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Light structures in in�nite planar graphs withoutthe strong isoperimetric propertyBojan Mohar�Department of Mathematics,University of Ljubljana,1111 Ljubljana, Sloveniabojan.mohar@uni-lj.siOctober 30, 2001AbstractIt is shown that the discharging method can be successfully ap-plied on in�nite planar graphs of subexponential growth and even onthose graphs that do not satisfy the strong edge isoperimetric inequal-ity. The general outline of the method is presented and the followingapplications are given: Planar graphs with only �nitely many ver-tices of degree � 5 and with subexponential growth contain arbitrarilylarge �nite submaps of the tessellation of the plane or of some tessella-tion of the cylinder by equilateral triangles. Every planar graph withisoperimetric number zero and with essential minimum degree � 3 hasin�nitely many edges whose degree sum is at most 15. In particular,this holds for all graphs with minimum degree � 3 and with subexpo-nential growth. The cases without in�nitely many edges whose degreesum is � 14 (� 13 or � 12, respectively) are also considered. Severalfurther results are obtained.1 IntroductionAn in�nite graph G satis�es the strong edge isoperimetric inequality if thereis a positive constant h such that every �nite vertex set X has at least hjXjoutgoing edges. The supremum of all such constants h is called the isoperi-metric number of G. Graphs with positive isoperimetric number have many�Supported in part by the Ministry of Science and Technology of Slovenia, ResearchProject J1{0502{0101{00. 1



interesting properties and have been studied in relation to various otherproblems. For example, Dodziuk [6], Gerl [8] and Soardi [20] consideredthem in relation to random walks and their transience, Mohar [17, 18, 19]and �Zuk [23] were interested in their spectral properties, Gromov in theirhyperbolic geometric [9] and hyperbolic groups structure [10], Lyons et al.[14, 16] considered applications in theoretical physics (phase transition andpercolation), Woess [22] was motivated by the study of harmonic functions,while He and Schramm [13] investigated circle packings.It is easy to see that every �nite planar graph contains a vertex of degreeat most 5. This is not true for in�nite planar graphs whose minimum vertexdegree can be arbitrarily large. However, if an in�nite planar graph hasminimum degree greater than 6, it has exponential growth and satis�es thestrong isoperimetric inequality. This fact was proved by Dodziuk [6] whoused the strong isoperimetric inequality to prove transience of random walkson such graphs. Extensions of Dodziuk's result were obtained by variousauthors in di�erent contexts. See, e.g., Mohar [19], Soardi [20], Calogero [5],�Zuk [23], Woess [22], and Baues and Peyerimho� [3]. Another extension isobtained in this paper where it is proved that every planar graph with only�nitely many vertices of degree � 5 and of subexponential growth containsevery �nite submap of T0 or of T0=� where T0 is the in�nite triangular lattice[63], and � � Aut([63]) is an in�nite cyclic group.If uv is an edge of a graph, the weight of uv is de�ned as the sum ofdegrees of its endvertices. Kotzig [15] proved that every (�nite) 3-connectedplanar graph contains an edge uv of weight at most 13. Gr�unbaum andShephard [11] extended Kotzig's theorem to graphs of periodic tilings of theplane by proving that there is an edge of weight at most 15. Such graphsare universal covering spaces of graphs embedded in the torus. Stehling[21] extended the result of Gr�unbaum and Shephard to normal tilings of theplane (where all tiles are uniformly bounded). Theorems 5.1 and 5.2 andCorollary 5.5 in this paper are extensions of that result to arbitrary in�niteplanar graphs of minimum degree � 3 and with subexponential growth. Letus observe that the graphs considered by Gr�unbaum and Shephard in [11]or by Stehling [21] have quadratic growth, have only one end and have onlyfaces of �nite length.Moreover, we prove that every connected in�nite planar graph whoseisoperimetric number is zero contains in�nitely many edges of weight atmost 15, and we also show that graphs without in�nitely many edges ofweight � 14 (� 13 and � 12, respectively) contain arbitrarily large submapsof certain tessellations of the plane or the at cylinder.More generally, it is shown that the well-known discharging method2



(used, for example, in the proof of the Four Color Theorem [2, 12]) canbe extended from �nite planar graphs to in�nite planar graphs of subexpo-nential growth, and usually also to planar graphs whose edge isoperimetricnumber is zero. The main result (Theorem 3.1) and its proof give rise toexplicit positive lower bounds on the isoperimetric number.It is worth mentioning that planar graphs treated in this paper are muchmore general than graphs of normal tilings since they may have any of thefollowing:(a) Growth rates are arbitrary.(b) Vertex degrees need not be bounded.(c) Face lengths may be unbounded and faces of in�nite length may exist.(d) The graph may have more than one end (even uncountably many arepossible).In most of previous works (e.g., [3, 5, 11, 14, 21, 22, 23]), (a){(d) are notallowed.Graphs in this paper are simple (no loops, no multiple edges) and locally�nite, i.e., �nite or countably in�nite and the degree of every vertex is �nite.We follow standard graph theory terminology and notation. If G is agraph and v 2 V (G), then degG(v) is the degree of v. If G is embeddedin the plane and f is its face, then degG(f) denotes the length of f . IfX � V (G), then G(X) is the subgraph of G induced on the vertex set X,and �X is the set of all edges with one endvertex in X and the other end inV (G) nX. For a positive integer r, Nr(X) denotes the set of all vertices inV (G) nX whose distance from X is at most r.2 Strong isoperimetric propertyLet G be a connected graph and let v 2 V (G). Denote by Bn(v) the set ofall vertices of G at distance at most n from v (the ball of radius n centeredat v), and let bn(v) := jBn(v)j. If the graph G is not clear from the context,we write bn(G; v), or Bn(G; v). The graph G has exponential growth (fromthe vertex v) if bn(v) � Cqn for some constants C > 0 and q > 1, andfor every n � 0. It has polynomial growth if bn(v) � p(n) where p(�) is apolynomial. G has subexponential growth if it does not grow exponentially.Let us observe that the type of the growth is independent of v since G isconnected. Let �(G) = lim infn!1 (bn(G; v))1=n :3



If v and u are vertices of G and d = dist(u; v), then bn(u) � bn+d(v) �bn+2d(u). It follows that �(G) does not depend on the choice of v. Thefollowing is an easy exercise.Proposition 2.1 Let G be a connected graph. Then �(G) > 1 if and onlyif G has exponential growth.The (edge) isoperimetric number h1(G) of G is the numberh1(G) = inf n j�XjjXj ��� X � V (G); 0 < jXj <1o:Similarly, the (vertex ) isoperimetric number h0(G) is de�ned ash0(G) = inf n jN1(X)jjXj ��� X � V (G); 0 < jXj <1o:Since every vertex in N1(X) is incident with an edge in �X, h0(G) � h1(G).Proposition 2.2 Let G be a connected graph. Then �(G) � 1 + h0(G). IfG is a planar graph, then �2(G) � 1 + 12h1(G).Proof. Let v 2 V (G). For n � 1, let bn = bn(v) and sn = bn � bn�1. Byselecting X = Bn�1(G; v), we conclude that sn = jN1(X)j � h0(G)jXj =h0(G)bn�1. This easily implies that bn � (1 + h0(G))n. Consequently,�(G) � 1 + h0(G).To prove the second inequality, let X be as above and let A = N1(X)and B = N1(X [ A). Then A [ B and the edges joining A and B form abipartite planar graph. Euler's formula and standard counting argumentsimply that this graph has less than 2jA [ Bj = 2sn + 2sn+1 edges. On theother hand, the edge set of this graph is �(X [A) and hence its cardinalityis at least h1(G)jX [ Aj. As a consequence, h1(G)bn � 2(bn+1 � bn�1).Therefore, bn � (h1(G)2 + 1)(n�1)=2. This implies that �2(G) � h1(G)2 + 1.There are planar graphs G such that h0(G) = h1(G) = 0 and �(G) > 1,and there are planar graphs for which h0(G) = 0 and h1(G) > 0 (and hencealso �(G) > 1).We say that G satis�es the strong vertex isoperimetric inequality ifh0(G) > 0, and that G satis�es the strong edge isoperimetric inequalityif h1(G) > 0.A graph G has bounded degrees if there is an integer M such thatdegG(v) �M for every v 2 V (G). Clearly,Proposition 2.3 If G has bounded degrees, then h0(G) > 0 if and only ifh1(G) > 0. 4



3 Discharging in in�nite planar graphsLet G be a locally �nite plane graph. Let F (G) be the set of faces of G. IfH is a �nite subgraph of G, consider its induced embedding in the plane.Let nH ; eH , and fH denote the number of vertices, edges, and faces of H,respectively. For i � 0, let ni be the number of vertices of degree i in H,and let fi be the number of faces of H of length i. Let us observe thatnH =Pi ni, 2eH =Pi i ni =Pi i fi, and fH =Pi fi. Let � 2 R be a realnumber (0 � � � 3), and let �0 = 3� �. Euler's formula implies that12 � 6(nH � eH + fH)= 6Xi�0 ni � �Xi�0 i ni � �0Xi�0 i fi + 6Xi�0 fi= Xi�0(6� � i)ni +Xi�0(6� �0i)fi= Xv2V (H)(6� � degH(v)) + Xf2F (H)(6� �0 degH(f)): (1)Next, assign to each vertex v 2 V (G) and each face f 2 F (G) a chargec(v) = � degG(v)� 6 and c(f) = �0 degG(f)� 6;respectively. (If deg(f) =1, then we set c(f) =1.)Similarly, denote by cH(v) = � degH(v) � 6 (v 2 V (H)) and cH(f) =�0 degH(f)� 6 (f 2 F (H)) the corresponding charges of vertices and facesof H. Inequality (1) shows that the sum of all charges in H is negative.Suppose that there is a set R of discharging rules that de�nes a redistri-bution of charges in G in the following way. The rules determine that eachvertex and each face sends some of its charge to other vertices and faces. Let'(x; y) � 0 be the charge that is sent from x to y (x; y 2 V (G)[F (G)). Letc�(x) = Py '(x; y) be the charge sent from x to other vertices and faces,and let c+(x) =Py '(y; x) be the charge received at x from other verticesand faces when applying the rules. The new value of the charge at x is thenequal to c�(x) = c(x)� c�(x) + c+(x) and is called the �nal charge at x.Discharging rules not only determine the values '(x; y) but also deter-mine one or more paths P (x; y) along which the charge is sent from x to y. IfP (x; y) contains more than one path, it is also determined which proportionof '(x; y) is sent from x to y along particular paths in P (x; y). Each pathin P (x; y) is a path in G except that its �rst (and last) edge is an auxiliaryedge joining the \center" of a face with an incident vertex if x (or y) is a5



face of G. The maximum length of paths in P (x; y), taken over all pairs x; ysuch that '(x; y) 6= 0, is called the impact range of R.Let e be an (oriented) edge of G, or an auxiliary edge joining the centerof a face with an incident vertex. Let '(e) be the sum of all charges '(x; y)(or corresponding parts of these charges) for which a path in P (x; y) usesthe edge e in the given direction. The value '0 = supf'(e)g is called theow value of R.Let F 2 F (G), and let x be a vertex incident with F . Let '0(F; x)denote the total charge sent from F through x, i.e. '0(F; x) = '(e) where eis the auxiliary edge joining F and x. The discharging rules R are said tobe smooth if there is a constant c00 such that for every F 2 F (G) and everysegment S on the facial walk of F the following condition holds:'0(F; V (S)) = Xx2V (S)'0(F; x) � �0jV (S)j + c00:The condition of smoothness is needed in case when there are arbitrarilylarge or even in�nite faces.If X and Y are �nite subsets of V (G) [ F (G), then c(X) =Px2X c(X)and '(X;Y ) =Pf'(x; y) j x 2 X; y 2 Y g. The same notation is used forother functions de�ned on vertices (and faces) of G. For example, deg(X) =Px2X deg(x).Theorem 3.1 Let G be a connected in�nite planar graph and let 0 < � < 3and " > 0 be real numbers. Let c and c� be the charge and the �nal charge,respectively, with respect to a set of smooth discharging rules of impact rangeat most r and with ow value '0. Suppose that there is a �nite set F � F (G)of faces such that the �nal charge of every face in F (G) n F is nonnegative,and that there is a �nite vertex set U � V (G) such that c�(v) � " for everyvertex v 2 V (G) n U . Then the following holds:(a) G has exponential growth.(b) If G has bounded degree, then h0(G) > 0.(c) If r � 1, then h1(G) > 0.Proof. Let X be a �nite set of vertices of G and let X = X [Nr(X). LetH = G(X) be the subgraph of G induced on X. Let F0 � F (H)\ F (G) bethe set of faces of H that are also faces of G. Let F 01 = F (H) n F0, and let6



F1 � F (G) be the set of faces of G that are not in F0 but are incident withan edge with its endvertices in X. Let� = �Xfc�(v) j v 2 V (G); c�(v) < 0gand � = �Xfc�(f) j f 2 F (G); c�(f) < 0g:The assumptions of the theorem imply:c�(X) � "(jXj � jU j)� � (2)and c�(F0) � ��: (3)Every face in F1 is incident with at least two edges in �X[E(G(Nr(X)))(possibly twice with the same edge), and every such edge is contained in atmost two faces in F1. Therefore,jF 01j � jF1j � j�Xj + jE(G(Nr(X)))j� j�Xj + 3jNr(X)j: (4)In the second inequality we used a well-known corollary of Euler's formulathat a �nite planar graph on n vertices contains less than 3n edges. Next,cH(F (H)) = cH(F0) + cH(F 01)= c(F0) + �0 degH(F 01)� 6jF 01j� c(F0) + �0 degH(F 01)� 6(j�Xj + 3jNr(X)j): (5)Since cH(v) = c(v)� � degG(v) + �degH(v) (v 2 X), we have:cH(X) = c(X)� � degG(X) + �degH(X) = c(X)� �j�Xj: (6)We will need estimates on the charge increase in F0 and in X. Since thedischarging rules have impact range � r, the faces in F0 and vertices in Xsend (and receive) nonzero charge only to (from) X [ F0 [ F1. Therefore,c+(F0)� c�(F0) = '(F0;F0) + '(X;F0) + '(F1;F0)�'(F0;F0)� '(F0; X)� '(F0;F1)� '(F1;F0) + '(X;F0)� '(F0;X) (7)7



and c+(X)� c�(X) = '(X;X) + '(F0;X) + '(Nr(X) [ F1;X)�'(X;X) � '(X;F0)� '(X;Nr(X) [ F1)� '(F0;X) + '(Nr(X) [ F1;X) � '(X;F0): (8)Smoothness of the discharging rules is needed in the following estimate.Let us observe that the charge sent from Nr(X)[F1 to X [F0 either owsthrough some edge in �X or goes from a face F 2 F1 through a vertex in Xincident with F . This implies'(Nr(X) [ F1;X [ F0) � '0j�Xj + XF2F1 Xx2X\V (F )'0(F; x)� '0j�Xj + �0 degH(F 01) + c00j�Xj (9)where c00 is the constant from the de�nition of the smoothness of R. In thelast inequality we used the fact that the number of facial segments S of facesin F1 which have all their vertices in X is at most j�Xj, and that their totallength is smaller than degH(F 01).Starting with (1) and applying inequalities (2){(9) we get:�12 � cH(X) + cH(F (H))� c(X)� �j�Xj + c(F0)� 6(j�Xj + 3jNr(X)j) + �0 degH(F 01)= c�(X) � c+(X) + c�(X) + c�(F0)� c+(F0) + c�(F0)� (�+ 6)j�Xj � 18jNr(X)j + �0 degH(F 01)� c�(X) � '(F0;X) � '(Nr(X) [ F1;X) + '(X;F0)+ c�(F0)� '(F1;F0)� '(X;F0) + '(F0;X)� (�+ 6)j�Xj � 18jNr(X)j + �0 degH(F 01)= c�(X) + c�(F0)� '(Nr(X) [ F1;X [ F0)� (�+ 6)j�Xj � 18jNr(X)j + �0 degH(F 01)� "jXj � "jU j � � � �� 18jNr(X)j � ('0 + c00 + �+ 6)j�Xj: (10)Suppose now that X is large, say jXj � 2" ("jU j + � + �). Then (10)implies j�Xj + jNr(X)j � "2� jXj: (11)where � = maxf18; '0 + c00 + �+ 6g.8



If r � 1 then jNr(X)j � j�Xj. Now, (11) shows that j�Xj � "4� jXj.Since this holds for every vertex set X which is large enough and since G isconnected, it follows that h1(G) > 0. This proves (c). By Propositions 2.2and 2.3, this proves also (a) and (b) in the case when r � 1.Suppose now that r � 1. Inequality (11) holds for every �nite vertex setX with at least 2" ("jU j+ �+�) elements. In particular, it applies to the setX1 = X [N1(X): j�X1j+ jNr(X1)j � "2� jX1j: (12)As in the proof of Proposition 2.2, we see that j�X1j � 2(jN1(X)j+jN1(X1)j)= 2jN2(X)j � 2jNr+1(X)j. Since jNr(X1)j � jNr+1(X)j, (12) gives:jNr+1(X)j � "6� jXj:Consequently, �(G) � �1 + "6��1=(r+1) > 1: (13)This completes the proof of (a).Suppose now that degG(v) � M (where M � 3) for every v 2 V (G).ThenjNr+1(X)j � jN1(X)j � (1 + (M � 1) + (M � 1)2 + � � �+ (M � 1)r)� M r+1jN1(X)j:Therefore, jN1(X)j � M�(r+1) "6� jXj (for every �nite vertex set X withsu�ciently many vertices). Since G is connected, it follows that h0(G) > 0.Let us observe that the proof of Theorem 3.1 gives explicit positive lowerbounds on the exponential growth rate �(G) and on the isoperimetric con-stants h0(G) and h1(G), respectively.If r = 0 (i.e., no discharging rules are used), the inequalities in the proofof Theorem 3.1 can be strengthened as follows. We shall assume that U = ;and F = ;, so that � = � = 0. First of all, (4) can be replaced byjF 01j � j�Xj (14)and (5) by cH(F (H)) � c(F0) + (3�0 � 6)j�Xj: (15)9



Inequality (9) is void since '(Nr(X) [ F1;X [ F0) = 0. Then (10) reducesto �12 � "jXj � (�+ 6� 3�0)j�Xj = "jXj � (9� 4�0)j�Xj: (16)Assuming that �0 < 94 , this inequality impliesh1(G) � "9� 4�0 : (17)4 Planar graphs of minimum degree 6Let T0 = [63] be the tessellation of the plane with equilateral triangles(see Figure 1). We may assume that the origin of R2 is a vertex of T0.Denote that vertex by z0. Let z be a vertex of T0 distinct from z0. Let� � Aut(T0) be the in�nite cyclic group generated by the translation of R2which maps z0 to z. Then T z0 = T0=� is a tessellation of the \at" cylinderby equilateral triangles. (The graph of T z0 may have loops or multiple edgesif distT0(z; z0) � 2.) If r is an integer, denote by T0(r) and T z0 (r) thesubmap of T0 or T z0 , respectively, consisting of all vertices and faces that areat distance � r from z0.

Figure 1: A fragment of the tessellation [63]Let G0 and G be plane graphs and let H0 be a subgraph of G0. Supposethat G contains a subgraph H isomorphic to H0 such that a closed walk inH bounds a face of G if and only if the corresponding closed walk in H0bounds a face of G0. Then we say that G contains H0 (as a submap).Theorem 4.1 Let G be a �nite planar graph, r a positive integer, and letm � (3r + 1)2. Suppose that v is a vertex of G such that all vertices atdistance � m from v are of degree 6 and are incident only with triangularfaces. Then one of the following holds:10



(a) G contains T0(r) as a submap.(b) G contains T z0 (3r) as a submap where distT0(z; z0) � 3r � 1.Proof. Let U � V (G) be the set of vertices of G at distance at mostm fromv. Fix a triangle A0 incident with v. Let C be a cycle of G with V (C) � U .Denote by int(C) the component of R2 n C which does not contain A0. Foru 2 V (C), let �(u;C) be the number of edges incident with u which areembedded in int(C), and let �(C) =Pu2V (C)(�(u;C) � 2).The following property of �(C) is easy to prove:(P1) If P is a path in int(C) with V (P ) � U such that P \ C are theendvertices of P , let C1 and C2 be the two cycles of C [ P distinctfrom C. Then �(C1) + �(C2) = �(C)� 6:If C2 in (P1) is a facial triangle, then (P1) implies that �(C1) = �(C).Repetitive use of this property shows that:(P2) If a cycle C1 with V (C1) � U is obtained from C by consecutivelyadding facial triangles with at least one edge in common with thecurrent cycle, then �(C1) = �(C).Properties (P1) and (P2) can be used to prove:(P3) Suppose that jV (C)j = k and that all vertices in int(C) that are atdistance at most k� 2 from C are in U . If �(C) < 0, then �(C) = �6and all vertices in int(C) are at distance at most k � 3 from C.The proof of (P3) is by induction on k. Suppose �rst that k = 3. Since�(C) < 0, there is a vertex u 2 V (C) with �(u;C) � 1. It is easy to see that�(u;C) = 1 is not possible. Therefore, �(u;C) = 0. This implies that C is afacial triangle, and hence (P3) holds.Suppose now that k � 4. Let A be the set of facial triangles in int(C)that have a vertex in V (C). Let E0 be the set of edges in int(C) that arecontained in precisely one triangle in A. If E0 = ; then A partitions int(C)into triangles, and (P2) implies that �(C) is equal to �(T ) = �6 for someT 2 A. Hence, we may assume that E0 6= ;. Then E0 can be partitionedinto cycles C1; : : : ; Cr (r � 1) with disjoint interiors. The cycles Ci areboundaries of faces of C [ A in int(C) that are not triangles in A. SinceC1; : : : ; Cr can be obtained from C by successively applying operations in(P1) and (P2), �(C1) + � � �+ �(Cr) = �(C)� 6(r � 1): (18)11



A simple calculation shows that jE0j � k + �(C) < k. This implies thatjV (Ci)j < k for i = 1; : : : ; r. By the induction hypothesis, either �(Ci) = �6or �(Ci) � 0. Since �(C) < 0, (18) implies that �(Ci) = �6 for every i, and,consequently, �(C) = �6. Moreover, all vertices in int(Ci) are at distanceat most k � 4 from Ci, i = 1; : : : ; r. Therefore, all vertices in int(C) are atdistance at most k � 3 from C. This completes the proof of (P3).Now we are prepared to prove the theorem. Let q be the largest integer� m such that the q-ball Bq(G; v) is isomorphic to the q-ball Bq(T0; z0) inT0. We are done if q � r, so suppose that 1 � q � r � 1.Denote by C the outer cycle of Bq(G; v). Note that jV (C)j = 6q andthat �(C) = 6. Since Bq+1(G; v) is not isomorphic to Bq+1(T0; z0), there aredistinct vertices u1; u2 2 V (C) that are not adjacent on C, and there areedges e1; e2 incident with u1 and u2, respectively, such that either e1 = e2,or e1 and e2 have a vertex u in int(C) in common. Let C1 and C2 bethe cycles in C + e1 + e2 distinct from C. For i = 1; 2, jV (Ci)j � 6qand all vertices at distance at most 6q � 2 from Ci are in U . By (P2),�(C1) + �(C2) = �(C) � 6 = 0. If �(Ci) < 0, then by (P3), �(Ci) = �6.This implies that �(u1; Ci) = �(u2; Ci) = �(u;Ci) = 0 since all vertices u0 onC \Ci distinct from u1 and u2 have �(u0; Ci) = �(u0; C) � 2. Clearly, this isnot possible. Consequently, �(C1) = �(C2) = 0.Let R be a shortest cycle in G with the following properties:(a) All vertices of R are at distance at most (3r+1)(3r� jV (R)j) from v.(In particular, V (R) � U and jV (R)j � 3r � 1.)(b) �(R) = 0.Since q � r � 1, jV (C)j = 6q � 6r � 6. Assuming jV (C1)j � jV (C2)j,we have jV (C1)j � 12 jV (C)j + 2 � 3r � 1. Since all vertices on C1 are atdistance at most q + 1 from v, C1 satis�es (a) and (b). Therefore, R exists.Suppose that there exists a path P in G, such that P intersects R pre-cisely at its endvertices u1; u2, and such that the length of P is smaller thanthe distance from u1 to u2 on R. Consider the cycles R1; R2 � R [ P dis-tinct from R. (P1) and (P3) imply that �(R1) = 0 and �(R2) = �6 (orvice versa). Since R1 is shorter than R and every vertex on R1 is at dis-tance at most 3r(3r�k)+ k2 from v, R1 satis�es (a){(b) and contradicts theminimality of R. This shows that R is an isometric subgraph of G.Fix any vertex v0 on R. Then R determines a path P (R) in T0 fromz0 to some vertex z 2 V (T0) such that v0 corresponds to the ends of thepath and such that at each other vertex on P (R), the number of edges onthe \left" side of the path is equal to �(u;R), where u is the corresponding12



vertex on R. Since R is an isometric subgraph in G, the path P (R) is alsoisometric in T0. The path P (R) can be extended to a two-way-in�nite pathP1(R) in T0. Since �(R) = 0, it is easy to see that P1(R) does not crossitself and that it gives rise to a cycle R0 in T z0 .We claim that the vertices of G at distance at most 3r from R form asubmap of G isomorphic to the distance-3r neighborhood of R0 in T z0 . Ifnot, then we proceed in the same way as above when we proved existenceof C1 and C2. Here, we obtain cycles R1 and R2 in G whose length is notlarger than the length k and such that �(R1) + �(R2) = �(R) � 6 = �6.Then �(R1) = 0 and �(R2) = �6 (or vice versa). If the length of R1 issmaller than k, we get a contradiction to the minimality of R. Otherwise,the length of R2 is either 3 or 4. Since R2 is not a facial triangle and since�(R2) = �6, we easily get a contradiction. This completes the proof.If G is a graph, its minimum degree is denoted by �(G). We also de�neits minimum essential degree �ess(G) as the minimum integer d such thatthere are in�nitely many vertices of degree d. If such d does not exist then�ess(G) =1.A simple application of Theorem 3.1(c) (with � = 1 and r = 0, i.e., nodischarging rules at all) shows that h1(G) > 0 if �ess(G) � 7. This resultwas proved by Dodziuk [6]. Here we show that a similar result holds when�ess(G) = 6.Theorem 4.2 Let G be a connected in�nite planar graph with �ess(G) � 6.If G has subexponential growth, then either G contains every �nite submapof T0, or there exists a vertex z 2 V (T0) such that G contains every �nitesubmap of T z0 .Proof. Let U be the set of vertices whose degree is at most 5, and let U6be the set of vertices of degree 6. Let m be an arbitrary positive integer.We shall apply the discharging method with � = 1 and use the followingdischarging rule.Let x be a face of length � 4 or a vertex which is not in U6. Let P (x) bethe set of all paths of length at mostm+1 that start at x and whose all othervertices are in U6. (If x is a face then the �rst edge of every such path is anauxiliary edge joining the \center" of x with an incident vertex of degree 6in G.) There are at most degG(x)�6m+1 such paths, and the discharging ruledetermines that x sends charge " = (2degG(x) � 6m+1)�1 along every pathin P (x) to the terminal vertex of the path. Clearly, c�(x) � c(x) � 12 � 12if x 2 V (G) n (U [ U6). Also, every face has nonnegative �nal charge andevery vertex that belongs to a path in some P (x) has its �nal charge � ".13



Theorem 3.1 can be applied to the given discharging process, showingthat either G has exponential growth, or there is a vertex v 2 U6 that hasnot received any charge. Since G has subexponential growth, v exists, andevery vertex at distance at most m from v is of degree 6 and incident onlywith triangular faces.As m is arbitrarily large, Theorem 4.1 implies that there is an in�-nite sequence of pairs (ri; zi) 2 N � V (T0), where ri ! 1 as i ! 1 anddistT0(zi; z0) � 3ri � 1, such that G either contains T0(ri) or T zi0 (3ri). Ifthe �rst case occurs in�nitely often or if lim supdistT0(zi; z0) = 1, then Gcontains every �nite submap of T0. Otherwise, there exists z 2 V (T0) suchthat zi = z for in�nitely many values of i. In that case, G contains every�nite submap of T z0 . This completes the proof.5 Kotzig's theorem for in�nite graphsLet uv 2 E(G). The sum of degrees, deg(u) + deg(v), of the ends of uv iscalled the weight of the edge uv. If deg(u) � deg(v), then the edge uv issaid to be of type (deg(u);deg(v)). The edge is very light if its weight is atmost 11 or if it is of type (3,9) or (3,10). The edge is light if it is either verylight or of one of the following types: (3,11), (3,12), (4,8), or (6,6).Kotzig [15] proved that every �nite 3-connected planar graph containsa very light edge. Borodin [4] showed that the same result holds under aweaker hypothesis that the minimum degree is � 3. Gr�unbaum and Shep-hard [11] and Stehling [21] extended Kotzig's theorem to graphs of doublyperiodic tilings and of normal tilings of the plane, respectively, by showingthat they always contain light edges. Let us observe that the graphs ofnormal tilings have quadratic growth.The main result of this section is an extension of Gr�unbaum and Shep-hard's result to arbitrary planar graphs that do not satisfy the strong isoperi-metric inequality. In particular, this holds for all graphs of subexponentialgrowth.Theorem 5.1 Let G be a connected in�nite planar graph with �ess(G) � 3.If G has only �nitely many light edges, then h1(G) > 0.Proof. Suppose that G is a connected in�nite planar graph with l < 1light edges. We de�ne the charge for vertices and faces of G as in Section 3with � = 1. Then all faces have nonnegative charge and all vertices ofdegree � 7 have positive charge c(v) = deg(v)� 6. Let �(3) = 2120 , �(4) = 35 ,14



�(5) = 14 , and �(6) = 120 . We shall apply the following set of dischargingrules.Rule 1: Suppose that f is a face where deg(f) � 4 and that v is a vertexincident with f . If 4 � deg(v) � 6, then '(f; v) = �(deg(v)). If deg(v) = 3,then '(f; v) = 1. Otherwise, '(f; v) = 0.Rule 2: Suppose that uv 2 E(G) is an edge of G where deg(u) � 7and deg(v) � 6. If both faces containing uv are triangles, then '(u; v) =�(deg(v)). If only one face containing uv is a triangle, then '(u; v) =12�(deg(v)). If uv is not contained in a triangular face and deg(v) = 3,then '(u; v) = 120 . Otherwise, '(u; v) = 0.Rules 1 and 2 clearly satisfy the premises of Theorem 3.1 with impactrange r = 1 and with ow value '0 = 2120 . Therefore, it su�ces to see thatthe �nal charge is nonnegative for all faces that are not incident with lightedges, and that the �nal charge is � " = 110 for all vertices of degree � 3that are not incident with a light edge.Let f 2 F (G). If deg(f) = 3 then c�(f) = c(f) = 0. Otherwise, supposethat deg(f) � 4 and that f is not incident with a light edge. Clearly, forany two consecutive vertices u; v on the facial walk of f ,'(f; u) + '(f; v) � 1:This implies that c�(f) � 12 deg(f), and hence c�(f) = c(f) � c�(f) �32 deg(f)� 6 � 0.Suppose now that v is a vertex of degree d � 3 that is not incident witha light edge. If d = 3, then it is easy to see that c+(v) � 3 + 110 , and hencec�(v) � 110 . If 4 � d � 6, then c+(v) = d � �(d). Therefore, c�(v) = 25 ifd = 4, c�(v) = 14 if d = 5, and c�(v) = 310 if d = 6.If 7 � d � 8, then v sends charge only to vertices of degrees 5 and6. To any two consecutive neighbors u;w (with respect to the clockwiseorientation around v), v sends at most charge '(5) = 14 . Therefore, c�(v) �d� 6� d2 � 14 � 18 .If 9 � d � 12, then v sends charge only to vertices of degrees 4, 5, and6. To any two consecutive neighbors it sends at most '(4) = 35 . Therefore,c�(v) � d� 6� d2 � 35 � 310 .If d � 13, then v sends at most '(3) to any two consecutive neighbors.Thus, c�(v) � d� 6� d2 � 2120 � 740 . This completes the proof.Theorem 5.1 is best possible as shown by the following examples. LetT0 = [63] be the tessellation of the plane by equilateral triangles, let T1 =[4:82] be the triangulation of the plane obtained from the tessellation with15



Figure 2: Fragments of tessellations [4:82] and [3:122]squares by adding a vertex of degree 4 in each square, and let T2 = [3:122]be the triangulation of the plane obtained from [63] by inserting a vertex ofdegree 3 into each triangle of [63]. See Figure 2. These examples containonly edges of types (6,6), (4,8), and (3,12), respectively. We also de�ne thecylindrical quotients T z1 and T z2 in the same way as T z0 (cf. Section 4).We need some further notation. Let T = T0 or T = T z0 , and let F be aset (possibly in�nite) of facial triangles of T such that every vertex of T isincident with at most one triangle in F . Next, add into each face of T whichis not in F a new vertex of degree 3 joined to the vertices on the boundaryof that face. Let T (F) be the resulting map. Note that T0(;) = T2 andT z0 (;) = T z2 .Theorem 5.2 Let G be a connected in�nite planar graph of subexponentialgrowth and with �ess(G) � 3.(a) If G has only �nitely many very light edges and �nitely many edgesof types (4; 8), (6; 6), and (3; 11), then either G contains every �nitesubmap of T2, or G contains every �nite submap of some T z2 .(b) If G has only �nitely many very light edges and �nitely many edges oftypes (4; 8) and (6; 6), then G contains arbitrarily large �nite submapsof some map of the form T0(F) or T z0 (F).(c) If G has only �nitely many very light edges, then either G contains ar-bitrarily large �nite submaps of some map of the form T0(F) or T z0 (F),or G contains every �nite submap of a map of the form T0; T z0 ; T1, orT z1 .Proof. The proof is a continuation of the proof of Theorem 5.1 by addingsimilar discharging rules as used in the proof of Theorem 4.2, with an appli-cation of Theorem 4.1 and its extension from T0 to T1 and T2. We leave the16



details to the reader. Let us only observe that in the case (b), one cannotguarantee that G contains every �nite submap of T0(F) or of some T z0 (F).The reason that this is possible in the other cases is that T0; T1; T2 and theirquotients have automorphism group with only �nitely many orbits.The following results are proved analogously:Corollary 5.3 Let G be a connected in�nite planar graph of minimum es-sential degree �ess(G) � 4 and with h1(G) = 0. Then G has in�nitely manyedges of weight at most 12. If G has subexponential growth and does nothave in�nitely many edges of weight at most 11, then there is a map Tisomorphic to T0, T z0 , T1, or T z1 such that G contains every �nite submapof T .Corollary 5.4 Let G be a connected in�nite planar graph of minimum es-sential degree �ess(G) � 5 and with subexponential growth. If G does nothave in�nitely many edges of weight at most 11, then either G containsevery �nite submap of T0, or G contains every �nite submap of some T z0 .It is easy to construct examples which show that Theorem 5.2 and Corol-laries 5.3 and 5.4 cannot be improved to include in�nite submaps of [63],[4:82], or [3:122] (or their cylindrical quotients).The following corollary of Theorem 5.2(b) is an extension of Gr�unbaumand Shephard's result [11] which states that a doubly periodic tiling of theplane has an edge of weight at most 14 except when it is isomorphic to[3:122]. Our result below extends Gr�unbaum and Shephard's result to doublyperiodic tilings without edges of weight at most 13. Such tilings are obtainedas follows. Let Q be a 6-regular triangulation of the torus. (Such graphshave a simple three-parameter description. See, e.g., [1].) Select a set F offacial triangles of Q such that every vertex of Q is incident with at most onetriangle in F . Then, add into each triangular face which is not in F a newvertex of degree 3 joined to the vertices on the boundary of that face. LetQ(F) be the resulting toroidal map. Then a doubly periodic tiling of theplane with minimum weight 14 (or 15 if F = ;) is obtained as the universalcover of Q(F). Note that the tiling is isomorphic to [3:122] if F = ;.Corollary 5.5 A doubly periodic tiling of the plane has no edges of weightat most 13 if and only if it is a universal cover of some toroidal triangulationQ(F) described above.The proof is left to the reader. 17



6 Hyperbolic tessellationsLet G be a planar graph. Then itsminimum face length is denoted by ��(G).We also de�ne its minimum essential face length ��ess(G) as the minimuminteger d such that there are in�nitely many faces of length d. If such d doesnot exist, then ��ess(G) =1.If G is an in�nite planar graph with �ess(G) � p and ��ess(G) � q where1p + 1q < 12 , then we say that G is strongly hyperbolic. (This is a special caseof more general hyperbolic maps as introduced, for example, by Woess [22].)Let � = 3� 6q , �0 = 6q , and let � = (1p + 1q )� 12 < 0. The value of � can beviewed as an upper bound on the (negative) curvature, see, e.g., [3]. Thenfor all vertices v 2 V (G) of degree at least pc(v) = � deg(v)� 6 � �p� 6 = �6p� > 0and for all faces f 2 F (G) of length at least qc(f) = �0 deg(f)� 6 � �0q � 6 = 0:If �(G) � p and ��(G) � q, then inequality (17) in the remark after Theorem3.1 shows that h1(G) � 2pqj�j3q � 8 : (19)This bound compares well with the result of Baues and Peyerimho� [3],whose bound is just slightly better than (19).More generally, the above method can be used to get explicit positivelower bounds on h1(G) in more general hyperbolic cases introduced byWoess[22]. We have to remark, though, that our results are more general thanthose in [3, 22] since we do not require tessellations to be normal or to haveonly one end.7 Light subgraphsKotzig's theorem (cf. Section 5) motivated further research on �nite 3-connected planar graphs. Fabrici and Jendrol' [7] proved that for everyinteger k, every �nite 3-connected planar graph G that contains at least onek-path, also contains a k-path whose vertices all have degree at most 5k inG.Therefore, the k-path Pk is said to be light in the set of 3-connected planargraphs. On the other hand, no other connected planar graph is light [7].18



We extend these results to in�nite graphs. Let us observe that the as-sumption on 3-connectivity is necessary already for the path P3 on threevertices (while for P2 a weaker condition �(G) � 3 su�ces as shown byTheorem 5.1).Theorem 7.1 Let k � 1 be an integer and let G be a 3-connected in�niteplanar graph of subexponential growth. Then G contains in�nitely many(disjoint) k-paths whose vertices have degree at most 6k.Proof. A vertex of G of degree at most 6k is called a minor vertex. Othervertices are major . Let M(G) denote the set of major vertices of G.Let : : : v1v2 : : : vn : : : be a facial walk of a face F and i; j integers suchthat i + 2 � j � i+ k, vi and vj are major vertices and vi+1; vi+2; : : : ; vj�1are minor vertices. Then we say that vi and vj are joinable in F . Let G0 bethe graph that is obtained from G by adding all edges between all pairs ofvertices that are joinable in some face. Since G is 3-connected, G0 is a planargraph (without multiple edges). Clearly, G0 has subexponential growth andM(G0) = M(G). Therefore, it su�ces to prove that G0 has in�nitely manyk-paths whose vertices are not in M(G0).Let G00 = G0(M(G0)) be the induced subgraph of G0 on major vertices.We may assume thatM(G0) is in�nite. Since G00 has subexponential growth,Theorem 4.2 implies that G00 has in�nitely many vertices of degree at most6. Let v be any major vertex of G0 whose degree in G00 is at most 6. Since Gand hence also G0 is 3-connected, the link of v (which consists of all verticesand edges that are on a common face with v but disjoint from v) is a cyclein G0. Since degG0(v) � 6k + 1 and degG00(v) � 6, there is a sequence of kconsecutive neighbors of v (with respect to the clockwise ordering around vin the plane), none of which is a major vertex. By the de�nition of G0 itfollows that the corresponding segment on the link of v contains no majorvertices. Therefore, this segment contains a k-path P (v).This proves that there is an in�nite set of k-paths P (v) that contain onlyminor vertices, and each P (v) contains a neighbor of v. Every such k-pathcorresponds to only �nitely many distinct vertices v. This easily impliesthat there is an in�nite subset of these paths whose members are distinctand pairwise disjoint.Let P = v1v2v3 : : : be a one-way-in�nite path in G. We say that P has
19



average degree � D if for every positive integer k:kXi=1 degG(vi) � kD:Not every planar graph of polynomial growth contains an in�nite pathwith bounded average degree. We found a complicated example in whichfor every in�nite path P = v1v2v3 : : : and every k � 1kXi=1 degG(vi) = �(k log k):We propose the followingConjecture 7.2 There is a constant C such that every connected in�niteplanar graph with subexponential growth contains a one-way-in�nite pathP = v1v2v3 : : : such that for every k � 1kXi=1 degG(vi) � Ck log k:A proof of Conjecture 7.2 would solve an open problem about �nitegraphs (cf., e.g., [7, Problem 3]).References[1] A. Altschuler, Hamiltonian circuits in some maps on the torus, DiscreteMath. 1 (1972) 299{314.[2] K. Appel, W. Haken, Every planar map is four colorable. Part I: Dis-charging, Ill. J. Math. 21 (1977) 429{490.[3] O. Baues, N. Peyerimho�, Curvature and geometry of tessellating planegraphs, Discrete Comput. Geom. 25 (2001) 141{159.[4] O. V. Borodin, A generalization of Kotzig's theorem and prescribededge coloring of planar graphs, Mat. Zametki 48 (1990) 22{28.[5] A. Calogero, Strong isoperimetric inequality for the edge graph of atiling of the plane, Arch. Math. (Basel) 61 (1993) 584{595.20
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