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Abstract

The genus of Ky m,m X Cay, is determined for m > 1 and for all n > 3 and
n = 1. For n = 2 both lower and upper bounds are given.

Let x denote the Cartesian product of graphs.

Theorem 1. The genus of Ky, m,m X Con for m > 1,n > 3 is given by the formula:
V(Km,m,m X C2n) =1+ m(m — l)n

Proof. For m = 1 we have K; 11 = Cs and (5 x C5, is obviously toroidal. From
here on let m > 2. We first prove y(Kp m,m X Can) < 14+m(m—1)n. We start with
2n copies of triangulation of K, ,,, m in a surface S, of genus g = (m —1)(m —2)/2.
For m = 3 the surface Sy is a torus as shown in Figure 1. In this particular case the
embedding has 6 disjoint patchworks, two of which are indicated. In general there
are 2m disjoint patchworks, two of which are needed in the construction. Since
Cs, is a bipartite 2-regular graph we may apply the patchwork method to embed
Kpy,m,m % C2y, into an orientable surface of genus 1 4+ m(m — 1)n. For explanation
of this classical method, see for instance [3, 4, 5]. The two patchworks may be
constructed for instance, by taking alternating edges of any Petrie walk of the well-
known Hamilton embedding of K, ,, in the surface of genus (m — 1)(m — 2)/2 and
then augmenting the edges to appropriate triangles of K, ;. , in the same surface.
We double-check the genus formula by the following argument.

(1) There are 2n copies of S,, arranged in a circle, each triangulated by a copy
of Ky m,m-

(2) There are m tubes between any two consecutive S,, giving the total number
of tubes equal to 2nm.

(3) (2n — 1) tubes are needed to connect the 2n initial surfaces S, into a single
surface ¥y. Hence the final surface ¥ is homeomorphic to a sphere with 2ng +
2mn — (2n — 1) = 1 + m(m — 1)n handles attached. The embedding consists of
4m(m — 1)n triangles remaining in the original surfaces S, and 6mn quadrilaterals
along the 2mn tubes. There are 2m + 2 faces incident with any vertex: 2m — 2
triangles and 4 quadrilaterals.

The proof that y(Kpm,m,m X C2,) > 1+ m(m — 1)n follows.
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Figure 1: Case m = 3. Triangular embedding of K, , m in tours with two patch-
works indicated.

Let us take an embedding of a graph with vertices z1,xs,...,2, and a total of
f faces. Let fi denote the total number of faces of size k and let ay(x) denote the
number of faces of size k incident with a given vertex x. Clearly:

val(z) = az(x) + as(x) + ...,

kfi = ar(x1) + ar(z2) + ... + ar(z,),

and

f=f+fat+..

For a vertex x define its face contribution to be ¢(z) = az(x)/3 + as(z)/4+ ... If a
graph has v vertices, e edges then the genus of Let ¢o = (d(x1)+¢(z2)+...+d(xy)) /v
denote the average face contribution. Then f = ¢(z1) + ¢(x2) + ... + ¢(x,). this
embedding can be expressed as: v =1+ ¢e/2 — v(1 + ¢g)/2. Therefore minimizing
7 is equivalent to maximizing ¢g. In our case, v = 6mn,e = 6m(m + 1)n. Hence
Y(Kpmm,m X Cap) > 14+ m(m — 1)n is equivalent to saying that for any embedding
of Ky m,m X C2,, we have ¢g < (2m +1)/3. If we can show this inequality not only
for the average face contribution but for the maximal face contribution we are done.

Let t = a3(x) be the number of triangles incident with a vertex z. Since val(z) =
2m + 2 it follows by that ¢(z) < (m + 1)/2 + ¢/12. Since adjacent vertices in
different copies of Ky, m.m do not belong to a common triangle 0 < ¢t < 2m. The
case t = 2m is impossible to attain in an embedding in a surface since the triangles
would close-up and the rotation at that vertex would consist of more than one cycle.
If t <2m — 2 then ¢(z) < (2m + 1)/3 where equality is attained only if ¢ = 2m — 2
and the remaining four faces are quadrilaterals. This solution is indeed possible by
our 2-patchwork construction in the first half of the proof. In the remaining case
(t = 2m —1) we have 2m — 1 triangular faces and 3 other faces. The triangular faces
are necessarily consecutive in the rotation around z, since two of the neighbors of
z are not in triangles with x.

There are 4 sub-cases, concerning the number of quadrilateral faces ¢ = a4(z).
We may have 0 < ¢ < 3. By an arithmetical argument we rule out the cases
g =0 and ¢ = 1. Case ¢ = 3 is impossible, since n > 2 and one face has two
edges projecting to Cs,. This leaves us with ¢ = 2 and the remaining face either
pentagonal (as(z) = 1) or hexagonal (ag(xz) = 1). Indeed, if the remaining face has
size greater than 6, the value (2m + 1)/3 cannot be attained. The value ag(z) =1
gives us exactly ¢(z) = (2m + 1)/3. The only way that as(z) = 1 this could occur
is to have a string of 2m — 1 triangles ended on each side by a quadrilateral and



Figure 2: ... a string of 2m — 1 triangles ended on each side by a quadrilateral and
the pentagonal face at z.

Figure 3: Case m = 3. The three triangles indicate the patchwork that was used for
embedding K3 33 X K5. The three thick edges mark the 3 selected quadrilaterals
and the black triangle comes in two copies to complete the new patchwork of the
embedded K3’3,3 X K2.

the pentagonal face at = has both edges, say zy and zz projecting on C5,,. But this
is impossible, since the shortest path from y to z not using edge zy and/or zz has
length 4. O

Theorem 2. The genus of Ky, mm X C2,m > 1 is given by the formula:

V(Ko mm X Ca) = Y (Kmmm X Ka2) =1—=2m +m?* = (m — 1)

Proof. 1t is easy to see that the two graphs have the same genus embedding and
hence consider K instead of C3. The proof is simpler but analogous to the proof
of Theorem 1. In the construction we only need one patchwork. The surface is
composed of two surfaces S, joined by m tubes, hence, it has genus (m — 1)2. The
converse is easy since each vertex must necessarily contribute only 2m — 1 triangles,
and 2 additional quadrilaterals is the best one can hope for. O

Theorem 3. In general the genus of Ky m m % C4 is bounded as follows:
2m? —5m/2 + 1] < Y(Kpmmm X C1) <1+ 2m(m — 1) = 2m? — 2m + 1.

In particular,



1. for m =1 the genus is given by

’Y(Kl,l,l X 04) =1

2. for m = 2 the genus is given by

’)/(K2’2,2 X 04) =5

3. for m = 3 the genus is given by

Y(Ks3,3 x Cy) =12

Proof. The upper bound 1+ 2m(m — 1) is obtained from construction of Theorem
1. The lower bound also follows from the argument in the proof of Theorem 1.
Namely, here we cannot rule out the possibility that ¢o = (m+1)/24+(2m—1)/12=
(8m + 5)/12 that would arise if 2m — 1 triangles and 3 quadrilaterals are incident
with each vertex. For m = 1 the two bounds coincide. For m = 2 the genus is
between 4 and 5 and one can easily check that no genus 4 orientable embedding
exists. For m = 3 the lower bound is [11.5] = 12. In order to lower the upper bound
to 12 we may use the fact that Ky, y,,m % Cy is isomorphic to K, m.m X Ko X K.
We start with the genus embedding of K, . m X K3 described in the previous
Theorem. It contains a patchwork consisting of 2 triangles and 3 quadrilaterals.
Using this patchwork one can produce an embedding of K, m.m X K2 x Ky that
has 56 triangular and 30 quadrilateral faces and is therefore genus 12 embedding.
The same idea could be explored for more general values of m. It would slightly
improve the upper bound at least for m that is divisible by 3. O
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