;vii) WS re�nes V;viii) for ea
h F = BdV1 \ BdV2 2 F there is an element W 2 WB, su
h thatF �W � ClW � V1 [ F [ V2 (sin
e it is uniquely determined we denoteit WF ); WB = fWF : F 2 Fg;ix) WB, WS are families of 
ardinality � � ;x) for any W 2 WB [WS and x 2 BdW , and for any neighborhood U of x,U \ (X nClW ) 6= ;:Then, if we de�neWR = fV nCl(WS [WB) : V 2 V ; V nCl(WS [WB) 6= ;g;W =WS [WB [WR;~V = fV \W : V 2 V ; W 2 W ; V \W 6= ;g;~F = fBdV1 \ BdV2 : V1; V2 2 ~V ; V1 6= V2; BdV1 \ BdV2 6= ;g;it holds true that ~V, ~F satisfy i) { iv), as well as the additional properties:~F = F [ fBdW :W 2 WSg [ f(BdWF ) \ Vk; k = 1; 2 :F 2 F ;WF 2 WB ; V1; V2 2 V ; V1 6= V2;WF � V1 [ F [ V2g;and ~V =WS [WR [ fV \W : V 2 V ; W 2 WB ; V \W 6= ;g;and W satis�esa) W is a de
omposition and lordW � 2 [
ompare D1℄,b) x 2 BdW () there exist distin
t members W1, W2 of W, su
h that x 2BdW1 \ BdW2 [
ompare D2℄,
) WR \ (WS [WB) = ; and WR is an open dis
rete family [
ompare D3℄,d) BdW \ BdV = ; [
ompare D4℄, 5



e) W of 
ardinality � � [
ompare D10℄. (The list of the properties D1 { D13appears on the page 6.)Proof. Though the lemma was formulated and proved in [2℄ for the 
ountable
ase only, it plainly holds true for any � � �0. The same proof works wordby word after repla
ing the 
ountability 
onditions by the 
ondition, that theappropriate families are of 
ardinality � � . The 
ardinality bounds are thenobviously satis�ed, and in the proofs of all other properties separability has notbeen used.The same 
omment applies to other 
itations of results from [2℄, when usedin the 
urrent paper.The plan for the proof of the main result is this: using Lemmas 1, 2 andstarting from appropriate de
ompositions V1;j and families of 
losed sets F1;j ,as well as appropriate 
overings Ti;j (all open balls of suÆ
iently small radii)and families Oi;j (suÆ
iently narrow neighborhoods of elements of Fi;j , i.e. theballs of small radii around the sets), we shall indu
tively get the de
ompositionsVi;j , Wi;j , and the families of 
losed subsets Fi;j , i 2 N, 1 � j � n + 1, su
hthat for all i, j:D1 Vi;j , Wi;j are de
ompositions of X and lordVi;j � 2, lordWi;j � 2;D2 x 2 BdWi;j () there exist distin
t members W1, W2 of Wi;j , su
h thatx 2 BdW1 \ BdW2;D3 Wi;j =WSi;j[WBi;j[WRi;j , whereWSi;j ,WBi;j ,WRi;j are dis
rete families whi
hare disjoint in pairs, and WSi;j [ WBi;j is a dis
rete family (supers
riptsS;B;R 
ome from small, boundary and remnant, and those are what we
all the elements of the families | the terminology is motivated by theirproperties);D4 BdWi;j \ BdVi;j = ;;D5 WSi;j re�nes Vi;j , i.e. every element of WSi;j is a subset of an element of Vi;j ;D6 WRi;j = fV nCl(WSi;j [WBi;j) : V 2 Vi;j ; V nCl(WSi;j [WBi;j) 6= ;g;D7 Fi;j = fBdV1 \ BdV2 : V1; V2 2 Vi;j ; V1 6= V2; BdV1 \ BdV2 6= ;g;D8 for ea
h F = BdV1 \BdV2 2 Fi;j there is an element W 2 WBi;j , su
h thatF �W � ClW � V1 [ F [ V2 (sin
e it is uniquely determined we denoteit by WF ); WBi;j = fWF : F 2 Fi;jg;D9 Vi+1;j = fV \W : V 2 Vi;j ; W 2 Wi;j ; V \W 6= ;g;D10 all the families have at most � elements;D11 the interse
tion of the elements from WBk;j , k � i, 
ontaining a �xedF 2 Fi;j , is F ;D12 BdWi;j \Xj = ;, for all i 2 N and all j, 1 � j � n+ 1;6



D13 [n+1j=1WSi;j 
overs X , for all i 2 N;D14 diamW < 1=i, for all i 2 N, all j, 1 � j � n+ 1, and all W 2 WSi;j .The de
ompositions Vi;j play an essential role | using an appropriate in-dexing of the families Vi;j , i 2 N, for a �xed j, we shall de�ne a fun
tion j : X �! �(�), su
h that  = ( 1; : : : ;  n+1) will be the required embedding : X �! Ln(�) � �(�)n+1, d(f;  ) � ".In [6, 2, 7℄ no 
ontrol on 
loseness of the embedding to a given map wasrequired, and therefore it was suÆ
ient to take V1;j = fXg and F1;j = ;. Ourmain | and most diÆ
ult | task in this paper is to 
onstru
t V1;j and F1;j insu
h a way that d( ; f) � " will be obtained at the end.Now we are able to proveTheorem 3 Let X be a metrizable spa
e, dimX = n, wX � � , f : X �!J (�)n+1 a 
ontinuous map, and " a positive number. Then there is an embed-ding  : X �! Ln(�) su
h that d(f;  ) � ".Proof. Re
all that � = Cl� � `2. The equality diam'�1 Æ � � � Æ '�m� =diam�=2m is a simple 
onsequen
e of the fa
t that mappings '� are homothetieswith the 
oeÆ
ient 1=2 (for details see [6℄).Choose m so that diam�=2m < "=2. Then for any �1, �2, . . . ,�m from � itis true that diam'�1 Æ � � � Æ '�m� < "=2.For ea
h j = 1; : : : ; n + 1 let fj = pj Æ f , where pj : J (�)n+1 �! J (�)denotes the proje
tion onto the jth fa
tor.We are going to modify the 
onstru
tion of de
ompositions and their index-ing from [2℄ in su
h a way, that we will obtain mappings  j : X �! J (�), whi
hwill satisfy the inequalities d(fj ;  j) � ", and su
h that  = ( 1; : : : ;  n+1) willbe an embedding of X into Ln(�).Re
all that �m = [(�1;:::;�m)2�m'�1 Æ � � � Æ '�m�. We shall interpret thefun
tions fj as fun
tions into �m. Also, Cl, Int, et
. will apply to �m if theyare used in the range spa
e.In order to simplify notation, let us denote K = �m. If � = (�1; : : : ; �m),let S� denote S� = '�1 Æ � � � Æ '�m�:Also, for any � 2 K, let T� denoteT� = �m n [�2Knf�gS� = S� n [�2Knf�gS�:Using Lemmas 4, 11, 12, and 13 of [6℄ we see that all S� are 
losed in � (andhen
e in �m, too) and form a lo
ally �nite family and that all T� are open in�m. The same Lemmas imply that ea
h T� is obtained from S� by removingall the mth level verti
es1 (with the ex
eption of verti
es e� of �) and thatT = fT� :� 2 Kg is a de
omposition of �m (sin
e ClT� = S�) with lordT = 2.1Points of the form '�1 Æ � � � Æ '�me�. 7



In fa
t, exa
tly the mth level verti
es have the lo
al order 2; all other pointshave the lo
al order 1.Also, lordfClT� : � 2 Kg = 2, hen
e, for ea
h j,lordff�1j (Cl T�) : � 2 Kg � 2: (5)Note that all we are doing now is done for a �xed j, but, to keep notation assimple as possible, we will not use that j as an additional index until the veryend of the proof, where we are going to use all indi
es simultaneously. The onlyex
eptions are fj 's and Xj 's, where the omission of j 
ould 
ause an ambiguity(f and X already have its meaning).For any nonempty set f�1j (ClT� \ ClT�0), � 6= �0, we want to introdu
e anopen subset 
�;�0 of X , in su
h a way that all Cl 
�;�0 would form a dis
retefamily, and that f�1j (ClT� \ ClT�0) � 
�;�0 �(f�1j (Cl T�) \ f�1j (Cl T�0)) [ f�1j (T�) [ f�1j (T�0) �f�1j (ClT� [ ClT�0) (6)would hold true.Let us explain in some detail how this 
an be done, sin
e it is of the funda-mental importan
e for our work.In Lemma 4 of [6℄ it is proved thata) '�1Æ � � � Æ'�n�\'�1Æ � � � Æ'�n� 6= ; () (�1; : : : ; �n) � (�1; : : : ; �n) or�1 = �1; � � � ; �n�1 = �n�1.b) If two di�erent n-tuples (�1; : : : ; �n); (�1; : : : ; �n) are equivalent, with thetail index k � n� 1, then '�1Æ � � � Æ'�ke�k+1 = '�1Æ � � � Æ'�k�1'�k+1e�k is theonly point of '�1 Æ � � � Æ '�n� \ '�1 Æ � � � Æ '�n� .
) If two di�erent n-tuples (�1; : : : ; �n),(�1; : : : ; �n) satisfying a) are notequivalent then '�1Æ � � � Æ'�ne�n = '�1Æ � � � Æ'�n�1'�ne�n is the only point of'�1 Æ � � � Æ '�n� \ '�1 Æ � � � Æ '�n�.Therefore, for any � 6= �0, � = (�1; : : : ; �n), �0 = (�1; : : : ; �n), with nonemptyf�1j (Cl T� \ ClT�0), it holds true that (�1; : : : ; �n+2) = (�1; : : : ; �n; �n; �n)and (�1; : : : ; �n+2) = (�1; : : : ; �n; �n; �n) are interwoven in 
ase b), and that(�1; : : : ; �n+2) = (�1; : : : ; �n; �n; �n) and (�1; : : : ; �n+2) = (�1; : : : ; �n; �n; �n)are interwoven in 
ase 
). In both 
ases '�1 Æ � � � Æ '�n+2� [ '�1 Æ � � � Æ '�n+2�is a 
losed neighborhood of ClT� \ ClT�0 .De�ning
�;�0 = f�1j (Int�m('�1 Æ � � � Æ '�n+2� [ '�1 Æ � � � Æ '�n+2�));we obtain a dis
rete open family, satisfying (6).This follows from the fa
t that the sets '�1Æ � � � Æ'�n+2�['�1Æ � � � Æ'�n+2�form a dis
rete family and from the fa
t thatClT� \ ClT�0 � '�1 Æ � � � Æ '�n+2� \ '�1 Æ � � � Æ '�n+2� �Int�m('�1 Æ � � � Æ '�n+2� [ '�1 Æ � � � Æ '�n+2�) �8



'�1 Æ � � � Æ '�n+2� [ '�1 Æ � � � Æ '�n+2� �(ClT� \ ClT�0) [ T� [ T�0 � ClT� [ ClT�0 :See Fig. 1, where the shaded regions represent the originals in the 
ase m = 1).
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Figure 1: De�ning 
�;�0 for m = 1.In doing this, we will not distinguish 
�;�0 from 
�0;� (i.e. we shall 
hoosethe same set in both 
ases).Let us now introdu
e the following 
onvention: if f�1j (ClT� \ ClT�0) is anempty set, then we de�ne 
�;�0 = ;. Obviously, the above property (6) is stillsatis�ed.For ea
h pair of distin
t indi
es �, �0 (using 0-dimensionality of Xj) we
hoose an open set O�;�0 satisfying:f�1j (ClT� \ ClT�0) � O�;�0 � ClO�;�0 � 
�;�0 (7)and BdO�;�0 \Xj = ;:Again we take O�;�0 = O�0;�, and if f�1j (ClT� \ ClT�0) = ;, then we putO�;�0 = ;.Obviously, the sets O�;�0 form a dis
rete familyN = fO�;�0 : �; �0 2 K; � 6= �0g: (8)De�ne U� = f�1j (T�) [ [�0 6=�O�;�0 : (9)The dis
reteness of N impliesClU� = Cl f�1j (T�) [ [�0 6=�ClO�;�0 :9



In fa
t ClU� = f�1j (T�) [ [�0 6=�ClO�;�0 (10)sin
e Cl f�1j (T�) n f�1j (T�) � f�1j (ClT�) n f�1j (T�) =f�1j (ClT� n T�) = f�1j ( [�0 6=�(ClT� \ ClT�0)) =[�0 6=� f�1j (ClT� \ ClT�0) � [�0 6=�ClO�;�0 :The family U = fU� : � 2 Kg is an open 
over of X , sin
ef�1j (ClT�) = f�1j (ClT� n T�) [ f�1j (T�) =f�1j (T�) [ [�0 6=� f�1j (ClT� \ ClT�0) � f�1j (T�) [ [�0 6=�O�;�0 = U�and S�2K ClT� = �m.For any nonempty ClO�;�0 , the set 
�;�0 is the neighborhood of ClO�;�0meeting exa
tly two elements of the family U . If a point x of X does not belongto any ClO�;�0 , then for some � 2 K it belongs toU� n [�0 6=�ClO�;�0 = ClU� n [�0 6=�ClO�;�0 : (11)This set is a neighborhood of x, interse
ting exa
tly one member of the familyU (namely, U�). Therefore, lordU � 2: (12)Let � 6= �0. Then (S�6=�0 O�0;�) \ (S� 6=�O�;�) = O�;�0 , be
ause of the dis-
reteness ofN (see (8)). Therefore, O�;�0 � U�\U�0 . Also f�1j (T�\T�0) � O�;�0by (7). Further, for � 6= �; �0, by (6) and (7), f�1j (T�) \ O�0;� � f�1j (T�) \�(f�1j (ClT�0) \ f�1j (ClT�)) [ f�1j (T�0) [ f�1j (Cl T�)� � f�1j (T�\ClT�0\Cl T�)[f�1j (T� \ T�0) [ f�1j (T� \ T�) = ;. Therefore f�1j (T�) \ S�6=�0 O�0;� � O�;�0 .Analogously f�1j (T�0)\S�6=�O�;� � O�;�0 . Therefore, U� \U�0 � O�;�0 , hen
ewe have established U� \ U�0 = O�;�0 : (13)Using analogous reasoning, one 
an see that alsoClU� \ ClU�0 = ClO�;�0 : (14)Now, �x a well order < on K. After that we de�neV� = U� n [�<�ClO�;� : (15)10



V� is open, due to the dis
reteness of N .Let V = fV� : � 2 K; V� 6= ;g: (16)Sin
e V� � U�, it follows lordV � 2.Let �0 < �. Then V� \V�0 � U�\U�0 = O�;�0 , by (13). Sin
e V� \O�;�0 = ;by (15), it follows V� \ V�0 = ;. Therefore, the elements of V are disjoint inpairs. To prove that V is a de
omposition of X , it remains only to prove thatClV = X: (17)Simultaneously we shall prove thatClV� \ClV�0 = BdV� \ BdV�0 � BdO�;�0 (18)holds if � 6= �0.Let x be an element of X and let� = minf� 2 K : x 2 ClU�g: (19)The minimum exists, sin
e ClU = X , thereforex 2 ClU�;and x 62 ClU� , for every � < �. Consequently, x 62 ClO�;� by (10). Hen
e, ifx 2 U�, it follows x 2 V� by (15).Suppose x 62 V�. Then, by (9), (10), and (15), we see that x 2 (ClU�)nV� =�U� [S�0 6=�ClO�;�0� n �U� nS�0<�ClO�;�0� � S�0 6=�ClO�;�0 . Be
ause ofthe dis
reteness of N (8), there is a uniquely determined �0 6= �, su
h thatx 2 ClO�;�0 . Then, by (10), x 2 ClU�0 , and by the minimality of � (19), itfollows � < �0. Sin
e, by (9) and (15), O�;�0 � V�, it followsClO�;�0 � ClV�; (20)hen
e x 2 ClV�. In this 
ase x 2 BdV�.Therefore, we have proved that V is a de
omposition of X .Sin
e V� \V�0 = ;, it follows ClV� \ClV�0 = BdV� \BdV�0 , for any �0 6= �.Let x 2 BdV� \ BdV�0 , for �0 6= �. Without loss of generality, we mayassume � < �0. Then � = minf� 2 K : x 2 ClU�g be
ause of (12), sin
ex 2 ClU� and x 2 ClU�0 . Therefore, as above it follows x 2 ClO�;�0 . Fromx 2 O�;�0 it follows x 2 U� and �nally x 2 V�, a 
ontradi
tion with x 2 BdV�.Therefore x 2 BdO�;�0 .The last in
lusion in (18) is important, sin
e it implies thatBdV \Xj = ;; (21)and this in turn implies that property (3) of Lemma 1 will be satis�ed for thefamilies we are now 
onstru
ting (more detailed explanation follows after a fewlines). 11



There is only one more modi�
ation needed. Repla
ing any V 2 V byV + = IntClVwe preserve all properties of V mentioned above, in
luding (21), while making(2) ful�lled.Now the families V (obtained for di�erent j = 1; : : : ; n + 1) may play therole of V1;j , j = 1; : : : ; n + 1, i.e. they may be taken as the initial stage in theindu
tive 
onstru
tion announ
ed on the page 6.This means that the families V1;j , j = 1; : : : ; n+ 1, satisfy the properties ofthe families Vj of Lemma 1, and that if we take fBdV1\BdV2 6= ; :V1; V2 2 V1;jgfor Fj , so obtained families satisfy all the 
onditions of Lemma 1. Taking allopen balls of the diameter less then 1 for Tj , and open balls of the diameter 1around all the elements of Fj for Oj , applying Lemma 1 we get WS1;j , WB1;j .It may again be ne
esary to repla
e the elements W of WS1;j , WB1;j by W+ =IntClW (see Lemma 6 of [2℄ for the details of the proof why this may be done) inorder to make sure that all the required properties of V , F , WB , WS in Lemma2 will be satis�ed if we take them to be V1;j , F1;j , WB1;j , WS1;j , respe
tively.(While repla
ing W by W+ we shall preserveWS1;j , WB1;j as the symbols for thenew families, in order to simplify the notation.)Now Lemma 2 gives us families WR, W , ~V , ~F , whi
h we rename to WR1;j ,W1;j , V2;j , F2;j .So obtained V2;j , F2;j (in pla
e of V , F) now satisfy all the requirements ofLemma 1, and the pro
es 
ontinues that way while the whole in�nite sequen
esare obtained. (Doing this we take all open balls of the diameter less then 1=ifor Tj , and open balls of the diameter 1=i around all the elements of Fj for Oj .)It 
an easily be seen that the families Vi;j , Fi;j , and Wi;j , i 2 N, j =1; : : : ; n + 1, obtained that way satisfy the properties D1{D14. It is also veryimportant for our goal (proving the theorem) that they are 
onstru
ed indu
-tively beginning from the families V1;j , obtained by the above 
onstru
tion.Our next goal is to 
onstru
t an indexing of the elements of the families Vi;jsatisfying the following properties:I1 Ea
h element of V1;j is indexed by an element � 2 K = �m. Ea
h elementof Vi;j , i � 2, is indexed by an element of �m+i�1.I2 Let i be the �rst index su
h that F 2 Fi;j (i.e. F 2 Fi;j n Fi�1;j if i � 2, orF 2 F1;j if i = 1). If F = BdV1 \ BdV2 6= ;, for V1; V2 2 Vi;j , V1 6= V2,then V1, V2 are indexed by (�1; : : : ; �k ; �), (�1; : : : ; �k; �), � 6= �.For any l > i, F 2 Fl;j . Let F = Bd ~V1 \ Bd ~V2, ~V1; ~V2 2 Vl;j .Suppose ~V1 � V(�1;:::;�k;�) and ~V2 � V(�1;:::;�k;�). Then ~V1 is indexedby (�1; : : : ; �k; �; �; : : : ; �) 2 �m+l�1, and similarly ~V2 is indexed by theinterwoven element (�1; : : : ; �k; �; �; : : : ; �) 2 �m+l�1.I3 If V 2 Vi;j , i � 2, is indexed by an index having two or more identi
al
iphers at the end, then there is an F 2 Fk;j , k < i, su
h that F =BdV1 \ BdV2 6= ;, V1; V2 2 Vi;j , V1 6= V2, and either V = V1 or V = V2.12



I4 If V 2 Vi;j , i � 1, is indexed by (�1; : : : ; �l), and if V 0 2 Vk;j , k >i, is indexed by (�1; : : : ; �m+k�1), then V 0 � V implies (�1; : : : ; �l) =(�1; : : : ; �l).This will be done indu
tively.By (16) the elements of V1;j are indexed by elements of K. Now, the in-du
tive 
onstru
tion goes as follows. Given the indexing of Vi;j , the indexingof Vi+1;j is uniquely determined up to the last 
oordinate of (m + i)-tuples,a

ording to the property I4. Then, indi
es of elements of Vi+1;j obtained fromboundary sets of Wi;j are uniquely determined by I2. All other elements V ofVi+1;j may be indexed as follows: if V � V(�1;:::;�m+i�1) 2 Vi;j , then V is indexedby (�1; : : : ; �m+i�1; �), where � 2 � n f�1; : : : ; �m+i�1g. Sin
e V(�1;:::;�m+i�1)
ontains at most � small and remnant sets from Vi+1;j and sin
e the 
ardinalityof � n f�1; : : : ; �m+i�1g is � , this 
an be done.It must be 
he
ked only that the interweaving may be done at the initialstage. Let F = ClV(�1;:::;�m) \ ClV(�1;:::;�m) 6= ;be an arbitrary element of F1;j . Let us introdu
e � = (�1; : : : ; �m), �0 =(�1; : : : ; �m). Then F � BdO�;�0 and � 6= �0 This implies that O�;�0 isnonempty. Then f�1j (ClT� \ ClT�0) 6= ;, and hen
e ClT� \ ClT�0 6= ;. Fi-nally, using Lemma 4 of [6℄, we 
on
lude that (�1; : : : ; �m) � (�1; : : : ; �m) (
ase1) or (�1; : : : ; �m�1) = (�1; : : : ; �m�1) (
ase 2) (as already mentioned). Now, itis obvious that we may 
ontinue interweaving in the �rst 
ase, and may start anew one in the se
ond.An element V(�1;:::;�m+i�1) of Vi;j will be denoted in the rest of the paper byV j(�1;:::;�k), for the sake of emphasis, sin
e we now simultaneously 
onsider allthe families.Let j 2 f1; 2; : : : ; n+ 1g be �xed.A) To a point x 2 X nSi2N(SFi;j), a unique sequen
e �1; �2; : : : may beassigned in su
h a way, that x 2 V j(�1;:::;�k) for any k � m.B) If x 2 F 2 Fi;j n Fi�1;j , i � 2, or x 2 F 2 F1;j , where F = BdV1 \BdV2 6= ;, V1; V2 2 Vi;j , V1 6= V2, and V1, V2 are indexed a

ording to I2, then[�1; : : : ; �k; �; �; : : : ; �; : : :℄ = [�1; : : : ; �k; �; �; : : : ; �; : : :℄ is assigned to x.Then,  j : X �! J (�) is de�ned by j(x) = [�1; : : : ; �k ; : : :℄in Case A), and j(x) = [�1; : : : ; �k ; �; �; : : : ; �; : : :℄ = [�1; : : : ; �k; �; �; : : : ; �℄in Case B).It is obvious that the fun
tion  j is well-de�ned and that points belongingto Si2N(SFi;j) = Si2N BdVi;j are mapped to rational points, and all otherpoints to irrational points of J (�) (by properties I3 and D11).13



Exa
tly as in [6℄ or [2℄ (i.e. by proving that the family f 1; � � � ;  n+1g sepa-rates points and 
losed sets) it follows that = ( 1; � � � ;  n+1) : X �! Ln(�)is an embedding.It only remains to prove that d(fj ;  j) � ".From the de�nition of  j it follows thatx 2 V� =)  j(x) 2 S�: (22)Let x 2 X be an arbitrary point. As before, 
hoose (�1; : : : ; �m) = � =minf� : x 2 ClU�g.If x 2 f�1j (T�), then x 2 U� and by (15) it follows x 2 V�. Therefore by(22)  j(x); fj(x) 2 S�;and d( j(x); fj(x)) � " follows from the fa
t that diamS� = diam�=2m < ".If x 62 f�1j (T�), then there is a �0 > � su
h that x 2 ClO�;�0 6= ;; andsin
e ClO�;�0 � 
�;�0 � (f�1j (ClT�) \ f�1j (ClT�0)) [ f�1j (T�) [ f�1j (T�0) �f�1j (Cl T� [ ClT�0) it follows that fj(x) 2 S� [ S�0 . From ClO�;�0 � ClV�, by(22) if follows  j(x) 2 S�. Hen
e j(x); fj(x) 2 S� [ S�0 :But S� and S�0 have a point in 
ommon, hen
e diam(S� [ S�0) � 2 diamS� �2 diam�=2n < ".Corollary 4 Let X be a metrizable spa
e, dimX � n, wX � � , f : X �!J (�)n+1 a 
ontinuous map, and " a positive number. Then there is an embed-ding  : X �! Ln(�) su
h that d(f;  ) � ".Proof. Apply Theorem 3 to the disjoint union of X and In, with f extendedto the union by, say, a 
onstant map on In.3 The separable 
aseJ (3) is the 
lassi
 triangular Sierpi�nski 
urve ([6℄). Let Ln = fx 2 J (3)n+1 :at least one 
oordinate of x is irrational g.In [2℄ the following theorem has been announ
ed:Theorem 5 Let X be a separable metrizable spa
e, dimX � n, f : X �!J (3)n+1 a 
ontinuous map, and " a positive number. Then there is an embedding : X �! Ln su
h that d(f;  ) � ".Proof. The proof may be obtained by 
ombining the proofs of [2℄ and thepresent paper. First we follow the 
onstru
tion of the families Wi;j , Vi;j , Fi;jas des
ribed above for the 
ase � = f1; 2; 3g | we identify J (3) with �(3).14



After that, we modify the families Wi;j , Vi;j , Fi;j and obtain an indexing ofthe modi�ed families, as des
ribed in [2℄. The indexing enables us to de�ne anembedding by the same formula as above (or in [2℄), and the same argumentas above shows that it satis�es the required properties. The details will appearelsewhere.A
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