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Chromatic number of a nonnegative matrixBojan Mohar�Department of Mathematics,University of Ljubljana,1111 Ljubljana, Sloveniabojan.mohar@uni-lj.siOctober 30, 2001AbstractA new set of combinatorial invariants of nonnegative matrices withzero diagonal is introduced. They generalize the notion of the chro-matic and the circular chromatic number of a graph and the notionof an optimal traveling salesman tour (metric case). An extension ofWilf's eigenvalue upper bound on the chromatic number is derived,and some directions for further research are suggested.1 IntroductionA set of new combinatorial invariants, called the chromatic number , is in-troduced for nonnegative square real matrices with zero diagonal. The chro-matic number is invariant under permutation similarity and monotone withrespect to matrix entries. The main motivation is the study of two specialcases, called the span and the circular span. They generalize the notion ofthe chromatic number of a graph in the sense that the span of a symmetric01-matrix A is equal to the chromatic number of the graph with adjacencymatrix A. The span is related to the channel assignment problem [5], andthe circular span corresponds to the notion of the circular chromatic num-ber [6, 9]. In the case, when the triangular inequality holds for the entriesof A, the circular span corresponds to the optimum length of the travelingsalesman tour which has A as the cost matrix.�Supported in part by the Ministry of Science and Technology of Slovenia, ResearchProgram P1{0507{0101. 1



Wilf [7] proved that the chromatic number of a graph cannot be largerthan the maximum eigenvalue of its adjacency matrix increased by 1. Wilf'sbound is extended to the generalized chromatic number of a matrix andseveral possibilities for further research are outlined.2 Colorings in distance spacesA distance space is a pair D = (D; d) where D is a set and d : D �D ! Ris a function such that d(x; y) � 0 for every x; y 2 D.Let D = (D; d) be a distance space, let V be a set and A : V �V ! R . Amapping c : V ! D is called a D-coloring of A if for any distinct x; y 2 V ,d(c(x); c(y)) � A(x; y): (1)For a real number p > 0, let pD denote the distance space (D; pd). TheD-chromatic number of A, denoted by �D(A), is the in�mum of the set of allreal numbers p for which there exists a pD-coloring of A. In all interestingcases, the distance space will contain a subset D0 such that jD0j � jV j andfor any distinct elements x; y of D0, d(x; y) > 0. Clearly, in such a case,�D(A) <1.It will be shown in the next section that the in�mum in the de�nitionof �D(A) is attained, i.e., there exists a pD-coloring of A for p = �D(A), ifsome rather natural conditions on D hold.In this paper we shall restrict our attention to the case when V is �nite.Then we may assume that V = f1; 2; : : : ; ng and that A is a nonnegativematrix. We may also assume that A has zero diagonal since the diagonalentries have no e�ect on coloring properties. We shall write V = V (A) forthe set of vertex-column indices of A.The D-chromatic number is a combinatorial matrix invariant since it ispreserved by the permutation similarity of matrices, i.e., if P is a permuta-tion matrix, then �D(P TAP ) = �D(A).Our main interest will be focused on two special cases of distance spaces.Let I denote the distance space whose underlying set is the unit intervalI = [0; 1] � R and the corresponding mapping is the distance in I. TheI-chromatic number is also called the span and corresponds to the spanstudied in the channel assignment problem (cf. [5]). Since the distance inI is symmetric, the span really makes sense for symmetric matrices. Moreprecisely, if A is a nonnegative matrix and �A has entries �aij = maxfaij ; ajig,then �A is symmetric and �I(A) = �I( �A).2



The second distance space S = (S1; d+) of particular importance has theunderlying set S1 = R=Z which may be identi�ed either with the interval[0; 1) or with a circle of perimeter 1 in R2. In the latter case, the distancefunction d+ is de�ned as the distance on the circle in the clockwise direction,while for x; y 2 [0; 1) we de�ned+(x; y) = (y � x if y � x1 + y � x if x > y:The S-chromatic number �S (A) is related to circular colorings of graphs andis therefore also called the circular chromatic number or the circular spanof A. The theory of circular colorings has become an important branchof chromatic graph theory with many interesting results, leading to newmethods and exciting new results. We refer to the survey article by Zhu[9]. An extension of circular colorings to edge-weighted graphs was recentlyintroduced by the author [6].The travelling salesman problem (TSP) is one of the best-known NP-hardcombinatorial optimization problems, and there is an extensive literature onboth its theoretical and practical aspects [4, 3]. In the metric travellingsalesman problem (MTSP), it is assumed that the cost matrix A = [auv]satis�es the triangular inequality:auv � auw + awv; u; w; v 2 V: (2)The circular span generalizes the metric traveling salesman problem inthe following sense. Let A = [auv]u;v2V be the cost matrix for a MTSP,where none of the costs auv (u 6= v) is zero. Then every pS-coloring c of Adetermines a tour of the traveling salesman of cost � p which is obtainedby taking the tour through V as determined by the cyclic clockwise orderof c(V ) on S1. Conversely, (2) implies that every travelling salesman tourof length p yields a pS-coloring of A. Therefore, �S (A) is the optimum forthe considered MTSP. (The same conclusion also holds if some of the costsare zero but that case needs a slightly di�erent argument.) This exampleshows that computation of the circular span is NP-hard.The span and the circular span are closely related. It is a simple exerciseto show that the following inequalities hold:Proposition 2.1 Let A be a symmetric nonnegative matrix with zero diag-onal. Then�I (A) < �S (A) � �I(A) + maxfaij j i; j 2 V (A); i 6= jg:3



3 Basic resultsThere is a natural partial order � on the set M 0 of all nonnegative squarereal matrices with zero diagonal. For A;B 2 M 0, we write A � B if thereis a 1-1 mapping � : V (A) ! V (B) such that for every distinct indicesi; j 2 V (A), Aij � B�(i)�(j).Proposition 3.1 For any distance space D, the function �D is �-monotone.The distance function d is weakly continuous if for every sequence x1; x2;x3; : : : of elements of D there exists an x0 2 D such that for every sequencey1; y2; y3; : : : of elements of D, there are indices i1 < i2 < i3 < � � � such thatlim infn!1 d(x0; yin) � lim infn!1 d(xin ; yin) (3)and lim infn!1 d(yin ; x0) � lim infn!1 d(yin ; xin): (4)Suppose that d is weakly continuous. Let us assume the above notation.By taking the sequence yi1 ; yi2 ; yi3 ; : : : playing the role of x1; x2; x3; : : : , andthe constant sequence x0; x0; x0; : : : playing the role of the other sequencein the de�nition of weak continuity, we see that there is also a point y0 2 Dand a subsequence j1 < j2 < j3 < � � � of i1 < i2 < i3 < � � � such thatd(x0; y0) � lim infn!1 d(x0; yjn) � lim infn!1 d(xjn ; yjn) (5)and d(y0; x0) � lim infn!1 d(yjn ; x0) � lim infn!1 d(yjn ; xjn): (6)A metric space is sequentially compact if every sequence has a convergentsubsequence. Clearly, every compact metric space is sequentially compact.Lemma 3.2 If D = (D; d) is a sequentially compact metric space, then dis weakly continuous.Proof. Let x1; x2; x3; : : : be a sequence of elements of D. Since D issequentially compact, there exists a convergent subsequence xj1 ; xj2 ; xj3 ; : : :(j1 < j2 < j3 < � � � ) with limit x0, say. Given a sequence y1; y2; y3; : : :in D, there is a convergent subsequence of yj1 ; yj2 ; yj3 ; : : : . Let i1 < i2 <i3 < � � � be the indices corresponding to that subsequence, and let y0 be4



the limit. Since the distance is continuous function in its metric topology,limn!1 d(xin ; yin) = limn!1 d(x0; yin) = d(x0; y0). This proves (3), and(4) follows by symmetry.Our next goal is to prove that the in�mum in the de�nition of �D(A) isattained if d is weakly continuous.Proposition 3.3 Let D = (D; d) be a distance space. If d is weakly contin-uous, then for every A 2 M 0, there is a �D(A)D-coloring of A.Proof. Let p1 > p2 > p3 > � � � be a sequence of real numbers withlimi!1 pi = p := �D(A), and let ci be a piD-coloring of A, i = 1; 2; : : : . LetV (A) = fv1; : : : ; vng, and consider n sequences c1(vk); c2(vk); c3(vk); : : : ,k = 1; : : : ; n. Since d is weakly continuous, there is a point r1 2 D,corresponding to the sequence of v1, such that for each of the remain-ing n � 1 sequences, there is a subsequence satisfying (3){(4). By tak-ing �rst the subsequence of c1(v2); c2(v2); c3(v2); : : : and later consideringonly subsequences of previously obtained subsequence, we achieve proper-ties (3){(4) for subsequences with the same indices for all initial sequencesc1(vk); c2(vk); c3(vk); : : : , k = 2; : : : ; n. By repeating the same argument fork = 2; : : : ; n, we get points r1; : : : ; rn in D and indices i1 < i2 < i3 < � � �such that d(rk; rl) � lim infm!1 d(cim(vk); cim(vl)) (7)for any distinct k; l 2 f1; : : : ; ng.For vk 2 V (A), let c(vk) = rk. We claim that c is a pD-coloring of A.Take any distinct vertices vk; vl 2 V (A). Since cim is a pim-coloring of A,(7) implies d(c(vk); c(vl)) = d(rk; rl) � lim infm!1 1pim auv = 1pauv:This proves that c is a pD-coloring of A.The condition on weak continuity is needed to get the conclusion ofProposition 3.3. For example, if D is the half-open interval [0; 1) and d isthe usual distance on D, then �D(A) = 1 for A = � 0 11 0 � but there is noD-coloring of A.Proposition 3.3 can be applied for the span but not for the circularspan since the distance space S is not weakly continuous. Indeed, if A =5



� 0 10 0 �, then �S (A) = 1 but there is no S-coloring of A. This examplecan be generalized as follows. Let A be an n� n matrix corresponding to ametric TSP with a single o�-diagonal element (say a12) being 0; so, a21 6= 0.Assume, moreover, that every minimum TST tour contains the transitionfrom 1 to 2. In that case, �S (A) is equal to the optimum tour length, butthere is no �S(A)S-coloring of A.On the other hand, the proof of Proposition 3.3 can be repeated to showthe following:Proposition 3.4 If A 2 M 0 is a matrix with symmetric support (i.e., auv =0 if and only if avu = 0), then there is a �S (A)S-coloring of A.A more complicated proof of Proposition 3.4 is given in [6]; however,that proof provides additional information on �S (A).4 Critical elements and eigenvalue upper boundLet D = (D; d) be a distance space. A �nite set C = f(xi; qi; ri) 2 D � R2 ji = 1; : : : ; kg is a cover of D if for every x 2 D there exists (xi; qi; ri) 2 Csuch that either d(x; xi) < qi or d(xi; x) < ri. The sum �(C) =Pki=1(qi+ri)is called the diameter of C. The in�mum �(D) = inf �(C) taken over allcovers C of D is called the covering diameter of D. The two special cases Iand S have �(I) = 1 and �(S) = 1.Let F be a combinatorial matrix invariant, and let A 2 M 0. We say thati 2 V (A) is (F; p)-critical if F (A) = p but F (A(i)) < p, where A(i) denotesthe matrix obtained from A by deleting the ith row and the ith column. Ifp is not important, or if F is clear from the context, we simply say that Ais F -critical , or p-critical , respectively.Lemma 4.1 Let D be a distance space and A 2 M 0. If i 2 V (A) is (�D; p)-critical, then di = Xj2V (A)nfig(aij + aji) � p �(D):Proof. Let V (i) = V (A)nfig, and let c : V (i) ! D be a p1D-coloring ofA(i), where p1 < p. Since c cannot be extended to a p1D-coloring of A, forevery point x 2 D, which could serve as the color of i, there exists j 2 V (i)such that either p1d(x; c(j)) < aij or p1d(c(j); x) < aji. This implies thatthe set C = f(c(j); aij=p1; aji=p1) j j 2 V (i)g is a cover of D. In particular,6



�(D) � �(C) = di=p1. Hence, di � p1�(D). This implies the lemma since p1is arbitrarily close to p.Matrices in M 0 are nonnegative. By the Perron-Frobenius Theorem,every A 2 M 0 has a real nonnegative eigenvalue �max(A) such that ev-ery eigenvalue � of A satis�es j�j � �max(A). Moreover, �max(A) has aneigenvector with nonnegative coordinates. This implies, in particular, that�max(A) is �-monotone combinatorial matrix invariant.The following corollary of Lemma 4.1 is an analogue of the Wilf bound[7] for the usual chromatic number of the graph.Theorem 4.2 Let D be a distance space and A 2 M 0. Then�D(A) � 2�(D)�max(A):Proof. It is easy to see that V (A) contains a subset U such that in theprincipal submatrix B of A corresponding to U , every i 2 U is �D(B)-critical and �D(B) = �D(A). By Lemma 4.1,d0i = Xj2Unfig(aij + aji) � �D(B) � �(D) = �D(A) � �(D) (8)for every i 2 U . Now, let x 2 RV (A) be the vector whose entry xi is 1 ifi 2 U and 0 otherwise. Then kxk2 = jU j and (Ax; x) = Pi2UPj2U aij =12Pi2U d0i. This implies that�max(A) � (Ax; x)kxk2 � 12jU jXi2U d0i: (9)By (8){(9), �max(A) � 12�D(A) �(D). This completes the proof.In the case of distance spaces S and I, Theorem 4.2 yields the followingbounds: �S (A) � 2�max(A) (10)and �I(A) � 2�max(A): (11)These bounds can be improved in the special case of MTSP as follows.7



Theorem 4.3 Suppose that the entries of A 2 M 0 satisfy the triangularinequality. Then �S (A) � nn� 1�max(A) (12)and �I(A) � �max(A): (13)Proof. For every cyclic ordering 
 = (i1; i2; : : : ; in) of V (A) = f1; : : : ; ng,there is the minimum real number p
 such that A has a p
S-coloring c
whose cyclic order of used colors on S1 is equal to (c
(i1); c
(i2); : : : ; c
(in)).Clearly, p
 = nXj=1 d+(c
(ij); c
(ij+1)) = nXj=1 aij ij+1 � �S (A): (14)The second equality in (14) follows from the triangular inequality. If we takeall (n� 1)! possible cyclic orders 
 and consider all corresponding equations(14), each distance aij appears in the sum on the left hand side of precisely(n� 2)! inequalities. Therefore,(n� 2)! nXi=1 nXj=1 aij � (n� 1)!�S (A): (15)On the other hand, if x 2 RV is the all-1 vector, then (Ax; x)=(x; x) =1nPni=1Pnj=1 aij . Consequently,�max(A) � (Ax; x)(x; x) = 1n nXi=1 nXj=1 aij � n� 1n �S (A): (16)This completes the proof of (12). The proof of (13) is similar except that(14) changes to p
 =Pn�1j=1 aij ij+1 � �I(A) and (15) is replaced by(n� 1)! nXi=1 nXj=1 aij � n!�I(A): (17)Therefore, �max(A) � �I (A).Theorem 4.3 can be extended to the case when the triangular inequalityis replaced by the following inequalities:auv � t(auw + awu)8



for all distinct u; v; w 2 V (A). If t � 1, then (14) can be replaced byt nXi=1 nXj=1 aij ij+1 � �S (A):This implies:�S(A) � tnn� 1�max(A) and �I(A) � t�max(A): (18)5 Some directions for further research(1) First of all, one should ask if there is a corresponding theory whichwould take into account also matrices with negative elements.(2) Other special cases of distance spaces of particular interest (besidesI and S) are higher dimensional spheres and balls in Euclidean spaces and,more generally, in compact Riemannian manifolds. The coloring problemswould generalize packing and covering problems for such metric spaces. An-other interesting special case is the 
at torus T�;� = �S1 � �S1, eitherwith the geodesic distance or with the `1 metric. Colorings in T�;� with the`1 distance may be related to the famous nowhere-zero 
ow conjectures ofTutte (see, e.g., [8]).All these spaces have symmetric distance functions. In some cases it maybe possible to de�ne the distance function d (in analogy with S) so that itwould not be symmetric.(3) It is easy to see that for every A 2 M 0 with integer entries, �I(A) isan integer.Problem 5.1 Classify all distance spaces D for which �D(A) is an integerfor every A 2 M 0 with integer entries.It may be expected that such distance spaces can be described as being\composed" of I and some discrete spaces with unit distances, where eachof these can also be multiplied with an integer fraction.(4) There is an open problem related to Theorem 4.2. The bound of thatresult can be improved in some special cases as shown by Theorem 4.3. Isthis possible in general? Is this possible for the distance spaces I and S?Problem 5.2 Is there an " > 0 such that for every nonnegative symmetricmatrix A with zero diagonal, �S � (2�")�max(A)+maxfaij j i; j 2 V (A)g?9



It may be that " = 1 is the right answer for Problem 5.2, but someresults in [6] suggest that the answer to Problem 5.2 could be negative.(5) Ho�man [2] and Cvetkovi�c [1], respectively, found lower bounds onthe chromatic number of a graph expressed in terms of the eigenvalues ofits adjacency matrix. Is there a similar result for the generalized chromaticnumber of a matrix?(6) As a function of nondiagonal entries of A, the circular span �S (A) isa piecewise linear function with �nitely many regions of linearity (for a �xeddimension of A). This was proved in [6]. There are two sets of questionsrelated to this fact. First, how could one describe the regions of linearity?And second, is the same true for any other \interesting" distance space?Problem 5.3 For which distance spaces D is �D(A) a piecewise smoothfunction of the o�-diagonal entries of A?References[1] D. M. Cvetkovi�c, Chromatic number and the spectrum of a graph, Publ.Inst. Math. (Beograd) 14 (28) (1972) 25{38.[2] A. J. Ho�man, On eigenvalues and colorings of graphs, in \Graph The-ory and its Applications," Ed. B. Harris, Academic Press, New York,1970, pp. 79{91.[3] G. Laporte, The traveling salesman problem: an overview of exact andapproximate algorithms, European J. Oper. Res. 59 (1992) 231-247.[4] E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan and D. B. Shmoys,The Traveling Salesman Problem, Wiley, New York, 1985.[5] C. McDiarmid, Discrete mathematics and radio channel assignment,in \Recent advances in theoretical and applied discrete mathematics",Eds. B. Reed and C. Linhares-Salas, to appear.[6] B. Mohar, Circular colorings of edge-weighted graphs, submitted.[7] H. S. Wilf, The eigenvalues of a graph and its chromatic number, J.London Math. Soc. 42 (1967) 330{332.[8] C.-Q. Zhang, Integer 
ows and cycle covers of graphs, Marcel DekkerInc., New York, 1997. 10



[9] X. Zhu, Circular chromatic number: a survey, Discrete Math. 229(2001) 371{410.
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