UNIVERSITY OF LJUBLJANA

INSTITUTE OF MATHEMATICS, PHYSICS AND MECHANICS
DEPARTMENT OF MATHEMATICS

JADRANSKA 19, 1000 LJUBLJANA, SLOVENIA

Preprint series, Vol. 39 (2001), 792

VISUALIZATION OF GRAPHS
AND RELATED DISCRETE
STRUCTURES IN
MATHEMATICA

Tomaz Pisanski Marko Boben

Arjana Zitnik

ISSN 1318-4865

December 7, 2001

Ljubljana, December 7, 2001



Visualization of Graphs and Related Discrete
Structures in Mathematica

Tomaz Pisanski*, Marko Boben and Arjana Zitnik,
University of Ljubljana, Slovenia,

Abstract

Research in discrete mathematics can be conducted more efficiently if one can
visualize discrete structures such as graphs, groups, polyhedra, maps, posets,
lattices, tilings, incidence structures, etc. The Mathematica based computer
package VEGA that our group is developing over the years has many automatic
drawing programs built in. We review several methods for drawing graphs and
present a way of computer representation of other discrete structures which can
be visualized as graphs.

Sazetak

Istrazivanja u diskretnoj matematici moguce je mnogo efikasnije provoditi
ukoliko mozemo vizualizirati diskretne strukture, kao §to su grafovi, grupe,
poliedri, preslikavanja, parcialno uredeni skupovi (posets), resetke, poplocenja
(tilings), incidentne strukture, itd. Programski paket VEGA, baziran na Math-
ematici, kojeg veé¢ nekoliko godina razvija nasa grupa, ima ugradeno mnogo
programa za automatsko crtanje. Prikazane su neke metode crtanja grafova,
koje upotrebljava VEGA, te njihova reprezentacija, kao i reprezentacija drugih
struktura, koje mozemo vizualizirati pomoc¢u grafova.

Key words: Mathematica, graphs, representation, visualization, drawing
methods.
Math. Subj. Class. (2000): 05C62, 05C85, 68R05, 68R10.

1 Introduction

VEGA is a system for doing Discrete Mathematics. It is a Mathematica based
collection of operations with interface to external packages and programs. In
1990 we started a project by adding an interface from “Combinatorica” by
Steven Skiena [12, 13] to “Nauty” by Brendan McKay [6, 7]. Soon it became
obvious that continuous additions and modifications of the project produced

*Tomaz.Pisanski@fmf.uni-1j.si, supported in part by Ministrstvo za Solstvo,
znanost in §port Republike Slovenije, grant J1-6161, J2-6193. Part of the research
was conducted while the author was visiting the DIMACS center in NJ. The paper is
based on the invited lecture on PrimMath[2001], Zagreb, September 27-28, 2001.



an entirely new system that we called VEGA. Tens of students and colleagues
throughout the world have contributed to the VEGA project.

The ideas behind VEGA are simple. The project should be based on a power-
ful and machine independent system like Mathematica or Maple. It should pro-
vide an integrated and user friendly environment in which researchers, teachers
and students of Discrete Mathematics, Theoretical Computer Science, Math-
ematical Chemistry or any other branch of science in which graphs are used,
can quickly test ideas and hypotheses on small and mid-size examples. Most
algorithms are written in Mathematica. If they are time consuming then they
are replaced by efficient algorithms written in C, C++ or Pascal.

External programs are used for planarity testing, for finding Hamilton cycles
in cubic graphs, for automatic drawings of graphs, for 2-factorization of a regular
2d-valent graph, etc. Nauty is used for finding the automorphism group of a
graph. There are also files providing the interface to other non-profit software
like Nauty or GAP [3].

The documentation of VEGA is written in HTML and is available on the
Internet [8]. All users and contributors to the VEGA Project can follow the de-
velopment of VEGA by reading Vega News on http://vega.ijp.si/Htmldoc/
veganews/.

Currently VEGA contains several data structures such as graph, poset, group,
map, polyhedron, network, configuration, molecule, etc. with appropriate selec-
tors, constructors and functors.

In this article we focus our attention to visualization of graphs. Graphs are
visualized in R? by means of a map p : VG — R?, which is called a representation
of a graph in R? [4]. We present some automatic drawing routines which we
use in VEGA. Later on we give examples of other data structures which are
related to graphs. The notion of representation of graphs and related structures
is much more explored in the survey [10].

2 Representations of graphs

Let F be any field and m > 0. We denote by F"* the m-dimensional vector space
over F. We define a representation p of a graph G in F™ to be a map p from the
set of vertices VG into ™. If we regard vectors p(u), u € VG, as row vectors, we
may represent p by |V G| xm matrix R with the images of the vertices of G as its
rows. When we want to avoid confusion we call such a representation a wvector
representation of graphs. The representation p is orthonormal if RTR = I,,,.
A representation p is called balanced if ), .y p(u) = 0. The idea of graph
representation goes back at least to Tutte [15, 16], where it is stated primarily
for planar graphs.

The energy of the representation p is defined in general form to be the value:

E(p) =Y wwllp(u) = p()[]” (1)

weEG

where w : EG — R" is a map defining an edge-weighted graph.

A representation p can be also regarded as a drawing or embedding of the
graph G into ™. The vertices of a graph are clearly points in the vector space,
whose position is determined by p. For a complete drawing of the graph one has
to represent the edges of G in the same space. This is a natural motivation for



extending the concept of representation to edges. There are several “natural”
edge-extensions of p. In the case F = R the most natural representation for
edges is p(uv) = conv(p(u), p(v)), where the conver hull conv(X) of a set X =
{z1,22,...,x,} is the set of all points >\ \jz; with 31 | A\; = 1. This idea was
used, for instance by Tutte [16] under the name of straight representation, when
embedding planar graphs with straight line segments in the plane R?. Since we
are concerned with graphs (and not maps) we allow degeneracies (edge-crossings,
extra vertices on the edge segment, etc.).

In the package VEGA, the data structure Graph consists of a list of adjacency
lists of vertices and a list of coordinates of vertices, which gives us a represen-
tation of the graph in R?: Graph[adjacency lists, coordinates of vertices]. An
example is given in Figure 1.

Graph[{{2,5,6},{1,3,7},{2,4,8},{3,5,9},{1,4,10},{1,8,9},{2,9,10},
{3,6,10},{4,6,7},{5,7,8}},{{0.31,0.95},{-0.81,0.59},{-0.81,-0.59},
{0.31,-0.95},{1.,0},{0.15,0.48},{-0.4,0.29},{-0.4,-0.29},
{0.15,-0.48},{0.5,0}}]

Figure 1: Petersen graph and its representation in VEGA.

VEGA includes several automatic drawing routines which produce pleasing
drawings of graphs in R2. They can be divided into two categories:

e Exact methods: Laplace method [9], Tutte method [16].

e Iterative methods: spring-embedders such as the one by Kamada and
Kawai [5], Fruchterman and Reingold [2] or Shlegel diagram by B. Plesten-
jak [11].

They are all based on minimizing a given type of the energy of a representation
[4]. Tterative methods are too time-consuming to implement in Mathematica
and are implemented in other languages. Laplace method and Tutte method
are particularly suited for Mathematica, since Mathematica contains all the nec-
essary tools such as finding eigenvectors of a matrix and solving systems of linear
equations.

The Laplace method. The matrix ) with the elements qu, = —wWyw,uv €
EG,quy = 0,uv ¢ EG,quu = — Y ,pcpe Quv 18 called the generalized Laplacian
of an edge-weighted graph G.



Theorem 2.1 ([9, 4]). Let G be an edge-weighted graph with edge-weights w and
the generalized Laplacian Q. Assume that the eigenvalues of Q are \y < --- < A,

and that Ay > 0. The minimum energy of a balanced orthonormal representation
of G in R™ equals E:’:; i

Note that the orthonormal representation p of the above Theorem is given
by the matrix [z2, . .., Zmy+1] composed of orthonormal eigenvectors correspond-
ing to Aa,..., Amy1. For m = 2 and m = 3 we get a graph drawing in R? and
R3, respectively. Examples of such drawings are shown in Figure 2. Any pro-
cedure that obtains a representation of a graph by solving the eigenvalue and
eigenvector problem will be called the eigenvector method. In the above case,
Theorem 2.1 guarantees that the eigenvector method produces a representation
that minimizes the energy given by (1).

Figure 2: A R? representation of the dodecahedron using second and third eigen-
vectors of the Laplace matrix Q and a R® representation of the Cgo fullerene,
using second, third and fourth eigenvectors.

The Tutte method. A cycle C of G is called peripheral if no edge not in
C joins two vertices in C' and G\ C is connected. For example, any face of a
3-connected planar graph can be shown to be a peripheral cycle.

We say, that a representation p of G is barycentric relative to a subset S of
V@G if for each u ¢ S the vector p(u) is the barycenter of the images of neighbors
of u.

Lemma 2.2. Let G be a connected graph, let S be a subset of vertices of G,
and let o be a map from S into R™. If G\ S is connected, there is a unique
m-dimensional representation p of G that extends o and is barycentric relative

to S.

Theorem 2.3 (Tutte). Let C' be a peripheral cycle in a connected graph G.
Let o be a mapping from VC to the vertices of a convex |V C|-gon in R? such
that adjacent vertices in C' are adjacent in the polygon. The unique barycentric
representation determines a drawing of G in R%. This drawing has no crossings
if and only if the graph is planar.

A barycentric drawing based on this theorem is obtained by solving the
system of equations

o) = 3 pw).  weVG\S,

deg(v wen o)

~



It is sometimes called the Tutte drawing of a graph.

The generalized Tutte alias Schlegel method. We have developed a sim-
ilar approach. Let S be a subset of vertices VG. For each vertex v € VG
let §(v) denote the distance from S. Define wy, = ¢(d(u), d(v)), for a suitable
symmetric function ¢ such as wy, = 1+ |0(u) — §(v)|P, or Wyy = Wu),d(v))‘”
for some parameter p € R. Select a map o from S into R™. The corresponding
weighted barycentric representation p is called the Schlegel representation of G
with respect to S. It is defined by

p(v) = 1 > wuwp(u), vEVG\S.

w
b uw€N (v)

Figure 3 shows Tutte and Schlegel drawings of graphs.

Figure 3: A R? representation of the dodecahedron — Tutte method and Schlegel
method with w,, = m and a R? representation of Le(Cgo) — Tutte

method and Schlegel method with wy, = W)a(v))m'

3 Other data structures in VEGA

Several other data structures that we use for description of various mathematical
structures such as maps, networks, configurations, automata, posets, molecules,
knots, etc. are implemented in VEGA. All implementations follow the same
concept.

1. The data type is determined by the corresponding Head of Mathematica ex-
pression, such as Graph, MapGraph, Network, Configuration, Automaton,
Poset, Molecule, etc.

2. The structure is manipulated via predefined operations: selectors such
as AdjacencyLists, Edges, Coordinates, ..., and constructors such as
FromAdjacencylists, FromEdges, ... in case of data structure Graph.
No other direct access to the implementation is allowed. Users of VEGA
have no need to study internal representation of data. When developing
VEGA we made several changes in the internal representation of graphs
and other data structures and only kernel functions had to be re-written.

3. Various functors transform objects from one data structure to another
one. For instance, the forgetful functor Graph[net Network] forgets the
values on the edges of a network net and returns the underlying graph.



4. The Format feature of Mathematica makes objects user friendly since they
are displayed automatically during the interactive session. For each struc-
ture there exists a default drawing routine which is used by Format.

5. There exist functions which enable the user to export the figures of graphs
and other structures as short Encapsulated PostScript files.

6. Documentation is extracted in a form of interlinked HTML files and is
updated after new version is released.

Since many of these structures (networks, automata, posets, molecules) are
naturally connected to graphs, the problem of their visualization can be reduced
to the problem discussed in the previous section.

In the case of configurations, the algorithm from [1] is used. For (v3) config-
urations it produces a representation of the structure in the plane using at most
one curved line which reflects a well known result obtained by Steinitz [14].

In the remainder of the section we give a description of data structures which
are used to represent certain mathematical structures in VEGA. Of course, the
available space does not allow us to present the subject in its full range. For
details, the reader is invited to read the Vega Manual pages on the Internet [8].

3.1 Representation of maps

Data structure: MapGraph[{# of vertices, # of edges, # of faces}, edges,
faces, coordinates]

Example: Dodecahedron.

3.2 Representation of networks

Data structure: Network[weighted edges, coordinates]

Example:



Network[{{1,2,1.1},{1,3,2.7},{1,4,7.5},{2,5,1},{2,6,0.2},
{3,9,3},{3,7,5.5},{4,8,3.3},{5,9,1.1},{6,10,4},{7,10,1},
{8,10,2.9},{8,11,6.25},{9,11,4},{10,11,7}},

{{0,0},{1,1},{1,03},{1,-1},{2,2},{2,1},{2,0},{2,-1},{3,1},
{3,0},{4,0}}]

3.3 Representation of configurations

Data structure: Configuration[list of lines, possible additional information
(projective, affine coordinates, projection matrix, etc.)]

Example: Pappus configuration.

9

Configuration[{{1,2,7},{3,4,7},{5,6,7},{1,6,8},{2,3,8},
{4,5,8},{1,4,9},{3,6,9},{2,5,9}},
PrMatrix->{{0.17,0.5,0.55},{0.66,0.11,0.92},{1.14,0.87,0.6}},
Coordinates->{{0.37,0.,0.93},{-0.27,-0.67,-0.69},
{-0.28,-0.68,0.68},{0.24,-0.78,-0.58},{0.29,-0.96,0},
{1.,0,0},{0,1.,0},{0,0,1.},{0.58,-0.58,0.58}}]

3.4 Representation of automata

Data structure: Automaton[DFA/NDFA, list of states, list of transitions,
initial state, list of final states, alphabet, coordinates]



Example: Automaton recognizing a language of strings over {a, b} ending
with aba.

Automaton[DFA,{0,1,2,3},{{{"b",1},{"a",2}},{{"b",3},{"a",2}},
{{"v",1},{"a",4}},{{"b",1},{"a",2}}},1,{4},{"a","b"},
{{0,0%},{1,0},{1.5,-1},{2,1}}]

3.5 Representation of Markov chains

Data structure: MarkovChain[list of transition triples, coordinates]

Example: A walk on a cycle.

MarkovChain[{{1,2,1/2},{1,5,1/2},{2,3,1/2},{2,1,1/2},{3,4,1/2},
{3,2,1/2},{4,5,1/2},{4,3,1/2},{5,1,1/2},{5,4,1/2}},
{{0.31,0.95},{-0.81,0.59},{-0.81,-0.59},{0.31,-0.95},{1.,0}}]

3.6 Representation of posets

Data structure: Poset[poset adjacencies, coordinates, labels]

Example: The lattice of partitions of the number 6.



Poset [{{},{1},{1},{1},{3,2},{4,3,2},{3},{6,5},{7,6,5},{9,8},{10}},
{{2/3,1/7},{1/3,2/7},{2/3,2/7} ,{1,2/7},{1/3,3/7},{2/3,3/7},
{1,3/7},{1/2,4/7},{5/6,4/7},{2/3,5/7},{2/3,6/7}},
{{6},{5,1},{4,2},{3,3},{4,1,1},{3,2,1},{2,2,2},{3,1,1,1},
{2,2,1,1},{2,1,1,1,1},{1,1,1,1,1,1}}]

3.7 Representation of molecules

Data structure: Molecule[Graph object, labels]

Example: Ethane.

Molecule[Graph[{{2,3,4,5},{1},{1},{1},{1,6,7,8},{5},{5},{5}},
{{0.78,0.80},{0.65,1.05},{0.53,0.78},{0.70,0.55},{1.25,0.82},
{1.32,1.07},{1.37,0.58},{1.52,0.85}}],
{l‘cl"||H||’||H||’||H||’||c||’||H||’||H||’||H||}]

3.8 Representation of knots

Data structure: ComputedKnot [list of z and y coordinates and the tangent
angle in degrees for every crossing or auxiliary point, list determining
bridges and tunnels, list of labels together with their coordinates]

Example:



ComputedKnot [{{{0.00,0.78,-157.},{-0.27,0.53,-127.},
{-0.60,-0.02,-113.},{-0.68,-0.39,-83.3},{-0.5,-0.87,-22.},
{0.5,-0.87,22.},{0.68,-0.39,83.2},{0.56,-0.03,113.},
{0.28,0.53,127.},{0.00,0.78,157.},{-0.5,0.86603,-142.},
{-1.,0.,-98.},{-0.68,-0.39,-36.8},{-0.33,-0.50,-6.83},
{0.32,-0.51,6.53},{0.68,-0.39,36.7},{1.,0.,98.},
{0.5,0.87,142.}}},{{1,0,0,-1,0,0,1,0,0,-1,0,0,1,0,0,-1,0,0}},

{{1,1,{0.00,0.78}},{6,2,{-0.68,-0.39}},{11,3,{0.68,-0.39}}}]

References

[1] J. Bokowski, B. Sturmfels, Computational Synthetic Geometry, Lecture
Notes in Mathematics 1355, Springer, Heidelberg, 1989.

[2] T. M. J. Fruchterman and E. M. Reingold, Graph drawing by force—directed
placement, Software Practice and Experience 21 (1991) 1129-1164.

[3] The GAP group, GAP - Groups, Algorothms and Programming, see
http://www.math.rwth-aachen.de/~GAP/.

[4] C. Godsil and G. Royle, Algebraic Graph Theory, Springer, New York,
2001.

[5] T. Kamada and S. Kawai, An algorithm for drawing general undirected
graphs, Inform. Process. Lett. 31 (1989) 7-15.

[6] B. McKay, Nauty, see http://cs.anu.edu.au/ bdm/nauty/.

[7] B. McKay, Practical Graph Isomorphism, Congressus Numerantium 30
(1981) 45-87.

[8] T. Pisanski & coworkers, VEGA, a programming tool for manipulating dis-
crete mathematical structures, see http://vega.ijp.si.

[9] T. Pisanski and J. Shawe-Taylor, Characterizing Graph Drawing with
Eigenvectors, J. Chem. Inf. Comput. Sci. 40 (2000) 567-571.

[10] T. Pisanski and A. Zitnik, Representation of Graphs and Maps, work in
progress.

10



[11] B. Plestenjak, An Algorithm for Drawing Planar Graphs, Software — Prac-
tice and Experience 29 (1999) 973-984.

[12] S. Skiena, Combinatorica, see
http://www.cs.sunysb.edu/ skiena/combinatorica/index.html.

[13] S. Skiena, Implementing Discrete Mathematics: Combinatorics and Graph
Theory in Mathematica, Advanced Book Division, Addison-Wesley, Red-
wood City CA, June 1990.

[14] E. Steinitz, Uber die Construction der Configurationen ns, Inaugural-
Dissertation, Breslau (1894).

[15] W. T. Tutte, Convex representations of graphs, Proc. London Math. Soc.
10 (1960) 304-320.

[16] W. T. Tutte, How to draw a graph, Proc. London Math. Soc. 13 (1963)
743-767.

11



