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Tomaž Pisanski Marko Boben

Arjana Žitnik
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Visualization of Graphs and Related DisreteStrutures in MathematiaToma�z Pisanski�, Marko Boben and Arjana �Zitnik,University of Ljubljana, SloveniaAbstratResearh in disrete mathematis an be onduted more eÆiently if one anvisualize disrete strutures suh as graphs, groups, polyhedra, maps, posets,latties, tilings, inidene strutures, et. The Mathematia based omputerpakage Vega that our group is developing over the years has many automatidrawing programs built in. We review several methods for drawing graphs andpresent a way of omputer representation of other disrete strutures whih anbe visualized as graphs. Sa�zetakIstra�zivanja u diskretnoj matematii mogu�e je mnogo e�kasnije provoditiukoliko mo�zemo vizualizirati diskretne strukture, kao �sto su grafovi, grupe,poliedri, preslikavanja, parialno ured-eni skupovi (posets), re�setke, poplo�enja(tilings), inidentne strukture, itd. Programski paket Vega, baziran na Math-ematii, kojeg ve� nekoliko godina razvija na�sa grupa, ima ugrad-eno mnogoprograma za automatsko rtanje. Prikazane su neke metode rtanja grafova,koje upotrebljava Vega, te njihova reprezentaija, kao i reprezentaija drugihstruktura, koje mo�zemo vizualizirati pomo�u grafova.Key words: Mathematia, graphs, representation, visualization, drawingmethods.Math. Subj. Class. (2000): 05C62, 05C85, 68R05, 68R10.1 IntrodutionVega is a system for doing Disrete Mathematis. It is a Mathematia basedolletion of operations with interfae to external pakages and programs. In1990 we started a projet by adding an interfae from \Combinatoria" bySteven Skiena [12, 13℄ to \Nauty" by Brendan MKay [6, 7℄. Soon it beameobvious that ontinuous additions and modi�ations of the projet produed�Tomaz.Pisanski�fmf.uni-lj.si, supported in part by Ministrstvo za �solstvo,znanost in �sport Republike Slovenije, grant J1-6161, J2-6193. Part of the researhwas onduted while the author was visiting the DIMACS enter in NJ. The paper isbased on the invited leture on PrimMath[2001℄, Zagreb, September 27{28, 2001.1



an entirely new system that we alled Vega. Tens of students and olleaguesthroughout the world have ontributed to the Vega projet.The ideas behind Vega are simple. The projet should be based on a power-ful and mahine independent system like Mathematia or Maple. It should pro-vide an integrated and user friendly environment in whih researhers, teahersand students of Disrete Mathematis, Theoretial Computer Siene, Math-ematial Chemistry or any other branh of siene in whih graphs are used,an quikly test ideas and hypotheses on small and mid-size examples. Mostalgorithms are written in Mathematia. If they are time onsuming then theyare replaed by eÆient algorithms written in C, C++ or Pasal.External programs are used for planarity testing, for �nding Hamilton ylesin ubi graphs, for automati drawings of graphs, for 2-fatorization of a regular2d-valent graph, et. Nauty is used for �nding the automorphism group of agraph. There are also �les providing the interfae to other non-pro�t softwarelike Nauty or GAP [3℄.The doumentation of Vega is written in HTML and is available on theInternet [8℄. All users and ontributors to the Vega Projet an follow the de-velopment of Vega by reading Vega News on http://vega.ijp.si/Htmldo/veganews/.CurrentlyVega ontains several data strutures suh as graph, poset, group,map, polyhedron, network, on�guration, moleule, et. with appropriate sele-tors, onstrutors and funtors.In this artile we fous our attention to visualization of graphs. Graphs arevisualized in R2 by means of a map � : V G! R2 , whih is alled a representationof a graph in R2 [4℄. We present some automati drawing routines whih weuse in Vega. Later on we give examples of other data strutures whih arerelated to graphs. The notion of representation of graphs and related struturesis muh more explored in the survey [10℄.2 Representations of graphsLet F be any �eld and m � 0. We denote by Fm the m-dimensional vetor spaeover F. We de�ne a representation � of a graph G in Fm to be a map � from theset of verties V G into Fm . If we regard vetors �(u), u 2 V G, as row vetors, wemay represent � by jV Gj�m matrix R with the images of the verties of G as itsrows. When we want to avoid onfusion we all suh a representation a vetorrepresentation of graphs. The representation � is orthonormal if RTR = Im.A representation � is alled balaned if Pu2V G �(u) = 0. The idea of graphrepresentation goes bak at least to Tutte [15, 16℄, where it is stated primarilyfor planar graphs.The energy of the representation � is de�ned in general form to be the value:E(�) = Xuv2EG!uvjj�(u)� �(v)jj2 (1)where ! : EG! R+ is a map de�ning an edge-weighted graph.A representation � an be also regarded as a drawing or embedding of thegraph G into Fm . The verties of a graph are learly points in the vetor spae,whose position is determined by �. For a omplete drawing of the graph one hasto represent the edges of G in the same spae. This is a natural motivation for2



extending the onept of representation to edges. There are several \natural"edge-extensions of �. In the ase F = R the most natural representation foredges is �(uv) = onv(�(u); �(v)), where the onvex hull onv(X) of a set X =fx1; x2; :::; xng is the set of all pointsPni=1 �ixi withPni=1 �i = 1. This idea wasused, for instane by Tutte [16℄ under the name of straight representation, whenembedding planar graphs with straight line segments in the plane R2 . Sine weare onerned with graphs (and not maps) we allow degeneraies (edge-rossings,extra verties on the edge segment, et.).In the pakageVega, the data struture Graph onsists of a list of adjaenylists of verties and a list of oordinates of verties, whih gives us a represen-tation of the graph in R2 : Graph[adjaeny lists, oordinates of verties℄. Anexample is given in Figure 1.
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Graph[{{2,5,6},{1,3,7},{2,4,8},{3,5,9},{1,4,10},{1,8,9},{2,9,10},{3,6,10},{4,6,7},{5,7,8}},{{0.31,0.95},{-0.81,0.59},{-0.81,-0.59},{0.31,-0.95},{1.,0},{0.15,0.48},{-0.4,0.29},{-0.4,-0.29},{0.15,-0.48},{0.5,0}}℄Figure 1: Petersen graph and its representation in Vega.Vega inludes several automati drawing routines whih produe pleasingdrawings of graphs in R2 . They an be divided into two ategories:� Exat methods: Laplae method [9℄, Tutte method [16℄.� Iterative methods: spring-embedders suh as the one by Kamada andKawai [5℄, Fruhterman and Reingold [2℄ or Shlegel diagram by B. Plesten-jak [11℄.They are all based on minimizing a given type of the energy of a representation[4℄. Iterative methods are too time-onsuming to implement in Mathematiaand are implemented in other languages. Laplae method and Tutte methodare partiularly suited for Mathematia, sine Mathematia ontains all the ne-essary tools suh as �nding eigenvetors of a matrix and solving systems of linearequations.The Laplae method. The matrix Q with the elements quv = �!uv; uv 2EG; quv = 0; uv =2 EG; quu = �Puv2EG quv is alled the generalized Laplaianof an edge-weighted graph G. 3



Theorem 2.1 ([9, 4℄). Let G be an edge-weighted graph with edge-weights ! andthe generalized Laplaian Q. Assume that the eigenvalues of Q are �1 � � � � � �nand that �2 > 0. The minimum energy of a balaned orthonormal representationof G in Rm equals Pm+1i=2 �i.Note that the orthonormal representation � of the above Theorem is givenby the matrix [x2; : : : ; xm+1℄ omposed of orthonormal eigenvetors orrespond-ing to �2; : : : ; �m+1. For m = 2 and m = 3 we get a graph drawing in R2 andR3 , respetively. Examples of suh drawings are shown in Figure 2. Any pro-edure that obtains a representation of a graph by solving the eigenvalue andeigenvetor problem will be alled the eigenvetor method. In the above ase,Theorem 2.1 guarantees that the eigenvetor method produes a representationthat minimizes the energy given by (1).
Figure 2: A R2 representation of the dodeahedron using seond and third eigen-vetors of the Laplae matrix Q and a R3 representation of the C60 fullerene,using seond, third and fourth eigenvetors.The Tutte method. A yle C of G is alled peripheral if no edge not inC joins two verties in C and G n C is onneted. For example, any fae of a3-onneted planar graph an be shown to be a peripheral yle.We say, that a representation � of G is baryentri relative to a subset S ofV G if for eah u =2 S the vetor �(u) is the baryenter of the images of neighborsof u.Lemma 2.2. Let G be a onneted graph, let S be a subset of verties of G,and let � be a map from S into Rm . If G n S is onneted, there is a uniquem-dimensional representation � of G that extends � and is baryentri relativeto S.Theorem 2.3 (Tutte). Let C be a peripheral yle in a onneted graph G.Let � be a mapping from V C to the verties of a onvex jV Cj-gon in R2 suhthat adjaent verties in C are adjaent in the polygon. The unique baryentrirepresentation determines a drawing of G in R2 . This drawing has no rossingsif and only if the graph is planar.A baryentri drawing based on this theorem is obtained by solving thesystem of equations�(v) = 1deg(v) Xu2N(v) �(u); v 2 V G n S:4



It is sometimes alled the Tutte drawing of a graph.The generalized Tutte alias Shlegel method. We have developed a sim-ilar approah. Let S be a subset of verties V G. For eah vertex v 2 V Glet Æ(v) denote the distane from S. De�ne !uv = �(Æ(u); Æ(v)), for a suitablesymmetri funtion � suh as !uv = 1+ jÆ(u)� Æ(v)jp, or !uv = 1max(Æ(u);Æ(v))p ,for some parameter p 2 R. Selet a map � from S into Rm . The orrespondingweighted baryentri representation � is alled the Shlegel representation of Gwith respet to S. It is de�ned by�(v) = 1!vv Xu2N(v)!uv�(u); v 2 V G n S:Figure 3 shows Tutte and Shlegel drawings of graphs.
Figure 3: A R2 representation of the dodeahedron { Tutte method and Shlegelmethod with !uv = 1max(Æ(u);Æ(v)) and a R2 representation of Le(C60) { Tuttemethod and Shlegel method with !uv = 1max(Æ(u);Æ(v))2:5 .3 Other data strutures in VegaSeveral other data strutures that we use for desription of various mathematialstrutures suh as maps, networks, on�gurations, automata, posets, moleules,knots, et. are implemented in Vega. All implementations follow the sameonept.1. The data type is determined by the orresponding Head ofMathematia ex-pression, suh as Graph, MapGraph, Network, Configuration, Automaton,Poset, Moleule, et.2. The struture is manipulated via prede�ned operations: seletors suhas AdjaenyLists, Edges, Coordinates, : : : , and onstrutors suh asFromAdjaenyLists, FromEdges, : : : in ase of data struture Graph.No other diret aess to the implementation is allowed. Users of Vegahave no need to study internal representation of data. When developingVega we made several hanges in the internal representation of graphsand other data strutures and only kernel funtions had to be re-written.3. Various funtors transform objets from one data struture to anotherone. For instane, the forgetful funtor Graph[net Network℄ forgets thevalues on the edges of a network net and returns the underlying graph.5



4. The Format feature of Mathematia makes objets user friendly sine theyare displayed automatially during the interative session. For eah stru-ture there exists a default drawing routine whih is used by Format.5. There exist funtions whih enable the user to export the �gures of graphsand other strutures as short Enapsulated PostSript �les.6. Doumentation is extrated in a form of interlinked HTML �les and isupdated after new version is released.Sine many of these strutures (networks, automata, posets, moleules) arenaturally onneted to graphs, the problem of their visualization an be reduedto the problem disussed in the previous setion.In the ase of on�gurations, the algorithm from [1℄ is used. For (v3) on�g-urations it produes a representation of the struture in the plane using at mostone urved line whih reets a well known result obtained by Steinitz [14℄.In the remainder of the setion we give a desription of data strutures whihare used to represent ertain mathematial strutures in Vega. Of ourse, theavailable spae does not allow us to present the subjet in its full range. Fordetails, the reader is invited to read the Vega Manual pages on the Internet [8℄.3.1 Representation of mapsData struture: MapGraph[f# of verties, # of edges, # of faesg, edges,faes, oordinates℄Example: Dodeahedron.

3.2 Representation of networksData struture: Network[weighted edges, oordinates℄Example: 6
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Network[{{1,2,1.1},{1,3,2.7},{1,4,7.5},{2,5,1},{2,6,0.2},{3,9,3},{3,7,5.5},{4,8,3.3},{5,9,1.1},{6,10,4},{7,10,1},{8,10,2.9},{8,11,6.25},{9,11,4},{10,11,7}},{{0,0},{1,1},{1,0},{1,-1},{2,2},{2,1},{2,0},{2,-1},{3,1},{3,0},{4,0}}℄3.3 Representation of on�gurationsData struture: Configuration[list of lines, possible additional information(projetive, aÆne oordinates, projetion matrix, et.)℄Example: Pappus on�guration.
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Configuration[{{1,2,7},{3,4,7},{5,6,7},{1,6,8},{2,3,8},{4,5,8},{1,4,9},{3,6,9},{2,5,9}},PrMatrix->{{0.17,0.5,0.55},{0.66,0.11,0.92},{1.14,0.87,0.6}},Coordinates->{{0.37,0.,0.93},{-0.27,-0.67,-0.69},{-0.28,-0.68,0.68},{0.24,-0.78,-0.58},{0.29,-0.96,0},{1.,0,0},{0,1.,0},{0,0,1.},{0.58,-0.58,0.58}}℄3.4 Representation of automataData struture: Automaton[DFA/NDFA, list of states, list of transitions,initial state, list of �nal states, alphabet, oordinates℄7



Example: Automaton reognizing a language of strings over fa; bg endingwith aba.
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Automaton[DFA,{0,1,2,3},{{{"b",1},{"a",2}},{{"b",3},{"a",2}},{{"b",1},{"a",4}},{{"b",1},{"a",2}}},1,{4},{"a","b"},{{0,0},{1,0},{1.5,-1},{2,1}}℄3.5 Representation of Markov hainsData struture: MarkovChain[list of transition triples, oordinates℄Example: A walk on a yle.

MarkovChain[{{1,2,1/2},{1,5,1/2},{2,3,1/2},{2,1,1/2},{3,4,1/2},{3,2,1/2},{4,5,1/2},{4,3,1/2},{5,1,1/2},{5,4,1/2}},{{0.31,0.95},{-0.81,0.59},{-0.81,-0.59},{0.31,-0.95},{1.,0}}℄3.6 Representation of posetsData struture: Poset[poset adjaenies, oordinates, labels℄Example: The lattie of partitions of the number 6.
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{6}

{5, 1} {4, 2} {3, 3}

{4, 1, 1} {3, 2, 1} {2, 2, 2}

{3, 1, 1, 1} {2, 2, 1, 1}

{2, 1, 1, 1, 1}

{1, 1, 1, 1, 1, 1}

Poset[{{},{1},{1},{1},{3,2},{4,3,2},{3},{6,5},{7,6,5},{9,8},{10}},{{2/3,1/7},{1/3,2/7},{2/3,2/7},{1,2/7},{1/3,3/7},{2/3,3/7},{1,3/7},{1/2,4/7},{5/6,4/7},{2/3,5/7},{2/3,6/7}},{{6},{5,1},{4,2},{3,3},{4,1,1},{3,2,1},{2,2,2},{3,1,1,1},{2,2,1,1},{2,1,1,1,1},{1,1,1,1,1,1}}℄3.7 Representation of moleulesData struture: Moleule[Graph objet, labels℄Example: Ethane.
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Moleule[Graph[{{2,3,4,5},{1},{1},{1},{1,6,7,8},{5},{5},{5}},{{0.78,0.80},{0.65,1.05},{0.53,0.78},{0.70,0.55},{1.25,0.82},{1.32,1.07},{1.37,0.58},{1.52,0.85}}℄,{"C","H","H","H","C","H","H","H"}℄3.8 Representation of knotsData struture: ComputedKnot[list of x and y oordinates and the tangentangle in degrees for every rossing or auxiliary point, list determiningbridges and tunnels, list of labels together with their oordinates℄Example:
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ComputedKnot[{{{0.00,0.78,-157.},{-0.27,0.53,-127.},{-0.60,-0.02,-113.},{-0.68,-0.39,-83.3},{-0.5,-0.87,-22.},{0.5,-0.87,22.},{0.68,-0.39,83.2},{0.56,-0.03,113.},{0.28,0.53,127.},{0.00,0.78,157.},{-0.5,0.86603,-142.},{-1.,0.,-98.},{-0.68,-0.39,-36.8},{-0.33,-0.50,-6.83},{0.32,-0.51,6.53},{0.68,-0.39,36.7},{1.,0.,98.},{0.5,0.87,142.}}},{{1,0,0,-1,0,0,1,0,0,-1,0,0,1,0,0,-1,0,0}},{{1,1,{0.00,0.78}},{6,2,{-0.68,-0.39}},{11,3,{0.68,-0.39}}}℄Referenes[1℄ J. Bokowski, B. Sturmfels, Computational Syntheti Geometry, LetureNotes in Mathematis 1355, Springer, Heidelberg, 1989.[2℄ T. M. J. Fruhterman and E. M. Reingold, Graph drawing by fore{diretedplaement, Software Pratie and Experiene 21 (1991) 1129{1164.[3℄ The GAP group, GAP { Groups, Algorothms and Programming, seehttp://www.math.rwth-aahen.de/~GAP/.[4℄ C. Godsil and G. Royle, Algebrai Graph Theory, Springer, New York,2001.[5℄ T. Kamada and S. Kawai, An algorithm for drawing general undiretedgraphs, Inform. Proess. Lett. 31 (1989) 7{15.[6℄ B. MKay, Nauty, see http://s.anu.edu.au/~bdm/nauty/.[7℄ B. MKay, Pratial Graph Isomorphism, Congressus Numerantium 30(1981) 45{87.[8℄ T. Pisanski & oworkers, Vega, a programming tool for manipulating dis-rete mathematial strutures, see http://vega.ijp.si.[9℄ T. Pisanski and J. Shawe-Taylor, Charaterizing Graph Drawing withEigenvetors, J. Chem. Inf. Comput. Si. 40 (2000) 567{571.[10℄ T. Pisanski and A. �Zitnik, Representation of Graphs and Maps, work inprogress. 10



[11℄ B. Plestenjak, An Algorithm for Drawing Planar Graphs, Software { Pra-tie and Experiene 29 (1999) 973{984.[12℄ S. Skiena, Combinatoria, seehttp://www.s.sunysb.edu/~skiena/ombinatoria/index.html.[13℄ S. Skiena, Implementing Disrete Mathematis: Combinatoris and GraphTheory in Mathematia, Advaned Book Division, Addison-Wesley, Red-wood City CA, June 1990.[14℄ E. Steinitz, �Uber die Constrution der Con�gurationen n3, Inaugural-Dissertation, Breslau (1894).[15℄ W. T. Tutte, Convex representations of graphs, Pro. London Math. So.10 (1960) 304{320.[16℄ W. T. Tutte, How to draw a graph, Pro. London Math. So. 13 (1963)743{767.
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