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Abstract

A new set of combinatorial invariants of nonnegative matrices with
zero diagonal is introduced. They generalize the notion of the chro-
matic and the circular chromatic number of a graph and the notion
of an optimal traveling salesman tour (metric case). An extension of
Wilf’s eigenvalue upper bound on the chromatic number is derived,
and some directions for further research are suggested.

1 Introduction

A set of new combinatorial invariants, called the chromatic number, is in-
troduced for nonnegative square real matrices with zero diagonal. The chro-
matic number is invariant under permutation similarity and monotone with
respect to matrix entries. The main motivation is the study of two special
cases, called the span and the circular span. They generalize the notion of
the chromatic number of a graph in the sense that the span of a symmetric
0l-matrix A is equal to the chromatic number of the graph with adjacency
matrix A. The span is related to the channel assignment problem [5], and
the circular span corresponds to the notion of the circular chromatic num-
ber [6, 9]. In the case, when the triangular inequality holds for the entries
of A, the circular span corresponds to the optimum length of the traveling
salesman tour which has A as the cost matrix.
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Wilf [7] proved that the chromatic number of a graph cannot be larger
than the maximum eigenvalue of its adjacency matrix increased by 1. Wilf’s
bound is extended to the generalized chromatic number of a matrix and
several possibilities for further research are outlined.

2 Colorings in distance spaces

A distance space is a pair D = (D,d) where D isaset and d: D x D — R
is a function such that d(z,y) > 0 for every x,y € D.

Let D = (D, d) be a distance space, let V beasetand A: VxV — R. A
mapping ¢ : V — D is called a D-coloring of A if for any distinct z,y € V,

d(c(z), cly)) > Alz,y). (1)

For a real number p > 0, let pD denote the distance space (D, pd). The
D-chromatic number of A, denoted by xp(A), is the infimum of the set of all
real numbers p for which there exists a pD-coloring of A. In all interesting
cases, the distance space will contain a subset D' such that |D'| > |V| and
for any distinct elements z,y of D', d(z,y) > 0. Clearly, in such a case,
xp(4) < oo.

It will be shown in the next section that the infimum in the definition
of xp(A) is attained, i.e., there exists a pD-coloring of A for p = xp(4), if
some rather natural conditions on D hold.

In this paper we shall restrict our attention to the case when V is finite.
Then we may assume that V' = {1,2,...,n} and that A is a nonnegative
matrix. We may also assume that A has zero diagonal since the diagonal
entries have no effect on coloring properties. We shall write V' = V(A) for
the set of vertex-column indices of A.

The D-chromatic number is a combinatorial matriz invariant since it is
preserved by the permutation similarity of matrices, i.e., if P is a permuta-
tion matrix, then xypp(PTAP) = xp(A).

Our main interest will be focused on two special cases of distance spaces.
Let Z denote the distance space whose underlying set is the unit interval
I = [0,1] C R and the corresponding mapping is the distance in I. The
Z-chromatic number is also called the span and corresponds to the span
studied in the channel assignment problem (cf. [5]). Since the distance in
I is symmetric, the span really makes sense for symmetric matrices. More
precisely, if A is a nonnegative matrix and A has entries a;; = max{a;j,aj;},

then A is symmetric and x7(A4) = x7(4).



The second distance space S = (S',dT) of particular importance has the
underlying set S! = R/Z which may be identified either with the interval
[0,1) or with a circle of perimeter 1 in R?. In the latter case, the distance
function d is defined as the distance on the circle in the clockwise direction,
while for z,y € [0,1) we define

4+ (z,y) = Yy— ify>x
’ 1+y—z ifz>uy.

The S-chromatic number x g (A) is related to circular colorings of graphs and
is therefore also called the circular chromatic number or the circular span
of A. The theory of circular colorings has become an important branch
of chromatic graph theory with many interesting results, leading to new
methods and exciting new results. We refer to the survey article by Zhu
[9]. An extension of circular colorings to edge-weighted graphs was recently
introduced by the author [6].

The travelling salesman problem (TSP) is one of the best-known NP-hard
combinatorial optimization problems, and there is an extensive literature on
both its theoretical and practical aspects [4, 3]. In the metric travelling
salesman problem (MTSP), it is assumed that the cost matrix A = [ayy]
satisfies the triangular inequality:

Quy < Ay + Ay, u,w,v € V. (2)

The circular span generalizes the metric traveling salesman problem in
the following sense. Let A = [ayy]upecv be the cost matrix for a MTSP,
where none of the costs ay, (u # v) is zero. Then every pS-coloring ¢ of A
determines a tour of the traveling salesman of cost < p which is obtained
by taking the tour through V as determined by the cyclic clockwise order
of ¢(V) on S'. Conversely, (2) implies that every travelling salesman tour
of length p yields a pS-coloring of A. Therefore, x g(A) is the optimum for
the considered MTSP. (The same conclusion also holds if some of the costs
are zero but that case needs a slightly different argument.) This example
shows that computation of the circular span is NP-hard.

The span and the circular span are closely related. It is a simple exercise
to show that the following inequalities hold:

Proposition 2.1 Let A be a symmetric nonnegative matriz with zero diag-
onal. Then

x7(4) < xg(A) < x7(A) +max{a;; | i,5 € V(A),i # j}.



3 Basic results

There is a natural partial order < on the set M of all nonnegative square
real matrices with zero diagonal. For A, B € M, we write A < B if there
is a 1-1 mapping 7 : V(A) — V(B) such that for every distinct indices
i,j € V(A), Aij < Briyn(j)-

Proposition 3.1 For any distance space D, the function xp is <-monotone.

The distance function d is weakly continuous if for every sequence z1, T2,

x3,... of elements of D there exists an xg € D such that for every sequence
Y1, Y2, Y3, . .. of elements of D, there are indices 41 < 79 < ¢3 < --- such that
liminf d(zo, y;,) > liminfd(z;,, yi,) (3)
n—oo n—oo
and
liminfd(y;, ,xo) > liminfd(y;, ,x;, ). (4)
n—o0 n— o0

Suppose that d is weakly continuous. Let us assume the above notation.
By taking the sequence vy;,, yi,, Yis, - - . Playing the role of z1, x5, z3,..., and
the constant sequence xg, zg, To,... playing the role of the other sequence
in the definition of weak continuity, we see that there is also a point yg € D
and a subsequence 71 < jo < j3 < --- of 17 <49 <143 < --- such that

d(o,y0) > liminf d(zo,y;,) > liminfd(z;,,y;,) (5)
and
d(yo, xo) > lim inf d(y;, , o) > lim inf d(y;,, z,)- (6)

A metric space is sequentially compact if every sequence has a convergent
subsequence. Clearly, every compact metric space is sequentially compact.

Lemma 3.2 If D = (D,d) is a sequentially compact metric space, then d
18 weakly continuous.

Proof. Let z1,z9,z3,... be a sequence of elements of D. Since D is
sequentially compact, there exists a convergent subsequence z;,,z;,, Tj,,...
(j1 < j2 < j3 < ---) with limit z(, say. Given a sequence y1,Yy2,Ys, .- -
in D, there is a convergent subsequence of y; ,yj,,¥j,,.... Let i1 < iz <
i3 < --- be the indices corresponding to that subsequence, and let yy be



the limit. Since the distance is continuous function in its metric topology,
limy, o0 d(z4,,¥i,) = limp_seo d(x0,vi,) = d(z0,y0). This proves (3), and
(4) follows by symmetry. O

Our next goal is to prove that the infimum in the definition of xp(A) is
attained if d is weakly continuous.

Proposition 3.3 Let D = (D,d) be a distance space. If d is weakly contin-
uous, then for every A € My, there is a xp(A)D-coloring of A.

Proof. Let p1 > ps > p3 > --- be a sequence of real numbers with
lim; o0 p; = p := xp(A), and let ¢; be a p;D-coloring of A, i =1,2,.... Let
V(A) = {vi,...,v,}, and consider n sequences c;(vg),ca(vk),cs(vg),-- .,
k = 1,...,n. Since d is weakly continuous, there is a point r, € D,

corresponding to the sequence of vy, such that for each of the remain-
ing n — 1 sequences, there is a subsequence satisfying (3)—(4). By tak-
ing first the subsequence of ¢;(vs),ca(v2),c3(v2),... and later considering
only subsequences of previously obtained subsequence, we achieve proper-
ties (3)—(4) for subsequences with the same indices for all initial sequences

c1(vg), co(vg), c3(vk), ..., k =2,...,n. By repeating the same argument for
k=2,...,n, we get points r1,...,r, in D and indices i} < 19 < iz < ---
such that
d(rg,r;) > liminfd(c;,, (vg),ci,, (v7)) (7)
m— 00

for any distinct k,1 € {1,...,n}.

For v, € V(A), let c(vg) = r,. We claim that ¢ is a pD-coloring of A.
Take any distinct vertices vg,v; € V(A). Since ¢;,, is a p;, -coloring of A,
(7) implies

1

o 1
d(c(vg),c(vy)) = d(rg,ry) > l;rglo%faaw = I—Qaw.

This proves that ¢ is a pD-coloring of A. O

The condition on weak continuity is needed to get the conclusion of
Proposition 3.3. For example, if D is the half-open interval [0,1) and d is

the usual distance on D, then xp(A) =1 for A = ( (1) (1) > but there is no
D-coloring of A.
Proposition 3.3 can be applied for the span but not for the circular

span since the distance space S is not weakly continuous. Indeed, if A =



( 8 é >7 then xg(A) = 1 but there is no S-coloring of A. This example

can be generalized as follows. Let A be an n X n matrix corresponding to a
metric TSP with a single off-diagonal element (say a12) being 0; so, as; # 0.
Assume, moreover, that every minimum TST tour contains the transition
from 1 to 2. In that case, xg(A) is equal to the optimum tour length, but
there is no y g(A)S-coloring of A.

On the other hand, the proof of Proposition 3.3 can be repeated to show
the following:

Proposition 3.4 If A € My is a matriz with symmetric support (i.e., Gy, =
0 if and only if ay, = 0), then there is a x g(A)S-coloring of A.

A more complicated proof of Proposition 3.4 is given in [6]; however,
that proof provides additional information on x g(A).

4 Critical elements and eigenvalue upper bound

Let D = (D, d) be a distance space. A finite set C' = {(z;,q;,7;) € D x R? |
i=1,...,k} is a cover of D if for every x € D there exists (z;,q;, ;) € C
such that either d(z, z;) < g; or d(z;,z) < r;. The sum 7(C) = Ele(qi—i-ri)
is called the diameter of C. The infimum 7(D) = inf 7(C) taken over all
covers C' of D is called the covering diameter of D. The two special cases T
and S have 7(Z) =1 and 7(S) = 1.

Let F' be a combinatorial matrix invariant, and let A € M. We say that
i € V(A) is (F,p)-critical if F(A) = p but F(A®) < p, where A® denotes
the matrix obtained from A by deleting the ith row and the ith column. If
p is not important, or if F' is clear from the context, we simply say that A
is F'-critical, or p-critical, respectively.

Lemma 4.1 Let D be a distance space and A € My. Ifi € V(A) is (xp,p)-
critical, then
di= Y (ag+az) >pr(D).
JEV(A\{i}

Proof. Let V) = V(A4)\{i}, and let ¢ : V() — D be a p;D-coloring of
A® | where p; < p. Since ¢ cannot be extended to a p;D-coloring of A, for
every point £ € D, which could serve as the color of i, there exists j € 14
such that either pid(z,c(j)) < aij or pid(c(j),x) < aj;. This implies that
the set C' = {(c(4), aij/p1,aji/p1) | 5 € V?W} is a cover of D. In particular,



7(D) < 7(C) = d;/p1. Hence, d; > p17(D). This implies the lemma since p;
is arbitrarily close to p. O

Matrices in My are nonnegative. By the Perron-Frobenius Theorem,
every A € My has a real nonnegative eigenvalue Apax(A) such that ev-
ery eigenvalue A of A satisfies |\| < Amax(A). Moreover, Amax(A) has an
eigenvector with nonnegative coordinates. This implies, in particular, that
Amax(A) is <-monotone combinatorial matrix invariant.

The following corollary of Lemma 4.1 is an analogue of the Wilf bound
[7] for the usual chromatic number of the graph.

Theorem 4.2 Let D be a distance space and A € My. Then

2

XD(A) < W

Amax(A4).

Proof. It is easy to see that V' (A) contains a subset U such that in the
principal submatrix B of A corresponding to U, every i € U is xp(B)-
critical and xp(B) = xp(A). By Lemma 4.1,

di= Y (ai+aj) > xp(B) - 7(D) = xp(A) - 7(D) (8)
JeU\{i}

for every 1 € U. Now, let z € RV (A be the vector whose entry z; is 1 if
i € U and 0 otherwise. Then ||z||? = |U| and (Az,z) = > ;o dojeu Gij =
2> icy di. This implies that

(Az,x) 1 ,
Amax(A) > —2 > —— ) d. 9
w2 T 2 g 2 ©)
By (8)-(9), Amax(4) > 2xp(A4) 7(D). This completes the proof. O

In the case of distance spaces § and Z, Theorem 4.2 yields the following
bounds:

XS(A) < 2>\rn;au>((A) (10)

and

XZ(A) < 2Amax(4). (11)

These bounds can be improved in the special case of MTSP as follows.



Theorem 4.3 Suppose that the entries of A € My satisfy the triangular
inequality. Then

——— Amax(4) (12)
and
x7(4) < Amax(A). (13)

Proof. For every cyclic ordering v = (i1,42,...,iy) of V(A) = {1,...,n},
there is the minimum real number p, such that A has a p,S-coloring cy

whose cyclic order of used colors on S is equal to (¢ (i1), ¢y (i2), . . . , ¢y (in))-
Clearly,
n n
by = Zd—i_(cv(ij)a cy(tj41)) = Zaz]zjﬂ > xg(4). (14)
j=1 j=1

The second equality in (14) follows from the triangular inequality. If we take
all (n — 1)! possible cyclic orders v and consider all corresponding equations
(14), each distance a;; appears in the sum on the left hand side of precisely
(n — 2)! inequalities. Therefore,

(n — 2)! ZZ% (n —1)lxg(A). (15)
i=1 j=1

On the other hand, if z € RV is the all-1 vector, then (Az,z)/(z,1) =
 ict >_j-1ij. Consequently,

Ama (4) > AI L ) TR ) (16)

21]1

This completes the proof of (12). The proof of (13) is similar except that
(14) changes to p, = E?;Il aiji; .y > X7(A) and (15) is replaced by

(n=1!>" Z a;j > nlxz(A). (17)

i=1 j=1

Therefore, Amax(A) > x7(A). O

Theorem 4.3 can be extended to the case when the triangular inequality
is replaced by the following inequalities:

Ay < t(auw + awu)



for all distinct u,v,w € V(A). If ¢ > 1, then (14) can be replaced by

t ZZGWHI > xs(A4).

i=1 j=1

This implies:

XS(A) < —Amax(A) and XI(A) < tAmaX(A)- (18)

5 Some directions for further research

(1) First of all, one should ask if there is a corresponding theory which
would take into account also matrices with negative elements.

(2) Other special cases of distance spaces of particular interest (besides
7 and S) are higher dimensional spheres and balls in Euclidean spaces and,
more generally, in compact Riemannian manifolds. The coloring problems
would generalize packing and covering problems for such metric spaces. An-
other interesting special case is the flat torus T, 53 = aS' x S, either
with the geodesic distance or with the ! metric. Colorings in T, 3 with the
¢' distance may be related to the famous nowhere-zero flow conjectures of
Tutte (see, e.g., [8]).

All these spaces have symmetric distance functions. In some cases it may
be possible to define the distance function d (in analogy with S) so that it
would not be symmetric.

(3) It is easy to see that for every A € M with integer entries, x7(A) is
an integer.

Problem 5.1 Classify all distance spaces D for which xp(A) is an integer
for every A € My with integer entries.

It may be expected that such distance spaces can be described as being
“composed” of Z and some discrete spaces with unit distances, where each
of these can also be multiplied with an integer fraction.

(4) There is an open problem related to Theorem 4.2. The bound of that
result can be improved in some special cases as shown by Theorem 4.3. Is
this possible in general? Is this possible for the distance spaces Z and §7

Problem 5.2 Is there an € > 0 such that for every nonnegative symmetric
matriz A with zero diagonal, Xg < (2—€)Amax(A) +max{a;; | i,5 € V(A)}?



It may be that ¢ = 1 is the right answer for Problem 5.2, but some
results in [6] suggest that the answer to Problem 5.2 could be negative.

(5) Hoffman [2] and Cvetkovié [1], respectively, found lower bounds on
the chromatic number of a graph expressed in terms of the eigenvalues of
its adjacency matrix. Is there a similar result for the generalized chromatic
number of a matrix?

(6) As a function of nondiagonal entries of A, the circular span x g(A) is
a piecewise linear function with finitely many regions of linearity (for a fixed
dimension of A). This was proved in [6]. There are two sets of questions
related to this fact. First, how could one describe the regions of linearity?
And second, is the same true for any other “interesting” distance space?

Problem 5.3 For which distance spaces D is xp(A) a piecewise smooth
function of the off-diagonal entries of A?
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