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Abstract

A generalization of some of the Folkman’s constructions [13] of the so called semisymmetric
graphs, that is regular graphs which are edge- but not vertex-transitive, was given in [22]
together with a natural connection of graphs admitting %—arc—transitive group actions and
certain graphs admitting semisymmetric group actions. This connection is studied in more
detail in this paper. In Theorem 2.1 a sufficient condition for the semisymmetry of the so
called generalized Folkman graphs arising from certain graphs admitting a %—arc—transitive
group action is given. Furthermore, the concepts of alter-sequence and alter-exponent is
introduced and studied in great detail and then used to study the interplay of three
classes of graphs: cubic graphs admitting a one-regular group action, the corresponding
line graphs which admit a %—arc—transitive action of the same group and the associated
generalized Folkman graphs (Section 4). At the end an open problem is posed, suggesting
an in-depth analysis of the structure of tetravalent %—arc—transitive graphs with alter-

exponent 2.
Key words: Graph, semisymmetric graph, half-arc-transitive graph, Folkman graph,
cubic arc-transitive graph, alter-exponent.
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1 Introductory remarks

A digraph D = (V, A) consists of a finite set of vertices V(D) = V and a set of arcs
AD) = A C (VxV)\{(v,v) | v € V}. For an arc (u,v) of a digraph D we say that
u and v are the vertices of (u,v), more precisely, u is the tail and v is the head of (u,v).
Also, we say that v is an out-neighbor of u and that v is an in-neighbor of v. The symbols
N*(v), N (v) and N(v) denote the set of out-neighbors of v, the set of in-neighbors of
v and the union N (v) U N~ (v), respectively, while the symbols deg®(v) = |NT(v)| and
deg™ (v) = [N~ (v)| denote the out-degree and the in-degree of v, respectively. The minimal
out-degree and in-degree of a digraph D are denoted by §+(D) and 6 (D), respectively.
If deg™ (v) is constant for all v € V(D), we say that D is in-regular. Similarly, if deg™ (v)
is constant for all v € V(D), we say that D is out-regular. A digraph D is regular if it
is both in- and out-regular. If deg™ (v) = deg™(v) for all v € V(D), we say that D is
balanced. Note that a regular digraph is always balanced. If for all u,v € V (D), we have
that (u,v) € A(D) whenever (v,u) € A(D), we say that D is a graph. An edge of a graph
is an unordered pair {u,v} (also denoted by uwv) such that (u,v) is an arc of the graph.
The set of edges of the graph X is denoted by E(X).

We refer the reader to [9, 25, 28] for group-theoretic concepts not defined here. Let X
be a graph and G a subgroup of the automorphism group AutX of X. We say that X is
G-vertez-transitive, G-edge-transitive and G-arc-transitive if G acts transitively on V(X),
E(X) and A(X), respectively. Furthermore, X is said to be (G,3 )-arc-transitive if it is
G-vertex-transitive, G-edge-transitive but not G-arc-transitive. In the special case when
G = AutX we say that X is vertez-transitive, edge-transitive, arc-transitive, and %—arc—
transitive if it is (AutX)-vertex-, (AutX)-edge-, (AutX)-arc-transitive, and (AutX, 3)-
arc-transitive, respectively.

Let G be a subgroup of AutX such that X is G-edge-transitive but not G-vertex-
transitive. Then X is necessarily bipartite, where the two parts of the bipartition are orbits
of G. Clearly, if X is regular then these two parts have equal cardinality. The graph X is
said to be G-semisymmetric if it is a regular G-edge- but not G-vertex-transitive graph, and
it is said to be semisymmetric in the special case G = AutX. The study of semisymmetric
graphs was initiated by Folkman [13] who gave a construction of several infinite families of
such graphs. The smallest graph in his construction has 20 vertices and happens to be also
the smallest semisymmetric graph. At the end of his paper several open problems were
posed, most of which have already been solved (see [2, 3, 10, 11, 15, 16, 17]). Folkman’s
construction of semisymmetric graphs was generalized by the authors in [22], where an
interesting connection with %—arc—transitive group actions was suggested. It is precisely
the interplay of semisymmetric and %—arc—transitive group actions that constitutes the
central topic of this article.

Let H be a transitive permutation group acting on a set V and let v € V. Thereisa 1-1
correspondence between the set of suborbits of H, that is, the set of orbits of the stabilizer
H, on V, and the set of orbitals of H, that is, the set of orbits in the natural action of H
on V x V', with the trivial suborbit {v} corresponding to the diagonal {(v,v) : v € V}.
For an orbital I' we let S, = {w | (v,w) € '} denote the suborbit of H (relative to
v) associated with I'. Conversely, for a suborbit S of H relative to v we let I's,, be the



associated orbital in the above 1-1 correspondence.

The paired orbital I'~! of an orbital I is the orbital {(v,w) : (w,v) € T}. fI'"! =T we
say that T is self-paired. Similarly, for a suborbit S of H relative to v we let S~ = Sr—1,
denote the paired suborbit of S. If S™' = S we say that S is self-paired. The orbital
digraph )?(H, V1) of (H,V) relative to T, is the digraph with vertex set V and arc set T'.
The underlying undirected graph of X (H,V;T') will be called the orbital graph of (H,V)
relative to T and will be denoted by X (H,V;T). If I' = I'"! is a self-paired orbital then
X(H,V;T') admits a vertex- and arc-transitive action of H. On the other hand, if " is
not self-paired then X (H,V;T') admits a vertex- and edge- but not arc-transitive action
of H, in short, a %—arc—transitive action of H.

For a permutation 7 of V' contained in the normalizer of the permutation group H
in the symmetric group SymV we let I'" denote the set {(z7,y") | (z,y) € I'}. Since 7
normalizes H, the set I'" is also an orbital of H. If v € V is left fixed by 7 and S is
the suborbit of H corresponding to the orbital " relative to the vertex v, then the set
ST ={s" | s € S} is a suborbit of H, which corresponds to the orbital I'" relative to the
vertex v.

The following definition of a generalized Folkman graph, introduced in [22], generalizes
one of the original Folkman’s constructions of semisymmetric graphs [13].

Definition 1.1 Let H be a transitive permutation group on the set V', I' its orbital, let
k > 2 be an integer and let 7 be a permutation of V' contained in the normalizer of H
in SymV such that 7% € H. Let B= {B, |z € V} and Vo; = {zo; | 2 € V, j € Zy}
be k + 1 copies of the set V. Let Y = Y (H,V,I',7,k) denote the graph with vertex set
BUVyoU...UVpi_; and edge set {zo; By | (z,y) € I'™}. The generalized Folkman graph
F(H,V,T',1,k) is obtained from Y (H,V,T',7,k) by expanding each B, to a k-tuple of
vertices z19, %11, ..., 1 each retaining the neighbors’ set of B,. For j € Z; we let Vy;
denote the set {z; | z € V'}.

The generalized Folkman graph F = F(H,V,T',7,k) is always G-semisymmetric for
some group G < AutF (see [22] for details). The following simple proposition [22, Propo-
sition 1.2] gives a sufficient condition for semisymmetry of a generalized Folkman graph.

Proposition 1.2 If no k distinct vertices in UjeZk Voj have the same set of neighbors in
the graph Y (H,V,T,7,k), then the generalized Folkman graph F(H,V,T,1,k) is semisym-
metric.

The main purpose of this article is to study the natural connection of graphs admit-
ting semisymmetric group actions and graphs admitting %—arc—transitive group actions
as suggested in [22]. In Section 2 we give a sufficient condition for the semisymmetry
of generalized Folkman graphs arising from certain graphs admitting a %—arc—transitive
group action (Theorem 2.1). In particular, such a generalized Folkman graph is necessar-
ily semisymmetric provided the %—arc—transitive subgroup is primitive and of index 2 in
an arc-transitive group of automorphisms. In Section 3 we introduce and study in great
detail the concepts of alter-sequence and alter-exponent for a general digraph. These
tools are then used in Section 4 to study the interplay of three classes of graphs: cubic



graphs admitting a one-regular group action, the corresponding line graphs which admit a
%—arc—transitive action of the same group, and the associated generalized Folkman graphs.
At the end we pose an open problem, suggesting an in-depth analysis of the structure of
tetravalent %—arc—transitive graphs with alter-exponent 2.

2 Generalized Folkman graphs arising from %-arc-transitive
actions

Let X be a (H ,%)—arc—transitive graph admitting arc-transitive action of a group G and
let H be a subgroup in G of index 2. Then there exists a non-self-paired orbital I' of H
such that X = X(H,V(X);T) and T UT ! is an orbital of G. The two orbital digraphs
X(H,V(X);T) and X(H,V(X); ') may be obtained from X by orienting the edges of
X according to the action of H. We shall use the notation Dy (X) for both of these
graphs. Let 7 be an arbitrary element in G\ H. Then I'" = I'"! and 72 € H. We can
thus construct a generalized Folkman graph F(H,V (X), T, 7,2), which will be denoted by
F(X; H). This construction of generalized Folkman graphs arising from graphs admitting
%—arc—transitive group action was first introduced in [22, Examples 2.6 and 2.7]. One of
the purposes of this article is a detailed analysis of these graphs.

A quadraple (v1,v9,v3,v4) of vertices of a digraph D is a parallel 4-cycle of D if
(v1,v2), (v2,v3), (v1,v4) and (vg,v3) are arcs of D, and is an alternating 4-cycle of D if
(v1,v2), (v3,v2), (v3,v4) and (v1,v4) are arcs of D. The following result gives a sufficient
condition for semisymmetry of generalized Folkman graphs arising from %—arc—transitive
group actions.

Theorem 2.1 Let X be a connected graph, which is neither a cycle nor a complete graph,
admitting an arc-transitive action of a subgroup G < AutX and a %—arc—tmnsitive action
of a subgroup H of index 2 of G. Let ' be a non-self-paired orbital of H such that
X = X(H,V(X);T) and DUD™" is an orbital of G, and let D = X(H,V(X);T). If for
every pair of distinct vertices u,v € V(X) neither N (u) = N (v) nor Nj(u) = Ny (v),
then F(X; H) is semisymmetric. In particular,

(i) if D has neither alternating 4-cycles nor parallel jJ-cycles, then F(X; H) is semisym-
metric.

(11) if H acts primitively on V(X), then F(X; H) is semisymmetric.

PROOF. The general statement of this theorem is an immediate consequence of Propo-
sition 1.2. To prove (i) observe that nonexistence of alternating 4-cycles and parallel
4-cycles excludes the existence of pairs of distinct vertices u,v € V(X) satisfying, respec-
tively, N (u) = N (v) and N}, (u) = N, (v). Similarly, to prove (ii) it suffices to see that
no pair of distinct vertices u,v € V(X), satisfying one of the above two equalities, ex-
ists. Assume first that there are distinct vertices u,v € V/(X) such that N} (u) = N} (v).
Clearly, the set {w | N (w) = N} (u)} is a block of the action of H on V(X). Since
this block contains at least two vertices and H acts primitively, it follows that it is the
whole of V(X). In particular, for w € N (u) we have that w € N} (w), which is clearly



impossible. Similarly, it may be proved that there is no pair u, v of distinct vertices of D
such that N~ (u) = N~ (v).

Suppose now that there exists a pair of distinct vertices u, v € V(X) such that N7 (u) =
Np(v). Since H is transitive on V(X) we may therefore assume (in view of the results
of the previous paragraph) that for each vertex w € V(X) there exists a unique vertex
wt € V(X) and a unique vertex w™ € V(X) such that N*(w) = N~ (w") and N~ (w) =
N*(w™). Let p be an element of H mapping v to ut. For each integer i let u; = u”'.
We claim that the orbit O(u) = {u; | i € Z} of (p) is a block of H. Namely, take an
arbitrary element o € H fixing the vertex u and observe that (u;)? = (u1)? is either u;
or u_; = u_, and inductively (u;)? is either u; or u_;. In other words, O(u) is preserved
by o and is thus a block of H. But H acts primitively on V(X), forcing V(X) = O(u).
Let n = |V(X)]|. Since (p) is a regular cyclic subgroup of H, the digraph D is the directed
circulant with symbol S = {s € Z, \ {0} | us € N*(u)}. Observe that S and —S are
disjoint. Moreover, N*(ug) = N~ (u1) implies that S = 1 — S. Next, since cyclic groups
of composite orders are B-groups [28, Theorem 25.3], it follows that either H is doubly
transitive on V(X) or n is a prime number. The first case is impossible as it gives rise
to a complete graph. We can thus assume that n is a prime number. By the well known
results on edge-transitive graphs of prime order [5] it follows that there exists a € Z} such
that S = aT is a coset of a subgroup T of Z;. Hence aT = 1 — T and so (using the fact
that T' is a group) we have T = T — aT, which implies |T'| € {0,1,n} (see [22, Lemma
2.3]), a contradiction. W

Example 2.2 Let p > 11 be a prime, let H = PSL(2,p), and let K be a subgroup of H
isomorphic to the dihedral group D, of order p+1 (or to the dihedral group Dp_1). Let
V be the set of right cosets of H. It may be seen that H acts primitively on V' and that
some of the orbitals of this action are non-self-paired (see [26, Lemma 4.4] for details). Let
X be an arbitrary orbital graph associated with one of the above non-self-paired orbitals.
In view of [26, Lemma 4.4] the automorphism group Aut X coincides with PGL(2,p) and
acts arc-transitively on X. By Theorem 2.1 it follows that F(X) is semisymmetric.

Example 2.3 There is a connection between regular maps and %—arc—transitive group
actions on graphs of valency 4 and consequently the corresponding generalized Folkman
graphs. Let M be a regular map and Y be its medial graph. By [20, Theorem 4.1], it
follows that M is regular and reflexible if and only if Y admits a %—arc—transitive action of
some H < AutY with vertex-stabilizer Zo and a l-arc-transitive action of a subgroup G,
such that H < G < AutY, with vertex-stabilizers isomorphic either to Z% or to Z4. (Note
that the corresponding map M is reflexible and positively self-dual, respectively.) The
sufficient condition for the semisymmetry of the associated generalized Folkman graph
F(Y; H) given in part (i) of Theorem 2.1 may be checked using [21, Theorem 4.1], which
characterizes graphs of valency 4 and girth 4 admitting %—arc—transitive group actions.

We end this section with a couple of remarks regarding the connectedness of the gen-
eralized Folkman graph F(X; H) arising from the 1-arc-transitive action of a group H on
a graph X.



Let Vij, i,j € Zs2, be the four orbits of the group H in its action on the vertices of the
generalized Folkman graph F = F(X, H), where Vyo U Vj1 is one of the two bipartition
sets of F. Clearly, F is connected if and only if for any two vertices u,v € Vpyp there is
a path in F from u to v. Orient the edges in F from Vpg to Vi; and from Vi; to Vpy
for all j € Zs. Observe that this orientation is coherent with the orientation of the arcs
in Dy (X). A walk from » to v in F has the property that the number of arcs travelled
with the orientation is the same as the number of arcs travelled against the orientation.
Moreover, for any subwalk starting at u, the difference between these two number is one of
0, 1, or 2. Such a walk has a counterpart in the digraph Dy (X), which satisfies the same
condition. The connectedness of the graph F may therefore be read from the digraph
Dy (X). In fact, the graph F is connected if and only if the set of endvertices of walks
originating at u and satisfying the above property, coincides with the whole of V' (X).

This motivates the study of the above described walks in a more general setting: first,
for any digraph and second, allowing the difference between the number of arcs travelled
with the orientation and the number of arcs travelled against the orientation in a subwalk
to be inside any prescribed interval of integers. This the content of the next section.

3 Alter-exponent of a digraph

Let D be a digraph, {vg,v1,...,v,} C V(D) and {ay,as,...,a,} C A(D). A sequence
W = (vg, a1,01,G2,V2, ..., VUp_1,0p,Vy) is a walk of length n in D from vy to v, if for all
i € {1,2,...,n} either a; = (v;j_1,v;) or a; = (v;,v;—1). In the first case a; is positively
oriented in W, and is negatively oriented in the second case. The sum s(W) of the walk W
is the difference between the number of positively oriented arcs in the walk and the number
of negatively oriented arcs in the walk. The k' partial sum s, (W) of the walk W is the
sum of the walk (vg,aq,v1,0a2,v2,...,0% 1,0k, V). In addition, we let so(W) = 0. The
tolerance of the walk W is the set {sx(W) | k € {0,1,...,n}}. Observe that the tolerance
of a walk is always an interval of integers containing 0. We say that two vertices v and v
of a digraph D are alter-equivalent with tolerance I (and write u alt; v) if there is a walk
from u to v with sum 0 and tolerance .J, J C I. It is not difficult to see that the relation
alt; is an equivalence relation for any interval I C Z containing 0. The corresponding
equivalence class containing a vertex v € V(D) and the corresponding partition of the set
V(D) will be denoted by Bj(u; D) and by Br(D), respectively. For a,b € Z U {—o00, 0},
a < 0 < b, the abbreviations alt, , alty, B,(D) and By(D) will be used for alt(, o), altjo)
Ba,0(D) and By (D), respectively. The cardinality of the set Boo(D) will be refered to
as alter-perimeter of D. If the set Boo(D) consists of one class only (that is, if the alter-
perimeter equals 1), we say that D is alter-complete. A digraph is alter-incomplete, if it
is not alter-complete.

Let D be a digraph, v € V(D) and v € By (u; D). The smallest integer ¢, for which
v € Bi(u; D), will be denoted by expp(u,v), and the maximum of the set {expp(u,v) |
v € By(u; D)} by expp(u). The alter-exponent of a digraph D is the maximum of the set
{expp(u) | u € V(D)} and is denoted by exp(D). The alter-exponent of a digraph D is
thus the smallest positive integer ¢, for which By(D) = By (D).



Proposition 3.1 Let D be a digraph and let k and i be positive integers. If Bx(D) =
Bi1i(D), then exp(D) < k.

ProoF. It suffices to show that for any integer k the equality By(D) = Bii1(D)
implies the equality Bgy1(D) = Bgy2(D). Suppose that Bx(D) = Biy1(D), let u and w
be two vertices of D, and suppose that there is a walk W = (u,ay,v1,...,05-1,apn,v)
in D of sum 0 and tolerance contained in the interval [0,k + 2]. We have to show that
there is also a walk in D from u to v with sum 0 and tolerance contained in [0,k +
1]. Clearly, a1 = (u,v1) and a, = (v,v,—1), for otherwise the tolerance of W would
contain negative integers. But then (vi,a2,vs,...,vp-2,ap-1,v,—1) is a walk in D with
sum 0 and tolerance contained in [0,k 4+ 1]. By the assumption, there is also a walk
(v1,b2,vh,. .. 0l _obp_1,v,_1) in D with sum 0 and tolerance contained in [0, k]. The walk
(uya1,v1,b2,0h,. .., V) _o5,by_1,0n_1,an,v) has sum 0 and its tolerance is contained in the
interval [0,k + 1]. W

Let n > 2 be a positive integer. A digraph with vertex set Z,, and arc set {(k,k +1) |
k € Zy} is called the oriented cycle of length n and is denoted by ﬁn (Note, that by this
definition, an oriented cycle C is isomorphic to the complete graph K».)

Let B be a partition of the vertex set V' of a digraph D. The quotient digraph Dg is
defined to have vertex set B, with a pair (B,C) C B x B, B # C, being an arc of Dg, if
and only if there is an arc (u,v) of D, such that u € B and v € C. For a digraph D and
B C V(D) let D[B] denote the digraph with vertex set B and arc set (B x B) N A(D).
Similarly, for two disjoint subsets B, C' C V(D) let D[B, C] denote the digraph with vertex
set BUC and arc set (B x C U C x B)NV(D). The following proposition justifies the
choice of the term alter-perimeter to denote the cardinality of the set Boo(D).

Proposition 3.2 Let D be a connected alter-incomplete digraph (that is |Bs(D)| > 1)
with 67(D) > 0 and 6 (D) > 0. Then the quotient digraphs Dg_(py and Dg__(py are

isomorphic to the oriented cycle ﬁn for some positive integer n.

PROOF. Let B = Boo(D) and D = Dy _(py. Let B € B, u,v € B and u/,v' € V(D),
such that a« = (u/,u) and b = (v',v) are arcs of D. Vertices v’ and v' do not belong to
B, for otherwise D would be alter-complete. Since u and v belong to the same member
of B, there exist a positive integer ¢ and a walk (u,ay,v1,...vx_1,0%,v) in D with sum 0
and tolerance I = [0,t]. But then (v',a,u,a1,v1,...,v5_1,ak,v,b,v") is a walk with sum 0
and tolerance [0,¢ + 1] in D from v’ to v’. This implies that «' and v’ belong to the same
member of B and shows that deg™5(B) < 1 for each B € B. But since deg™ p(v) > 0
for each v € V(D), the inequality deg™5(B) > 0 also holds for each B € B, and thus
deg™5(B) = 1 for each B € B. Similarly, deg™5(B) > 0 for each B € B and since
Y pendegt 5(B) = > pegdeg p(B), we can deduce that deg™ 5(B) =1 for each B € B.
Since D is connected, it is isomorphic to the oriented cycle 87“ where n = |B|. Similarly,
by considering the digraph with vertex set V(D) and arc set {(u,v) | (v,u) € A(D)} we
can also deduce that D __ is also isomorphic to C'y,. [ |



The product WiWy of a walk Wi = (u,a1,u1, ..., Um—1,0m,w) from u to w and a
walk Wy = (w,by,v1,...,0p-1,b,,v) from w to v is defined to be the walk W1W, =
(Uy @1, U1, -y Gty Qs Wy b1, V1, -+« Up—1, Dy, v) from u to v. The inverse walk Wi~ of
the walk Wy is the walk (w, am, Um—1,-..,u1,a1,u). The next two propositions, leading to
a characterization of the alter-exponent of a vertex-transitive digraph, are consequences
of Proposition 3.2.

Proposition 3.3 Let D be a connected digraph such that 5 (D) > 0 and 6 (D) > 0. If
Bi(D) = B_¢(D) for some positive integer t then Bj_; 1(D) = B(D).

PRrOOF. Let u,v € V(D) be such that walt_, jv. Then there is a walk W = (u =

VO, A1, Vs -+« s Up—1,0p, Uy = v) in D with sum 0 and tolerance contained in the interval
[—t,t]. Let 0 = jyp < j1 < ... < jr = n be exactly those indices js € {1,...,n} for which
the sum of the walk (u,ai,v1,...,vj,-1,a;,,v;,) equals 0. For any s € {1,...,k}, the
tolerance of the walk W, = (vj,_,,j,_+1,Vjs_1+1, - - -, Vj,—1,aj,,Vj,) is contained either

in [0,¢] or in [—¢,0]. Clearly, W = W Wy ---Wj. Let S be the set of those indices s for
which the tolerance of the walk W is contained in [—%,0]. Since Bi(D) = B_4(D), there
is a walk W, in D from vj, , to vj, with sum 0 and tolerance contained in [0, ¢] for every
s € S. By substituting the walk W with the walk W/ for every index s € S in the product
W1 Wy - - - W), we obtain a walk from u to v with sum 0 and tolerance contained in [0,¢]. H

Proposition 3.4 Let D be a connected digraph such that 67 (D) > 0 and §~ (D) > 0, and
let e = exp(D). Then Be(D) = B_e(D) = Bj_. (D).

PROOF. Let u € V(D) be arbitrary and let v € Be(u; D). Since deg™(w) > 0 for
each w € V(D), we can inductively construct a walk (u,a1,uq,. .. ,Ue—1,0¢,ue) and a walk
(v,b1,V1,. .. ,Ve—1,be,Ve) in such a way that all the arcs a; and b;, ¢ € {1,...,e}, are
negatively oriented in the above two walks. Since u and v are contained in the same
member of the set B.(D), the same holds for u, and v.. This is clearly the case if D
is alter-complete, for then B.(D) consists of a single class. On the other hand, if D is
alter-incomplete the statement can be deduced from the fact that, in view of Proposi-
tion 3.2, Dg,(p) is isomorphic to €'y, for some positive integer n. There is therefore a
walk (ue,c1,w1,. .. ,wi—1,¢4,0e) in D with sum 0 and tolerance contained in [0,e]. But
then the walk (u,a1,u1,. .. Ue—1,0e,Ue, C1, W1, .. W1, Cpy Ve, by Ve—1,...,b1,v) is a walk
from u to v with sum 0 and tolerance contained in [—e,0]. We have thus proved that
Be(u; D) C B_e(u; D). Similarly, B_.(u; D) C Be(u; D), and thus Be(D) = B_.(D). By
Proposition 3.3 the result follows. l

The study of the alter-exponent is of a particular interest in the case of vertex-transitive
digraphs. Namely, let D be a vertex-transitive digraph of exponent e. Clearly, for every
k € {1,...,e}, the partition Bi(D) is a complete system of imprimitivity for the action
of AutX on V(D). To every vertex-transitive digraph D we may thus assign a sequence
(B1(D), B2(D),. . . ,Bexp(p) (D)) of complete systems of imprimitivity for the action of AutD
on V(D), each partition being a refinement of the next one in the sequence. The sequence



(|B1(u; D)|, | B2(u; D). . . ,| Bexp(py (w5 D)) of the cardinalities of the members of the above
systems of imprimitivity will be called the alter-sequence of D.

If G is a group acting transitively on a set V' and K is a normal subgroup of G, then
the orbits of K on V form a complete system of imprimitivity of G. In general it is not
true that every complete sistem of imprimitivity arises in this way. However, there are
special instances with particular interest to us where this is the case.

Proposition 3.5 Let D be a connected vertez-transitive digraph and K a group a subgroup
of AutD consisting of those automorphisms which fiz every member of Bogyppy (D) setwise.
Then K is normal in AutD and consequently the members of Beyppy(D) are orbits of K.

PROOF. Let B = Beyp(p)(D), let G = AutD and let B be an arbitrary element of B. If
D is alter-complete, the statement of the above proposition is trivially true since K = G.
We can thus assume that D is alter-incomplete. Since K is the kernel of the action of D on
B, we have that K is normal in G. Let H = G'g be the setwise stabilizer of B in (. Since
G acts transitively on V(D) and B is a block of G, it follows that H is transitive on B.
We claim that H = K. Clearly, K C H. Consider the action of the quotient group G/K
on the quotient digraph Dg. Clearly, G/K is a subgroup of the group of automorphisms
of Dg and H/K is the vertex stabilizer in G/K. But by Proposition 3.2, Dp is isomorphic
to an oriented cycle. Therefore H/K is trivial and so H = K. It follows that B is an orbit
of K.

The following definition, lemma and corollary will be needed in the proof of Proposi-
tion 3.9, which gives an alternative definiton of the alter-exponent in the case of connected
vertex-transitive digraphs.

Let D be a digraph, let u € V (D), and let a, b and k be integers such that a < 0 < b,
a < k < b holds. Then let the symbol S{Z’b] (u; D) denote the set of those vertices w, for
which a walk from u to w with sum & and tolerance contained in [a, b] exists.

Lemma 3.6 Let D be a digraph, v and w its vertices, and let integer a,b, k be as above.
Then the following statements are equivalent:

('L) CUS S[IZJ,](U;D)7
(i) B[a,b] (u; D) = S[;Iik7b_k](w; D),
(iti) w € S,* ., y(w; D),

(iv) Bla—pp(w; D) = Sk (u; D).

PROOF. Observe first that implications [(i7) = (4i7)] and [(iv) = (i)] are trivial, since
u € B y(u; D), as well as w € Bj,_j, j_g)(w; D). Furthermore, by a substitution a — a—k,
b—b—k, k+— —k, u+— wand w — u one can see that the implication [(i) = (4¢)] forces
also the implication [(4i7) = (iv)]. It therefore suffices to prove the implication [(i) = (i7)].
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Let us therefore assume that w € S[’Z,b} (u; D) and that W is a walk from u to w with
sum k and tolerance contained in [a,b]. Suppose that z € By, (u; D). Then there is
a walk Z from u to z with sum 0 and tolerance contained in [a,b]. But then the walk
W 1Z from w to z has sum —k and tolerance contained in [a — k,b — k], which proves
that Bgp(u; D) C S[;’ik,b_k}(w;D). Suppose now that z € S[;Iik,b—k](w;D)' Then there
is a walk Z from w to z with sum —k and tolerance contained in [a — k,b — k]. But then
the walk WZ from u to z has sum 0 and tolerance contained in [a, b], which proves the

equality B,y (u; D) = S[;]ik,b—k}(w;D)' |

Corollary 3.7 Let D be a vertez-transitive digraph and a,b integers, such that a < 0 < b.
Then the cardinality of the set S[’Z b}(u;D) does not depend on the choice of a vertex
u € V(D) and an integer k € [a,b].

PROOF. Let k be an arbitrary integer contained in the interval [a,b] and let u be an
arbitrary vertex of D. Since the sets B,y (w; D), w € V(D), form a complete system of
imprimitivity of the group AutD (and are therefore of equal cardinality), it suffices to see
that |sz’b] (u; D)| = |Blq 4 (u; D)|. Let D' be the digraph with vertex-set V(D) and arc-set
{(wy,ws) | we € S{Z’b](wl;D)}. In view of the equivalence [(i) < (iii)] in Lemma 3.6, it
follows that N, (v) = S[;’fk’bfk](v; D) for every vertex v € V(D). Clearly, AutD C AutD’,
which shows that D' is vertex-transitive, and thus regular and balanced. Therefore

|58, 5 (v's D) = |Sf, 4y (v; D) = 1S,* .y (v5 D))
for every pair of vertices v,v’ € V(D). Let w be an arbitrary element of the set N, (u) =
S[IZ 0] (u; D). Since D and D' are vertex-transitive, it follows that |S[’Z b] (u; D)| = |S[IZ 0] (w; D).
Combining these facts with Lemma 3.6 we can deduce that

|S[Iiz,b}(u3 D)| = |S[;Iik,b7k](w5D)| = |B[a,b](u§ D),

as required. W

Lemma 3.8 Let D be a vertex-transitive digraph, let u € V(D), and let a, b and k be
integers such that a <0 < b and a <k <b. Then the sets Bjqy(u; D) and Bjg_, p—g) (u; D)
have equal cardinalities. In particular, |Bg(u; D)| = |B_k(u; D)| for every integer k.

PROOF. Let w be an arbitrary member of the set S[;Ifk bik](u; D). By Corollary 3.7 it
follows that |Bj, ) (u; D)| = |Sﬁl b}(u;D)| = |S[]f1 b](w;D)| and by Lemma 3.6 we have that

|S[]Z,b} (w; D)| = |Blg—g,p-r)(u; D)|. B

Proposition 3.9 Let D be a connected vertez-transitive digraph. Then exp(D) = min{¢ |
Bft(D) = Bt(D),t > 0}
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PrOOF. By Proposition 3.4, we know that B_c.,(p)(D) = Bexp(p)(D). Let t be a
positive integer such that B_;(D) = Bi(D). Then by Proposition 3.3, B:(D) = Bi_; (D).
By Lemma 3.8 we then have that |B;(D)| = |By(D)|. Since By(D) is a refinement of
By (D) it follows that B.(D) = Ba: (D), and by Proposition 3.1 it follows that ¢ > exp(D).
|

Alter-exponents may be arbitrarily large as is shown by the two examples below,
giving constructions of, respectively, alter-incomplete and alter-complete digraphs with
prescribed alter-exponents.

Example 3.10 Let & > 2 be an integer and let e;, i € {1,2,...,k}, be the it standard
basis vector of Z’;. Denote by Dj the digraph with vertex set V = Z’; X Zio and arcs
of the form ((v,i),(v,7 + 1)) and ((v,?), (v + €imod k)10 T 1)) for all v € Z& and all

i€{1,2,...,k}. It is not difficult to see, that D /B, = ﬁ% and that exp(D) = k. Note,
that this digraph is a 2*-fold regular cover of an oriented (multi)cycle with vertex set
{ug,...,us,_1} and two arcs from u; to u;41 for each i € Zyy, and with Z"ZC as the group of
covering transformations (the voltage group). The voltages on the pair of arcs between u;
and u;11 are 0 and ey, where i/ = (4 mod k) + 1.

Example 3.11 Let £ > 2 be an integer, and let Ay, be the alternating group acting
(for reasons of convenience) on the set Zgg. Let 7 = (0,1,...,2k — 3,2k — 2) and ¢ =
(0,1,...,2k — 3,2k — 1) be two elements of Ay,. It may be seen that the Cayley digraph
Cay(Agk; {r,t}) is an arc-transitive digraph of exponent 2k — 2 and B (D) = {V(D)}.
Note that the smallest member of this family was first given in [22, Example 2.6].

We conclude the section by stating the criterion for connectivity of the generalized
Folkman graphs, as announced at the end of the previous section.

Proposition 3.12 Let X and H have the meaning described in the first paragraph of
Section 2. Then the generalized Folkman graph F(X; H) is connected if and only if Dy (X)
is alter-complete and exp(Dp (X)) < 2. Furthermore, if it is disconnected, it consists of
|B2(D)| isomorphic connected components.

It will be convenient to generalize the concepts of alter-exponent and alter-sequence
to graphs admitting a %—arc—transitive group action via the associated digraphs. Namely,
let X be a (H, %)—transitive graph. We shall use the terms H -alter-ezponent and H -alter-
sequence of X to denote the alter-exponent and the alter-sequence of the corresponding
digraph Dy (X), respectively. In particular, we shall omit the symbol H in the case
H = AutX.
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4 Line graphs of cubic graphs and the associated generalized
Folkman graphs

There is a natural construction of generalized Folkman graphs via the line graphs of certain
cubic arc-transitive graphs. It is the purpose of this section to discuss the semisymmetry
(and connectivity) of these graphs.

Let G be a group and X be a connected G-arc-transitive cubic graph. By the well
known result of Tutte [27], it follows that G acts regularly on the set of s-arcs of X for
some positive integer s < 5. (We say that G acts s-regularly on X.) Let us now consider
the line graph L(X) of X. Note that AutX = AutL(X). It may be deduced from [24,
Proposition 1.1] that G acts 1-regularly on X if and only if it acts %—arc—transitively on
L(X). In particular, AutX acts l-regularly on X, that is X is 1-regular if and only if
L(X) is a %—arc—transitive graph of valency 4 and girth 3. Similarly, if G acts 2-regularly
on X, then it acts arc-transitively on L(X). Assume that H < G are subgroups of
AutX acting, respectively, 1-regularly and 2-regularly on X. Then we shall say that X is
(17,2%)-regular. In this case H acts i-arc-transitively on L(X), and is contained in the
arc-transitive group G as a subgroup of index 2. We can thus construct the generalized
Folkman graph F(L(X); H).

The following proposition shows that the alter-exponent of a digraph Dy (L(X)), asso-
ciated with the line graph of a cubic graph X admitting a 1-regular action of a subgroup
H of AutX, is at most 2.

Proposition 4.1 Let X be a connected cubic graph admitting a 1-regular action of a
subgroup H of AutX. Let D = Dy (L(X)) be (one of the two) digraphs obtained from the
line graph L(X) by orienting the edges of L(X) in accordance with the %—arc—tmnsz'tz’ve
action of H on L(X). Then one of the following occurs:

(i) exp(D) =1, D is alter-incomplete and the alter-perimeter of D equals 3, or
(11) exp(D) =2, D is alter-incomplete and the alter-perimeter of D equals 3, or

(i1)i exp(D) = 2 and D is alter-complete.

PROOF. Let us first prove that alter-exponent of D is at most 2. Observe that in view
of the 1-regularity of the action of H on X, every vertex of X gives rise to an oriented
3-cycle of D. Moreover, every arc of D lies on precisely one such oriented 3-cycle of D.
This implies that for every arc (u,v) of D there exists a vertex w € V(D), such that
(v,w) and (w,u) are arcs of D. It suffices to show that for any walk in D with sum 0 and
tolerance [0, 3], there exists a walk with the same end-vertices having sum 0 and tolerance
[0,2]. Assume therefore that W = (vg,a1,v1,...,Un—1,an,v,) is a walk in D from vy to
vy, with sum 0 and tolerance [0, 3]. We show that there is also a walk from vy to v, with
sum 0 and tolerance [0, 2]. Let J be the set of those indices j € {1,2,...,n — 1} for which
the sum of the walk (vg, a1,v1,...,vj-1,a;,v;) is 3. Clearly, for every j € J, the arc a;_;
is negatively oriented in W, whereas the arc a; is positively oriented in W. For every
J € J let u; and w; denote those vertices of D for which the oriented pairs bjl- = (uj,vj-1),
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b? = (vj,uy), c} = (vj,w;) and cg = (wj,vjy1) are arcs of D. For every j € J substitute

the sequence ...,a;,vj,aj41,... in W with the sequence ...,b},u]-,bg,vj,c},wj,c?,... to
obtain a walk in D from vy to v, with sum 0 and tolerance [0, 2].

Suppose now that D is alter-incomplete. We need to show that the alter-perimeter of
D equals 3. By Proposition 3.2 some quotient digraph of the digraph D is isomorphic to
the oriented cycle én, where n is the alter-perimeter of D. But since D contains oriented
3-cycles, so does every quotient of D, forcing n = 3.

To complete the proof it remains to show that in the case where exp(D) = 1, the
digraph D cannot be alter-complete. To this end we use [19, Proposition 2.4 (ii)]. Namely,
if D is alter-complete, then (in the terminology of [19]) each H-alternating cycle of L(X)
contains all vertices of X. But then by [19, Proposition 2.4 (ii)], there are a positive integer
r and some odd s € Z3_ such that X is isomorphic to the circulant Cir(2r; {1, —1,s, —s}),
contradicting the fact that X contains cycles of length 3. H

Let X be a cubic s-arc-transitive graph with a sequence of groups H; < ... < Hy,
where H; is a minimal arc-transitive subgroup of Hy = AutX and each H; is maximal in
H;.q. Suppose that for each i, the group H; is s;-regular. Then the sequence (si,..., k)
is called a type of X. It may be deduced by the well-known result of Djokovi¢ and Miller
[8] that the possible types are as follows: (1), (1,2), (1,2,3), (1,3), (1,4), (1,4,5), (1,5),
(2), (2,3), (3), (4), (4,5) and (5).

In Table 1 we have gathered a comprehensive information on the generalized Folkman
graphs arising from line graphs of certain cubic arc-transitive graphs (to be more precise,
from (17,2%)-regular graphs) of order at most 98. Information available form the Foster
census [4] and the work of Conder and Dobscanyi [6] was processed with MAGMA [1].
For each cubic arc-transitive graph of order at most 98, Table 1 gives its Foster code Fec,
meaning that the graph appears in the Foster census under the code ¢, its type and an infor-
mation about its covers. For the corresponding line graph the alter-sequence is computed
in the case of type (1,...). Finally, for types (1,2) and (1,2,3), the order, semisymmetry
and isomorphism of the connected components of the corresponding generalized Folkman
graphs is given.

The smallest connected (177,2%)-regular cubic graph is Ky. Its line graph L(Kj)
is isomorphic to the lexicographic product K3[K3]. Since the alter-sequence is (2), we
have that the generalized Folkman graph F(L(K4); H) is disconnected with connected
components on 8 vertices. Since the smallest semisymmetric graph has 20 vertices, the
latter are not semisymmetric. A similar argument may be applied to the graph K33 in
row 2.

An interesting example arises from the cube )3, the canonical double cover of Ky. Its
automorphism group G acts 2-regularly and contains two non-conjugate 1-regular sub-
groups Hy and Hj. The corresponding digraphs Dy, (L(Q3)) and Dy, (L(Q3)) are both of
alter-exponent 2. the first one is alter-incomplete with alter-sequence (2,4), whereas the
second one is alter-complete with alter-sequence (3,12). As in the previous two examples
F(L(Q3); Hy) is disconnected and not semisymmetric. However F(L(Q3); Hs), a graph of
order 48, is semisymmetric; in fact, it is isomorphic to the graph described in [22, Example
2.6].
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TABLE 1: Cubic arc-transitive graphs, their line graphs and generalized Folkman graphs.

The names of the columns in the table have the following meanings. CATG:= cubic arc-transitive graph, name:=Foster
code, type:= transitivity type, cover:= a cover of which graph; LG:= line graph of CATG, order:=its order, AS:=
altersequence, AC:= is it alter-complete or not; GFG:= connected component of the corresponding generalized

Folkman graph; order:=its order, SS:=is it semisymmetric, iso:= isomorphism between various GFG.

row CATG LG GFG
name type cover order AS AC order SS iso

1 F4, K4 (1,2) 6 [2] no 8 no

2 F6, K3 3 (1,2,3) 9 [3] no 12 no

3 F8, Q3 (1,2) F4 12 [2, 4] no 16 no

4 F8, Q3 (1,2) F4 12 [3,12] yes 48 yes row 12
5 F10, Petersen (2,3) 15

6 F14, Heawood (1,4) 21 [7] no

7 F16, GP(8,3) (1,2) F8 24 14, 8] no 32 yes

8 F16, GP(8,3) (1,2) F8 24 [6,24] yes 96 yes row 22
9 F18, Pappus (1,2,3) F6 27 [3,9] no 36 yes

10 F20A, Dodec. (1,2) F10 30 [5,30] | yes 120 yes | row 31
11 F20B, Desarg. (2,3) F10 30

12 F24, GP(12,5) (1,2) F6, F8 36 13,12] | no 48 yes | row 4
13 F24, GP(12,5) (1,2) F6, F8 36 16,12] | no 48 yes

14 F26 (1) 39 [13] no

15 F28, Coxeter (2,3) 42

16 F30, Tutte (4,5) 45

17 F32, Dyck (1,2) F8 48 [4,16] | no 64 yes

18 F32, Dyck (1,2) F8 48 [3,48] | yes 192 yes | row 43
19 F38 (1) 57 [19] no

20 F40 (1,2,3) | F20A, F20B 60 [5,60] | yes 240 yes

21 F42 (1) F6, F14 63 [21] no
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row CATG LG GFG
name type cover order AS AC order SS iso
22 F48 (1,2) F16, F24 72 [6, 24] yes 96 yes row 8
23 F48 (1,2) F16, F24 72 [12, 24] yes 96 yes
24 F50 (1,2) 75 [5, 25] yes 100 | yes
25 F50 (1,2) 75 13, 75] yes 300 | yes
26 F54 (1,2) F18 81 13, 27] no 108 | yes
27 F54 (1,2) F18 81 [9, 27] no 108 yes
28 F56A (1) F8, F14 84 [14, 28] no
29 F56B, Klein (1,2) 84 [4, 84] yes 336 yes
30 F56C (2,3) F28 84
31 F60 (1,2) F20A 90 [5, 30] no 120 | yes | row 10
32 F62 (1) 93 [31] no 124 no
33 F64 (1,2) F16, F32 96 [4,32] no 128 yes
34 F64 (1,2) F16, F32 96 16, 96] yes 384 | yes
35 F72 (1,2) F18, F24 108 [3, 36] no 144 yes
36 F72 (1,2) F18, F24 108 16, 36] no 144 | yes
37 F74 (1) 111 [37] no
38 F78 (1) F6, F26 117 [39] no
39 F80 (1,2,3) F40 120 [10,120] | yes 480 | yes
40 F84 (2) 126
41 F86 (1) 129 [43] no
42 F90 (4,5) F30 135
43 F96A (1,2) F24, F32 144 [3, 48] no 192 | yes | row 18
44 F96A (1,2) F24, F32 144 [12, 48] no 192 | yes
45 F96B (1,2,3) F24 144 [6, 48] no 192 yes
46 F98A (1) F14 147 [49] no
47 F98B (1,2) F14 147 [7, 49] yes 196 | yes
48 FOSB (1,2) Fl14 147 [3,147] | yes 588 | yes
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It is not surprising, that a similar bifurcation occurs for covers of @3 (see rows 7 and
8, rows 12 and 13, rows 17 and 18, rows 22 and 23, rows 28 and 29, rows 33 and 34, rows
35 and 36, and rows 43 and 44) as well as for graphs in rows 24 and 25, rows 26 and 27,
and rows 47 and 48.

Since each of the cubic arc-transitive graphs of types (1,2) or (1,2,3) in rows 5 to 48
has girth greater than 4, the corresponding (connected components of) the generalized
Folkman graphs are semisymmetric by Theorem 2.1, (i). As it may be seen from the last
column of Table 1, some of these graphs are isomorphic. Note that the corresponding alter-
sequences coincide in these cases. We would like to remark that the connected component
of the generalized Folkman graph in row 7 is the smallest semisymmetric graph (its order
is 32) which has not been mentioned in the literature before.

Finally, the cubic arc-transitive graphs in rows 10 and 29, that is the dodecahedron
and the Klein graph, are the smallest members of an infinite family of cubic arc-transitive
graphs of order (p—1)p(p+1)/6, p > 5 a prime, and type (1,2), constructed in [8, Section
13 (pp. 223)]. (The respective values of p are 5 and 7.) A description of this family
of graphs and the computations regarding the corresponding line graphs and generalized
Folkman graphs is given below. It transpires that the corresponding (oriented) line graphs
(of order (p — 1)p(p + 1)/4) are alter-complete and have no 4-cycles, thus giving rise to
semisymmetric generalized Folkman graphs of order (p — 1)p(p + 1) (and valency 4) in

view of Theorem 2.1, (i).
(11 (0 1
““\-10)7 YT <10

For a prime p > 5 let
be elements of the projective special linear group PSLs(p). Clearly, ¢ = 2 = 1. Then ¢
and y generate the group H = PSLs(p). Denote by C and K the subgroups of H generated
with elements ¢ and y, respectively, and by V = H/C the set of right cosets of C' in H.
We define the graph to have vertex-set V' and edge-set £ = {{Cu,Cydu} |d € C,u € H}
(that is the orbital graph relative to suborbit {Cy, Cyc, Cyc?}). By [8, Proposition 27]
the automorphism group G = AutX of X is either PGLy(p) or PSL(2,p) x C2 and X is
(111, 2%)-regular. It can also be easily checked that X contains no cycles of length 4. The
corresponding digraph D = Dy (L(X)) is isomorphic to the graph with vertex set H/K,
the set of right cosets of K in H, and arc set {(Ku,Kcku) | k € K,u € H}. Since H
is simple, the digraph D is alter-complete, and, by Proposition 4.1, of alter-exponent 2.
Combining Theorem 2.1 and Proposition 3.12 we have that the generalized Folkman graph
F(L(X); H) is a connected semisymmetric graph of valency 4 and order (p — 1)p(p + 1).

To compute the alter-sequence of D we have to compute the cardinality of the set
B1(K; D), which clearly consists of those cosets of K, which are contained in the group
generated by the set K¢ ' KcK. It can be easily checked that the group (K¢ ' KcK) may
also be generated by involutions y and ¢~ 'yc and is therefore isomorphic to the dihedral
group Do, where r is the order of the product

. 11
CYY=11 2

17



in the group PSLy(p). Observe that for any positive integer k& the k" power of the above

matrix equals
(—DF Py (—1)FH1Ey,
(D1 Py (—1)F P )0

where (F},) is the Fibonacci sequence defined by Fy =0, F} = 1, and F,,19 = F, + F,11.
The order r of the product ¢ 'ycy in the group PSLsy(p) is therefore the least positive
integer k for which the prime p divides the (2k)* term Fbj, of the Fibonacci sequence. We
have thus showed that the alter-sequence of the digraph D equals (r, (p_l)zﬁ)
is as above.

, where r

5 Alter-exponent of tetravalent %-arc-transitive graphs

The term tightly attached graphs was used in [19, 23] for tetravalent graphs admitting a %—
arc-transitive group action with respect to which the corresponding alter-exponent equals
1. A complete classification of such graphs with alter-sequence [r] was given in [19] and in
[23] for r odd and r even, respectively. (The term radius was used for the parameter r.)
Furthermore, %—arc—transitive graphs of alter-exponent 1 and odd radius were classified in
[19].

A natural question arises with regards to obtaining a similar classification for graphs of
alter-exponent 2 or higher alter-exponent. The line graph of the graph F56A in row 28 in
Table 1 is an example of such a graph with alter-exponent 2. In fact, F56A is the smallest
member of an infinite family of 1-regular Zj2,;-covers of Q3 (given in [12]), for which
the corresponding line graphs are %—arc—transitive of alter-exponent 2. It may be easily
seen that these graphs are alter-incomplete with alter-sequence [2(k? +k+1), 4(k>+Ek+1)].
A further generalization of this construction was pointed to us by Malni¢ and is based on
the existence of a 1-regular Zy2 . 1)-cover of Q3 for each odd k£ > 3 [18]. Moreover, an
infinite family of cubic 1-regular graphs arising from alternating and symmetric groups
of degree congruent 1 modulo 6 was constructed in [7]. The corresponding line graphs
are %—arc—transitive of alter-exponent 2 and, since alternating groups are simple, clearly
alter-complete. Finally, the line graph of order 648 of the first known 1-regular graph
(of order 432 and constructed by Frucht in [14]) is alter-incomplete with alter-sequence
(6,216).

In view of these examples we would like to pose the problem of classifying tetravalent
%—arc—transitive graphs with alter-exponent 2. An in-depth analysis of the alter-incomplete
case seems like a reasonable first step towards obtaining this goal.
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