UNIVERSITY OF LJUBLJANA

INSTITUTE OF MATHEMATICS, PHYSICS AND MECHANICS
DEPARTMENT OF MATHEMATICS

JADRANSKA 19, 1000 LJUBLJANA, SLOVENIA

Preprint series, Vol. 39 (2001), 781

EDGE-COLOURINGS OF CUBIC
GRAPHS ADMITTING A
SOLVABLE
VERTEX-TRANSITIVE GROUP
OF AUTOMORPHISMS

Primoz Potoc¢nik

ISSN 1318-4865

October 22, 2001

Ljubljana, October 22, 2001



Edge-colourings of cubic graphs admitting a solvable
vertex-transitive group of automorphisms

PRIMOZ POTOCNIK!,
IMFM, Oddelek za matematiko,
Univerza v Ljubljani,
Jadranska 19, SI-1000 Ljubljana
Slovenija

'Supported in part by “Ministrstvo za Solstvo znanost in $port Republike Slovenije”, proj. no. Z1-
3124/01



Abstract

It is proved that every connected cubic simple graph admitting a vertex-transitive
action of a solvable group is either 3-edge-colourable, or isomorphic to the Petersen
graph.
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1 Introduction

In this section all graphs are considered to be finite and simple. By the well-known
theorem of Vizing the chromatic index of a graph with maximum degree A is either
A or A+ 1. According to this result all graphs can be divided into two classes,
class 1 consisting of the graphs with the chromatic index being the same as the
maximum degree, and class 2 containing all graphs with the chromatic index being
greater than the maximum degree. Though some sufficient conditions for the graph
to belong to class 1 are known (for example, by an old result of Konig every bipartite
graph belongs to class 1), an efficient characterization of class 1 graphs is a goal not
very likely to be achived in near future. The problem is unsolved even in the case
of cubic graphs, where the characterization of class 1 graphs is closely related to
two famous problems, namely to Tutte’s conjecture on nowhere-zero 4-flows and to
Lovéasz’s question on Hamiltonian paths in vertex-transitive graphs.

Conjecture 1.1 (Tutte, [16]) Every bridgeless cubic graph containing no subdi-
vision of the Petersen graph admits a nowhere-zero 4-flow.

Question 1.2 (Lovdsz, [8]) Does every connected vertez-transitive graph contain
a Hamiltonian path?

The relation with Lovéasz’s question is established through the fact that every
Hamiltonian cubic graph is 3-edge-colourable, while the connection with Tutte’s
conjecture reflects in the fact that cubic graph belongs to class 1 if and only if it
admits a nowhere-zero 4-flow. Tutte’s conjecture motivated the hunt of the snarks
(here snark stands for a bridgeless cubic class 2 graph) [2, 4, 5, 7, 11, 12, 13], as well
as the search for sufficient conditions for cubic graphs to belong to class 1.

In view of Lovész’s conjecture a natural direction of investigations leads to vertex-
transitive graphs, that is graphs for which their automorphism group acts transi-
tively on the set of vertices. There are only two known examples of connected
cubic vertex-transitive graphs which are not 3-edge-colourable, namely the Petersen
graph and its truncation (observe that the Coxeter graph is 3-edge-colourable even
though it is not Hamiltonian). At this point the following question (asked by Riste
Skrekovski — oral communication), arises naturally.

Question 1.3 Is every connected cubic vertez-transitive graph which is not iso-
morphic neither to the Petersen graph nor to the truncation of the Petersen graph
3-edge-colourable?

This question is a generalization of the conjecture made by Alspach and Zhang
in 1991 saying that every connected Cayley graph admits a nowhere-zero 4-flow (or
equivalently, is 3-edge-colourable). Alspach, Liu and Zhang [1] proved this conjecture
in the case of cubic Cayley graphs of solvable groups (that is, cubic graphs with



the automorphism group containing a regular solvable group). Their result was
improved by Nedela and Skoviera [12] who proved that every counter-example to
the conjecture of Alspach and Zhang should be a regular cover over a Cayley graph
of an almost simple group. Let us mention at this point that the conjecture of
Alspach and Zhang (though closely related to the Tutte’s 4-flow conjecture) remains
open even in the case if the Tutte’ conjecture holds for cubic graphs (see [14]), as
many Cayley graphs do contain subdivisions of the Petersen graph.

In this article we give the following partial answer to Question 1.3 and thus
generalize the result of Alspah, Liu and Zhang to a much wider class of graphs.

Theorem 1.4 Let X be a connected cubic simple graph and suppose that its auto-
morphism group contains a solvable subgroup acting transitively on the set of vertices
of X. If X is not 3-edge-colourable then it is isomorphic to the Petersen graph.

In Section 2 we define some basic notions needed later. We prove the above
theorem in Section 3.

2 Preliminaries

Though our main interest lies in the graphs without loops and semiedges it will
be convenient for us to use slightly more general definition of a graph, which arises
naturally in the context of graph covers and quotients. We only give some very basic
definition and results in this section and refer the reader to [9, 10] for all notions
and concepts not defined here.

A graph is an ordered 4-tuple (D, V;beg,inv) where D and V # () are disjoint
finite sets of darts and wvertices, respectively, beg : D — V is a mapping which
assigns to each dart x its initial vertex beg z, and inv : D — D is an involution
which interchanges every dart = and its inverse dart —'. The orbits of inv are
called edges. The initial vertices of an edge are the initial vertices of the darts
contained in the edge. An edge is called a semiedge if inve = x, a loop if inve # z
while beg (z~!) = beg z, and is called a link otherwise. Two links are parallel if
they have the same initial vertices. A graph with no semiedges, no loops and no
parallel links is called a simple graph. Degree of a vertex v is the number of darts
having v as their initial vertex. Graph is cubic if all its vertices have degree 3.

A mapping ¢: D — {1,2,...,n} is a proper n-edge colouring of the graph X =
(D, V,beg,inv) if for every pair z,y € D, such that begx = begy, we have ¢(x) #
c(y). If there exists a proper n-edge-colouring of the graph we say that the graph is
n-edge-colourable. The minimal integer n for which a graph is n-edge-colourable is
called the chromatic index of the graph X.

A morphism of graphs f: X — X' is a function f: Vx UDx — Vyxy: U Dy
such that f(Vx) C Vx, f(D) C Dx/, fbegx = begx: f and finvy = invy: f.



A graph morphism is epimorphism (automorphism) if it is a surjection (bijection,
respectively). The group of automorphisms of a graph X is denoted by Aut X.

Let N < Aut X be a subgroup of the automorphism group and let Dy and
Vi denote the sets of orbits on darts and vertices of X, respectively. Further, let
beg v [z] = [beg z] and invy [z] = [invz]. This defines the quotient graph Xy =
(Dy, VN;beg v, invy) together with the natural epimorphism py: X — Xy called
the quotient projection relative to N.

If the quotient projection py: X — Xy of connected graphs is also a local
bijection on darts (that is, if for each vertex v € Vx the set of darts of X having
v as the initial vertex is mapped bijectively onto the set of darts of X having p(v)
as the initial vertex) then the quotient projection g is a reqular covering projection
and the group N is the group of covering transformation. Observe that chromatic
index of the covering graph is at most that of the base graph.

Regular covering projections can be combinatorialized as follows [6, 9, 10]. A
Cayley voltage space on a connected graph X = (D, V;beg,inv) is an ordered pair
(N;(), where N is a woltage group acting on itself by right multiplication, and
¢: D — N is a surjective function such that ((z=') = ({(z))~!. This function
extends naturally to all walks in X. Note that homotopic walks have the same
voltage. This allows us to view the function ( as defined on the fundamental group
m(X,b) of X at base point b. Moreover, if the group N is abelian, the function ¢
naturally extends to the function defined on the abelianization Hi(X) of 7(X,b).
Finally, if N is of prime exponent p then we can view ( as defined on the first
homology group H;(X,Z,) with coefficient in the prime field Z,. (We refer the
reader to [10] for details).

Let (N; () be a Cayley voltage space on a connected graph X = (D, V;beg,inv).
With (N;() we associate a derived covering projection p¢: Cov(N;() — X as fol-
lows. The graph Cov(N;() has D x N and V' x N as the sets of darts and vertices,
respectively, with beg (z,v) = (beg z,v) and inv(z,v) = (invz,v((x)). The corre-
sponding projection g is defined as the projection onto the first component. This
is indeed a regular covering projection with the group of covering transformation
isomorphic to the group N. It is not difficult to see that every regular covering
projection can be obtained in this way.

3 Proof of Theorem 1.4

Suppose that the statement of Theorem 1.4 is false and let X be the smallest graph
(in terms of the number of its vertices) which satisfies the conditions of the theorem,
but is neither isomorphic to the Petersen graph nor 3-edge-colourable. Let G denote
the solvable vertex-transitive subgroup of Aut X and let N denote the minimal
(non-trivial) normal subgroup of G. By [15, Theorem 5.24] there exists a prime p
and a positive integer k£ such that IV is isomorphic to the elementary abelian group



Zlg. Let X denote the quotient graph X, o X — X the corresponding quotient

projection, and G the quotient group G /N. Observe first that if the vertex set of
X is a singleton then the graph X is a cubic Cayley graph of elementary abelian
group and X is 3-edge-colourable by [1]. We can thus assume that X has at least
two vertices. Clearly, the group G acts transitively (in the natural way) on the
vertices of X, and is solvable. Furthermore, the connectedness of X implies the
connectedness of X. Observe that X is cubic if and only if the quotinet projection
@ is a covering projection. Since every cover of a 3-edge-colourable graph is also
3-edge-colourable, we can assume that if X is cubic it is not 3-edge-colourable. The
minimality of X then implies that one of the following occurs:

a) X is not cubic, or
b) X is cubic, but neither simple nor 3-edge-colourable, or

¢) X is isomorphic to the Petersen graph.

Assume first that X is not cubic. Then its valence is either 1 or 2. If the valence
of X is 1 then it is isomorphic to K» and X is bipartite and thus 3-edge-colourable,
a contradiction. If the valence of X is 2 then X is isomorphic either to Ky with the
additional semiedge at every vertex, or to a cycle C),. In the first case the p-preimage
of the two semiedges of X is a 1-factor (or a disjoint union of two 1-factors) of X,
and the p-preimage of the edge of X is a disjoint union of cycles of even length (or a
1-factor of X, respectively). In both cases X is 3-edge-colourable. If X is isomorphic
to C), then p-preimage of every second edge of C,, is a 1-factor and the gp-preimage
of other edges of C), is disjoint union of two 1-factors. This shows that n is even
and that X is bipartite, a contradiction.

We can thus assume that X is a cubic graph. Suppose first that X is not simple.
There are only 2 infinite families and four sporadic cases of vertex-transitive cubic
graphs (with more than one vertex) which are not simple. These are:

1. the dipole D3, having two vertices and three parallel edges between them;

2. the graph D), having two vertices, two parallel edges between them, and a
semiedge attached to every vertex;

3. the graph Cy, obtained from the cycle Cy, by attaching an edge parallel to
every second edge of the cycle;

4. the graph K3 obtained from the graph K by attaching a loop to each of the
two vertices;

5. the graph K obtained from the graph K by attaching a pair of semiedges to
each of the two vertices;

6. the graph C), obtained from the cycle C5, by attaching a semiedge to every
vertex of the cycle.



Observe that all of the above graphs, except for the graph K, are 3-edge-
colourable. We can thus assume that X = K; and that X is a connected regular
cover over K35 with elementary abelian group N of covering transformations. Since
the Betti number of the graph K is 2, the group N is isomorphic either to Z,
or to ZIQ,. In the first case X is a generalized Petersen graph. It is known that
all generalized Petersen graph, except for the Petersen graph itself, are 3-edge-
colourable (see [3]). In the second case the graph X is isomorphic to the homological
p-cover of the graph K3. It is easy to see that it is 3-edge-colourable as well, in fact,
it is a Cayley graph of a semidirect product of the elementary abelian group ZZ and
the group Zs.

We are now left with the case where X is isomorphic to the Petersen graph.
We begin by proving the following lemma on solvable vertex-transitive group of
automorphisms of the Petersen graph.

Lemma 3.1 Let Pet be the Petersen graph and G a solvable vertez-transitive sub-
group of AutPet. Let Zg) = {ij | i,j € Zs} denote the set of unordered pairs of
elements of Zs and let the symmetric group S5 act on the set Zg) in the natural
way. Denote by p and T the elements (0,1,2,3,4) and (1,2,4,3) of S5, respectively.
Then the action of G on the vertex-set of Pet is isomorphic to the action of the

group {p,T) on Zg).

PROOF. Since G acts transitively on the set of 10 elements it contains an element
r’ of order 5 having exactly two orbits on the vertex-set of Pet. Since Pet is not
bipartite there are at least two adjacent vertices, say v and v, contained in the same
orbit of r’. This implies that some power of 7/, call it 7, maps the vertex u to the
vertex v. Let w be the neighbour of u which is not contained in the same orbit
of r as u. For every i € Zs, let u; and w; denote the vertices ri(u) and r'(w),
respectively. Define a bijection f: V(Pet) — Zg) by the rules f(u;) = i(i + 2) and
f(w;) = (1+3)(i+4), for every i € Z5. Note that any two vertices of Pet are adjacent
if and only if their f-images are disjoint. The bijection f gives rise to a group-
isomorphism ¢: Aut Pet — S5, such that (f,¢): (V(Pet), Aut Pet) — (ZéZ),Sg,) is
an isomorphism of actions. Note that ¢(G) contains the permutation p. Since ¢(G)
is a solvable subgroup of S5 containing p and acting on the set Zg) transitively it
must be the group of order 20 generated by p and 7. The pair (f, ¢|¢) is then the

isomorphism of the actions (V(Pet), G) and (Zg), (p,T)). |

In view of lemma 3.1 we can assume that the vertices of X are labelled by the

elements of the set Z?) and that the group G is generated by the elements

p=1(0,1,2,3,4) and 7= (1,2,4,3)

of the symmetric group S5, acting in the natural way on the set Zg). _Since the
graph X is a regular N-cover over the graph X 22 Pet, we can identify X with the



derived covering graph Cov(N, (), where ( is a voltage assignment, defined on the
homology group H;(Pet, Z,) of the Petresen graph Pet (with coefficients in Z,). We
shall denote by T the spanning tree of Pet containing all the edges of Pet, except
the underlying edge of the dart € = 12 — 34 and the underlying edges of the darts
z; =1(i +2) = (i+1)(¢ + 3), i € Z5. By identifying each dart Z (of the above six)
with the oriented cycle of Pet containing no other darts outside 7" but #, we can
consider them as the elements of the homology group H;(Pet,Z,). Clearly, the set
{€,Zp,..., 24} is then a basis of Hi(Pet,Z,) (viewed as the vector space over Zj),
and the voltage asignment ¢ is uniquely determined by the following images (see
Figure 1):

e = () and xz; = ((77), 1 € Zs.

14

Figure 1

Since X is a connected graph, the voltages e, zg,..., T4 generate the elementary
abelian group Z’;. This implies immediately that k < 6. Furthermore, the fact
that the group G = (p, 7) lifts along the coveing projectin p: X — Pet implies by
[10, Theorem 5.2] the existence of the group homomorphism #: G — Aut N, which

satisfies the rule
atol=Coa,

for every oo € G (where « is considered as acting on H;(Pet, Zy)). Using this formula
we can deduce that the automorphisms p# and 7# map the elements e, zg, ..., 24
as it is shown in Table 1.

Table 1
L I e [ 2 n | z zs |
p# e T —e T2+ e r3 —e T4 Trot+e
™ | =2 s ®i | wotas+as | —ms—aute | artastas |z —wx3 | —wo— 34




If we consider the elementary abelian group N as the vector space over the field
Z, the group homomorphism #: G — Aut N defines a linear representation of the
group G. The minimality of the normal subgroup N in the group G implies that this
representation is irreducible. In other words, linear transformations p# and 7# have
no common nontrivial invariant subspaces. It follows immidiately from Table 1 that
the subspace of N spanned by e and Zz‘eZ5 z; is invariant for both p# and 7#. This
implies that either N & Z,, or N = Z2 or N = Zk k>3, ande =35 z; =0.

Case 1 N = Z,. Since the automorphism group Aut N is isomorphic to the
multiplicative group Zj, (acting on N by multiplication), there exist two elements
r,t € Zy, such that p#(a) = ra and 7% (a) = ta, for each a € N. Moreover, since
7pr~ ! = p? and since #: G — Aut N is a group homomorphism, it follows that
trt—! = r2 and thus r = 1. It follows from Table 1 that 29 = ¢ and 21 = z3 = z4 =
xo + e, in this case. Futhermore, tzy = 3z¢ + 2e and t(zg + ¢) = —2x¢ — e, which
gives bzrg = —(3 + t)e. We are going to distinguish two subcases: e # 0 and e = 0.

If e # 0 then the two disjoint 5-cycles of Pet induced by the orbits of p lift into
two disjoint 5p cycles of the graph X. The lift p € Aut X of the automorphism
p € Aut X generates together with the group N a subgroup (5, N) of Aut X, which
acts transitively on each of the two disjoint cycles of length 5p. This implies that
the group (5, N) is cyclic of order 5p. It is easy to see that the graph X is then
isomorphic to a generalized Petersen graph on 10p vertices, and is therefore 3-edge-
colourable by [3].

Assume now that e = 0. In this case the equality 5zg = —(3 + t)e implies
p = 5. The graph X is then isomorphic to the Zs-cover of Pet defined by voltages
e=0and xgp =21 = x5 = r3 = 4 = 1. It is an easy exercise to shows that this
vertex-transitive graph on 50 vertices is 3-edge-colourable.

Case 2 N = ZIQ,. In order to deal with this case we shall first prove the following
general lemma on irreducible representations of the group G.

Lemma 3.2 Let G = (p,7 | p° = ¢ = p27pr~1 = 1) and let ®: G — AutZ2 be
an irreducible representation. Then ®(p) = id.

PROOF. Let g = ®(g) for all g € G. Suppose first that p has no eigenvectors.
Since there are p + 1 1-dimensional subspaces of the vector space ZZ, and since the
order of p is 5, this implies that p = —1 (mod 5). Let v be an arbitrary non-zero
element of Z3 and let vy = p(v). Then {v,v;} is a basis of Z3 relative to which the
automorphism p is represented by the matrix

0 «

1 8)°
Since p = —1(mod5) and since det(p)® = 1, we have that —a = det(p) = 1.
Furthermore, it follows from p° = id that 5% + 3 —1 = 0. Then p? is represented by



the matrix
-1 -8
G %)
Since p and p? are conjugate (by 7), they must have the same characteristic poli-
nomial. Therefore, 22 — Bz +1 = z? + (B4 1)z + (8% + ), and thus B+ 1 = —B.
If we use this equality together with 82 + 3 —1 = 0 we get 5 = 0 and thus p = 5,
contradicting the congruence p = —1 (mod 5).

We can therefore assume that p has an eigenvector. Let pv = Av for some non-
zero element v € Z?) and some A € Z;. Since p° = id we have \> = 1. It follows
from the equality 7p7~! = p? that the vector v; = 7(v) is an eigenvector of p,
with the corresponding eigenvalue A\®>. The spectrum of p is thus the set {\, A\3}.
Since, p and p? are conjucate, they have the same spectrum, implying the equality
{A 2% = {A%, )}, and so A = 1. Since {v,v1} is a basis for Z (for otherwise v
would be a common eigenvector for p and 7), this shows that p = id. |

By the above lemma we can assume that p# = id, which implies 25 = zy and
x1 = w3 = x4 = xo + e. This shows that the set {zg, e} is a basis of the vector
space N. Let K < N be the subgroup generated by the element zy + e, and let
¢: N — N/K be the corresponding quotient projection. Observe that K is invariant
under the action of p#. In view of [10, Corollary 5.3 and Proposition 4.1] the graph X
is a regular cover over the covering graph Y = Cov(Pet, ¢¢) and the automorphism
p € AutPet lifts into an automorphism of the graph Y. If p > 2 the graph Y
consists of two disjoint 5p cycles and a matching between them. Clearly, the lift
of the automorphism p acts transitively on the two disjoint 5p-cycles. This implies
that Y is a generalized Petersen graph on 10p vertices. This is true even in the case
p = 2, where Y is isomorphic to the generalized Petersen graph GP(10,2). The
graph Y is then 3-edge-colourable by [3]. Being a cover over Y the graph X is also
3-edge-colourable, a contradiction.

Case 3 N = Z’;, k>3, e=> iz, mi =0. Since the six voltages e, o,...,74
generate the group N we have that k£ < 4. The following lemma deals with the case
k=3.

Lemma 3.3 Let G = {p,7 | p° =1 = p~2rpr~ ' = 1) and let ®: G — Auth’, be a
linear representation of the group G. Then ® is reducible.

PROOF. Suppose that @ is irreducible. Let g denote the linear transformation
®(g), for every g € G. Since there are p?> + p + 1 1-dimensional subspaces in Z;’)
and since, for every prime p, the number p? + p + 1 is not divisible by 5, there
exists an eigenvector v of the linear transformation p. Let A be the corresponding
eigenvalue. Since 7p7 ! = p?, the vectors 7(v) and 72(v) are eigenvectors of p with
the corresponding eigenvalues A\* and A\*. Since p and 7 have no common invariant
subspaces, the vectors v, 7(v) and 72(v) form a basis of Z5. This implies that the
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spectrum of p equals {\, A3, A*}. Furthermore, since p and p? are conjugate, they
have the same spectrum, showing that {\, A3, A*} = {A2, A\, A3}, and so A = 1 and
p = id. Similarly, since the number p? + p + 1 is odd, the transformation 7 has a
fixed point in its action on 1-dimensional subspaces of Zf’,. The eigenvector of 7T is
thus a common eigenvector of p and 7, a contradiction. [ |

We are now left with the case k = 4. We can assume without lost of generality
that xg,z1,z2 and x3 are lineary independent and that z4 = —x¢y — z1 — T2 — 3.
Let K < N be a subgroup generated by z1,z3 and 2o+ z2, and let g: N — N/K be
the corresponding quotient projection. In view of [10, Proposition 4.1] the graph X
is a regular cover over the covering graph Y’ = Cov(Pet, ¢(). By [10, Theorem 6.2]
the graph Y is isomorphic to the covering graph Y = Cov(Pet, (;) associated with
the Cayley voltage space (Zyp, (1), where (; is defined by ¢i(€) = (1(Z1) = G1(Z3) =
CG(Z4) = 0, (1(Zo) = 1 and (1(Z2) = —1. Recall that the vertex set of the graph
Y is the set {(u,i) | u € V(Pet),i € Z,}. The s layer, s € Z,, of the graph Y is
the set of darts z € D(Y) having their initial vertex begy (z) contained in the set
{(u,s) | u € V(Pet)}. Let C = {1,2,3} denote the set of three colours, and let = be
a permutation of the set C. The colouring of type m of a layer of Y is the mapping
from this layer to the set C, which is schematically shown on Figure 2.

Figure 2: The graph Y and the colouring of a layer of the graph Y of type .

If p = 2 then define the colouring of the graph Y in such a way that the 0*" layer
receives the colouring of type id and the 1! layer the colouring of type (2,3). This
is clearly a proper 3-edge-colouring of the graph Y.

If p is odd then let the 0" layer receive the colouring of type (1,2,3), the 1% layer
the colouring of type (1,3,2), the s** layer, for s € {2,4,...,p — 1}, the colouring of
type id, and the s layer, for s € {3,5,...,p—2}, the colouring of type (2,3). Such
a colouring is a proper 3-edge-colouring of the graph Y. Since X is a regular cover
over Y, it is 3-edge-colourable as well. This completes the proof of Theorem 1.4.
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