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AbstractA generalization of some of the Folkman's constructions [13] of the so called semisymmetricgraphs, that is regular graphs which are edge- but not vertex-transitive, was given in [22]together with a natural connection of graphs admitting 12 -arc-transitive group actions andcertain graphs admitting semisymmetric group actions. This connection is studied in moredetail in this paper. In Theorem 2.1 a su�cient condition for the semisymmetry of the socalled generalized Folkman graphs arising from certain graphs admitting a 12 -arc-transitivegroup action is given. Furthermore, the concepts of alter-sequence and alter-exponent isintroduced and studied in great detail and then used to study the interplay of threeclasses of graphs: cubic graphs admitting a one-regular group action, the correspondingline graphs which admit a 12 -arc-transitive action of the same group and the associatedgeneralized Folkman graphs (Section 4). At the end an open problem is posed, suggestingan in-depth analysis of the structure of tetravalent 12 -arc-transitive graphs with alter-exponent 2.Key words: Graph, semisymmetric graph, half-arc-transitive graph, Folkman graph,cubic arc-transitive graph, alter-exponent.Klju�cne besede: Graf, semisimetri�cen graf, poltranzitiven graf, Folkmanov graf, kubi�cenlo�cno-tranzitiven graf, alter-eksponent.Math. subj. class. 2000: 05C25.
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1 Introductory remarksA digraph D = (V;A) consists of a �nite set of vertices V (D) = V and a set of arcsA(D) = A � (V � V ) n f(v; v) j v 2 V g. For an arc (u; v) of a digraph D we say thatu and v are the vertices of (u; v), more precisely, u is the tail and v is the head of (u; v).Also, we say that v is an out-neighbor of u and that u is an in-neighbor of v. The symbolsN+(v), N�(v) and N(v) denote the set of out-neighbors of v, the set of in-neighbors ofv and the union N+(v) [ N�(v), respectively, while the symbols deg+(v) = jN+(v)j anddeg�(v) = jN�(v)j denote the out-degree and the in-degree of v, respectively. The minimalout-degree and in-degree of a digraph D are denoted by �+(D) and ��(D), respectively.If deg�(v) is constant for all v 2 V (D), we say that D is in-regular . Similarly, if deg+(v)is constant for all v 2 V (D), we say that D is out-regular . A digraph D is regular if itis both in- and out-regular. If deg�(v) = deg+(v) for all v 2 V (D), we say that D isbalanced . Note that a regular digraph is always balanced. If for all u; v 2 V (D), we havethat (u; v) 2 A(D) whenever (v; u) 2 A(D), we say that D is a graph. An edge of a graphis an unordered pair fu; vg (also denoted by uv) such that (u; v) is an arc of the graph.The set of edges of the graph X is denoted by E(X).We refer the reader to [9, 25, 28] for group-theoretic concepts not de�ned here. Let Xbe a graph and G a subgroup of the automorphism group AutX of X. We say that X isG-vertex-transitive, G-edge-transitive and G-arc-transitive if G acts transitively on V (X),E(X) and A(X), respectively. Furthermore, X is said to be (G,12)-arc-transitive if it isG-vertex-transitive, G-edge-transitive but not G-arc-transitive. In the special case whenG = AutX we say that X is vertex-transitive, edge-transitive, arc-transitive, and 12 -arc-transitive if it is (AutX)-vertex-, (AutX)-edge-, (AutX)-arc-transitive, and (AutX; 12)-arc-transitive, respectively.Let G be a subgroup of AutX such that X is G-edge-transitive but not G-vertex-transitive. ThenX is necessarily bipartite, where the two parts of the bipartition are orbitsof G. Clearly, if X is regular then these two parts have equal cardinality. The graph X issaid to beG-semisymmetric if it is a regularG-edge- but notG-vertex-transitive graph, andit is said to be semisymmetric in the special case G = AutX. The study of semisymmetricgraphs was initiated by Folkman [13] who gave a construction of several in�nite families ofsuch graphs. The smallest graph in his construction has 20 vertices and happens to be alsothe smallest semisymmetric graph. At the end of his paper several open problems wereposed, most of which have already been solved (see [2, 3, 10, 11, 15, 16, 17]). Folkman'sconstruction of semisymmetric graphs was generalized by the authors in [22], where aninteresting connection with 12 -arc-transitive group actions was suggested. It is preciselythe interplay of semisymmetric and 12 -arc-transitive group actions that constitutes thecentral topic of this article.Let H be a transitive permutation group acting on a set V and let v 2 V . There is a 1-1correspondence between the set of suborbits of H, that is, the set of orbits of the stabilizerHv on V , and the set of orbitals of H, that is, the set of orbits in the natural action of Hon V � V , with the trivial suborbit fvg corresponding to the diagonal f(v; v) : v 2 V g.For an orbital � we let S�;v = fw j (v; w) 2 �g denote the suborbit of H (relative tov) associated with �. Conversely, for a suborbit S of H relative to v we let �S;v be the3



associated orbital in the above 1-1 correspondence.The paired orbital ��1 of an orbital � is the orbital f(v; w) : (w; v) 2 �g. If ��1 = � wesay that � is self-paired. Similarly, for a suborbit S of H relative to v we let S�1 = S��1;vdenote the paired suborbit of S. If S�1 = S we say that S is self-paired. The orbitaldigraph ~X(H;V ; �) of (H;V ) relative to �, is the digraph with vertex set V and arc set �.The underlying undirected graph of ~X(H;V ; �) will be called the orbital graph of (H;V )relative to � and will be denoted by X(H;V ; �). If � = ��1 is a self-paired orbital thenX(H;V ; �) admits a vertex- and arc-transitive action of H. On the other hand, if � isnot self-paired then X(H;V ; �) admits a vertex- and edge- but not arc-transitive actionof H, in short, a 12 -arc-transitive action of H.For a permutation � of V contained in the normalizer of the permutation group Hin the symmetric group SymV we let �� denote the set f(x� ; y� ) j (x; y) 2 �g. Since �normalizes H, the set �� is also an orbital of H. If v 2 V is left �xed by � and S isthe suborbit of H corresponding to the orbital � relative to the vertex v, then the setS� = fs� j s 2 Sg is a suborbit of H, which corresponds to the orbital �� relative to thevertex v.The following de�nition of a generalized Folkman graph, introduced in [22], generalizesone of the original Folkman's constructions of semisymmetric graphs [13].De�nition 1.1 Let H be a transitive permutation group on the set V , � its orbital, letk � 2 be an integer and let � be a permutation of V contained in the normalizer of Hin SymV such that �k 2 H. Let B = fBx j x 2 V g and V0j = fx0j j x 2 V , j 2 Zkgbe k + 1 copies of the set V . Let Y = Y (H;V;�; �; k) denote the graph with vertex setB [ V00 [ : : : [ V0k�1 and edge set fx0jBy j (x; y) 2 �� jg. The generalized Folkman graphF(H;V;�; �; k) is obtained from Y (H;V;�; �; k) by expanding each Bx to a k-tuple ofvertices x10; x11; : : : ; x1;k�1 each retaining the neighbors' set of Bx. For j 2 Zk we let V1jdenote the set fx1j j x 2 V g.The generalized Folkman graph F = F(H;V;�; �; k) is always G-semisymmetric forsome group G � AutF (see [22] for details). The following simple proposition [22, Propo-sition 1.2] gives a su�cient condition for semisymmetry of a generalized Folkman graph.Proposition 1.2 If no k distinct vertices in Sj2Zk V0j have the same set of neighbors inthe graph Y (H;V;�; �; k), then the generalized Folkman graph F(H;V;�; �; k) is semisym-metric.The main purpose of this article is to study the natural connection of graphs admit-ting semisymmetric group actions and graphs admitting 12 -arc-transitive group actionsas suggested in [22]. In Section 2 we give a su�cient condition for the semisymmetryof generalized Folkman graphs arising from certain graphs admitting a 12 -arc-transitivegroup action (Theorem 2.1). In particular, such a generalized Folkman graph is necessar-ily semisymmetric provided the 12 -arc-transitive subgroup is primitive and of index 2 inan arc-transitive group of automorphisms. In Section 3 we introduce and study in greatdetail the concepts of alter-sequence and alter-exponent for a general digraph. Thesetools are then used in Section 4 to study the interplay of three classes of graphs: cubic4



graphs admitting a one-regular group action, the corresponding line graphs which admit a12 -arc-transitive action of the same group, and the associated generalized Folkman graphs.At the end we pose an open problem, suggesting an in-depth analysis of the structure oftetravalent 12 -arc-transitive graphs with alter-exponent 2.2 Generalized Folkman graphs arising from 12-arc-transitiveactionsLet X be a (H,12)-arc-transitive graph admitting arc-transitive action of a group G andlet H be a subgroup in G of index 2. Then there exists a non-self-paired orbital � of Hsuch that X = X(H;V (X); �) and � [ ��1 is an orbital of G. The two orbital digraphs~X(H;V (X); �) and ~X(H;V (X); ��1) may be obtained from X by orienting the edges ofX according to the action of H. We shall use the notation DH(X) for both of thesegraphs. Let � be an arbitrary element in G n H. Then �� = ��1 and �2 2 H. We canthus construct a generalized Folkman graph F(H;V (X);�; �; 2), which will be denoted byF(X;H). This construction of generalized Folkman graphs arising from graphs admitting12 -arc-transitive group action was �rst introduced in [22, Examples 2.6 and 2.7]. One ofthe purposes of this article is a detailed analysis of these graphs.A quadraple (v1; v2; v3; v4) of vertices of a digraph D is a parallel 4-cycle of D if(v1; v2), (v2; v3), (v1; v4) and (v4; v3) are arcs of D, and is an alternating 4-cycle of D if(v1; v2), (v3; v2), (v3; v4) and (v1; v4) are arcs of D. The following result gives a su�cientcondition for semisymmetry of generalized Folkman graphs arising from 12 -arc-transitivegroup actions.Theorem 2.1 Let X be a connected graph, which is neither a cycle nor a complete graph,admitting an arc-transitive action of a subgroup G � AutX and a 12 -arc-transitive actionof a subgroup H of index 2 of G. Let � be a non-self-paired orbital of H such thatX = X(H;V (X); �) and � [ ��1 is an orbital of G, and let D = ~X(H;V (X); �). If forevery pair of distinct vertices u; v 2 V (X) neither N+D (u) = N+D (v) nor N+D (u) = N�D (v),then F(X;H) is semisymmetric. In particular,(i) if D has neither alternating 4-cycles nor parallel 4-cycles, then F(X;H) is semisym-metric.(ii) if H acts primitively on V (X), then F(X;H) is semisymmetric.Proof. The general statement of this theorem is an immediate consequence of Propo-sition 1.2. To prove (i) observe that nonexistence of alternating 4-cycles and parallel4-cycles excludes the existence of pairs of distinct vertices u; v 2 V (X) satisfying, respec-tively, N+D (u) = N+D (v) and N+D (u) = N�D (v). Similarly, to prove (ii) it su�ces to see thatno pair of distinct vertices u; v 2 V (X), satisfying one of the above two equalities, ex-ists. Assume �rst that there are distinct vertices u; v 2 V (X) such that N+D (u) = N+D (v).Clearly, the set fw j N+D (w) = N+D (u)g is a block of the action of H on V (X). Sincethis block contains at least two vertices and H acts primitively, it follows that it is thewhole of V (X). In particular, for w 2 N+D (u) we have that w 2 N+D (w), which is clearly5



impossible. Similarly, it may be proved that there is no pair u, v of distinct vertices of Dsuch that N�(u) = N�(v).Suppose now that there exists a pair of distinct vertices u; v 2 V (X) such that N+D (u) =N�D (v). Since H is transitive on V (X) we may therefore assume (in view of the resultsof the previous paragraph) that for each vertex w 2 V (X) there exists a unique vertexw+ 2 V (X) and a unique vertex w� 2 V (X) such that N+(w) = N�(w+) and N�(w) =N+(w�). Let � be an element of H mapping u to u+. For each integer i let ui = u�i .We claim that the orbit O(u) = fui j i 2 Zg of h�i is a block of H. Namely, take anarbitrary element � 2 H �xing the vertex u and observe that (u1)� = (u+)� is either u1or u�1 = u�, and inductively (ui)� is either ui or u�i. In other words, O(u) is preservedby � and is thus a block of H. But H acts primitively on V (X), forcing V (X) = O(u).Let n = jV (X)j. Since h�i is a regular cyclic subgroup of H, the digraph D is the directedcirculant with symbol S = fs 2 Zn n f0g j us 2 N+(u)g. Observe that S and �S aredisjoint. Moreover, N+(u0) = N�(u1) implies that S = 1 � S. Next, since cyclic groupsof composite orders are B-groups [28, Theorem 25.3], it follows that either H is doublytransitive on V (X) or n is a prime number. The �rst case is impossible as it gives riseto a complete graph. We can thus assume that n is a prime number. By the well knownresults on edge-transitive graphs of prime order [5] it follows that there exists a 2 Z�n suchthat S = aT is a coset of a subgroup T of Z�n. Hence aT = 1� aT and so (using the factthat T is a group) we have aT = T � aT , which implies jT j 2 f0; 1; ng (see [22, Lemma2.3]), a contradiction.Example 2.2 Let p � 11 be a prime, let H = PSL(2; p), and let K be a subgroup of Hisomorphic to the dihedral group Dp+1 of order p+1 (or to the dihedral group Dp�1). LetV be the set of right cosets of H. It may be seen that H acts primitively on V and thatsome of the orbitals of this action are non-self-paired (see [26, Lemma 4.4] for details). LetX be an arbitrary orbital graph associated with one of the above non-self-paired orbitals.In view of [26, Lemma 4.4] the automorphism group AutX coincides with PGL(2; p) andacts arc-transitively on X. By Theorem 2.1 it follows that F(X) is semisymmetric.Example 2.3 There is a connection between regular maps and 12 -arc-transitive groupactions on graphs of valency 4 and consequently the corresponding generalized Folkmangraphs. Let M be a regular map and Y be its medial graph. By [20, Theorem 4.1], itfollows that M is regular and re
exible if and only if Y admits a 12 -arc-transitive action ofsome H � AutY with vertex-stabilizer Z2 and a 1-arc-transitive action of a subgroup G,such that H � G � AutY , with vertex-stabilizers isomorphic either to Z22 or to Z4. (Notethat the corresponding map M is re
exible and positively self-dual, respectively.) Thesu�cient condition for the semisymmetry of the associated generalized Folkman graphF(Y ;H) given in part (i) of Theorem 2.1 may be checked using [21, Theorem 4.1], whichcharacterizes graphs of valency 4 and girth 4 admitting 12 -arc-transitive group actions.We end this section with a couple of remarks regarding the connectedness of the gen-eralized Folkman graph F(X;H) arising from the 12 -arc-transitive action of a group H ona graph X. 6



Let Vij , i; j 2 Z2, be the four orbits of the group H in its action on the vertices of thegeneralized Folkman graph F = F(X;H), where V00 [ V01 is one of the two bipartitionsets of F . Clearly, F is connected if and only if for any two vertices u; v 2 V00 there isa path in F from u to v. Orient the edges in F from V00 to V1j and from V1j to V01for all j 2 Z2. Observe that this orientation is coherent with the orientation of the arcsin DH(X). A walk from u to v in F has the property that the number of arcs travelledwith the orientation is the same as the number of arcs travelled against the orientation.Moreover, for any subwalk starting at u, the di�erence between these two number is one of0, 1, or 2. Such a walk has a counterpart in the digraph DH(X), which satis�es the samecondition. The connectedness of the graph F may therefore be read from the digraphDH(X). In fact, the graph F is connected if and only if the set of endvertices of walksoriginating at u and satisfying the above property, coincides with the whole of V (X).This motivates the study of the above described walks in a more general setting: �rst,for any digraph and second, allowing the di�erence between the number of arcs travelledwith the orientation and the number of arcs travelled against the orientation in a subwalkto be inside any prescribed interval of integers. This the content of the next section.3 Alter-exponent of a digraphLet D be a digraph, fv0; v1; : : : ; vng � V (D) and fa1; a2; : : : ; ang � A(D). A sequenceW = (v0; a1; v1; a2; v2; : : : ; vn�1; an; vn) is a walk of length n in D from v0 to vn if for alli 2 f1; 2; : : : ; ng either ai = (vi�1; vi) or ai = (vi; vi�1). In the �rst case ai is positivelyoriented inW , and is negatively oriented in the second case. The sum s(W ) of the walk Wis the di�erence between the number of positively oriented arcs in the walk and the numberof negatively oriented arcs in the walk. The kth partial sum sk(W ) of the walk W is thesum of the walk (v0; a1; v1; a2; v2; : : : ; vk�1; ak; vk). In addition, we let s0(W ) = 0. Thetolerance of the walk W is the set fsk(W ) j k 2 f0; 1; : : : ; ngg. Observe that the toleranceof a walk is always an interval of integers containing 0. We say that two vertices u and vof a digraph D are alter-equivalent with tolerance I (and write u altI v) if there is a walkfrom u to v with sum 0 and tolerance J , J � I. It is not di�cult to see that the relationaltI is an equivalence relation for any interval I � Z containing 0. The correspondingequivalence class containing a vertex u 2 V (D) and the corresponding partition of the setV (D) will be denoted by BI(u;D) and by BI(D), respectively. For a; b 2 Z[ f�1;1g,a � 0 � b, the abbreviations alta , altb , Ba(D) and Bb(D) will be used for alt[a;0] , alt[0;b] ,B[a;0](D) and B[0;b](D), respectively. The cardinality of the set B1(D) will be refered toas alter-perimeter of D. If the set B1(D) consists of one class only (that is, if the alter-perimeter equals 1), we say that D is alter-complete. A digraph is alter-incomplete, if itis not alter-complete.Let D be a digraph, u 2 V (D) and v 2 B1(u;D). The smallest integer t, for whichv 2 Bt(u;D), will be denoted by expD(u; v), and the maximum of the set fexpD(u; v) jv 2 B1(u;D)g by expD(u). The alter-exponent of a digraph D is the maximum of the setfexpD(u) j u 2 V (D)g and is denoted by exp(D). The alter-exponent of a digraph D isthus the smallest positive integer t, for which Bt(D) = B1(D).7



Proposition 3.1 Let D be a digraph and let k and i be positive integers. If Bk(D) =Bk+i(D), then exp(D) � k.Proof. It su�ces to show that for any integer k the equality Bk(D) = Bk+1(D)implies the equality Bk+1(D) = Bk+2(D). Suppose that Bk(D) = Bk+1(D), let u and wbe two vertices of D, and suppose that there is a walk W = (u; a1; v1; : : : ; vn�1; an; v)in D of sum 0 and tolerance contained in the interval [0; k + 2]. We have to show thatthere is also a walk in D from u to v with sum 0 and tolerance contained in [0; k +1]. Clearly, a1 = (u; v1) and an = (v; vn�1), for otherwise the tolerance of W wouldcontain negative integers. But then (v1; a2; v2; : : : ; vn�2; an�1; vn�1) is a walk in D withsum 0 and tolerance contained in [0; k + 1]. By the assumption, there is also a walk(v1; b2; v02;: : : ;v0n�2;bn�1; vn�1) in D with sum 0 and tolerance contained in [0; k]. The walk(u; a1; v1; b2; v02;: : : ; v0n�2; bn�1;vn�1; an; v) has sum 0 and its tolerance is contained in theinterval [0; k + 1].Let n � 2 be a positive integer. A digraph with vertex set Zn and arc set f(k; k + 1) jk 2 Zng is called the oriented cycle of length n and is denoted by �!C n. (Note, that by thisde�nition, an oriented cycle �!C 2 is isomorphic to the complete graph K2.)Let B be a partition of the vertex set V of a digraph D. The quotient digraph DB isde�ned to have vertex set B, with a pair (B;C) � B � B, B 6= C, being an arc of DB, ifand only if there is an arc (u; v) of D, such that u 2 B and v 2 C. For a digraph D andB � V (D) let D[B] denote the digraph with vertex set B and arc set (B � B) \ A(D).Similarly, for two disjoint subsets B;C � V (D) let D[B;C] denote the digraph with vertexset B [ C and arc set (B � C [ C � B) \ V (D). The following proposition justi�es thechoice of the term alter-perimeter to denote the cardinality of the set B1(D).Proposition 3.2 Let D be a connected alter-incomplete digraph (that is jB1(D)j > 1)with �+(D) > 0 and ��(D) > 0. Then the quotient digraphs DB1(D) and DB�1(D) areisomorphic to the oriented cycle �!C n for some positive integer n.Proof. Let B = B1(D) and D = DB1(D). Let B 2 B, u; v 2 B and u0; v0 2 V (D),such that a = (u0; u) and b = (v0; v) are arcs of D. Vertices u0 and v0 do not belong toB, for otherwise D would be alter-complete. Since u and v belong to the same memberof B, there exist a positive integer t and a walk (u; a1; v1; : : : vk�1; ak; v) in D with sum 0and tolerance I = [0; t]. But then (u0; a; u; a1; v1; : : : ; vk�1; ak; v; b; v0) is a walk with sum 0and tolerance [0; t+ 1] in D from u0 to v0. This implies that u0 and v0 belong to the samemember of B and shows that deg�D(B) � 1 for each B 2 B. But since deg�D(v) > 0for each v 2 V (D), the inequality deg�D(B) > 0 also holds for each B 2 B, and thusdeg�D(B) = 1 for each B 2 B. Similarly, deg+D(B) > 0 for each B 2 B and sincePB2B deg+D(B) =PB2B deg�D(B), we can deduce that deg+D(B) = 1 for each B 2 B.Since D is connected, it is isomorphic to the oriented cycle �!C n, where n = jBj. Similarly,by considering the digraph with vertex set V (D) and arc set f(u; v) j (v; u) 2 A(D)g wecan also deduce that DB�1 is also isomorphic to �!C n.8



The product W1W2 of a walk W1 = (u; a1; u1; : : : ; um�1; am; w) from u to w and awalk W2 = (w; b1; v1; : : : ; vn�1; bn; v) from w to v is de�ned to be the walk W1W2 =(u; a1; u1; : : : ; am�1; am; w; b1; v1; : : : ; vn�1; bn; v) from u to v. The inverse walk W1�1 ofthe walk W1 is the walk (w; am; um�1; : : : ; u1; a1; u). The next two propositions, leading toa characterization of the alter-exponent of a vertex-transitive digraph, are consequencesof Proposition 3.2.Proposition 3.3 Let D be a connected digraph such that �+(D) > 0 and ��(D) > 0. IfBt(D) = B�t(D) for some positive integer t then B[�t;t](D) = Bt(D).Proof. Let u; v 2 V (D) be such that u alt[�t;t] v. Then there is a walk W = (u =v0; a1; v1; : : : ; vn�1; an; vn = v) in D with sum 0 and tolerance contained in the interval[�t; t]. Let 0 = j0 < j1 < : : : < jk = n be exactly those indices js 2 f1; : : : ; ng for whichthe sum of the walk (u; a1; v1; : : : ; vjs�1; ajs ; vjs) equals 0. For any s 2 f1; : : : ; kg, thetolerance of the walk Ws = (vjs�1 ; ajs�1+1; vjs�1+1; : : : ; vjs�1; ajs ; vjs) is contained eitherin [0; t] or in [�t; 0]. Clearly, W = W1W2 � � �Wk. Let S be the set of those indices s forwhich the tolerance of the walk Ws is contained in [�t; 0]. Since Bt(D) = B�t(D), thereis a walk W 0s in D from vjs�1 to vjs with sum 0 and tolerance contained in [0; t] for everys 2 S. By substituting the walkWs with the walkW 0s for every index s 2 S in the productW1W2 � � �Wk we obtain a walk from u to v with sum 0 and tolerance contained in [0; t].Proposition 3.4 Let D be a connected digraph such that �+(D) > 0 and ��(D) > 0, andlet e = exp(D). Then Be(D) = B�e(D) = B[�e;e](D).Proof. Let u 2 V (D) be arbitrary and let v 2 Be(u;D). Since deg�(w) > 0 foreach w 2 V (D), we can inductively construct a walk (u; a1; u1;: : : ;ue�1;ae;ue) and a walk(v; b1; v1;: : : ;ve�1; be; ve) in such a way that all the arcs ai and bi, i 2 f1; : : : ; eg, arenegatively oriented in the above two walks. Since u and v are contained in the samemember of the set Be(D), the same holds for ue and ve. This is clearly the case if Dis alter-complete, for then Be(D) consists of a single class. On the other hand, if D isalter-incomplete the statement can be deduced from the fact that, in view of Proposi-tion 3.2, DBe(D) is isomorphic to �!C n for some positive integer n. There is therefore awalk (ue; c1; w1;: : : ;wt�1; ct; ve) in D with sum 0 and tolerance contained in [0; e]. Butthen the walk (u; a1; u1;: : : ;ue�1; ae; ue; c1; w1;: : : ;wt�1; ct; ve; be; ve�1;: : : ;b1; v) is a walkfrom u to v with sum 0 and tolerance contained in [�e; 0]. We have thus proved thatBe(u;D) � B�e(u;D). Similarly, B�e(u;D) � Be(u;D), and thus Be(D) = B�e(D). ByProposition 3.3 the result follows.The study of the alter-exponent is of a particular interest in the case of vertex-transitivedigraphs. Namely, let D be a vertex-transitive digraph of exponent e. Clearly, for everyk 2 f1; : : : ; eg, the partition Bk(D) is a complete system of imprimitivity for the actionof AutX on V (D). To every vertex-transitive digraph D we may thus assign a sequence(B1(D);B2(D);: : : ;Bexp(D)(D)) of complete systems of imprimitivity for the action of AutDon V (D), each partition being a re�nement of the next one in the sequence. The sequence9



(jB1(u;D)j; jB2(u;D)j;: : : ;jBexp(D)(u;D)j) of the cardinalities of the members of the abovesystems of imprimitivity will be called the alter-sequence of D.If G is a group acting transitively on a set V and K is a normal subgroup of G, thenthe orbits of K on V form a complete system of imprimitivity of G. In general it is nottrue that every complete sistem of imprimitivity arises in this way. However, there arespecial instances with particular interest to us where this is the case.Proposition 3.5 Let D be a connected vertex-transitive digraph and K a group a subgroupof AutD consisting of those automorphisms which �x every member of Bexp(D)(D) setwise.Then K is normal in AutD and consequently the members of Bexp(D)(D) are orbits of K.Proof. Let B = Bexp(D)(D), let G = AutD and let B be an arbitrary element of B. IfD is alter-complete, the statement of the above proposition is trivially true since K = G.We can thus assume that D is alter-incomplete. SinceK is the kernel of the action of D onB, we have that K is normal in G. Let H = GB be the setwise stabilizer of B in G. SinceG acts transitively on V (D) and B is a block of G, it follows that H is transitive on B.We claim that H = K. Clearly, K � H. Consider the action of the quotient group G=Kon the quotient digraph DB. Clearly, G=K is a subgroup of the group of automorphismsof DB and H=K is the vertex stabilizer in G=K. But by Proposition 3.2, DB is isomorphicto an oriented cycle. Therefore H=K is trivial and so H = K. It follows that B is an orbitof K.The following de�nition, lemma and corollary will be needed in the proof of Proposi-tion 3.9, which gives an alternative de�niton of the alter-exponent in the case of connectedvertex-transitive digraphs.Let D be a digraph, let u 2 V (D), and let a, b and k be integers such that a � 0 � b,a � k � b holds. Then let the symbol Sk[a;b](u;D) denote the set of those vertices w, forwhich a walk from u to w with sum k and tolerance contained in [a; b] exists.Lemma 3.6 Let D be a digraph, u and w its vertices, and let integer a; b; k be as above.Then the following statements are equivalent:(i) w 2 Sk[a;b](u;D),(ii) B[a;b](u;D) = S�k[a�k;b�k](w;D),(iii) u 2 S�k[a�k;b�k](w;D),(iv) B[a�k;b�k](w;D) = Sk[a;b](u;D).Proof. Observe �rst that implications [(ii)) (iii)] and [(iv)) (i)] are trivial, sinceu 2 B[a;b](u;D), as well as w 2 B[a�k;b�k](w;D). Furthermore, by a substitution a 7! a�k,b 7! b� k, k 7! �k, u 7! w and w 7! u one can see that the implication [(i)) (ii)] forcesalso the implication [(iii)) (iv)]. It therefore su�ces to prove the implication [(i)) (ii)].10



Let us therefore assume that w 2 Sk[a;b](u;D) and that W is a walk from u to w withsum k and tolerance contained in [a; b]. Suppose that z 2 B[a;b](u;D). Then there isa walk Z from u to z with sum 0 and tolerance contained in [a; b]. But then the walkW�1Z from w to z has sum �k and tolerance contained in [a � k; b � k], which provesthat B[a;b](u;D) � S�k[a�k;b�k](w;D). Suppose now that z 2 S�k[a�k;b�k](w;D). Then thereis a walk Z from w to z with sum �k and tolerance contained in [a� k; b� k]. But thenthe walk WZ from u to z has sum 0 and tolerance contained in [a; b], which proves theequality B[a;b](u;D) = S�k[a�k;b�k](w;D).Corollary 3.7 Let D be a vertex-transitive digraph and a; b integers, such that a � 0 � b.Then the cardinality of the set Sk[a;b](u;D) does not depend on the choice of a vertexu 2 V (D) and an integer k 2 [a; b].Proof. Let k be an arbitrary integer contained in the interval [a; b] and let u be anarbitrary vertex of D. Since the sets B[a;b](w;D), w 2 V (D), form a complete system ofimprimitivity of the group AutD (and are therefore of equal cardinality), it su�ces to seethat jSk[a;b](u;D)j = jB[a;b](u;D)j. Let D0 be the digraph with vertex-set V (D) and arc-setf(w1; w2) j w2 2 Sk[a;b](w1;D)g. In view of the equivalence [(i) , (iii)] in Lemma 3.6, itfollows that N�D0(v) = S�k[a�k;b�k](v;D) for every vertex v 2 V (D). Clearly, AutD � AutD0,which shows that D0 is vertex-transitive, and thus regular and balanced. ThereforejSk[a;b](v0;D)j = jSk[a;b](v;D)j = jS�k[a�k;b�k](v;D)jfor every pair of vertices v; v0 2 V (D). Let w be an arbitrary element of the set N+D0(u) =Sk[a;b](u;D). SinceD andD0 are vertex-transitive, it follows that jSk[a;b](u;D)j = jSk[a;b](w;D)j.Combining these facts with Lemma 3.6 we can deduce thatjSk[a;b](u;D)j = jS�k[a�k;b�k](w;D)j = jB[a;b](u;D)j;as required.Lemma 3.8 Let D be a vertex-transitive digraph, let u 2 V (D), and let a, b and k beintegers such that a � 0 � b and a � k � b. Then the sets B[a;b](u;D) and B[a�k;b�k](u;D)have equal cardinalities. In particular, jBk(u;D)j = jB�k(u;D)j for every integer k.Proof. Let w be an arbitrary member of the set S�k[a�k;b�k](u;D). By Corollary 3.7 itfollows that jB[a;b](u;D)j = jS0[a;b](u;D)j = jSk[a;b](w;D)j and by Lemma 3.6 we have thatjSk[a;b](w;D)j = jB[a�k;b�k](u;D)j.Proposition 3.9 Let D be a connected vertex-transitive digraph. Then exp(D) = minft jB�t(D) = Bt(D); t > 0g. 11



Proof. By Proposition 3.4, we know that B� exp(D)(D) = Bexp(D)(D). Let t be apositive integer such that B�t(D) = Bt(D). Then by Proposition 3.3, Bt(D) = B[�t;t](D).By Lemma 3.8 we then have that jBt(D)j = jB2t(D)j. Since Bt(D) is a re�nement ofB2t(D) it follows that Bt(D) = B2t(D), and by Proposition 3.1 it follows that t � exp(D).Alter-exponents may be arbitrarily large as is shown by the two examples below,giving constructions of, respectively, alter-incomplete and alter-complete digraphs withprescribed alter-exponents.Example 3.10 Let k � 2 be an integer and let ei, i 2 f1; 2; : : : ; kg, be the ith standardbasis vector of Zk2. Denote by Dk the digraph with vertex set V = Zk2 � Z2k and arcsof the form ((v; i); (v; i + 1)) and ((v; i); (v + e(imodk)+1; i + 1)) for all v 2 Zk2 and alli 2 f1; 2; : : : ; kg. It is not di�cult to see, that D=B1 �= �!C 2k and that exp(D) = k. Note,that this digraph is a 2k-fold regular cover of an oriented (multi)cycle with vertex setfu0; : : : ; u2k�1g and two arcs from ui to ui+1 for each i 2 Z2k and with Zk2 as the group ofcovering transformations (the voltage group). The voltages on the pair of arcs between uiand ui+1 are 0 and ei0 , where i0 = (i mod k) + 1.Example 3.11 Let k � 2 be an integer, and let A2k be the alternating group acting(for reasons of convenience) on the set Z2k. Let r = (0; 1; : : : ; 2k � 3; 2k � 2) and t =(0; 1; : : : ; 2k � 3; 2k � 1) be two elements of A2k. It may be seen that the Cayley digraphCay(A2k; fr; tg) is an arc-transitive digraph of exponent 2k � 2 and B1(D) = fV (D)g.Note that the smallest member of this family was �rst given in [22, Example 2.6].We conclude the section by stating the criterion for connectivity of the generalizedFolkman graphs, as announced at the end of the previous section.Proposition 3.12 Let X and H have the meaning described in the �rst paragraph ofSection 2. Then the generalized Folkman graph F(X;H) is connected if and only if DH(X)is alter-complete and exp(DH(X)) � 2. Furthermore, if it is disconnected, it consists ofjB2(D)j isomorphic connected components.It will be convenient to generalize the concepts of alter-exponent and alter-sequenceto graphs admitting a 12 -arc-transitive group action via the associated digraphs. Namely,let X be a (H; 12)-transitive graph. We shall use the terms H-alter-exponent and H-alter-sequence of X to denote the alter-exponent and the alter-sequence of the correspondingdigraph DH(X), respectively. In particular, we shall omit the symbol H in the caseH = AutX.
12



4 Line graphs of cubic graphs and the associated generalizedFolkman graphsThere is a natural construction of generalized Folkman graphs via the line graphs of certaincubic arc-transitive graphs. It is the purpose of this section to discuss the semisymmetry(and connectivity) of these graphs.Let G be a group and X be a connected G-arc-transitive cubic graph. By the wellknown result of Tutte [27], it follows that G acts regularly on the set of s-arcs of X forsome positive integer s � 5. (We say that G acts s-regularly on X.) Let us now considerthe line graph L(X) of X. Note that AutX = AutL(X). It may be deduced from [24,Proposition 1.1] that G acts 1-regularly on X if and only if it acts 12 -arc-transitively onL(X). In particular, AutX acts 1-regularly on X, that is X is 1-regular if and only ifL(X) is a 12 -arc-transitive graph of valency 4 and girth 3. Similarly, if G acts 2-regularlyon X, then it acts arc-transitively on L(X). Assume that H � G are subgroups ofAutX acting, respectively, 1-regularly and 2-regularly on X. Then we shall say that X is(1H ; 2G)-regular. In this case H acts 12 -arc-transitively on L(X), and is contained in thearc-transitive group G as a subgroup of index 2. We can thus construct the generalizedFolkman graph F(L(X);H).The following proposition shows that the alter-exponent of a digraph DH(L(X)), asso-ciated with the line graph of a cubic graph X admitting a 1-regular action of a subgroupH of AutX, is at most 2.Proposition 4.1 Let X be a connected cubic graph admitting a 1-regular action of asubgroup H of AutX. Let D = DH(L(X)) be (one of the two) digraphs obtained from theline graph L(X) by orienting the edges of L(X) in accordance with the 12 -arc-transitiveaction of H on L(X). Then one of the following occurs:(i) exp(D) = 1, D is alter-incomplete and the alter-perimeter of D equals 3, or(ii) exp(D) = 2, D is alter-incomplete and the alter-perimeter of D equals 3, or(ii)i exp(D) = 2 and D is alter-complete.Proof. Let us �rst prove that alter-exponent of D is at most 2. Observe that in viewof the 1-regularity of the action of H on X, every vertex of X gives rise to an oriented3-cycle of D. Moreover, every arc of D lies on precisely one such oriented 3-cycle of D.This implies that for every arc (u; v) of D there exists a vertex w 2 V (D), such that(v; w) and (w; u) are arcs of D. It su�ces to show that for any walk in D with sum 0 andtolerance [0; 3], there exists a walk with the same end-vertices having sum 0 and tolerance[0; 2]. Assume therefore that W = (v0; a1; v1;: : : ;vn�1;an; vn) is a walk in D from v0 tovn with sum 0 and tolerance [0; 3]. We show that there is also a walk from v0 to vn withsum 0 and tolerance [0; 2]. Let J be the set of those indices j 2 f1; 2; : : : ; n� 1g for whichthe sum of the walk (v0; a1; v1;: : : ;vj�1;aj ; vj) is 3. Clearly, for every j 2 J , the arc aj�1is negatively oriented in W , whereas the arc aj is positively oriented in W . For everyj 2 J let uj and wj denote those vertices of D for which the oriented pairs b1j = (uj ; vj�1),13



b2j = (vj ; uj), c1j = (vj ; wj) and c2j = (wj ; vj+1) are arcs of D. For every j 2 J substitutethe sequence : : : ; aj ; vj ; aj+1; : : : in W with the sequence : : : ; b1j ; uj ; b2j ; vj ; c1j ; wj ; c2j ; : : : toobtain a walk in D from v0 to vn with sum 0 and tolerance [0; 2].Suppose now that D is alter-incomplete. We need to show that the alter-perimeter ofD equals 3. By Proposition 3.2 some quotient digraph of the digraph D is isomorphic tothe oriented cycle ~Cn, where n is the alter-perimeter of D. But since D contains oriented3-cycles, so does every quotient of D, forcing n = 3.To complete the proof it remains to show that in the case where exp(D) = 1, thedigraph D cannot be alter-complete. To this end we use [19, Proposition 2.4 (ii)]. Namely,if D is alter-complete, then (in the terminology of [19]) each H-alternating cycle of L(X)contains all vertices of X. But then by [19, Proposition 2.4 (ii)], there are a positive integerr and some odd s 2 Z�2r such that X is isomorphic to the circulant Cir(2r; f1;�1; s;�sg),contradicting the fact that X contains cycles of length 3.Let X be a cubic s-arc-transitive graph with a sequence of groups H1 � : : : � Hk,where H1 is a minimal arc-transitive subgroup of Hk = AutX and each Hi is maximal inHi+1. Suppose that for each i, the group Hi is si-regular. Then the sequence (s1; : : : ; sk)is called a type of X. It may be deduced by the well-known result of Djokovi�c and Miller[8] that the possible types are as follows: (1), (1; 2), (1; 2; 3), (1; 3), (1; 4), (1; 4; 5), (1; 5),(2), (2; 3), (3), (4), (4; 5) and (5).In Table 1 we have gathered a comprehensive information on the generalized Folkmangraphs arising from line graphs of certain cubic arc-transitive graphs (to be more precise,from (1H ; 2G)-regular graphs) of order at most 98. Information available form the Fostercensus [4] and the work of Conder and Dobscanyi [6] was processed with MAGMA [1].For each cubic arc-transitive graph of order at most 98, Table 1 gives its Foster code Fc,meaning that the graph appears in the Foster census under the code c, its type and an infor-mation about its covers. For the corresponding line graph the alter-sequence is computedin the case of type (1; : : :). Finally, for types (1; 2) and (1; 2; 3), the order, semisymmetryand isomorphism of the connected components of the corresponding generalized Folkmangraphs is given.The smallest connected (1H ; 2G)-regular cubic graph is K4. Its line graph L(K4)is isomorphic to the lexicographic product K3[ �K2]. Since the alter-sequence is (2), wehave that the generalized Folkman graph F(L(K4);H) is disconnected with connectedcomponents on 8 vertices. Since the smallest semisymmetric graph has 20 vertices, thelatter are not semisymmetric. A similar argument may be applied to the graph K3;3 inrow 2.An interesting example arises from the cube Q3, the canonical double cover of K4. Itsautomorphism group G acts 2-regularly and contains two non-conjugate 1-regular sub-groups H1 and H2. The corresponding digraphs DH1(L(Q3)) and DH2(L(Q3)) are both ofalter-exponent 2. the �rst one is alter-incomplete with alter-sequence (2; 4), whereas thesecond one is alter-complete with alter-sequence (3; 12). As in the previous two examplesF(L(Q3);H1) is disconnected and not semisymmetric. However F(L(Q3);H2), a graph oforder 48, is semisymmetric; in fact, it is isomorphic to the graph described in [22, Example2.6]. 14



TABLE 1: Cubic arc-transitive graphs, their line graphs and generalized Folkman graphs.The names of the columns in the table have the following meanings. CATG:= cubic arc-transitive graph, name:=Fostercode, type:= transitivity type, cover:= a cover of which graph; LG:= line graph of CATG, order:=its order, AS:=altersequence, AC:= is it alter-complete or not; GFG:= connected component of the corresponding generalizedFolkman graph; order:=its order, SS:=is it semisymmetric, iso:= isomorphism between various GFG.row CATG LG GFGname type cover order AS AC order SS iso1 F4, K4 (1; 2) 6 [2] no 8 no2 F6, K3;3 (1; 2; 3) 9 [3] no 12 no3 F8, Q3 (1; 2) F4 12 [2; 4] no 16 no4 F8, Q3 (1; 2) F4 12 [3,12] yes 48 yes row 125 F10, Petersen (2; 3) 156 F14, Heawood (1; 4) 21 [7] no7 F16, GP(8,3) (1; 2) F8 24 [4; 8] no 32 yes8 F16, GP(8,3) (1; 2) F8 24 [6; 24] yes 96 yes row 229 F18, Pappus (1; 2; 3) F6 27 [3; 9] no 36 yes10 F20A, Dodec. (1; 2) F10 30 [5; 30] yes 120 yes row 3111 F20B, Desarg. (2; 3) F10 3012 F24, GP(12,5) (1; 2) F6, F8 36 [3; 12] no 48 yes row 413 F24, GP(12,5) (1; 2) F6, F8 36 [6; 12] no 48 yes14 F26 (1) 39 [13] no15 F28, Coxeter (2; 3) 4216 F30, Tutte (4; 5) 4517 F32, Dyck (1; 2) F8 48 [4; 16] no 64 yes18 F32, Dyck (1; 2) F8 48 [3; 48] yes 192 yes row 4319 F38 (1) 57 [19] no20 F40 (1; 2; 3) F20A, F20B 60 [5; 60] yes 240 yes21 F42 (1) F6, F14 63 [21] no15



row CATG LG GFGname type cover order AS AC order SS iso22 F48 (1; 2) F16, F24 72 [6; 24] yes 96 yes row 823 F48 (1; 2) F16, F24 72 [12; 24] yes 96 yes24 F50 (1; 2) 75 [5; 25] yes 100 yes25 F50 (1; 2) 75 [3; 75] yes 300 yes26 F54 (1; 2) F18 81 [3; 27] no 108 yes27 F54 (1; 2) F18 81 [9; 27] no 108 yes28 F56A (1) F8, F14 84 [14; 28] no29 F56B, Klein (1; 2) 84 [4; 84] yes 336 yes30 F56C (2; 3) F28 8431 F60 (1; 2) F20A 90 [5; 30] no 120 yes row 1032 F62 (1) 93 [31] no 124 no33 F64 (1; 2) F16, F32 96 [4; 32] no 128 yes34 F64 (1; 2) F16, F32 96 [6; 96] yes 384 yes35 F72 (1; 2) F18, F24 108 [3; 36] no 144 yes36 F72 (1; 2) F18, F24 108 [6; 36] no 144 yes37 F74 (1) 111 [37] no38 F78 (1) F6, F26 117 [39] no39 F80 (1; 2; 3) F40 120 [10; 120] yes 480 yes40 F84 (2) 12641 F86 (1) 129 [43] no42 F90 (4; 5) F30 13543 F96A (1; 2) F24, F32 144 [3; 48] no 192 yes row 1844 F96A (1; 2) F24, F32 144 [12; 48] no 192 yes45 F96B (1; 2; 3) F24 144 [6; 48] no 192 yes46 F98A (1) F14 147 [49] no47 F98B (1; 2) F14 147 [7; 49] yes 196 yes48 F98B (1; 2) F14 147 [3; 147] yes 588 yes16



It is not surprising, that a similar bifurcation occurs for covers of Q3 (see rows 7 and8, rows 12 and 13, rows 17 and 18, rows 22 and 23, rows 28 and 29, rows 33 and 34, rows35 and 36, and rows 43 and 44) as well as for graphs in rows 24 and 25, rows 26 and 27,and rows 47 and 48.Since each of the cubic arc-transitive graphs of types (1; 2) or (1; 2; 3) in rows 5 to 48has girth greater than 4, the corresponding (connected components of) the generalizedFolkman graphs are semisymmetric by Theorem 2.1, (i). As it may be seen from the lastcolumn of Table 1, some of these graphs are isomorphic. Note that the corresponding alter-sequences coincide in these cases. We would like to remark that the connected componentof the generalized Folkman graph in row 7 is the smallest semisymmetric graph (its orderis 32) which has not been mentioned in the literature before.Finally, the cubic arc-transitive graphs in rows 10 and 29, that is the dodecahedronand the Klein graph, are the smallest members of an in�nite family of cubic arc-transitivegraphs of order (p�1)p(p+1)=6, p � 5 a prime, and type (1; 2), constructed in [8, Section13 (pp. 223)]. (The respective values of p are 5 and 7.) A description of this familyof graphs and the computations regarding the corresponding line graphs and generalizedFolkman graphs is given below. It transpires that the corresponding (oriented) line graphs(of order (p � 1)p(p + 1)=4) are alter-complete and have no 4-cycles, thus giving rise tosemisymmetric generalized Folkman graphs of order (p � 1)p(p + 1) (and valency 4) inview of Theorem 2.1, (i).For a prime p � 5 let c = � 1 1�1 0� ; y = � 0 1�1 0�be elements of the projective special linear group PSL2(p). Clearly, c3 = y2 = 1. Then cand y generate the groupH = PSL2(p). Denote by C andK the subgroups ofH generatedwith elements c and y, respectively, and by V = H=C the set of right cosets of C in H.We de�ne the graph to have vertex-set V and edge-set E = ffCu;Cydug j d 2 C; u 2 Hg(that is the orbital graph relative to suborbit fCy;Cyc; Cyc2g). By [8, Proposition 27]the automorphism group G = AutX of X is either PGL2(p) or PSL(2; p) � C2 and X is(1H ; 2G)-regular. It can also be easily checked that X contains no cycles of length 4. Thecorresponding digraph D = DH(L(X)) is isomorphic to the graph with vertex set H=K,the set of right cosets of K in H, and arc set f(Ku;Kcku) j k 2 K;u 2 Hg. Since His simple, the digraph D is alter-complete, and, by Proposition 4.1, of alter-exponent 2.Combining Theorem 2.1 and Proposition 3.12 we have that the generalized Folkman graphF(L(X);H) is a connected semisymmetric graph of valency 4 and order (p� 1)p(p+ 1).To compute the alter-sequence of D we have to compute the cardinality of the setB1(K;D), which clearly consists of those cosets of K, which are contained in the groupgenerated by the set Kc�1KcK. It can be easily checked that the group hKc�1KcKi mayalso be generated by involutions y and c�1yc and is therefore isomorphic to the dihedralgroup D2r, where r is the order of the productc�1ycy = ��1 11 �2�17



in the group PSL2(p). Observe that for any positive integer k the kth power of the abovematrix equals � (�1)kF2k�1 (�1)k+1F2k(�1)k+1F2k (�1)kF2k+1� ;where (Fn) is the Fibonacci sequence de�ned by F0 = 0, F1 = 1, and Fn+2 = Fn + Fn+1.The order r of the product c�1ycy in the group PSL2(p) is therefore the least positiveinteger k for which the prime p divides the (2k)th term F2k of the Fibonacci sequence. Wehave thus showed that the alter-sequence of the digraph D equals (r; (p�1)p(p+1)4 ), where ris as above.5 Alter-exponent of tetravalent 12-arc-transitive graphsThe term tightly attached graphs was used in [19, 23] for tetravalent graphs admitting a 12 -arc-transitive group action with respect to which the corresponding alter-exponent equals1. A complete classi�cation of such graphs with alter-sequence [r] was given in [19] and in[23] for r odd and r even, respectively. (The term radius was used for the parameter r.)Furthermore, 12 -arc-transitive graphs of alter-exponent 1 and odd radius were classi�ed in[19].A natural question arises with regards to obtaining a similar classi�cation for graphs ofalter-exponent 2 or higher alter-exponent. The line graph of the graph F56A in row 28 inTable 1 is an example of such a graph with alter-exponent 2. In fact, F56A is the smallestmember of an in�nite family of 1-regular Zk2+k+1-covers of Q3 (given in [12]), for whichthe corresponding line graphs are 12 -arc-transitive of alter-exponent 2. It may be easilyseen that these graphs are alter-incomplete with alter-sequence [2(k2+k+1); 4(k2+k+1)].A further generalization of this construction was pointed to us by Malni�c and is based onthe existence of a 1-regular Z2(k2+k+1)-cover of Q3 for each odd k � 3 [18]. Moreover, anin�nite family of cubic 1-regular graphs arising from alternating and symmetric groupsof degree congruent 1 modulo 6 was constructed in [7]. The corresponding line graphsare 12 -arc-transitive of alter-exponent 2 and, since alternating groups are simple, clearlyalter-complete. Finally, the line graph of order 648 of the �rst known 1-regular graph(of order 432 and constructed by Frucht in [14]) is alter-incomplete with alter-sequence(6; 216).In view of these examples we would like to pose the problem of classifying tetravalent12 -arc-transitive graphs with alter-exponent 2. An in-depth analysis of the alter-incompletecase seems like a reasonable �rst step towards obtaining this goal.References[1] W. Bosma, C. Cannon, C. Playoust and A. Steel, Solving Problems with Magma, School ofMathematics and Statistics, University of Sidney, Australia, 1999.[2] I. Z. Bouwer, An edge but not vertex transitive cubic graph, Bull. Can. Math. Soc. 11 (1968),533{535. 18
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