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Visualization of Graphs and Related Dis
reteStru
tures in Mathemati
aToma�z Pisanski�, Marko Boben and Arjana �Zitnik,University of Ljubljana, SloveniaAbstra
tResear
h in dis
rete mathemati
s 
an be 
ondu
ted more eÆ
iently if one 
anvisualize dis
rete stru
tures su
h as graphs, groups, polyhedra, maps, posets,latti
es, tilings, in
iden
e stru
tures, et
. The Mathemati
a based 
omputerpa
kage Vega that our group is developing over the years has many automati
drawing programs built in. We review several methods for drawing graphs andpresent a way of 
omputer representation of other dis
rete stru
tures whi
h 
anbe visualized as graphs. Sa�zetakIstra�zivanja u diskretnoj matemati
i mogu�
e je mnogo e�kasnije provoditiukoliko mo�zemo vizualizirati diskretne strukture, kao �sto su grafovi, grupe,poliedri, preslikavanja, par
ialno ured-eni skupovi (posets), re�setke, poplo�
enja(tilings), in
identne strukture, itd. Programski paket Vega, baziran na Math-emati
i, kojeg ve�
 nekoliko godina razvija na�sa grupa, ima ugrad-eno mnogoprograma za automatsko 
rtanje. Prikazane su neke metode 
rtanja grafova,koje upotrebljava Vega, te njihova reprezenta
ija, kao i reprezenta
ija drugihstruktura, koje mo�zemo vizualizirati pomo�
u grafova.Key words: Mathemati
a, graphs, representation, visualization, drawingmethods.Math. Subj. Class. (2000): 05C62, 05C85, 68R05, 68R10.1 Introdu
tionVega is a system for doing Dis
rete Mathemati
s. It is a Mathemati
a based
olle
tion of operations with interfa
e to external pa
kages and programs. In1990 we started a proje
t by adding an interfa
e from \Combinatori
a" bySteven Skiena [12, 13℄ to \Nauty" by Brendan M
Kay [6, 7℄. Soon it be
ameobvious that 
ontinuous additions and modi�
ations of the proje
t produ
ed�Tomaz.Pisanski�fmf.uni-lj.si, supported in part by Ministrstvo za �solstvo,znanost in �sport Republike Slovenije, grant J1-6161, J2-6193. Part of the resear
hwas 
ondu
ted while the author was visiting the DIMACS 
enter in NJ. The paper isbased on the invited le
ture on PrimMath[2001℄, Zagreb, September 27{28, 2001.1



an entirely new system that we 
alled Vega. Tens of students and 
olleaguesthroughout the world have 
ontributed to the Vega proje
t.The ideas behind Vega are simple. The proje
t should be based on a power-ful and ma
hine independent system like Mathemati
a or Maple. It should pro-vide an integrated and user friendly environment in whi
h resear
hers, tea
hersand students of Dis
rete Mathemati
s, Theoreti
al Computer S
ien
e, Math-emati
al Chemistry or any other bran
h of s
ien
e in whi
h graphs are used,
an qui
kly test ideas and hypotheses on small and mid-size examples. Mostalgorithms are written in Mathemati
a. If they are time 
onsuming then theyare repla
ed by eÆ
ient algorithms written in C, C++ or Pas
al.External programs are used for planarity testing, for �nding Hamilton 
y
lesin 
ubi
 graphs, for automati
 drawings of graphs, for 2-fa
torization of a regular2d-valent graph, et
. Nauty is used for �nding the automorphism group of agraph. There are also �les providing the interfa
e to other non-pro�t softwarelike Nauty or GAP [3℄.The do
umentation of Vega is written in HTML and is available on theInternet [8℄. All users and 
ontributors to the Vega Proje
t 
an follow the de-velopment of Vega by reading Vega News on http://vega.ijp.si/Htmldo
/veganews/.CurrentlyVega 
ontains several data stru
tures su
h as graph, poset, group,map, polyhedron, network, 
on�guration, mole
ule, et
. with appropriate sele
-tors, 
onstru
tors and fun
tors.In this arti
le we fo
us our attention to visualization of graphs. Graphs arevisualized in R2 by means of a map � : V G! R2 , whi
h is 
alled a representationof a graph in R2 [4℄. We present some automati
 drawing routines whi
h weuse in Vega. Later on we give examples of other data stru
tures whi
h arerelated to graphs. The notion of representation of graphs and related stru
turesis mu
h more explored in the survey [10℄.2 Representations of graphsLet F be any �eld and m � 0. We denote by Fm the m-dimensional ve
tor spa
eover F. We de�ne a representation � of a graph G in Fm to be a map � from theset of verti
es V G into Fm . If we regard ve
tors �(u), u 2 V G, as row ve
tors, wemay represent � by jV Gj�m matrix R with the images of the verti
es of G as itsrows. When we want to avoid 
onfusion we 
all su
h a representation a ve
torrepresentation of graphs. The representation � is orthonormal if RTR = Im.A representation � is 
alled balan
ed if Pu2V G �(u) = 0. The idea of graphrepresentation goes ba
k at least to Tutte [15, 16℄, where it is stated primarilyfor planar graphs.The energy of the representation � is de�ned in general form to be the value:E(�) = Xuv2EG!uvjj�(u)� �(v)jj2 (1)where ! : EG! R+ is a map de�ning an edge-weighted graph.A representation � 
an be also regarded as a drawing or embedding of thegraph G into Fm . The verti
es of a graph are 
learly points in the ve
tor spa
e,whose position is determined by �. For a 
omplete drawing of the graph one hasto represent the edges of G in the same spa
e. This is a natural motivation for2



extending the 
on
ept of representation to edges. There are several \natural"edge-extensions of �. In the 
ase F = R the most natural representation foredges is �(uv) = 
onv(�(u); �(v)), where the 
onvex hull 
onv(X) of a set X =fx1; x2; :::; xng is the set of all pointsPni=1 �ixi withPni=1 �i = 1. This idea wasused, for instan
e by Tutte [16℄ under the name of straight representation, whenembedding planar graphs with straight line segments in the plane R2 . Sin
e weare 
on
erned with graphs (and not maps) we allow degenera
ies (edge-
rossings,extra verti
es on the edge segment, et
.).In the pa
kageVega, the data stru
ture Graph 
onsists of a list of adja
en
ylists of verti
es and a list of 
oordinates of verti
es, whi
h gives us a represen-tation of the graph in R2 : Graph[adja
en
y lists, 
oordinates of verti
es℄. Anexample is given in Figure 1.
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Graph[{{2,5,6},{1,3,7},{2,4,8},{3,5,9},{1,4,10},{1,8,9},{2,9,10},{3,6,10},{4,6,7},{5,7,8}},{{0.31,0.95},{-0.81,0.59},{-0.81,-0.59},{0.31,-0.95},{1.,0},{0.15,0.48},{-0.4,0.29},{-0.4,-0.29},{0.15,-0.48},{0.5,0}}℄Figure 1: Petersen graph and its representation in Vega.Vega in
ludes several automati
 drawing routines whi
h produ
e pleasingdrawings of graphs in R2 . They 
an be divided into two 
ategories:� Exa
t methods: Lapla
e method [9℄, Tutte method [16℄.� Iterative methods: spring-embedders su
h as the one by Kamada andKawai [5℄, Fru
hterman and Reingold [2℄ or Shlegel diagram by B. Plesten-jak [11℄.They are all based on minimizing a given type of the energy of a representation[4℄. Iterative methods are too time-
onsuming to implement in Mathemati
aand are implemented in other languages. Lapla
e method and Tutte methodare parti
ularly suited for Mathemati
a, sin
e Mathemati
a 
ontains all the ne
-essary tools su
h as �nding eigenve
tors of a matrix and solving systems of linearequations.The Lapla
e method. The matrix Q with the elements quv = �!uv; uv 2EG; quv = 0; uv =2 EG; quu = �Puv2EG quv is 
alled the generalized Lapla
ianof an edge-weighted graph G. 3



Theorem 2.1 ([9, 4℄). Let G be an edge-weighted graph with edge-weights ! andthe generalized Lapla
ian Q. Assume that the eigenvalues of Q are �1 � � � � � �nand that �2 > 0. The minimum energy of a balan
ed orthonormal representationof G in Rm equals Pm+1i=2 �i.Note that the orthonormal representation � of the above Theorem is givenby the matrix [x2; : : : ; xm+1℄ 
omposed of orthonormal eigenve
tors 
orrespond-ing to �2; : : : ; �m+1. For m = 2 and m = 3 we get a graph drawing in R2 andR3 , respe
tively. Examples of su
h drawings are shown in Figure 2. Any pro-
edure that obtains a representation of a graph by solving the eigenvalue andeigenve
tor problem will be 
alled the eigenve
tor method. In the above 
ase,Theorem 2.1 guarantees that the eigenve
tor method produ
es a representationthat minimizes the energy given by (1).
Figure 2: A R2 representation of the dode
ahedron using se
ond and third eigen-ve
tors of the Lapla
e matrix Q and a R3 representation of the C60 fullerene,using se
ond, third and fourth eigenve
tors.The Tutte method. A 
y
le C of G is 
alled peripheral if no edge not inC joins two verti
es in C and G n C is 
onne
ted. For example, any fa
e of a3-
onne
ted planar graph 
an be shown to be a peripheral 
y
le.We say, that a representation � of G is bary
entri
 relative to a subset S ofV G if for ea
h u =2 S the ve
tor �(u) is the bary
enter of the images of neighborsof u.Lemma 2.2. Let G be a 
onne
ted graph, let S be a subset of verti
es of G,and let � be a map from S into Rm . If G n S is 
onne
ted, there is a uniquem-dimensional representation � of G that extends � and is bary
entri
 relativeto S.Theorem 2.3 (Tutte). Let C be a peripheral 
y
le in a 
onne
ted graph G.Let � be a mapping from V C to the verti
es of a 
onvex jV Cj-gon in R2 su
hthat adja
ent verti
es in C are adja
ent in the polygon. The unique bary
entri
representation determines a drawing of G in R2 . This drawing has no 
rossingsif and only if the graph is planar.A bary
entri
 drawing based on this theorem is obtained by solving thesystem of equations�(v) = 1deg(v) Xu2N(v) �(u); v 2 V G n S:4



It is sometimes 
alled the Tutte drawing of a graph.The generalized Tutte alias S
hlegel method. We have developed a sim-ilar approa
h. Let S be a subset of verti
es V G. For ea
h vertex v 2 V Glet Æ(v) denote the distan
e from S. De�ne !uv = �(Æ(u); Æ(v)), for a suitablesymmetri
 fun
tion � su
h as !uv = 1+ jÆ(u)� Æ(v)jp, or !uv = 1max(Æ(u);Æ(v))p ,for some parameter p 2 R. Sele
t a map � from S into Rm . The 
orrespondingweighted bary
entri
 representation � is 
alled the S
hlegel representation of Gwith respe
t to S. It is de�ned by�(v) = 1!vv Xu2N(v)!uv�(u); v 2 V G n S:Figure 3 shows Tutte and S
hlegel drawings of graphs.
Figure 3: A R2 representation of the dode
ahedron { Tutte method and S
hlegelmethod with !uv = 1max(Æ(u);Æ(v)) and a R2 representation of Le(C60) { Tuttemethod and S
hlegel method with !uv = 1max(Æ(u);Æ(v))2:5 .3 Other data stru
tures in VegaSeveral other data stru
tures that we use for des
ription of various mathemati
alstru
tures su
h as maps, networks, 
on�gurations, automata, posets, mole
ules,knots, et
. are implemented in Vega. All implementations follow the same
on
ept.1. The data type is determined by the 
orresponding Head ofMathemati
a ex-pression, su
h as Graph, MapGraph, Network, Configuration, Automaton,Poset, Mole
ule, et
.2. The stru
ture is manipulated via prede�ned operations: sele
tors su
has Adja
en
yLists, Edges, Coordinates, : : : , and 
onstru
tors su
h asFromAdja
en
yLists, FromEdges, : : : in 
ase of data stru
ture Graph.No other dire
t a

ess to the implementation is allowed. Users of Vegahave no need to study internal representation of data. When developingVega we made several 
hanges in the internal representation of graphsand other data stru
tures and only kernel fun
tions had to be re-written.3. Various fun
tors transform obje
ts from one data stru
ture to anotherone. For instan
e, the forgetful fun
tor Graph[net Network℄ forgets thevalues on the edges of a network net and returns the underlying graph.5



4. The Format feature of Mathemati
a makes obje
ts user friendly sin
e theyare displayed automati
ally during the intera
tive session. For ea
h stru
-ture there exists a default drawing routine whi
h is used by Format.5. There exist fun
tions whi
h enable the user to export the �gures of graphsand other stru
tures as short En
apsulated PostS
ript �les.6. Do
umentation is extra
ted in a form of interlinked HTML �les and isupdated after new version is released.Sin
e many of these stru
tures (networks, automata, posets, mole
ules) arenaturally 
onne
ted to graphs, the problem of their visualization 
an be redu
edto the problem dis
ussed in the previous se
tion.In the 
ase of 
on�gurations, the algorithm from [1℄ is used. For (v3) 
on�g-urations it produ
es a representation of the stru
ture in the plane using at mostone 
urved line whi
h re
e
ts a well known result obtained by Steinitz [14℄.In the remainder of the se
tion we give a des
ription of data stru
tures whi
hare used to represent 
ertain mathemati
al stru
tures in Vega. Of 
ourse, theavailable spa
e does not allow us to present the subje
t in its full range. Fordetails, the reader is invited to read the Vega Manual pages on the Internet [8℄.3.1 Representation of mapsData stru
ture: MapGraph[f# of verti
es, # of edges, # of fa
esg, edges,fa
es, 
oordinates℄Example: Dode
ahedron.

3.2 Representation of networksData stru
ture: Network[weighted edges, 
oordinates℄Example: 6
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Network[{{1,2,1.1},{1,3,2.7},{1,4,7.5},{2,5,1},{2,6,0.2},{3,9,3},{3,7,5.5},{4,8,3.3},{5,9,1.1},{6,10,4},{7,10,1},{8,10,2.9},{8,11,6.25},{9,11,4},{10,11,7}},{{0,0},{1,1},{1,0},{1,-1},{2,2},{2,1},{2,0},{2,-1},{3,1},{3,0},{4,0}}℄3.3 Representation of 
on�gurationsData stru
ture: Configuration[list of lines, possible additional information(proje
tive, aÆne 
oordinates, proje
tion matrix, et
.)℄Example: Pappus 
on�guration.
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Configuration[{{1,2,7},{3,4,7},{5,6,7},{1,6,8},{2,3,8},{4,5,8},{1,4,9},{3,6,9},{2,5,9}},PrMatrix->{{0.17,0.5,0.55},{0.66,0.11,0.92},{1.14,0.87,0.6}},Coordinates->{{0.37,0.,0.93},{-0.27,-0.67,-0.69},{-0.28,-0.68,0.68},{0.24,-0.78,-0.58},{0.29,-0.96,0},{1.,0,0},{0,1.,0},{0,0,1.},{0.58,-0.58,0.58}}℄3.4 Representation of automataData stru
ture: Automaton[DFA/NDFA, list of states, list of transitions,initial state, list of �nal states, alphabet, 
oordinates℄7



Example: Automaton re
ognizing a language of strings over fa; bg endingwith aba.
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Automaton[DFA,{0,1,2,3},{{{"b",1},{"a",2}},{{"b",3},{"a",2}},{{"b",1},{"a",4}},{{"b",1},{"a",2}}},1,{4},{"a","b"},{{0,0},{1,0},{1.5,-1},{2,1}}℄3.5 Representation of Markov 
hainsData stru
ture: MarkovChain[list of transition triples, 
oordinates℄Example: A walk on a 
y
le.

MarkovChain[{{1,2,1/2},{1,5,1/2},{2,3,1/2},{2,1,1/2},{3,4,1/2},{3,2,1/2},{4,5,1/2},{4,3,1/2},{5,1,1/2},{5,4,1/2}},{{0.31,0.95},{-0.81,0.59},{-0.81,-0.59},{0.31,-0.95},{1.,0}}℄3.6 Representation of posetsData stru
ture: Poset[poset adja
en
ies, 
oordinates, labels℄Example: The latti
e of partitions of the number 6.
8



{6}

{5, 1} {4, 2} {3, 3}

{4, 1, 1} {3, 2, 1} {2, 2, 2}

{3, 1, 1, 1} {2, 2, 1, 1}

{2, 1, 1, 1, 1}

{1, 1, 1, 1, 1, 1}

Poset[{{},{1},{1},{1},{3,2},{4,3,2},{3},{6,5},{7,6,5},{9,8},{10}},{{2/3,1/7},{1/3,2/7},{2/3,2/7},{1,2/7},{1/3,3/7},{2/3,3/7},{1,3/7},{1/2,4/7},{5/6,4/7},{2/3,5/7},{2/3,6/7}},{{6},{5,1},{4,2},{3,3},{4,1,1},{3,2,1},{2,2,2},{3,1,1,1},{2,2,1,1},{2,1,1,1,1},{1,1,1,1,1,1}}℄3.7 Representation of mole
ulesData stru
ture: Mole
ule[Graph obje
t, labels℄Example: Ethane.
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H
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H

Mole
ule[Graph[{{2,3,4,5},{1},{1},{1},{1,6,7,8},{5},{5},{5}},{{0.78,0.80},{0.65,1.05},{0.53,0.78},{0.70,0.55},{1.25,0.82},{1.32,1.07},{1.37,0.58},{1.52,0.85}}℄,{"C","H","H","H","C","H","H","H"}℄3.8 Representation of knotsData stru
ture: ComputedKnot[list of x and y 
oordinates and the tangentangle in degrees for every 
rossing or auxiliary point, list determiningbridges and tunnels, list of labels together with their 
oordinates℄Example:
9



ComputedKnot[{{{0.00,0.78,-157.},{-0.27,0.53,-127.},{-0.60,-0.02,-113.},{-0.68,-0.39,-83.3},{-0.5,-0.87,-22.},{0.5,-0.87,22.},{0.68,-0.39,83.2},{0.56,-0.03,113.},{0.28,0.53,127.},{0.00,0.78,157.},{-0.5,0.86603,-142.},{-1.,0.,-98.},{-0.68,-0.39,-36.8},{-0.33,-0.50,-6.83},{0.32,-0.51,6.53},{0.68,-0.39,36.7},{1.,0.,98.},{0.5,0.87,142.}}},{{1,0,0,-1,0,0,1,0,0,-1,0,0,1,0,0,-1,0,0}},{{1,1,{0.00,0.78}},{6,2,{-0.68,-0.39}},{11,3,{0.68,-0.39}}}℄Referen
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 Graph Theory, Springer, New York,2001.[5℄ T. Kamada and S. Kawai, An algorithm for drawing general undire
tedgraphs, Inform. Pro
ess. Lett. 31 (1989) 7{15.[6℄ B. M
Kay, Nauty, see http://
s.anu.edu.au/~bdm/nauty/.[7℄ B. M
Kay, Pra
ti
al Graph Isomorphism, Congressus Numerantium 30(1981) 45{87.[8℄ T. Pisanski & 
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