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Abstract

Let J(7) be Lipscomb’s one-dimensional space (cf. [4]) and L,(7) =
{x € J(r)"*': at least one coordinate of x is irrational } C J(r)"**
Lipscomb’s n-dimensional universal space of weight 7 > Y. Modifying
Lipscomb’s decompositions constructed in [4] and using the indexing tech-
niques developed in [6, 2, 7] we prove:

Let X be a metrizable space, dim X < n, wX <7, f: X — J(r)"'
a continuous map, and € a positive number. Then there is an embedding
Y : X — Ly(7) such that d(f,¥) < e.

Also, in the separable case an analogous result is obtained, in which
the classic triangular Sierpidski curve (homeomorphic to J(3)) is used
instead of J(No) (strengthening the results of [2]).

Keywords: covering dimension, (generalized) Sierpinski curve, universal space,
Lipscomb’s universal space, embedding, decompositions of topological spaces
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1 Introduction and definitions

In [3, 4] S. L. Lipscomb has defined the space J(7) as a factor-space of gener-
alized Baire’s 0-dimensional space and used it in his construction of a universal
n-dimensional metrizable space of weight 7, 7 > N, which was defined as a
subspace of J(7)"t". In [6, 7] it was proved that J(r) is homeomorphic to a
generalized Sierpinski curve ¥(r) (for all cardinal numbers 7 # 0, including the
finite ones; 7 = 3 yields the classic triangular Sierpifski curve — compare [5]).
Also, Lipscomb’s embedding theorem is proved in [6, 7] by the use of a special
indexing of certain decompositions of metrizable spaces. Here we use similar
techniques to prove the theorem stated in the abstract.



We shall use the notation of [2] which is in turn based on the notation of
[1, 3] (with a few slight modifications).

|X'| denotes the cardinal number of the set X.

Let 7 > Ny be a cardinal number and let A be a fixed set such that |A| =
7. Then Baire’s generalized 0-dimensional space (of weight 7) is the set AN
(N ={1,2,3,...}) of all sequences of elements of A equipped with the product
topology (while A is equipped with the discrete topology).

For A\=(Ay,..., A\, .- )s 0= (B1,y -+ i, - - -) the equivalence relation ~ is
defined as follows ([3, 4]):

A~ p<= \=pordj € Nsuchthat :

Wk k<j = A\ = g,

11) Vs € N,/\j = Wj+s,

111) Vs € N, )\j+s = j-

In the case pu # A such a j is uniquely determined and is called the tail index
of A and u. We also say that the two sequences are interwoven.

We shall make use of an analogous equivalence relation defined on A™ by
(/\1,...,/\m) ~ (,ul,...,,um) = (/\1,...,/\m) = (,ul,...,,um)
or3j €{l,... , m —1 }suchthat

I)Vk,k <J = A\ = lg,

nvlie{j+1,....,m} N =,

ivie {j+1,...,m5 N = uj.

Lipscomb’s space J(7) is defined as the quotient space J (1) = AN/N.

The equivalence class of (A1,..., Am,...) is denoted by[A1,..., A\pm,...]. An
equivalence class may be a singleton — in which case it is called an érrational
point of J (1) — or a dyad — in which case it is called a rational point of T (7).
This construction generalizes the construction of the segment [0,1] from the
Cantor middle-third set by identifying the adjacent end points in the Cantor
space. J(7) is a one-dimensional metrizable space of weight 7 ([3]).

The generalized Sierpiniski curve ¥(7) was defined in [6] as a subspace of the
Hilbert space £2(7) = {(zx) € R*: 3., 23 < oo} as follows.

Let e, X € A, be defined by e), = 6y, (the Kronecker symbol) for Vu € A,
and let @y : £5(7) —> £2(7) be defined by

=

be the homotheties with the coefficients 1/2 and the centers e*, X € A.

Let 0 = {(xx) € £2(1): Y_ycp2x =1 & VA, 0< 25 < 1}. Then ¥ = Clo =
{(zn) € La(T): Z)\eAz)\ <1&VA0<x) <1}

Then finally

Em: U @Alo”'O@)\mE
(Al,...,Am)EAm
and
S(r)= () Zm-
mEN



Call the images of the points e*, A € A, via all py, 0 -0y, (with the
exception of the points e*) the rational points of ¥(7), and all other points the
irrational points of X(7). In [6, 7] it was proved that x : J(7) — X(7) defined
by

XA A ) =[] enocopa,D (1)
melN

is a homeomorphism which sends rational points to rational points and irrational
points to irrational points.

In the rest of the paper we shall use the homeomorphism y to identify the two
spaces freely. In particular, J(7) is metrizied by the metric inherited from £ (7).
J (7)™ is equipped with the metric d(z,y) = max{d(z;,y;):j =1,...,n+1}.

The constructions of J(7) and of ¥(7) make sense for finite 7, too, when
(5(7) is replaced by R, for an appropriate k& € N. The function Y, defined by
(1), is in this case again a homeomorphism preserving rationality /irrationality
of the points. Note that ¥(3) is the classic triangular Sierpinski curve.

Lipscomb’s universal space L, (7) (for the class of metrizable spaces of di-
mension < n and weight < 7) is the following subspace of 7 (r)"*":

L.(t)={z € L7(7')n+1 : at least one coordinate of = is irrational }.

(In this definition, as in all other situations, we shall not distinguish J(7)
from X(7), so if it will suit our purposes, we shall interpret L, (7) as {z €
(1) at least one coordinate of x is irrational }.)

Let U be a family of subsets of X, x € X. The local order of U at x is
defined as lord, U4 = inf{k :z has a neighborhood intersecting k elements of U/} €
{0,1,2,...,00}. The local order of U is defined as lordd = sup{lord, U :z € X}.

Bdid = Uy ¢y BdU, where BAU denotes the boundary of the set U; Cli =
Uvey CIU, where CIU denotes the closure of the set U.

A decomposition of the space X is a pairwise disjoint locally finite family of
open nonempty subsets of X whose closures cover X.

2 The main theorem

In this section we are going to state and prove the main result of the paper that
for any map from an n-dimensional metrizable space of weight 7 into J (7')7hLl
there is an embedding of that space into L, (7) arbitrarily close to the map.

As in [2] we shall construct special sequences of decompositions and then use
an indexing similar to one obtained in [2] in order to construct an approximation
of the given map by an embedding.

The main tool enabling us to perform the inductive construction of such
sequences of decompositions is the following Lipscomb’s lemma (the notation is
modified to fit ours; compare [6, 2]):

Lemma 1 ([4, Lemma 4, p.152]) Letn € {0,1,2,...}. Let X be a metric space
such that dimX =n, wX =7 > Ny.



Let X = X3 UXoU---UXpq1, where Xq,..., X411 are pairwise disjoint
0-dimensional subsets of X.

Let T be an arbitrary open covering of X. For each j, 1 <j<n+1, letV;
be a decomposition of X such that |V;j| < 1 and lordV; < 2. Let F;, |F;| < T,
be a discrete closed family such that

BdV; =7, (2)
and let for each k € {1,...,n+ 1} and distinct ji,..., 5, € {1,...,n+ 1}
dim(Bdelﬁ---r‘leij)Sn—k (3)

hold.

Let O; = {Op: F € F;} be an open family such that F C Op for each
F e .7:]'.

Then for each j, 1 < j < n+ 1, there are discrete families st, WJB, and
W]Q of cardinality < T, which are disjoint in pairs, such that

Wi =W UwP uwy?

is a decomposition of X satisfying (for each j, 1 <j<n+1):

(a) lord W; < 2;

(b) {CIW : W € W7} refines T ; U?ill W5 covers X ;

(¢) if x € BAW; then there are distinct elements W1, Wa in W; such that
x € BAW; N Bd Ws;

(d) W; covers X; (hence BAW; misses X;);

(e) BdW; nBdV; = 0;

(f) WJS U WJQ refines V;;

(9) WJS U WJB is a discrete family;

(h) WjB = {Wg:F € F;} (the indexing is faithful, i.e. injective) and F C Wg C

ClWr C OF for each F € Fj.

If X is a metrizable space of dimension dimX = n, it may be presented in
the form X = X3 UXo U+ U Xy 41, where Xy,..., X1 are pairwise disjoint
0-dimensional (or empty) subsets of X. We fix one such presentation and use it
throughout the paper.

Besides Lemma 1 the main tool in performing the inductive construction in
the proof of the main result, is the following lemma:

Lemma 2 (/2, Lemma 3]) Let families V, F, WB, W? of subsets of X, where
F={BdViNBdVy:V1,V2 €V, Vi # V3, BdVi N BdV; # 0}, (4)
satisfy

i) V is a decomposition, |V| < 1, lordV < 2;



it) x € BdVY <= there exist distinct members Vi, Vo of V, such that © €
BdVi NnBdVs;

i) BAY = F;

i) F is a discrete closed family of cardinality < 7;

v) WBUWS is an open discrete family, WB n W9 = §);
vi) (BAWP UBAWS)NBAY = 0);

vii) W9 refines V;

viii) for each F = BdVy NBdVy € F there is an element W € WEB | such that
FCWCCIW CViUF UV, (since it is uniquely determined we denote
it Wp); WE ={Wp:F e F};

iz) WB, W3 are families of cardinality < T;
z) for any W € WBEUWS and x € BAW, and for any neighborhood U of x,

Un(X\CLW) # 0.

Then, if we define
WE = {V\ CIWSUWB): vV e v, V' \ CIIW?® U WE) £ i},
w=wSuwBuwh,
V={VNW:VeV,WeWw, VAW # 0},
F={BdVinBdVz:V;,Vs € V, Vi # V2, BdV; N Bd Vs # 0},
it holds true that V, F satisfy i) — iv), as well as the additional properties:
F=FU{BAdW:W e WU {BAWr)NV;, k=1,2:

FeF,Wrp e WI Vi,V €V, Vi £ Vo, Wp CViUF UL},

and

V=WSUWRBU{VAW:V eV, WeWE, VW #0},
and W satisfies
a) W is a decomposition and lord W < 2 [compare D1],

b) x € BAW <= there exist distinct members Wi, Wo of W, such that x €
Bd Wy N Bd W, [compare D2],

c) WEA WS UWB) =0 and WE is an open discrete family [compare D3],

d) BAWNBAY =0 [compare D4],



e) W of cardinality < T [compare D10]. (The list of the properties D1 — D13
appears on the page 6.)

Proof. Though the lemma was formulated and proved in [2] for the countable
case only, it plainly holds true for any 7 > Ry. The same proof works word
by word after replacing the countability conditions by the condition, that the
appropriate families are of cardinality < 7. The cardinality bounds are then
obviously satisfied, and in the proofs of all other properties separability has not
been used. |

The same comment applies to other citations of results from [2], when used
in the current paper.

The plan for the proof of the main result is this: using Lemmas 1, 2 and
starting from appropriate decompositions V; ; and families of closed sets Fi ;,
as well as appropriate coverings 7; ; (all open balls of sufficiently small radii)
and families O; ; (sufficiently narrow neighborhoods of elements of F; ;, i.e. the
balls of small radii around the sets), we shall inductively get the decompositions
Vi j, Wi, and the families of closed subsets F; j, ¢ € N, 1 < j <n + 1, such
that for all 4, j:

D1 V; ;, W; ; are decompositions of X and lordV; ; < 2, lord W; ; < 2;

D2 z € BdW,; <= there exist distinct members W3, W5 of W, ;, such that
zeBAdW; N BdWQ;

D3 W;;j = W2, UWEUWE, where W2, WP, W are discrete families which

2,77 2,77 2,]7?
are disjoint in pairs, and WZSJ U Wﬂ is a discrete family (superscripts
S, B, R come from small, boundary and remnant, and those are what we
call the elements of the families — the terminology is motivated by their
properties);

D4 BdW,;; NBdV;; = 0;

D5 WZS] refines V; ;, i.e. every element of WZS] is a subset of an element of V; ;;
D6 WE = {V\ CIWS, UWE): V e Vi, V\ CIOWS; UWE) # 0}

D7 ‘7:@]' = {BdVl NBdV;: Vi,VQ S ViJ', i 75 Vé, BdVi N BdV; ;é @},

D8 for each F = BdV; NBd Vs € F; ; there is an element W € W5, such that

R
FCW CCIW CV; UF UV, (since it is uniquely determined we denote
it by Wr); Wg = {WF :F e .7:1'7]'};
D9 Vi+1,j = {VﬂW:V € Vi,j, W e Wi,j, VnW # @},

D10 all the families have at most 7 elements;

D11 the intersection of the elements from W,fj, k > ¢, containing a fixed
F e f@j, is F;

D12 BAdW,;;NX; =0, forallie Nandall j, 1 <j<n+1;



D13 U?;TWZSJ covers X, for all € N;
D14 diamW < 1/i,foralli e Nyall j,1<j<n+1,and all W € Wzsj

The decompositions V; ; play an essential role — using an appropriate in-
dexing of the families V; ;, ¢ € N, for a fixed j, we shall define a function
¥+ X — 2(7), such that ¢ = (¢1,...,%n+1) will be the required embedding
¥ X — Ly(1) CE(1)" d(f, ) <e.

In [6, 2, 7] no control on closeness of the embedding to a given map was
required, and therefore it was sufficient to take V; ; = {X} and F; ; = 0. Our
main — and most difficult — task in this paper is to construct Vi ; and Fi ; in
such a way that d(v, f) < e will be obtained at the end.

Now we are able to prove

Theorem 3 Let X be a metrizable space, dmX =n, wX <7, f: X —
j(T)n+1 a continuous map, and € a positive number. Then there is an embed-
ding ¢ : X — L, (1) such that d(f,¢) <e.

Proof. Recall that ¥ = Clo C ¢;. The equality diampy, o ---0py X =
diam ¥/2™ is a simple consequence of the fact that mappings ¢, are homotheties
with the coefficient 1/2 (for details see [6]).

Choose m so that diam ¥/2™ < ¢/2. Then for any A1, Az, ..., Ay from A it
is true that diam gy, 0---0py, ¥ < g/2.

For each j = 1,...,n + 1 let f; = pj o f, where p; : J(7)" ™! — J(7)
denotes the projection onto the jth factor.

We are going to modify the construction of decompositions and their index-
ing from [2] in such a way, that we will obtain mappings ¢; : X — J(7), which
will satisfy the inequalities d(f;, ;) < e, and such that ¢ = (¢1, ..., Yp41) will
be an embedding of X into L, (7).

Recall that ¥, = Uy, am)eam®a, © - -0 oy, Y. We shall interpret the
functions f; as functions into X,,. Also, Cl, Int, etc. will apply to X, if they
are used in the range space.

In order to simplify notation, let us denote K = A™. If K = (A1,..., Am),
let S, denote

S = 0---0px, 5.

Also, for any k € K, let T, denote

T.=%.\ |J S=5\ U 5

xEK\{x} XEK\{x}

Using Lemmas 4, 11, 12, and 13 of [6] we see that all S, are closed in ¥ (and
hence in X,,,, too) and form a locally finite family and that all T,; are open in
Ym- The same Lemmas imply that each T is obtained from S, by removing
all the mth level vertices® (with the exception of vertices e* of ¥) and that
T ={T.:x € K} is a decomposition of ¥, (since C1T,, = S,) with lord T = 2.

'Points of the form ¢y, 00y, ek.




In fact, exactly the mth level vertices have the local order 2; all other points
have the local order 1.
Also, lord{Cl1T} : x € K} =2, hence, for each j,

lord{f; '(C1T,): k € K} < 2. (5)

Note that all we are doing now is done for a fixed j, but, to keep notation as
simple as possible, we will not use that j as an additional index until the very
end of the proof, where we are going to use all indices simultaneously. The only
exceptions are f;’s and X’s, where the omission of j could cause an ambiguity
(f and X already have its meaning).

For any nonempty set f{l(ClT,i NClT,), k # k', we want to introduce an
open subset €2, . of X, in such a way that all C1€,, ,» would form a discrete
family, and that

[ (CITNClTy) C Qe C

(f; MCIT) N f; H(CITw)) U f; H(Tw) U f; 1 (Twr) C
f7H(CIT, UCIT,) (6)

would hold true.

Let us explain in some detail how this can be done, since it is of the funda-
mental importance for our work.

In Lemma 4 of [6] it is proved that

a) pr, 00N, XNy 000, NFD <= (Ai,...,\n) ~ (p1,.-., 1) or
AL =1, Adp—1 = fhn—1.

b) If two different n-tuples (A1, ..., An), (41, ..., 14n) are equivalent, with the
tail index k < n — 1, then @y, 0---0 @y, M+l =y, 0---0 goxk_lcp,\kﬂe}"“ is the
only point of py,0---0py XN, 0--0p, 3.

c) If two different n-tuples (A\1,...,An),(pt1,---,un) satisfying a) are not
equivalent then py,0-- 0y el = py,0---0@py. @, e\ is the only point of
Pr0 oA BN Py, 00y, B

Therefore, for any k # k', kK = (\1,..., A\n), & = (U1, - - ., tbn), with nonempty
fjfl(Cl T, N ClT, ), it holds true that (A1,...,Ana2) = (A, -, An, An, An)
and (g1, .-, pna2) = (U1, -, fhn, tbn, ) are interwoven in case b), and that
A, Ana2) = (A, e o Ans s o) and (i, - -5 pona2) = (1, -+ iy Any An)
are interwoven in case c). In both cases gy, 0- -0y, , X U@y 0---0p, .2
is a closed neighborhood of C1T,, N C1T,.

Defining

QN,N’ = f]’il(IntEm (80)\1 0---0 SOAnJrzE U Som 0---0 cpllfnJrZE)))

we obtain a discrete open family, satisfying (6).
This follows from the fact that the sets gy, 00y, , XU, 000, 5
form a discrete family and from the fact that

ClT,NnClT, C PA O O PN u NPy 00y, B C

IntEm (g0>\1 0--+0 (p>\n+22 U Pu, ©°°°0 @Uu-}—QE) -



50)\10"'090/\n+2EU50u1o"'OcpﬂnJrzz g
(ClT. NC1T,)UT,UT CCIT,UCLT, .

See Fig. 1, where the shaded regions represent the originals in the case m = 1).

Figure 1: Defining Q, ./ for m = 1.

In doing this, we will not distinguish €, ./ from Q, . (i-e. we shall choose
the same set in both cases).

Let us now introduce the following convention: if fj_l(Cl T, NClT,) is an
empty set, then we define Q, - = 0. Obviously, the above property (6) is still
satisfied.

For each pair of distinct indices x, k' (using O-dimensionality of X;) we
choose an open set Oy, ./ satisfying:

fi N (CITNClT,) C Opr CCLOg o1 C Qe o (7)
and
BdO, . NX; =0.

Again we take Oy, = Ow s, and if f7'(CIT, N CITy) = @, then we put
Opnr = 0.

Obviously, the sets Oy . form a discrete family

N ={0xx kK" € K, k #K'}. (8)
Define
Ue=f;"Te)U | Onw- (9)
K'#Kk

The discreteness of A/ implies

ClU, = Clf; {(Tx) U | ClOx .
K #Kk



In fact
ClU, = f; "(Tx) U | ClOxw (10)
K'#K
since

CLTHTI\ 7 (T € £ (QUT) \ £ (T) =

FFUCITANT,) = £7' (| (CIT. N CLTy)) =
K'#K
U ' C1.nClTe) € | ClO .
K'#Kk K'#Kk
The family &/ = {U,: k € K} is an open cover of X, since

fHCIT,) = f7HCIT \ Ty U fH(Ty) =

1 @)u | 71T N QT C 7T U | Onw = Ui
K'#K K'#£K
and J,.cr C1T,; = Xyp,.
For any nonempty ClO, ., the set Q, . is the neighborhood of ClO,
meeting exactly two elements of the family ¢/. If a point z of X does not belong
to any ClOy, ., then for some k € K it belongs to

Us\ |J ClOxw =ClUL\ | ClO . (11)
K'#K K'#K

This set is a neighborhood of z, intersecting exactly one member of the family
U (namely, Uy). Therefore,
lord < 2. (12)
Let & # «'. Then (U, Ow ) N (U, Orpw) = Og,wr, because of the dis-
creteness of N (see (8)). Therefore, O o C U.NU, . Also fj*l(T,iﬂT,ir) C Opyw
by (7). Further, for u # k,&', by (6) and (7), f]fl(T,g) NOk,u C f{l(T,i) N
((F; 1 (CUTe) N f 1 (CITY)) U f; 1 (Tw) U £ H(CITY)) € f; 1 (TWNCI T, NCL T, )U
f].—l(Tn NT.)U f].—l(TH NT,) = 0. Therefore fj_l(TH) N U”#, Orr .y C Oy e
Analogously fj_l(T,ir) N Uxin Ogk.a € Oy . Therefore, U, NU, C Oy, o/, hence
we have established
U NUy = Oy - (13)

Using analogous reasoning, one can see that also
ClU,NCLU, = ClOy . (14)

Now, fix a well order < on K. After that we define

Ve =U\ | C1Os,.. (15)

V<K

10



V. is open, due to the discreteness of .
Let
V={V.:s €K,V,#0}. (16)
Since V,, C Uy, it follows lord V < 2.
Let k' < k. Then V,NV,y CU,NU,y = Oy, by (13). Since V,NOy e =0
by (15), it follows V, NV, = (. Therefore, the elements of V are disjoint in
pairs. To prove that V is a decomposition of X, it remains only to prove that

Cly = X. (17)
Simultaneously we shall prove that
ClV,NClV, =BdV, NBdV, CBdO, (18)

holds if k # K'.
Let z be an element of X and let

k=min{v € K:2 € ClU,}. (19)
The minimum exists, since C1U = X, therefore
z € ClU,,

and z ¢ ClLU,, for every v < k. Consequently, z ¢ C10,,, by (10). Hence, if
x € Uy, it follows z € V; by (15).

Suppose x ¢ V.. Then, by (9), (10), and (15), we see that z € (ClU,)\Vx =
(U,i U Un,iﬂ Cl O,g,,ir) \ (UN \ U< C1 On,nr) C UH,¢H ClOy . Because of
the discreteness of N (8), there is a uniquely determined s’ # k, such that
z € ClOy,. Then, by (10), z € ClU,, and by the minimality of x (19), it
follows k < k'. Since, by (9) and (15), Oy, C Vi, it follows

ClOy . C C1Vy, (20)

hence x € C1V,. In this case z € Bd V.

Therefore, we have proved that V is a decomposition of X.

Since V,, NV, = 0, it follows C1V,, NClV,y = BdV,,NBd V., for any &' # k.

Let x € BdV, NBdV,, for ¥ # k. Without loss of generality, we may
assume k£ < &'. Then x = min{vr € K:z € ClU,} because of (12), since
z € ClU, and z € ClU,:. Therefore, as above it follows z € ClO, .. From
z € Oy, it follows z € U, and finally = € V), a contradiction with z € Bd V.
Therefore x € Bd Oy ..

The last inclusion in (18) is important, since it implies that

BdVNX; =9, (21)

and this in turn implies that property (3) of Lemma 1 will be satisfied for the
families we are now constructing (more detailed explanation follows after a few
lines).

11



There is only one more modification needed. Replacing any V' € V by
Vit =IntClV

we preserve all properties of V mentioned above, including (21), while making
(2) fulfilled.

Now the families V (obtained for different j = 1,...,n + 1) may play the
role of V1 ;, j = 1,...,n + 1, i.e. they may be taken as the initial stage in the
inductive construction announced on the page 6.

This means that the families V; ;, j = 1,...,n + 1, satisfy the properties of
the families V; of Lemma 1, and that if we take {BdViNBd V5 # 0:V7,V2 € V4 ;}
for Fj, so obtained families satisfy all the conditions of Lemma 1. Taking all
open balls of the diameter less then 1 for 7;, and open balls of the diameter 1
around all the elements of F; for O;, applying Lemma 1 we get Wls s ij.

It may again be necesary to replace the elements W of W, WP, by W =
Int C1W (see Lemma 6 of [2] for the details of the proof why this may be done) in
order to make sure that all the required properties of V, F, WE, WS in Lemma
2 will be satisfied if we take them to be Vi ;, Fi j, ij, ij, respectively.
(While replacing W by W we shall preserve Wy ;, WP, as the symbols for the
new families, in order to simplify the notation.)

Now Lemma 2 gives us families W%, W, V, F, which we rename to ij,
Wl,j) V2,j7 -7:2,]'-

So obtained Vs j, F» ; (in place of V, F) now satisfy all the requirements of
Lemma 1, and the proces continues that way while the whole infinite sequences
are obtained. (Doing this we take all open balls of the diameter less then 1/i
for 7;, and open balls of the diameter 1/i around all the elements of F; for O;.)

It can easily be seen that the families V;;, F;;, and W;;, i € N, j =
1,...,n + 1, obtained that way satisfy the properties D1-D14. It is also very
important for our goal (proving the theorem) that they are construced induc-
tively beginning from the families V) ;, obtained by the above construction.

Our next goal is to construct an indexing of the elements of the families V; ;
satisfying the following properties:

I1 Each element of V; ; is indexed by an element x € K = A™. Each element
of V; j, i > 2, is indexed by an element of A™+i~1,

I2 Let i be the first index such that F € F;; (i.e. F € F;; \ Fi—1,jif i > 2, or
FeF,ifi=1). f F=BdVinBdVy # 0, for Vi,Vs € Vi, Vi # V&,
then Vi, V5 are indexed by (A1,..., Ak, 1), (A1, A, ), p # v.
For any [ > i, F € Fij. Let F =BdV, nBdVa, V1,V € V.

Suppose V; C Vidrseoaew and Vo C Viar,aew)- Then V; is indexed
by (Ats--os Xy s ¥y - .., v) € A™H=1 and similarly Vs is indexed by the
interwoven element (Ai,..., A,y i1, ..., ) € AL,

I3IfV € V;;, i > 2,is indexed by an index having two or more identical
ciphers at the end, then there is an F' € F j;, k < i, such that F' =
Bd‘/l ﬁBdVQ ;é @, V1,V§ € V@j, V1 75 VQ, and either V = ‘/1 orV = VQ.
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I4If V € V;;, i > 1, is indexed by (Ai,...,X), and if V' € Vi ;, k >
i, is indexed by (g1,..., m+tk—1), then V' C V implies (A1,...,\) =
(:u’la'-'a,u’l)'

This will be done inductively.

By (16) the elements of V; ; are indexed by elements of K. Now, the in-
ductive construction goes as follows. Given the indexing of V; ;, the indexing
of Vit1; is uniquely determined up to the last coordinate of (m + i)-tuples,
according to the property I4. Then, indices of elements of V;1; ; obtained from
boundary sets of W; ; are uniquely determined by I2. All other elements V' of
Vit1,; may be indexed as follows: if V- C V(x, . x,.,._1) € Vi, then V is indexed
by (/\1, ey /\m+i_1,/\), where A € A \ {/\1, Cay /\m—i-i—l}- Since I/()\l,...,/\mﬂ,l)
contains at most 7 small and remnant sets from V;; ; and since the cardinality
of A\ {A\1,..., Amyi—1}is 7, this can be done.

It must be checked only that the interweaving may be done at the initial
stage. Let

F=ClVi, o) NCWVy ) # 0

be an arbitrary element of Fi ;. Let us introduce £ = (A1,...,Am), & =
(@1, pm). Then F C BdOy, and x # &' This implies that O, . is
nonempty. Then fj_l(ClT,i NCIT,) # 0, and hence CIT, N ClT, # 0. Fi-
nally, using Lemma 4 of [6], we conclude that (Ar,..., Am) ~ (@1, .., pm) (case
1) or (A1, Am—1) = (W41, -, m—1) (case 2) (as already mentioned). Now, it
is obvious that we may continue interweaving in the first case, and may start a
new one in the second.

An element V(y, . ,..,_,) of Vi; will be denoted in the rest of the paper by
Vé\1 )’ for the sake of emphasis, since we now simultaneously consider all
the families.

Let j € {1,2,...,n+ 1} be fixed.

A) To a point z € X \ U,.N(UFi;), a unique sequence Ar, Az, ... may be
assigned in such a way, that = € V(&u---,kk) for any k > m.

B)Ifz € Fe F;\Fi1j,i>2 orx e F e Fj where F = BdVinN
BdV, #0, Vi,V € V;j, Vi # Vs, and V4, Vs are indexed according to 12, then
Ay Mt Uy ooy vy = A1y ooy Ny Uy iy oo iy - ] s assigned to .

Then, ¢; : X — J(7) is defined by

¥i(@) = A, Ak, -
in Case A), and

(@) =My M s Vs V] = A Ay U - ]

in Case B).

It is obvious that the function ¢; is well-defined and that points belonging
to U;eN(UFij) = U;eNn Bd Vi j are mapped to rational points, and all other
points to irrational points of J(7) (by properties I3 and D11).
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Exactly as in [6] or [2] (i.e. by proving that the family {¢y, -, ¥, 41} sepa-
rates points and closed sets) it follows that

Y= (Y1, Pnt1) 1 X — Ly(7)

is an embedding.
It only remains to prove that d(f;,;) <e.
From the definition of v; it follows that

z eV, = ¢;(z) € S. (22)

Let x € X be an arbitrary point. As before, choose (A1,...,An) = kK =
min{v:z € ClU,}.

If z € f;'(Ty), then z € U, and by (15) it follows z € V,.. Therefore by
(22)

¢j(x)7fj(x) € Sm

and d(¢;(z), fj(z)) < e follows from the fact that diam S, = diam /2™ < e.

If z ¢ fj_l(T,g), then there is a k' > & such that z € ClO, v # 0, and
since ClOyr € Qo C (f7'(CIT,) N 71 (CITw)) U f71(T) U £ (Tw) C
f; 1(C1T,, U CIT,) it follows that f;(z) € Sx U Sxr. From ClO, . C ClV, by
(22) if follows v (x) € Sy. Hence

’(,bj(.’l?), f](.’lf) S SH U Snr.

But S, and S/ have a point in common, hence diam(S, U Sx/) < 2diam S, <
2diam $/2" < e. |

Corollary 4 Let X be a metrizable space, dimX < n, wX <7, f: X —
j(T)n+1 a continuous map, and € a positive number. Then there is an embed-
ding ¢ : X — Lyp(7) such that d(f,¢) <e.

Proof. Apply Theorem 3 to the disjoint union of X and I, with f extended
to the union by, say, a constant map on I”. |

3 The separable case

J(3) is the classic triangular Sierpiriski curve ([6]). Let L, = {z € J(3)""":
at least one coordinate of z is irrational }.
In [2] the following theorem has been announced:

Theorem 5 Let X be a separable metrizable space, dimX < n, f: X —
j(3)n+1 a continuous map, and € a positive number. Then there is an embedding
Y : X — L, such that d(f,v) <e.

Proof. The proof may be obtained by combining the proofs of [2] and the
present paper. First we follow the construction of the families W; ;, Vi, Fij
as described above for the case A = {1,2,3} — we identify J(3) with X(3).
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After that, we modify the families W; ;, V; ;, F;; and obtain an indexing of
the modified families, as described in [2]. The indexing enables us to define an
embedding by the same formula as above (or in [2]), and the same argument
as above shows that it satisfies the required properties. The details will appear
elsewhere. |
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