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Abstra
tIt is proved that every 
onne
ted 
ubi
 simple graph admitting a vertex-transitivea
tion of a solvable group is either 3-edge-
olourable, or isomorphi
 to the Petersengraph.Key words: graph, solvable group, vertex-transitive graph, transitive a
tion, edge-
olouring, 
ow.Klju�
ne besede: graf, re�sljiva grupa, to�
kovno tranzitiven graf, tranzitivno delo-vanje, barvanje povezav, pretok.Math. subj. 
lass. 2000: 05C25.
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1 Introdu
tionIn this se
tion all graphs are 
onsidered to be �nite and simple. By the well-knowntheorem of Vizing the 
hromati
 index of a graph with maximum degree � is either� or � + 1. A

ording to this result all graphs 
an be divided into two 
lasses,
lass 1 
onsisting of the graphs with the 
hromati
 index being the same as themaximum degree, and 
lass 2 
ontaining all graphs with the 
hromati
 index beinggreater than the maximum degree. Though some suÆ
ient 
onditions for the graphto belong to 
lass 1 are known (for example, by an old result of K�onig every bipartitegraph belongs to 
lass 1), an eÆ
ient 
hara
terization of 
lass 1 graphs is a goal notvery likely to be a
hived in near future. The problem is unsolved even in the 
aseof 
ubi
 graphs, where the 
hara
terization of 
lass 1 graphs is 
losely related totwo famous problems, namely to Tutte's 
onje
ture on nowhere-zero 4-
ows and toLov�asz's question on Hamiltonian paths in vertex-transitive graphs.Conje
ture 1.1 (Tutte, [16℄) Every bridgeless 
ubi
 graph 
ontaining no subdi-vision of the Petersen graph admits a nowhere-zero 4-
ow.Question 1.2 (Lov�asz, [8℄) Does every 
onne
ted vertex-transitive graph 
ontaina Hamiltonian path?The relation with Lov�asz's question is established through the fa
t that everyHamiltonian 
ubi
 graph is 3-edge-
olourable, while the 
onne
tion with Tutte's
onje
ture re
e
ts in the fa
t that 
ubi
 graph belongs to 
lass 1 if and only if itadmits a nowhere-zero 4-
ow. Tutte's 
onje
ture motivated the hunt of the snarks(here snark stands for a bridgeless 
ubi
 
lass 2 graph) [2, 4, 5, 7, 11, 12, 13℄, as wellas the sear
h for suÆ
ient 
onditions for 
ubi
 graphs to belong to 
lass 1.In view of Lov�asz's 
onje
ture a natural dire
tion of investigations leads to vertex-transitive graphs, that is graphs for whi
h their automorphism group a
ts transi-tively on the set of verti
es. There are only two known examples of 
onne
ted
ubi
 vertex-transitive graphs whi
h are not 3-edge-
olourable, namely the Petersengraph and its trun
ation (observe that the Coxeter graph is 3-edge-
olourable eventhough it is not Hamiltonian). At this point the following question (asked by Riste�Skrekovski { oral 
ommuni
ation), arises naturally.Question 1.3 Is every 
onne
ted 
ubi
 vertex-transitive graph whi
h is not iso-morphi
 neither to the Petersen graph nor to the trun
ation of the Petersen graph3-edge-
olourable?This question is a generalization of the 
onje
ture made by Alspa
h and Zhangin 1991 saying that every 
onne
ted Cayley graph admits a nowhere-zero 4-
ow (orequivalently, is 3-edge-
olourable). Alspa
h, Liu and Zhang [1℄ proved this 
onje
turein the 
ase of 
ubi
 Cayley graphs of solvable groups (that is, 
ubi
 graphs with3



the automorphism group 
ontaining a regular solvable group). Their result wasimproved by Nedela and �Skoviera [12℄ who proved that every 
ounter-example tothe 
onje
ture of Alspa
h and Zhang should be a regular 
over over a Cayley graphof an almost simple group. Let us mention at this point that the 
onje
ture ofAlspa
h and Zhang (though 
losely related to the Tutte's 4-
ow 
onje
ture) remainsopen even in the 
ase if the Tutte' 
onje
ture holds for 
ubi
 graphs (see [14℄), asmany Cayley graphs do 
ontain subdivisions of the Petersen graph.In this arti
le we give the following partial answer to Question 1.3 and thusgeneralize the result of Alspah, Liu and Zhang to a mu
h wider 
lass of graphs.Theorem 1.4 Let X be a 
onne
ted 
ubi
 simple graph and suppose that its auto-morphism group 
ontains a solvable subgroup a
ting transitively on the set of verti
esof X. If X is not 3-edge-
olourable then it is isomorphi
 to the Petersen graph.In Se
tion 2 we de�ne some basi
 notions needed later. We prove the abovetheorem in Se
tion 3.2 PreliminariesThough our main interest lies in the graphs without loops and semiedges it willbe 
onvenient for us to use slightly more general de�nition of a graph, whi
h arisesnaturally in the 
ontext of graph 
overs and quotients. We only give some very basi
de�nition and results in this se
tion and refer the reader to [9, 10℄ for all notionsand 
on
epts not de�ned here.A graph is an ordered 4-tuple (D;V ; beg ; inv) where D and V 6= ; are disjoint�nite sets of darts and verti
es, respe
tively, beg : D ! V is a mapping whi
hassigns to ea
h dart x its initial vertex beg x, and inv : D ! D is an involutionwhi
h inter
hanges every dart x and its inverse dart x�1. The orbits of inv are
alled edges. The initial verti
es of an edge are the initial verti
es of the darts
ontained in the edge. An edge is 
alled a semiedge if invx = x, a loop if invx 6= xwhile beg (x�1) = beg x, and is 
alled a link otherwise. Two links are parallel ifthey have the same initial verti
es. A graph with no semiedges, no loops and noparallel links is 
alled a simple graph. Degree of a vertex v is the number of dartshaving v as their initial vertex. Graph is 
ubi
 if all its verti
es have degree 3.A mapping 
 : D ! f1; 2; : : : ; ng is a proper n-edge 
olouring of the graph X =(D;V;beg ; inv) if for every pair x; y 2 D, su
h that begx = beg y, we have 
(x) 6=
(y). If there exists a proper n-edge-
olouring of the graph we say that the graph isn-edge-
olourable. The minimal integer n for whi
h a graph is n-edge-
olourable is
alled the 
hromati
 index of the graph X.A morphism of graphs f : X ! X 0 is a fun
tion f : VX [ DX ! VX0 [ DX0su
h that f(VX) � VX0 , f(D) � DX0 , f begX = begX0 f and f invX = invX0 f .4



A graph morphism is epimorphism (automorphism) if it is a surje
tion (bije
tion,respe
tively). The group of automorphisms of a graph X is denoted by AutX.Let N � AutX be a subgroup of the automorphism group and let DN andVN denote the sets of orbits on darts and verti
es of X, respe
tively. Further, letbegN [x℄ = [beg x℄ and invN [x℄ = [invx℄. This de�nes the quotient graph XN =(DN ; VN ; begN ; invN ) together with the natural epimorphism pN : X ! XN 
alledthe quotient proje
tion relative to N .If the quotient proje
tion }N : X ! XN of 
onne
ted graphs is also a lo
albije
tion on darts (that is, if for ea
h vertex v 2 VX the set of darts of X havingv as the initial vertex is mapped bije
tively onto the set of darts of X having }(v)as the initial vertex) then the quotient proje
tion } is a regular 
overing proje
tionand the group N is the group of 
overing transformation. Observe that 
hromati
index of the 
overing graph is at most that of the base graph.Regular 
overing proje
tions 
an be 
ombinatorialized as follows [6, 9, 10℄. ACayley voltage spa
e on a 
onne
ted graph X = (D;V ; beg ; inv) is an ordered pair(N ; �), where N is a voltage group a
ting on itself by right multipli
ation, and� : D ! N is a surje
tive fun
tion su
h that �(x�1) = (�(x))�1. This fun
tionextends naturally to all walks in X. Note that homotopi
 walks have the samevoltage. This allows us to view the fun
tion � as de�ned on the fundamental group�(X; b) of X at base point b. Moreover, if the group N is abelian, the fun
tion �naturally extends to the fun
tion de�ned on the abelianization H1(X) of �(X; b).Finally, if N is of prime exponent p then we 
an view � as de�ned on the �rsthomology group H1(X;Zp) with 
oeÆ
ient in the prime �eld Zp. (We refer thereader to [10℄ for details).Let (N ; �) be a Cayley voltage spa
e on a 
onne
ted graph X = (D;V ; beg ; inv).With (N ; �) we asso
iate a derived 
overing proje
tion }� : Cov(N ; �) ! X as fol-lows. The graph Cov(N ; �) has D�N and V �N as the sets of darts and verti
es,respe
tively, with beg (x; �) = (beg x; �) and inv(x; �) = (invx; ��(x)). The 
orre-sponding proje
tion }� is de�ned as the proje
tion onto the �rst 
omponent. Thisis indeed a regular 
overing proje
tion with the group of 
overing transformationisomorphi
 to the group N . It is not diÆ
ult to see that every regular 
overingproje
tion 
an be obtained in this way.3 Proof of Theorem 1.4Suppose that the statement of Theorem 1.4 is false and let ~X be the smallest graph(in terms of the number of its verti
es) whi
h satis�es the 
onditions of the theorem,but is neither isomorphi
 to the Petersen graph nor 3-edge-
olourable. Let ~G denotethe solvable vertex-transitive subgroup of Aut ~X and let N denote the minimal(non-trivial) normal subgroup of ~G. By [15, Theorem 5.24℄ there exists a prime pand a positive integer k su
h that N is isomorphi
 to the elementary abelian group5



Zkp. Let X denote the quotient graph ~XN , } : ~X ! X the 
orresponding quotientproje
tion, and G the quotient group ~G=N . Observe �rst that if the vertex set ofX is a singleton then the graph ~X is a 
ubi
 Cayley graph of elementary abeliangroup and ~X is 3-edge-
olourable by [1℄. We 
an thus assume that X has at leasttwo verti
es. Clearly, the group G a
ts transitively (in the natural way) on theverti
es of X, and is solvable. Furthermore, the 
onne
tedness of ~X implies the
onne
tedness of X. Observe that X is 
ubi
 if and only if the quotinet proje
tion} is a 
overing proje
tion. Sin
e every 
over of a 3-edge-
olourable graph is also3-edge-
olourable, we 
an assume that if X is 
ubi
 it is not 3-edge-
olourable. Theminimality of ~X then implies that one of the following o

urs:a) X is not 
ubi
, orb) X is 
ubi
, but neither simple nor 3-edge-
olourable, or
) X is isomorphi
 to the Petersen graph.Assume �rst that X is not 
ubi
. Then its valen
e is either 1 or 2. If the valen
eof X is 1 then it is isomorphi
 to K2 and ~X is bipartite and thus 3-edge-
olourable,a 
ontradi
tion. If the valen
e of X is 2 then X is isomorphi
 either to K2 with theadditional semiedge at every vertex, or to a 
y
le Cn. In the �rst 
ase the }-preimageof the two semiedges of X is a 1-fa
tor (or a disjoint union of two 1-fa
tors) of ~X ,and the }-preimage of the edge of X is a disjoint union of 
y
les of even length (or a1-fa
tor of ~X , respe
tively). In both 
ases ~X is 3-edge-
olourable. If X is isomorphi
to Cn then }-preimage of every se
ond edge of Cn is a 1-fa
tor and the }-preimageof other edges of Cn is disjoint union of two 1-fa
tors. This shows that n is evenand that ~X is bipartite, a 
ontradi
tion.We 
an thus assume that X is a 
ubi
 graph. Suppose �rst that X is not simple.There are only 2 in�nite families and four sporadi
 
ases of vertex-transitive 
ubi
graphs (with more than one vertex) whi
h are not simple. These are:1. the dipole D3, having two verti
es and three parallel edges between them;2. the graph D02, having two verti
es, two parallel edges between them, and asemiedge atta
hed to every vertex;3. the graph �C2n obtained from the 
y
le C2n by atta
hing an edge parallel toevery se
ond edge of the 
y
le;4. the graph KÆ2 obtained from the graph K2 by atta
hing a loop to ea
h of thetwo verti
es;5. the graph K 002 obtained from the graph K2 by atta
hing a pair of semiedges toea
h of the two verti
es;6. the graph C 02n obtained from the 
y
le C2n by atta
hing a semiedge to everyvertex of the 
y
le. 6



Observe that all of the above graphs, ex
ept for the graph KÆ2 , are 3-edge-
olourable. We 
an thus assume that X �= KÆ2 and that ~X is a 
onne
ted regular
over over KÆ2 with elementary abelian group N of 
overing transformations. Sin
ethe Betti number of the graph KÆ2 is 2, the group N is isomorphi
 either to Zpor to Z2p. In the �rst 
ase ~X is a generalized Petersen graph. It is known thatall generalized Petersen graph, ex
ept for the Petersen graph itself, are 3-edge-
olourable (see [3℄). In the se
ond 
ase the graph ~X is isomorphi
 to the homologi
alp-
over of the graph KÆ2 . It is easy to see that it is 3-edge-
olourable as well, in fa
t,it is a Cayley graph of a semidire
t produ
t of the elementary abelian group Z2p andthe group Z2.We are now left with the 
ase where X is isomorphi
 to the Petersen graph.We begin by proving the following lemma on solvable vertex-transitive group ofautomorphisms of the Petersen graph.Lemma 3.1 Let Pet be the Petersen graph and G a solvable vertex-transitive sub-group of AutPet. Let Z(2)5 = fij j i; j 2 Z5g denote the set of unordered pairs ofelements of Z5 and let the symmetri
 group S5 a
t on the set Z(2)5 in the naturalway. Denote by � and � the elements (0; 1; 2; 3; 4) and (1; 2; 4; 3) of S5, respe
tively.Then the a
tion of G on the vertex-set of Pet is isomorphi
 to the a
tion of thegroup h�; �i on Z(2)5 .Proof. Sin
e G a
ts transitively on the set of 10 elements it 
ontains an elementr0 of order 5 having exa
tly two orbits on the vertex-set of Pet. Sin
e Pet is notbipartite there are at least two adja
ent verti
es, say u and v, 
ontained in the sameorbit of r0. This implies that some power of r0, 
all it r, maps the vertex u to thevertex v. Let w be the neighbour of u whi
h is not 
ontained in the same orbitof r as u. For every i 2 Z5, let ui and wi denote the verti
es ri(u) and ri(w),respe
tively. De�ne a bije
tion f : V (Pet) ! Z(2)5 by the rules f(ui) = i(i + 2) andf(wi) = (i+3)(i+4), for every i 2 Z5. Note that any two verti
es of Pet are adja
entif and only if their f -images are disjoint. The bije
tion f gives rise to a group-isomorphism � : Aut Pet ! S5, su
h that (f; �) : (V (Pet);AutPet) ! (Z(2)5 ; S5) isan isomorphism of a
tions. Note that �(G) 
ontains the permutation �. Sin
e �(G)is a solvable subgroup of S5 
ontaining � and a
ting on the set Z(2)5 transitively itmust be the group of order 20 generated by � and � . The pair (f; �jG) is then theisomorphism of the a
tions (V (Pet); G) and (Z(2)5 ; h�; �i).In view of lemma 3.1 we 
an assume that the verti
es of X are labelled by theelements of the set Z(2)5 and that the group G is generated by the elements� = (0; 1; 2; 3; 4) and � = (1; 2; 4; 3)of the symmetri
 group S5, a
ting in the natural way on the set Z(2)5 . Sin
e thegraph ~X is a regular N -
over over the graph X �= Pet, we 
an identify ~X with the7



derived 
overing graph Cov(N; �), where � is a voltage assignment, de�ned on thehomology group H1(Pet;Zp) of the Petresen graph Pet (with 
oeÆ
ients in Zp). Weshall denote by T the spanning tree of Pet 
ontaining all the edges of Pet, ex
eptthe underlying edge of the dart ~e = 12 ! 34 and the underlying edges of the darts~xi = i(i + 2)! (i+ 1)(i + 3), i 2 Z5. By identifying ea
h dart ~x (of the above six)with the oriented 
y
le of Pet 
ontaining no other darts outside T but ~x, we 
an
onsider them as the elements of the homology group H1(Pet;Zp). Clearly, the setf~e; ~x0; : : : ; ~x4g is then a basis of H1(Pet;Zp) (viewed as the ve
tor spa
e over Zp),and the voltage asignment � is uniquely determined by the following images (seeFigure 1): e = �(~e) and xi = �(~xi); i 2 Z5:

Figure 1Sin
e ~X is a 
onne
ted graph, the voltages e; x0; : : : ; x4 generate the elementaryabelian group Zkp. This implies immediately that k � 6. Furthermore, the fa
tthat the group G = h�; �i lifts along the 
oveing proje
tin } : ~X ! Pet implies by[10, Theorem 5.2℄ the existen
e of the group homomorphism #: G! AutN , whi
hsatis�es the rule �# Æ � = � Æ �;for every � 2 G (where � is 
onsidered as a
ting on H1(Pet;Zp)). Using this formulawe 
an dedu
e that the automorphisms �# and �# map the elements e; x0; : : : ; x4as it is shown in Table 1. Table 1e x0 x1 x2 x3 x4�# e x1 � e x2 + e x3 � e x4 x0 + e�# �Pi2Z5 xi x0 + x3 + x4 �x3 � x4 + e x2 + x3 + x4 �x2 � x3 �x0 � x48



If we 
onsider the elementary abelian group N as the ve
tor spa
e over the �eldZp the group homomorphism #: G ! AutN de�nes a linear representation of thegroup G. The minimality of the normal subgroup N in the group ~G implies that thisrepresentation is irredu
ible. In other words, linear transformations �# and �# haveno 
ommon nontrivial invariant subspa
es. It follows immidiately from Table 1 thatthe subspa
e of N spanned by e andPi2Z5 xi is invariant for both �# and �#. Thisimplies that either N �= Zp, or N �= Z2p, or N �= Zkp, k � 3, and e =Pi2Z5 xi = 0.Case 1 N �= Zp. Sin
e the automorphism group AutN is isomorphi
 to themultipli
ative group Z�p (a
ting on N by multipli
ation), there exist two elementsr; t 2 Zp, su
h that �#(a) = ra and �#(a) = ta, for ea
h a 2 N . Moreover, sin
e����1 = �2 and sin
e #: G ! AutN is a group homomorphism, it follows thattrt�1 = r2 and thus r = 1. It follows from Table 1 that x2 = x0 and x1 = x3 = x4 =x0 + e, in this 
ase. Futhermore, tx0 = 3x0 + 2e and t(x0 + e) = �2x0 � e, whi
hgives 5x0 = �(3 + t)e. We are going to distinguish two sub
ases: e 6= 0 and e = 0.If e 6= 0 then the two disjoint 5-
y
les of Pet indu
ed by the orbits of � lift intotwo disjoint 5p 
y
les of the graph ~X. The lift ~� 2 Aut ~X of the automorphism� 2 AutX generates together with the group N a subgroup h~�;Ni of Aut ~X, whi
ha
ts transitively on ea
h of the two disjoint 
y
les of length 5p. This implies thatthe group h~�;Ni is 
y
li
 of order 5p. It is easy to see that the graph ~X is thenisomorphi
 to a generalized Petersen graph on 10p verti
es, and is therefore 3-edge-
olourable by [3℄.Assume now that e = 0. In this 
ase the equality 5x0 = �(3 + t)e impliesp = 5. The graph ~X is then isomorphi
 to the Z5-
over of Pet de�ned by voltagese = 0 and x0 = x1 = x2 = x3 = x4 = 1. It is an easy exer
ise to shows that thisvertex-transitive graph on 50 verti
es is 3-edge-
olourable.Case 2 N �= Z2p. In order to deal with this 
ase we shall �rst prove the followinggeneral lemma on irredu
ible representations of the group G.Lemma 3.2 Let G = h�; � j �5 = �4 = ��2����1 = 1i and let �: G ! AutZ2p bean irredu
ible representation. Then �(�) = id.Proof. Let �g = �(g) for all g 2 G. Suppose �rst that �� has no eigenve
tors.Sin
e there are p+ 1 1-dimensional subspa
es of the ve
tor spa
e Z2p, and sin
e theorder of �� is 5, this implies that p � �1 (mod 5). Let v be an arbitrary non-zeroelement of Z2p and let v1 = ��(v). Then fv; v1g is a basis of Z2p relative to whi
h theautomorphism �� is represented by the matrix�0 �1 �� :Sin
e p � �1 (mod 5) and sin
e det(��)5 = 1, we have that �� = det(��) = 1.Furthermore, it follows from ��5 = id that �2+ �� 1 = 0. Then ��2 is represented by9



the matrix ��1 ��� ��� :Sin
e �� and ��2 are 
onjugate (by ��), they must have the same 
hara
teristi
 poli-nomial. Therefore, x2 � �x + 1 = x2 + (� + 1)x + (�2 + �), and thus � + 1 = ��.If we use this equality together with �2 + � � 1 = 0 we get 5 = 0 and thus p = 5,
ontradi
ting the 
ongruen
e p � �1 (mod 5).We 
an therefore assume that �� has an eigenve
tor. Let ��v = �v for some non-zero element v 2 Z2p and some � 2 Z�p. Sin
e ��5 = id we have �5 = 1. It followsfrom the equality �� �����1 = ��2 that the ve
tor v1 = ��(v) is an eigenve
tor of ��,with the 
orresponding eigenvalue �3. The spe
trum of �� is thus the set f�; �3g.Sin
e, �� and ��2 are 
onju
ate, they have the same spe
trum, implying the equalityf�; �3g = f�2; �g, and so � = 1. Sin
e fv; v1g is a basis for Z2p (for otherwise vwould be a 
ommon eigenve
tor for �� and ��), this shows that �� = id.By the above lemma we 
an assume that �# = id, whi
h implies x2 = x0 andx1 = x3 = x4 = x0 + e. This shows that the set fx0; eg is a basis of the ve
torspa
e N . Let K � N be the subgroup generated by the element x0 + e, and letq : N ! N=K be the 
orresponding quotient proje
tion. Observe that K is invariantunder the a
tion of �#. In view of [10, Corollary 5.3 and Proposition 4.1℄ the graph ~Xis a regular 
over over the 
overing graph Y = Cov(Pet; q�) and the automorphism� 2 AutPet lifts into an automorphism of the graph Y . If p > 2 the graph Y
onsists of two disjoint 5p 
y
les and a mat
hing between them. Clearly, the liftof the automorphism � a
ts transitively on the two disjoint 5p-
y
les. This impliesthat Y is a generalized Petersen graph on 10p verti
es. This is true even in the 
asep = 2, where Y is isomorphi
 to the generalized Petersen graph GP (10; 2). Thegraph Y is then 3-edge-
olourable by [3℄. Being a 
over over Y the graph ~X is also3-edge-
olourable, a 
ontradi
tion.Case 3 N �= Zkp, k � 3, e = Pi2Z5 xi = 0. Sin
e the six voltages e; x0; : : : ; x4generate the group N we have that k � 4. The following lemma deals with the 
asek = 3.Lemma 3.3 Let G = h�; � j �5 = �4 = ��2����1 = 1i and let �: G! AutZ3p be alinear representation of the group G. Then � is redu
ible.Proof. Suppose that � is irredu
ible. Let �g denote the linear transformation�(g), for every g 2 G. Sin
e there are p2 + p + 1 1-dimensional subspa
es in Z3pand sin
e, for every prime p, the number p2 + p + 1 is not divisible by 5, thereexists an eigenve
tor v of the linear transformation ��. Let � be the 
orrespondingeigenvalue. Sin
e �� �����1 = ��2, the ve
tors ��(v) and ��2(v) are eigenve
tors of �� withthe 
orresponding eigenvalues �3 and �4. Sin
e �� and �� have no 
ommon invariantsubspa
es, the ve
tors v, ��(v) and ��2(v) form a basis of Z3p. This implies that the10



spe
trum of �� equals f�; �3; �4g. Furthermore, sin
e �� and ��2 are 
onjugate, theyhave the same spe
trum, showing that f�; �3; �4g = f�2; �; �3g, and so � = 1 and�� = id. Similarly, sin
e the number p2 + p + 1 is odd, the transformation �� has a�xed point in its a
tion on 1-dimensional subspa
es of Z3p. The eigenve
tor of �� isthus a 
ommon eigenve
tor of �� and �� , a 
ontradi
tion.We are now left with the 
ase k = 4. We 
an assume without lost of generalitythat x0; x1; x2 and x3 are lineary independent and that x4 = �x0 � x1 � x2 � x3.Let K � N be a subgroup generated by x1; x3 and x0+x2, and let q : N ! N=K bethe 
orresponding quotient proje
tion. In view of [10, Proposition 4.1℄ the graph ~Xis a regular 
over over the 
overing graph Y 0 = Cov(Pet; q�). By [10, Theorem 6.2℄the graph Y 0 is isomorphi
 to the 
overing graph Y = Cov(Pet; �1) asso
iated withthe Cayley voltage spa
e (Zp; �1), where �1 is de�ned by �1(~e) = �1(~x1) = �1(~x3) =�1(~x4) = 0, �1(~x0) = 1 and �1(~x2) = �1. Re
all that the vertex set of the graphY is the set f(u; i) j u 2 V (Pet); i 2 Zpg. The sth layer, s 2 Zp, of the graph Y isthe set of darts x 2 D(Y ) having their initial vertex beg Y (x) 
ontained in the setf(u; s) j u 2 V (Pet)g. Let C = f1; 2; 3g denote the set of three 
olours, and let � bea permutation of the set C. The 
olouring of type � of a layer of Y is the mappingfrom this layer to the set C, whi
h is s
hemati
ally shown on Figure 2.

Figure 2: The graph Y and the 
olouring of a layer of the graph Y of type �.If p = 2 then de�ne the 
olouring of the graph Y in su
h a way that the 0th layerre
eives the 
olouring of type id and the 1st layer the 
olouring of type (2; 3). Thisis 
learly a proper 3-edge-
olouring of the graph Y .If p is odd then let the 0th layer re
eive the 
olouring of type (1; 2; 3), the 1st layerthe 
olouring of type (1; 3; 2), the sth layer, for s 2 f2; 4; : : : ; p� 1g, the 
olouring oftype id, and the sth layer, for s 2 f3; 5; : : : ; p� 2g, the 
olouring of type (2; 3). Su
ha 
olouring is a proper 3-edge-
olouring of the graph Y . Sin
e ~X is a regular 
overover Y , it is 3-edge-
olourable as well. This 
ompletes the proof of Theorem 1.4.A
knowledgments. The author would like to thank dr. Aleksander Malni�
,prof. Dragan Maru�si�
 and dr. Riste �Skrekovski for many helpful suggestions.11



Referen
es[1℄ B. Alspa
h, Y. Liu and C. Zhang, Nowhere-zero 4-
ows and Cayley graphs onsolvable groups, SIAM J. Dis
rete Math., 9 (1996), 151{154.[2℄ G. Brinkmann and E. Ste�en, Snarks and redu
ibility Ars Combin., 50 (1998),292{296.[3℄ F. Castagna and G. Prins, Every generalized Petersen graph has a Tait 
oloring,Pa
i�
 J. Math., 40 (1972), 53{58.[4℄ A. Cavi

hioli, M. Mes
hiary, B. Ruini and F. Spaggiari, A Survey on Snarksand New Results: Produ
ts, Redu
ibility and a Computer Sear
h, J. GraphTheory, 28 (1998), 57{86.[5℄ M. Gardner, Mathemati
al games: snarks, boojums, and other 
onje
tures re-lated to the four-
olor map theorem, S
i. Amer., 234 (1976), 126{130.[6℄ J. L. Gross and T. W. Tu
ker, \Topologi
al Graph Theory", J. Wiley (1987),New York.[7℄ M. Ko
hol, Snarks without small 
y
les, J. Combin. Theory Ser. B, 67 (1996),34{47.[8℄ L. Lov�asz, Problem 11 in \Combinatorial Stru
tures and Their Appli
ations",Pro
. Calgary International Conferen
e on Combinatorial Stru
tures and TheirAppli
ations, R. Guy, H. Hanai, N. Sauer and J. Chonhaim (eds.), Gordon andBrea
h, New York (1970), p. 497.[9℄ A. Malni�
, R. Nedela and M. �Skoviera, Lifting Graph Automorphisms by Volt-age Assignments, Europ. J. Combin., 21 (2000), 927{947.[10℄ A. Malni�
, D. Maru�si�
 and P. Poto�
nik, Elementary abelian 
overs of graphs,submitted.[11℄ R. Nedela and M. �Skoviera, De
ompositions and Redu
tions of Snarks, J. GraphTheory, 22 (1996), 253{279.[12℄ R. Nedela and M. �Skoviera, Cayley snarks and almost simple groups, submitted.[13℄ E. Ste�en, Classi�
ation and 
hara
terizations of snarks, Dis
rete Math., 188(1998), 183{203.[14℄ N. Robertson, P. Seymour and R. Thomas, Tutte's edge-
olouring 
onje
ture,J. Combin. Theory Ser. B, 70 (1997), 166{183.[15℄ J. J. Rotman, \An introdu
tion to the theory of groups (fourth ed.)", SpringerVerlag (1995), New York. 12



[16℄ W. T. Tutte, On algebrai
 theory of graph 
olourings, J. Combin. Theory, 1(1966), 15{50.

13


