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1 IntrodutionIn this setion all graphs are onsidered to be �nite and simple. By the well-knowntheorem of Vizing the hromati index of a graph with maximum degree � is either� or � + 1. Aording to this result all graphs an be divided into two lasses,lass 1 onsisting of the graphs with the hromati index being the same as themaximum degree, and lass 2 ontaining all graphs with the hromati index beinggreater than the maximum degree. Though some suÆient onditions for the graphto belong to lass 1 are known (for example, by an old result of K�onig every bipartitegraph belongs to lass 1), an eÆient haraterization of lass 1 graphs is a goal notvery likely to be ahived in near future. The problem is unsolved even in the aseof ubi graphs, where the haraterization of lass 1 graphs is losely related totwo famous problems, namely to Tutte's onjeture on nowhere-zero 4-ows and toLov�asz's question on Hamiltonian paths in vertex-transitive graphs.Conjeture 1.1 (Tutte, [16℄) Every bridgeless ubi graph ontaining no subdi-vision of the Petersen graph admits a nowhere-zero 4-ow.Question 1.2 (Lov�asz, [8℄) Does every onneted vertex-transitive graph ontaina Hamiltonian path?The relation with Lov�asz's question is established through the fat that everyHamiltonian ubi graph is 3-edge-olourable, while the onnetion with Tutte'sonjeture reets in the fat that ubi graph belongs to lass 1 if and only if itadmits a nowhere-zero 4-ow. Tutte's onjeture motivated the hunt of the snarks(here snark stands for a bridgeless ubi lass 2 graph) [2, 4, 5, 7, 11, 12, 13℄, as wellas the searh for suÆient onditions for ubi graphs to belong to lass 1.In view of Lov�asz's onjeture a natural diretion of investigations leads to vertex-transitive graphs, that is graphs for whih their automorphism group ats transi-tively on the set of verties. There are only two known examples of onnetedubi vertex-transitive graphs whih are not 3-edge-olourable, namely the Petersengraph and its trunation (observe that the Coxeter graph is 3-edge-olourable eventhough it is not Hamiltonian). At this point the following question (asked by Riste�Skrekovski { oral ommuniation), arises naturally.Question 1.3 Is every onneted ubi vertex-transitive graph whih is not iso-morphi neither to the Petersen graph nor to the trunation of the Petersen graph3-edge-olourable?This question is a generalization of the onjeture made by Alspah and Zhangin 1991 saying that every onneted Cayley graph admits a nowhere-zero 4-ow (orequivalently, is 3-edge-olourable). Alspah, Liu and Zhang [1℄ proved this onjeturein the ase of ubi Cayley graphs of solvable groups (that is, ubi graphs with3



the automorphism group ontaining a regular solvable group). Their result wasimproved by Nedela and �Skoviera [12℄ who proved that every ounter-example tothe onjeture of Alspah and Zhang should be a regular over over a Cayley graphof an almost simple group. Let us mention at this point that the onjeture ofAlspah and Zhang (though losely related to the Tutte's 4-ow onjeture) remainsopen even in the ase if the Tutte' onjeture holds for ubi graphs (see [14℄), asmany Cayley graphs do ontain subdivisions of the Petersen graph.In this artile we give the following partial answer to Question 1.3 and thusgeneralize the result of Alspah, Liu and Zhang to a muh wider lass of graphs.Theorem 1.4 Let X be a onneted ubi simple graph and suppose that its auto-morphism group ontains a solvable subgroup ating transitively on the set of vertiesof X. If X is not 3-edge-olourable then it is isomorphi to the Petersen graph.In Setion 2 we de�ne some basi notions needed later. We prove the abovetheorem in Setion 3.2 PreliminariesThough our main interest lies in the graphs without loops and semiedges it willbe onvenient for us to use slightly more general de�nition of a graph, whih arisesnaturally in the ontext of graph overs and quotients. We only give some very baside�nition and results in this setion and refer the reader to [9, 10℄ for all notionsand onepts not de�ned here.A graph is an ordered 4-tuple (D;V ; beg ; inv) where D and V 6= ; are disjoint�nite sets of darts and verties, respetively, beg : D ! V is a mapping whihassigns to eah dart x its initial vertex beg x, and inv : D ! D is an involutionwhih interhanges every dart x and its inverse dart x�1. The orbits of inv arealled edges. The initial verties of an edge are the initial verties of the dartsontained in the edge. An edge is alled a semiedge if invx = x, a loop if invx 6= xwhile beg (x�1) = beg x, and is alled a link otherwise. Two links are parallel ifthey have the same initial verties. A graph with no semiedges, no loops and noparallel links is alled a simple graph. Degree of a vertex v is the number of dartshaving v as their initial vertex. Graph is ubi if all its verties have degree 3.A mapping  : D ! f1; 2; : : : ; ng is a proper n-edge olouring of the graph X =(D;V;beg ; inv) if for every pair x; y 2 D, suh that begx = beg y, we have (x) 6=(y). If there exists a proper n-edge-olouring of the graph we say that the graph isn-edge-olourable. The minimal integer n for whih a graph is n-edge-olourable isalled the hromati index of the graph X.A morphism of graphs f : X ! X 0 is a funtion f : VX [ DX ! VX0 [ DX0suh that f(VX) � VX0 , f(D) � DX0 , f begX = begX0 f and f invX = invX0 f .4



A graph morphism is epimorphism (automorphism) if it is a surjetion (bijetion,respetively). The group of automorphisms of a graph X is denoted by AutX.Let N � AutX be a subgroup of the automorphism group and let DN andVN denote the sets of orbits on darts and verties of X, respetively. Further, letbegN [x℄ = [beg x℄ and invN [x℄ = [invx℄. This de�nes the quotient graph XN =(DN ; VN ; begN ; invN ) together with the natural epimorphism pN : X ! XN alledthe quotient projetion relative to N .If the quotient projetion }N : X ! XN of onneted graphs is also a loalbijetion on darts (that is, if for eah vertex v 2 VX the set of darts of X havingv as the initial vertex is mapped bijetively onto the set of darts of X having }(v)as the initial vertex) then the quotient projetion } is a regular overing projetionand the group N is the group of overing transformation. Observe that hromatiindex of the overing graph is at most that of the base graph.Regular overing projetions an be ombinatorialized as follows [6, 9, 10℄. ACayley voltage spae on a onneted graph X = (D;V ; beg ; inv) is an ordered pair(N ; �), where N is a voltage group ating on itself by right multipliation, and� : D ! N is a surjetive funtion suh that �(x�1) = (�(x))�1. This funtionextends naturally to all walks in X. Note that homotopi walks have the samevoltage. This allows us to view the funtion � as de�ned on the fundamental group�(X; b) of X at base point b. Moreover, if the group N is abelian, the funtion �naturally extends to the funtion de�ned on the abelianization H1(X) of �(X; b).Finally, if N is of prime exponent p then we an view � as de�ned on the �rsthomology group H1(X;Zp) with oeÆient in the prime �eld Zp. (We refer thereader to [10℄ for details).Let (N ; �) be a Cayley voltage spae on a onneted graph X = (D;V ; beg ; inv).With (N ; �) we assoiate a derived overing projetion }� : Cov(N ; �) ! X as fol-lows. The graph Cov(N ; �) has D�N and V �N as the sets of darts and verties,respetively, with beg (x; �) = (beg x; �) and inv(x; �) = (invx; ��(x)). The orre-sponding projetion }� is de�ned as the projetion onto the �rst omponent. Thisis indeed a regular overing projetion with the group of overing transformationisomorphi to the group N . It is not diÆult to see that every regular overingprojetion an be obtained in this way.3 Proof of Theorem 1.4Suppose that the statement of Theorem 1.4 is false and let ~X be the smallest graph(in terms of the number of its verties) whih satis�es the onditions of the theorem,but is neither isomorphi to the Petersen graph nor 3-edge-olourable. Let ~G denotethe solvable vertex-transitive subgroup of Aut ~X and let N denote the minimal(non-trivial) normal subgroup of ~G. By [15, Theorem 5.24℄ there exists a prime pand a positive integer k suh that N is isomorphi to the elementary abelian group5



Zkp. Let X denote the quotient graph ~XN , } : ~X ! X the orresponding quotientprojetion, and G the quotient group ~G=N . Observe �rst that if the vertex set ofX is a singleton then the graph ~X is a ubi Cayley graph of elementary abeliangroup and ~X is 3-edge-olourable by [1℄. We an thus assume that X has at leasttwo verties. Clearly, the group G ats transitively (in the natural way) on theverties of X, and is solvable. Furthermore, the onnetedness of ~X implies theonnetedness of X. Observe that X is ubi if and only if the quotinet projetion} is a overing projetion. Sine every over of a 3-edge-olourable graph is also3-edge-olourable, we an assume that if X is ubi it is not 3-edge-olourable. Theminimality of ~X then implies that one of the following ours:a) X is not ubi, orb) X is ubi, but neither simple nor 3-edge-olourable, or) X is isomorphi to the Petersen graph.Assume �rst that X is not ubi. Then its valene is either 1 or 2. If the valeneof X is 1 then it is isomorphi to K2 and ~X is bipartite and thus 3-edge-olourable,a ontradition. If the valene of X is 2 then X is isomorphi either to K2 with theadditional semiedge at every vertex, or to a yle Cn. In the �rst ase the }-preimageof the two semiedges of X is a 1-fator (or a disjoint union of two 1-fators) of ~X ,and the }-preimage of the edge of X is a disjoint union of yles of even length (or a1-fator of ~X , respetively). In both ases ~X is 3-edge-olourable. If X is isomorphito Cn then }-preimage of every seond edge of Cn is a 1-fator and the }-preimageof other edges of Cn is disjoint union of two 1-fators. This shows that n is evenand that ~X is bipartite, a ontradition.We an thus assume that X is a ubi graph. Suppose �rst that X is not simple.There are only 2 in�nite families and four sporadi ases of vertex-transitive ubigraphs (with more than one vertex) whih are not simple. These are:1. the dipole D3, having two verties and three parallel edges between them;2. the graph D02, having two verties, two parallel edges between them, and asemiedge attahed to every vertex;3. the graph �C2n obtained from the yle C2n by attahing an edge parallel toevery seond edge of the yle;4. the graph KÆ2 obtained from the graph K2 by attahing a loop to eah of thetwo verties;5. the graph K 002 obtained from the graph K2 by attahing a pair of semiedges toeah of the two verties;6. the graph C 02n obtained from the yle C2n by attahing a semiedge to everyvertex of the yle. 6



Observe that all of the above graphs, exept for the graph KÆ2 , are 3-edge-olourable. We an thus assume that X �= KÆ2 and that ~X is a onneted regularover over KÆ2 with elementary abelian group N of overing transformations. Sinethe Betti number of the graph KÆ2 is 2, the group N is isomorphi either to Zpor to Z2p. In the �rst ase ~X is a generalized Petersen graph. It is known thatall generalized Petersen graph, exept for the Petersen graph itself, are 3-edge-olourable (see [3℄). In the seond ase the graph ~X is isomorphi to the homologialp-over of the graph KÆ2 . It is easy to see that it is 3-edge-olourable as well, in fat,it is a Cayley graph of a semidiret produt of the elementary abelian group Z2p andthe group Z2.We are now left with the ase where X is isomorphi to the Petersen graph.We begin by proving the following lemma on solvable vertex-transitive group ofautomorphisms of the Petersen graph.Lemma 3.1 Let Pet be the Petersen graph and G a solvable vertex-transitive sub-group of AutPet. Let Z(2)5 = fij j i; j 2 Z5g denote the set of unordered pairs ofelements of Z5 and let the symmetri group S5 at on the set Z(2)5 in the naturalway. Denote by � and � the elements (0; 1; 2; 3; 4) and (1; 2; 4; 3) of S5, respetively.Then the ation of G on the vertex-set of Pet is isomorphi to the ation of thegroup h�; �i on Z(2)5 .Proof. Sine G ats transitively on the set of 10 elements it ontains an elementr0 of order 5 having exatly two orbits on the vertex-set of Pet. Sine Pet is notbipartite there are at least two adjaent verties, say u and v, ontained in the sameorbit of r0. This implies that some power of r0, all it r, maps the vertex u to thevertex v. Let w be the neighbour of u whih is not ontained in the same orbitof r as u. For every i 2 Z5, let ui and wi denote the verties ri(u) and ri(w),respetively. De�ne a bijetion f : V (Pet) ! Z(2)5 by the rules f(ui) = i(i + 2) andf(wi) = (i+3)(i+4), for every i 2 Z5. Note that any two verties of Pet are adjaentif and only if their f -images are disjoint. The bijetion f gives rise to a group-isomorphism � : Aut Pet ! S5, suh that (f; �) : (V (Pet);AutPet) ! (Z(2)5 ; S5) isan isomorphism of ations. Note that �(G) ontains the permutation �. Sine �(G)is a solvable subgroup of S5 ontaining � and ating on the set Z(2)5 transitively itmust be the group of order 20 generated by � and � . The pair (f; �jG) is then theisomorphism of the ations (V (Pet); G) and (Z(2)5 ; h�; �i).In view of lemma 3.1 we an assume that the verties of X are labelled by theelements of the set Z(2)5 and that the group G is generated by the elements� = (0; 1; 2; 3; 4) and � = (1; 2; 4; 3)of the symmetri group S5, ating in the natural way on the set Z(2)5 . Sine thegraph ~X is a regular N -over over the graph X �= Pet, we an identify ~X with the7



derived overing graph Cov(N; �), where � is a voltage assignment, de�ned on thehomology group H1(Pet;Zp) of the Petresen graph Pet (with oeÆients in Zp). Weshall denote by T the spanning tree of Pet ontaining all the edges of Pet, exeptthe underlying edge of the dart ~e = 12 ! 34 and the underlying edges of the darts~xi = i(i + 2)! (i+ 1)(i + 3), i 2 Z5. By identifying eah dart ~x (of the above six)with the oriented yle of Pet ontaining no other darts outside T but ~x, we anonsider them as the elements of the homology group H1(Pet;Zp). Clearly, the setf~e; ~x0; : : : ; ~x4g is then a basis of H1(Pet;Zp) (viewed as the vetor spae over Zp),and the voltage asignment � is uniquely determined by the following images (seeFigure 1): e = �(~e) and xi = �(~xi); i 2 Z5:

Figure 1Sine ~X is a onneted graph, the voltages e; x0; : : : ; x4 generate the elementaryabelian group Zkp. This implies immediately that k � 6. Furthermore, the fatthat the group G = h�; �i lifts along the oveing projetin } : ~X ! Pet implies by[10, Theorem 5.2℄ the existene of the group homomorphism #: G! AutN , whihsatis�es the rule �# Æ � = � Æ �;for every � 2 G (where � is onsidered as ating on H1(Pet;Zp)). Using this formulawe an dedue that the automorphisms �# and �# map the elements e; x0; : : : ; x4as it is shown in Table 1. Table 1e x0 x1 x2 x3 x4�# e x1 � e x2 + e x3 � e x4 x0 + e�# �Pi2Z5 xi x0 + x3 + x4 �x3 � x4 + e x2 + x3 + x4 �x2 � x3 �x0 � x48



If we onsider the elementary abelian group N as the vetor spae over the �eldZp the group homomorphism #: G ! AutN de�nes a linear representation of thegroup G. The minimality of the normal subgroup N in the group ~G implies that thisrepresentation is irreduible. In other words, linear transformations �# and �# haveno ommon nontrivial invariant subspaes. It follows immidiately from Table 1 thatthe subspae of N spanned by e andPi2Z5 xi is invariant for both �# and �#. Thisimplies that either N �= Zp, or N �= Z2p, or N �= Zkp, k � 3, and e =Pi2Z5 xi = 0.Case 1 N �= Zp. Sine the automorphism group AutN is isomorphi to themultipliative group Z�p (ating on N by multipliation), there exist two elementsr; t 2 Zp, suh that �#(a) = ra and �#(a) = ta, for eah a 2 N . Moreover, sine����1 = �2 and sine #: G ! AutN is a group homomorphism, it follows thattrt�1 = r2 and thus r = 1. It follows from Table 1 that x2 = x0 and x1 = x3 = x4 =x0 + e, in this ase. Futhermore, tx0 = 3x0 + 2e and t(x0 + e) = �2x0 � e, whihgives 5x0 = �(3 + t)e. We are going to distinguish two subases: e 6= 0 and e = 0.If e 6= 0 then the two disjoint 5-yles of Pet indued by the orbits of � lift intotwo disjoint 5p yles of the graph ~X. The lift ~� 2 Aut ~X of the automorphism� 2 AutX generates together with the group N a subgroup h~�;Ni of Aut ~X, whihats transitively on eah of the two disjoint yles of length 5p. This implies thatthe group h~�;Ni is yli of order 5p. It is easy to see that the graph ~X is thenisomorphi to a generalized Petersen graph on 10p verties, and is therefore 3-edge-olourable by [3℄.Assume now that e = 0. In this ase the equality 5x0 = �(3 + t)e impliesp = 5. The graph ~X is then isomorphi to the Z5-over of Pet de�ned by voltagese = 0 and x0 = x1 = x2 = x3 = x4 = 1. It is an easy exerise to shows that thisvertex-transitive graph on 50 verties is 3-edge-olourable.Case 2 N �= Z2p. In order to deal with this ase we shall �rst prove the followinggeneral lemma on irreduible representations of the group G.Lemma 3.2 Let G = h�; � j �5 = �4 = ��2����1 = 1i and let �: G ! AutZ2p bean irreduible representation. Then �(�) = id.Proof. Let �g = �(g) for all g 2 G. Suppose �rst that �� has no eigenvetors.Sine there are p+ 1 1-dimensional subspaes of the vetor spae Z2p, and sine theorder of �� is 5, this implies that p � �1 (mod 5). Let v be an arbitrary non-zeroelement of Z2p and let v1 = ��(v). Then fv; v1g is a basis of Z2p relative to whih theautomorphism �� is represented by the matrix�0 �1 �� :Sine p � �1 (mod 5) and sine det(��)5 = 1, we have that �� = det(��) = 1.Furthermore, it follows from ��5 = id that �2+ �� 1 = 0. Then ��2 is represented by9



the matrix ��1 ��� ��� :Sine �� and ��2 are onjugate (by ��), they must have the same harateristi poli-nomial. Therefore, x2 � �x + 1 = x2 + (� + 1)x + (�2 + �), and thus � + 1 = ��.If we use this equality together with �2 + � � 1 = 0 we get 5 = 0 and thus p = 5,ontraditing the ongruene p � �1 (mod 5).We an therefore assume that �� has an eigenvetor. Let ��v = �v for some non-zero element v 2 Z2p and some � 2 Z�p. Sine ��5 = id we have �5 = 1. It followsfrom the equality �� �����1 = ��2 that the vetor v1 = ��(v) is an eigenvetor of ��,with the orresponding eigenvalue �3. The spetrum of �� is thus the set f�; �3g.Sine, �� and ��2 are onjuate, they have the same spetrum, implying the equalityf�; �3g = f�2; �g, and so � = 1. Sine fv; v1g is a basis for Z2p (for otherwise vwould be a ommon eigenvetor for �� and ��), this shows that �� = id.By the above lemma we an assume that �# = id, whih implies x2 = x0 andx1 = x3 = x4 = x0 + e. This shows that the set fx0; eg is a basis of the vetorspae N . Let K � N be the subgroup generated by the element x0 + e, and letq : N ! N=K be the orresponding quotient projetion. Observe that K is invariantunder the ation of �#. In view of [10, Corollary 5.3 and Proposition 4.1℄ the graph ~Xis a regular over over the overing graph Y = Cov(Pet; q�) and the automorphism� 2 AutPet lifts into an automorphism of the graph Y . If p > 2 the graph Yonsists of two disjoint 5p yles and a mathing between them. Clearly, the liftof the automorphism � ats transitively on the two disjoint 5p-yles. This impliesthat Y is a generalized Petersen graph on 10p verties. This is true even in the asep = 2, where Y is isomorphi to the generalized Petersen graph GP (10; 2). Thegraph Y is then 3-edge-olourable by [3℄. Being a over over Y the graph ~X is also3-edge-olourable, a ontradition.Case 3 N �= Zkp, k � 3, e = Pi2Z5 xi = 0. Sine the six voltages e; x0; : : : ; x4generate the group N we have that k � 4. The following lemma deals with the asek = 3.Lemma 3.3 Let G = h�; � j �5 = �4 = ��2����1 = 1i and let �: G! AutZ3p be alinear representation of the group G. Then � is reduible.Proof. Suppose that � is irreduible. Let �g denote the linear transformation�(g), for every g 2 G. Sine there are p2 + p + 1 1-dimensional subspaes in Z3pand sine, for every prime p, the number p2 + p + 1 is not divisible by 5, thereexists an eigenvetor v of the linear transformation ��. Let � be the orrespondingeigenvalue. Sine �� �����1 = ��2, the vetors ��(v) and ��2(v) are eigenvetors of �� withthe orresponding eigenvalues �3 and �4. Sine �� and �� have no ommon invariantsubspaes, the vetors v, ��(v) and ��2(v) form a basis of Z3p. This implies that the10



spetrum of �� equals f�; �3; �4g. Furthermore, sine �� and ��2 are onjugate, theyhave the same spetrum, showing that f�; �3; �4g = f�2; �; �3g, and so � = 1 and�� = id. Similarly, sine the number p2 + p + 1 is odd, the transformation �� has a�xed point in its ation on 1-dimensional subspaes of Z3p. The eigenvetor of �� isthus a ommon eigenvetor of �� and �� , a ontradition.We are now left with the ase k = 4. We an assume without lost of generalitythat x0; x1; x2 and x3 are lineary independent and that x4 = �x0 � x1 � x2 � x3.Let K � N be a subgroup generated by x1; x3 and x0+x2, and let q : N ! N=K bethe orresponding quotient projetion. In view of [10, Proposition 4.1℄ the graph ~Xis a regular over over the overing graph Y 0 = Cov(Pet; q�). By [10, Theorem 6.2℄the graph Y 0 is isomorphi to the overing graph Y = Cov(Pet; �1) assoiated withthe Cayley voltage spae (Zp; �1), where �1 is de�ned by �1(~e) = �1(~x1) = �1(~x3) =�1(~x4) = 0, �1(~x0) = 1 and �1(~x2) = �1. Reall that the vertex set of the graphY is the set f(u; i) j u 2 V (Pet); i 2 Zpg. The sth layer, s 2 Zp, of the graph Y isthe set of darts x 2 D(Y ) having their initial vertex beg Y (x) ontained in the setf(u; s) j u 2 V (Pet)g. Let C = f1; 2; 3g denote the set of three olours, and let � bea permutation of the set C. The olouring of type � of a layer of Y is the mappingfrom this layer to the set C, whih is shematially shown on Figure 2.

Figure 2: The graph Y and the olouring of a layer of the graph Y of type �.If p = 2 then de�ne the olouring of the graph Y in suh a way that the 0th layerreeives the olouring of type id and the 1st layer the olouring of type (2; 3). Thisis learly a proper 3-edge-olouring of the graph Y .If p is odd then let the 0th layer reeive the olouring of type (1; 2; 3), the 1st layerthe olouring of type (1; 3; 2), the sth layer, for s 2 f2; 4; : : : ; p� 1g, the olouring oftype id, and the sth layer, for s 2 f3; 5; : : : ; p� 2g, the olouring of type (2; 3). Suha olouring is a proper 3-edge-olouring of the graph Y . Sine ~X is a regular overover Y , it is 3-edge-olourable as well. This ompletes the proof of Theorem 1.4.Aknowledgments. The author would like to thank dr. Aleksander Malni�,prof. Dragan Maru�si� and dr. Riste �Skrekovski for many helpful suggestions.11
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