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The Genus of the Cartesian Produt Km;m;m � C2nC. Paul Bonnington, Department of Mathematis, University of Auklandp.bonnington�aukland.a.nzT. Pisanski, IMFM/TCS, University of Ljubljana�Tomaz.Pisanski�fmf.uni-lj.siJune 3, 2001AbstratThe genus of Km;m;m�C2n is determined for m � 1 and for all n � 3 andn = 1. For n = 2 both lower and upper bounds are given.Let � denote the Cartesian produt of graphs.Theorem 1. The genus of Km;m;m�C2n for m � 1; n � 3 is given by the formula:(Km;m;m � C2n) = 1 +m(m� 1)nProof. For m = 1 we have K1;1;1 = C3 and C3 � C2n is obviously toroidal. Fromhere on let m � 2. We �rst prove (Km;m;m�C2n) � 1+m(m�1)n. We start with2n opies of triangulation of Km;m;m in a surfae Sg of genus g = (m�1)(m�2)=2.For m = 3 the surfae Sg is a torus as shown in Figure 1. In this partiular ase theembedding has 6 disjoint pathworks, two of whih are indiated. In general thereare 2m disjoint pathworks, two of whih are needed in the onstrution. SineC2n is a bipartite 2-regular graph we may apply the pathwork method to embedKm;m;m �C2n into an orientable surfae of genus 1 +m(m� 1)n. For explanationof this lassial method, see for instane [3, 4, 5℄. The two pathworks may beonstruted for instane, by taking alternating edges of any Petrie walk of the well-known Hamilton embedding of Kn;n in the surfae of genus (m� 1)(m� 2)=2 andthen augmenting the edges to appropriate triangles of Kn;n;n in the same surfae.We double-hek the genus formula by the following argument.(1) There are 2n opies of Sg, arranged in a irle, eah triangulated by a opyof Km;m;m.(2) There are m tubes between any two onseutive Sg , giving the total numberof tubes equal to 2nm.(3) (2n� 1) tubes are needed to onnet the 2n initial surfaes Sg into a singlesurfae �0. Hene the �nal surfae � is homeomorphi to a sphere with 2ng +2mn � (2n � 1) = 1 + m(m � 1)n handles attahed. The embedding onsists of4m(m� 1)n triangles remaining in the original surfaes Sg and 6mn quadrilateralsalong the 2mn tubes. There are 2m + 2 faes inident with any vertex: 2m � 2triangles and 4 quadrilaterals.The proof that (Km;m;m � C2n) � 1 +m(m� 1)n follows.�Supported in part by \Ministrstvo za znanost in tehnologijo Republike Slovenije", proj. no.J1-8901 and J1-8549. The paper was written while the seond author was visiting MathematisDepartment of the University of Aukland, New Zealand1
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Figure 1: Case m = 3. Triangular embedding of Km;m;m in tours with two path-works indiated.Let us take an embedding of a graph with verties x1; x2; :::; xv and a total off faes. Let fk denote the total number of faes of size k and let ak(x) denote thenumber of faes of size k inident with a given vertex x. Clearly:val(x) = a3(x) + a4(x) + :::;kfk = ak(x1) + ak(x2) + :::+ ak(xv);and f = f3 + f4 + :::For a vertex x de�ne its fae ontribution to be �(x) = a3(x)=3 + a4(x)=4 + ::: If agraph has v verties, e edges then the genus of Let �0 = (�(x1)+�(x2)+:::+�(xv))=vdenote the average fae ontribution. Then f = �(x1) + �(x2) + ::: + �(xv): thisembedding an be expressed as:  = 1 + e=2� v(1 + �0)=2. Therefore minimizing is equivalent to maximizing �0. In our ase, v = 6mn; e = 6m(m + 1)n. Hene(Km;m;m �C2n) � 1+m(m� 1)n is equivalent to saying that for any embeddingof Km;m;m�C2n we have �0 � (2m+1)=3. If we an show this inequality not onlyfor the average fae ontribution but for the maximal fae ontribution we are done.Let t = a3(x) be the number of triangles inident with a vertex x. Sine val(x) =2m + 2 it follows by that �(x) � (m + 1)=2 + t=12. Sine adjaent verties indi�erent opies of Km;m;m do not belong to a ommon triangle 0 � t � 2m. Thease t = 2m is impossible to attain in an embedding in a surfae sine the triangleswould lose-up and the rotation at that vertex would onsist of more than one yle.If t � 2m� 2 then �(x) � (2m+1)=3 where equality is attained only if t = 2m� 2and the remaining four faes are quadrilaterals. This solution is indeed possible byour 2-pathwork onstrution in the �rst half of the proof. In the remaining ase(t = 2m�1) we have 2m�1 triangular faes and 3 other faes. The triangular faesare neessarily onseutive in the rotation around x, sine two of the neighbors ofx are not in triangles with x.There are 4 sub-ases, onerning the number of quadrilateral faes q = a4(x).We may have 0 � q � 3. By an arithmetial argument we rule out the asesq = 0 and q = 1. Case q = 3 is impossible, sine n > 2 and one fae has twoedges projeting to C2n. This leaves us with q = 2 and the remaining fae eitherpentagonal (a5(x) = 1) or hexagonal (a6(x) = 1). Indeed, if the remaining fae hassize greater than 6, the value (2m+ 1)=3 annot be attained. The value a6(x) = 1gives us exatly �(x) = (2m+ 1)=3. The only way that a5(x) = 1 this ould ouris to have a string of 2m � 1 triangles ended on eah side by a quadrilateral and2



Figure 2: ... a string of 2m� 1 triangles ended on eah side by a quadrilateral andthe pentagonal fae at x.
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Figure 3: Case m = 3. The three triangles indiate the pathwork that was used forembedding K3;3;3 �K2. The three thik edges mark the 3 seleted quadrilateralsand the blak triangle omes in two opies to omplete the new pathwork of theembedded K3;3;3 �K2.the pentagonal fae at x has both edges, say xy and xz projeting on C2n. But thisis impossible, sine the shortest path from y to z not using edge xy and/or xz haslength 4.Theorem 2. The genus of Km;m;m � C2;m � 1 is given by the formula:(Km;m;m � C2) = (Km;m;m �K2) = 1� 2m+m2 = (m� 1)2Proof. It is easy to see that the two graphs have the same genus embedding andhene onsider K2 instead of C2. The proof is simpler but analogous to the proofof Theorem 1. In the onstrution we only need one pathwork. The surfae isomposed of two surfaes Sg joined by m tubes, hene, it has genus (m� 1)2. Theonverse is easy sine eah vertex must neessarily ontribute only 2m�1 triangles,and 2 additional quadrilaterals is the best one an hope for.Theorem 3. In general the genus of Km;m;m � C4 is bounded as follows:d2m2 � 5m=2 + 1e � (Km;m;m � C4) � 1 + 2m(m� 1) = 2m2 � 2m+ 1:In partiular, 3



1. for m = 1 the genus is given by(K1;1;1 � C4) = 12. for m = 2 the genus is given by(K2;2;2 � C4) = 53. for m = 3 the genus is given by(K3;3;3 � C4) = 12Proof. The upper bound 1 + 2m(m� 1) is obtained from onstrution of Theorem1. The lower bound also follows from the argument in the proof of Theorem 1.Namely, here we annot rule out the possibility that �0 = (m+1)=2+(2m�1)=12=(8m + 5)=12 that would arise if 2m� 1 triangles and 3 quadrilaterals are inidentwith eah vertex. For m = 1 the two bounds oinide. For m = 2 the genus isbetween 4 and 5 and one an easily hek that no genus 4 orientable embeddingexists. Form = 3 the lower bound is d11:5e = 12. In order to lower the upper boundto 12 we may use the fat that Km;m;m � C4 is isomorphi to Km;m;m �K2 �K2.We start with the genus embedding of Km;m;m � K2 desribed in the previousTheorem. It ontains a pathwork onsisting of 2 triangles and 3 quadrilaterals.Using this pathwork one an produe an embedding of Km;m;m �K2 �K2 thathas 56 triangular and 30 quadrilateral faes and is therefore genus 12 embedding.The same idea ould be explored for more general values of m. It would slightlyimprove the upper bound at least for m that is divisible by 3.Referenes[1℄ Bonnington, C. Paul; Little, Charles H. C. The foundations of topologial graphtheory. Springer-Verlag, New York, 1995.[2℄ J. L. Gross, T. W. Tuker, Topologial Graph Theory, Wiley Intersiene, 1987.[3℄ Pisanski, Toma�z. Genus of Cartesian produts of regular bipartite graphs. J.Graph Theory 4 (1980), no. 1, 31{42.[4℄ Pisanski, Toma�z. Nonorientable genus of Cartesian produts of regular graphs.J. Graph Theory 6 (1982), no. 4, 391{402.[5℄ Pisanski, Toma�z. Orientable quadrilateral embeddings of produts of graphs.Disrete Math. 109 (1992), no. 1-3, 203{205.
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