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Abstract

We consider planar lattice walks that start from a prescribed position,
take their steps in a given finite subset of 77, and always stay in the
quadrant z > 0,y > 0. We first give a criterion which guarantees that
the length generating function of these walks is D-finite, that is, satisfies
a linear differential equation with polynomial coefficients. This criterion
applies, among others, to the ordinary square lattice walks. Then, we
prove that walks that start from (1, 1), take their stepsin {(2, —1), (—1,2)}
and stay in the first quadrant have a non-D-finite generating function. Our
proof relies on a functional equation satisfied by this generating function,
and on elementary complex analysis.

1 Introduction

The enumeration of lattice walks is one of the most venerable topics in enumera-
tive combinatorics, which has numerous applications in probabilities [12, 22, 34].
These walks take their steps in a finite subset & of Z¢, and might be constrained
in various ways. One can only cite a small percentage of the relevant litterature,
which dates back at least to the next-to-last century [1, 11, 14, 19, 27, 28]. Many
recent publications show that the topic is still active [4, 6, 8, 16, 17, 29, 30].
After the solution of many explicit problems, certain patterns have emerged,
and a more recent trend consists in developing methods that are valid for generic
sets of steps. Special attention is being paid to the nature of the generating
function of the walks under consideration. For instance, the generating function
for unconstrained walks on the line Z is rational, while the generating function
for walks constrained to stay in the half-line N is always algebraic [3]. This
result has often been described in terms of partially directed 2-dimensional walks
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confined in a quadrant (or generalized Dyck walks [10, 15, 20, 21]), but is,
essentially, of a 1-dimensional nature.

Similar questions can be addressed for real 2-dimensional walks. Again,
the generating function for unconstrained walks starting from a given point is
clearly rational. Moreover, the argument used for 1-dimensional walks confined
in N can be recycled to prove that the generating function for the walks that
stay in the half-plane z > 0 is always algebraic. What about doubly-restricted
walks, that is, walks that are confined in the quadrant = > 0,y > 0?7 It would
be satisfactory if the hierarchy unconstrained walks / mono-constrained walks /
bi-constrained walks could match the classical hierarchy of generating functions:
rational series, algebraic series, D-finite series! (also called holonomic series). A
rapid inspection of the most standard cases only corroborates this hope. For
instance, the generating function for walks on the square lattice (with North,
East, South and West steps) that start from the origin and stay in the first
quadrant is

5 o) ()™= 2 (ior) Ggen )

which is a D-finite series. The first expression comes from the fact that these
walks are shuffles of two prefixes of Dyck walks, and the Chu-Vandermonde
identity transforms it into the second simpler expression.

Figure 1: A walk on the diagonal square lattice confined in the first quadrant.

The case of the diagonal square lattice, where the steps are North-East,
South-East, North-West and South-West (Figure 1) is even simpler: by project-
ing the walks on the z- and y-axes, we obtain two decoupled prefixes of Dyck

LA series F(t) is D-finite if it satisfies a linear differential equation with polynomial coeffi-
cients in t.



paths, so that the generating function for walks in the first quadrant is now

2 (1) ™

another D-finite series. In both cases, the number of n-step walks can be shown
to grow asymptotically like 4" /n, which prevents the corresponding generating
function from being algebraic (see [13] for the possible asymptotic behaviours
of coefficients of algebraic series).

In Section 2 of this paper, we shall generalize this result by proving that, if
the set of steps & is symmetric with respect to the z-axis and satisfies a small
height variation condition, then the generating function for walks with steps
in &, starting from any given point (g, jo), is D-finite. This result covers the
above two cases.

However, and most importantly, we shall also prove in Section 3 that this
holonomy result does not hold for any set of steps: walks that start from (1, 1),
take their steps in & = {(2,—1),(—1,2)} and always stay in the first quadrant
have a non-D-finite generating function. The central point of our proof is the
study of a series G(z), defined by an equation of the form

G(z) + G(E(x) = A=),

where £(x) and A(z) are explicit algebraic series in 2. We consider the solution
G (z) to this equation as a function of a complex variable z, and prove that it has
infinitely many singularities, which prevents it from being D-finite. Hence our
proof is based on complex analysis. To our knowledge, there is no classification of
the solutions to this type of equation. In some very specific cases (like £(x) = zP
or £(x) = cx) some hypertranscendence results®> have been obtained, either by
some ad hoc methods [18, 26, 31], or via general results about “very” lacunary
series [25].

These two sections raise the question of a classification of the sets & ac-
cording to the nature of the generating function for walks in a quadrant
that take their steps in &. Let us mention that some sets of steps, like
6 = {(1,1),(0,-1),(-1,0)} yield, for non-trivial reasons, algebraic generat-
ing functions [5, 14, 19, 29].

Finally, in Section 4, we say a few words about the closely related topic
of multidimensional linear recurrences with constant coefficients, and prove a
non-holonomy result that was announced (but not proven) in [7].

Let us conclude this introduction with a few more formal definitions on walks
and power series.

Let & be a finite subset of Z2. A walk with steps in & is a finite sequence
w = (wo, w1, . .., wy) of vertices of Z? such that w; — w;_; € & for 1 < i < n.
The number of steps, n, is the length of w. The starting point of w is wg, and its

2A series is hypertranscendental if it does not satisfy any polynomial differential equation
of the type P(z, F(x), F'(x),..., F*)(x)) = 0, where P is a polynomial.



endpoint is w,. The complete generating function for a set A of walks starting
from a given point wyq is the series

Alz,yt) =Y 1" > a;j(n)a'y’,

n>0 i€

where a; j(n) is the number of walks of A that have length n and end at (i, 7).
This series is a formal power series in ¢ whose coefficients are polynomials in
z,y,1/x,1/y. We shall often denote Z = 1/x and § = 1/y. The length generat-
ing function for walks of A is simply

A(t) = Z a(n)t"

n>0

where a(n) is the number of walks of 4 that have length n. Note that A(t) =
A1, 1;¢).

Given a ring L and k indeterminates x1, ..., z, we denote by Ljzy, ..., z]
(resp. L[[x1,...,x¢]]) the ring of polynomials (resp. formal power series) in
x1,...,x with coefficients in L. If L is a field, we denote by L(z1,...,z)
the field of rational functions in x1, ...,z with coefficients in L.

Assume L is a field. A series F' in L{[z1,...,x¢]] is rational if there exist
polynomials P and @ in Ljzy,...,z], with @ # 0, such that QF = P. It is
algebraic (over the field L(zy,...,x)) if there exists a non-trivial polynomial
P with coefficients in L such that P(F,z1,...,z;) = 0. The sum and product
of algebraic series is algebraic.

The series F' is D-finite (or holonomic) if the partial derivatives of F' span a
finite dimensional vector space over the field L(z1,...,z) (this vector space is
a subspace of the fraction field of L[z1,...,zx]]); see [35] for the one-variable
case, and [23, 24] otherwise. In other words, for 1 < i < k, the series F satisfies
a non-trivial partial differential equation of the form

d.

- o'F
> Prig—r =0,
£=0 i

where P ; is a polynomial in the z;. Any algebraic series is holonomic. The sum
and product of two holonomic series is still holonomic. The specializations of
an holonomic series (obtained by giving values from LL to some of the variables)
are holonomic, if well-defined. Moreover, if F is an algebraic series and G(t) is
a holonomic series of one variable, then the substitution G(F') (if well-defined)
is holonomic [24, Prop. 2.3].

2 A sufficient condition for holonomy
Let & be a finite subset of Z*. We say that & is symmetric with respect to the

zr-axis if

(i,5) € & = (i, —j) € &.



We say that & has small height variation if
(i,j) €6 = [j| < 1.

The usual square lattice steps satisfy these two conditions. So do the steps of
the diagonal square lattice (Figure 1).

Theorem 1 Let & be a finite subset of Z* that is symmetric with respect to
the z-azis and has small height variations. Let (io,jo) € N>. Then the length
generating function for walks that start from (io, jo), take their steps in & and
stay in the first quadrant is D-finite.

We shall need the following preliminary result, which does not require any prop-
erty on G.

Proposition 2 Let & be a finite subset of 7°. Let (ig,jo) € N x Z. Then the
complete generating function for walks that start from (io,jo), take their steps
in & and stay in the right half-plane x > 0 is algebraic.

Proof. The problem being invariant by any vertical translation, we can assume
jo = 0. Let us also assume that ¢g = 0. The argument is easily adapted when
19 > 0.

Projecting the walks on the z-axis reduces the problem to the enumeration
of 1-dimensional walks on the half-line N, starting from 0, in which each step of
size ¢ is weighted by a Laurent polynomial in y:

> v

J:(,5) €S

The weight of a walk is taken to be the product of the weights of its steps. We
can now invoke some 1-dimensional results, like those of [3], and conclude that
the complete generating function for walks in the right-half plane is algebraic
over Q(z,y,t).

]

Proof of Theorem 1. Let Q denote the set of walks that start from (io, jo),
take their steps in & and stay in the first quadrant. We shall prove that walks
of Q are, roughly speaking, “equivalent to” walks in the right half-plane ending
on the z-axis.

We claim that it suffices to prove that the subset of Q consisting of the walks
that hit the z-axis at some point has a D-finite generating function. Indeed,
the remaining walks are, by a vertical translation, in one-to-one correspondence
with walks that start from (ig, jo — k), for some k € [1,jo], stay in the first
quadrant and hit the z-axis.

Let us first focus on the set ng) of walks in the first quadrant that start
from (ig, jo), hit the z-axis and end at an even ordinate. These walks are in
bijection with the set Hg of walks that start from (ig,jo), stay in the right
half-plane and end on the z-axis. This bijection, illustrated by Figure 2, is a



mere adaptation of a classical 1-dimensional correspondence, which establishes
that Dyck prefixes ending at an even ordinate are equivalent to bilateral Dyck
walks (see the Catalan factorisation in [9].) Starting from a walk w of o,
ending at level 2k, we denote by s1,..., sy the steps that follow the last visit of
w to a point of level (ordinate) 0,...,k — 1. Replacing these k steps by their
symmetric steps with respect to the z-axis yields a walk w that belongs to Hy.
The ordinate of the lowest point(s) visited by w is —k. Conversely, the steps
51,...,5; of w that we have to flip back to recover w are the first steps of w
that lead to level —j, for 1 < j < k.

A

Figure 2: The bijection between some walks in the quadrant and walks in the
right half-plane ending on the z-axis.

Let H(z,y;t) be the complete generating function for walks in the right half-
plane. The length generating function for walks of Hq is obtained by extracting
the coefficient of y° in the generating function H(1,y;t). Extracting the constant
term of a D-finite series is known to give another D-finite series [23]: thus the
generating function for walks of Hg, and hence of ng), is D-finite.

A similar argument holds for the set QE,O) of walks in the first quadrant that
start from (ig, jo), hit the z-axis and end at an odd ordinate: they are in one-
to-one correspondence with the set H_; of walks that start from (ig, jo), stay
in the right half-plane and end at level —1. The generating function for walks
of H_1 is the coefficient of y° in yH(1,y;t), and hence is D-finite. Given that
the sum of D-finite series is D-finite, this concludes the proof of Theorem 1.

]



3 The knight walk is not holonomic

3.1 The main result

We study walks that start at (1, 1), take their steps in {(—1,2), (2, —1)} and stay
in the first quadrant. We call them knight walks, since their steps correspond
to two of the knight moves on a chessboard (Figure 3). We note that a walk
ending at (4,7) has always ¢ + j — 2 steps: hence the information contained in
the complete generating function is actually already contained in the following

bivariate series:
Q(xay) = E QL] 1712/]:
120,720

where Q; ; denotes the number of knight walks ending at (7, j).

Figure 3: A knight walk.

The coefficients @; ; satisfy the following recurrence relation:

0 ifi<Oorj<Oo,
Qi = 1 ifi=j5=1, (1)
Qi+1,j—2 + Qi—2,j+1  otherwise.

This recurrence allows us to compute the numbers @; ; inductively, for instance
diagonal by diagonal. The first few values are given in Table 1 below, in which
the zero entries are left out. The non-zero entries lie on the lines i = j mod 3.
Applying the transformation (i, 5) — ((2¢+j)/3, (i +25)/3) shows that Q; ;
is also the number of walks made of North and East steps, that start from (1, 1),
end at ((2¢ +7)/3, (i + 2j)/3) and always stay above the line 2y = z and below
the line 2z = y (see Figure 4). Ignoring these two conditions gives the following

simple bound:
i+7—2
Qui < ((2i +j- 3)/3>



J

T

12 | 24

11 108

10 24 312

916 84 720

8 24 204 1440

7 6 60 408

6 | 2 18 120 720

5 6 36 204

4 2 12 60 312

3 11 4 18 84

2 2 6 24 108

1 1 2 6 24

0 1 2 6 24
0 1 2 3 4 5 6 7 8 9 10 11 12 — =

Table 1: The number @; ; of knight walks ending at (4, 5).

In particular,
3i—2
QSi,OS(i_1>- (2)

This bound could be sharpened by counting walks that stay above the line
2y = z (see e.g. [11] or [7, Example 4]), but the above bound will be enough for
our purpose.

By summing the recurrence relation we obtain:

Qz,y) = Y Qua'y’ = ay+ Y (Qit1j—2 + Qiozj1)z'y’
i,j >0 ,j >0

= ay+y’/x(Qz,y) — Q(0,y)) + 2% /y(Q(z,y) — Q(x,0)),

that is
(zy —2° —y*)Q(z,y) = 2°y* — G(z) — G(y) (3)
where
G(z) =2° Y Qior' = 2°Q(x,0) (4)
i>0

counts knight walks ending on the z-axis. (We have used the symmetry of the
problem in z and y.) Note that the length generating function for all knight
walks is t=2Q(t,t). The above equation, combined with the elementary proper-
ties of D-finite series, imply that the following three statements are equivalent:

— the bivariate generating function Q(z,y) for knight walks is D-finite,

— the generating function Q(z,0) for knight walks ending on the z-axis is
D-finite,

— the length generating function ¢t=2Q(t,t) for knight walks is D-finite.



Figure 4: Another description of the knight walk.

Our main result asserts that none of these statements hold.

Theorem 3 The length generating function for walks that start from (1,1), take
their steps in {(—1,2),(2,—1)} and always stay in the first quadrant (knight
walks) is not D-finite. Nor is the generating function for knight walks that end
on the x-azis.

Looking at Table 1, one might still have some hope that the numbers @); ; are
not so bad. In particular, they seem to have small prime factors. This pattern
actually does not go on, and, in case there would still be a doubt, the following
proposition reinforces the non-holonomic character of these numbers.

Proposition 4 The length generating function for knight walks ending on the
main diagonal © =y is not D-finite.

3.2 The kernel method

The so-called kernel method solves completely the functional equation (3). This
method has been around since, at least, the 70’s, and is currently the subject
of a certain rebirth (see the references in [2, 3, 7]).

Applied to our equation, this method consists in coupling the variables x
and y so as to cancel the kernel xy — x> — y3; this yields the missing information
about the series G(z). More precisely, let £(z) be the unique formal power series
in z satisfying

-2 - =0.

The Lagrange inversion formula, applied to {(x)/z, provides an explicit expres-



sion for £(z):

=2 % g () =06 )

Replacing y by &(z) in (3) gives a functional equation that defines the power
series G(x):

G(z) + G(¢(x)) = 2%¢(2)*. (6)

Indeed we obtain, after iterating this equation infinitely many times:

G(a) = Y (1) (€D @) @)

i>0

where () = £o---0¢ is the ith iterate of £. Note that £ (z) = O(z?"), so that
the sum is convergent in the ring C[[z]]. Replacing G(x) by the above explicit
value in (3) would give an expression for Q(z,y).

However, we shall not exploit these expressions, but rather the functional
equation (6), to prove that G(x), hence Q(z,y), is not D-finite. Our proof will
be of an analytic nature. The idea is to consider G(z) as a function of a complex
variable z and study its singularities. Using functional equations like (6), we
shall build new singularities of G from old ones — and end up with infinitely
many singularities, thus proving that G’ cannot be holonomic.

However, even though (6) defines G(z) uniquely, this equation itself is not
sufficient for our purpose: we shall introduce the other two roots & (z) and
& (z) of the kernel, and the corresponding analogues of (6), to obtain enough
singularities.

3.3 The roots of 2° + y* = zy

As a polynomial in y, the kernel zy —z® —y® has three roots. Only one of them,
given by (5), is a power series in z. We shall denote it, from now on, by &p:

Golz) = 2°+2°+32% +122" + 552 +2732' 7 + - -

The other two roots are power series in 1/z, and their expansion can be computed
inductively:

2 3, 5 105 g
3, 5 105 g
52(.’17) = - .’17—?‘{‘517\/5—?4‘58.’17\/5—

Of course, &(z) is derived from & (z) by replacing v/z by —+/z. Guided by the
above expressions, let us write

&i(z) = +Vz(z) - ¢(z) (7)
&) = —Vap(z) - ¢(z)

10



where ¢ and ¢ are formal power series in . As the three roots sum to zero, one
has

¢(z) = &o(x)/2. (8)

In order to compute the coefficients of 3, we shall use again the Lagrange
inversion formula (LIF). Let x(z) be defined by

&i(2) = Va(l - x(@)). (9)

Then
v
X =77 N> v
(1=x)(2-x)
so that the LIF gives, for n > 1,

0y = [ ]y () = 1 n_1i<n+k—1> <2n—k—2>. 10)

n2n 2k k n—1
k=0
Using the package EKHAD [33], we prove that the sequence a,, satisfies, forn > 1,

33n+1)(3n—1)
An+2)n+1) ™

Ap42 =

When n is odd, say n = 2m + 1, we derive from (9) and (7) that the coefficient
ay is [2°™+2]¢(z), and the above recursion yields a,, = (*7")/(4m +2). We thus
recover (8). Similarly, when n = 2m, the coefficient a,, is —[z*™]¢)(z) and the
above recursion now gives

~ m!(6m)! "
Ylo) = - mzm (6m — 1)(2m)12(3m)! 16™

Let us summarize the results we have obtained.

Lemma 5 Let £ and ¢ be the following power series in x:

9 3™ (3m

& = x%?m-{-l(m)’
. m!(6m)! 3™
Vo= - (6m — 1)(2m)2(3m)! 16m

m>0
Then the three roots of x> + y> = zy are
bo(z) = ¢

& (x) Ve —¢/2
L) = —Vryp-E£/2.

Both &(z) and v(x) have radius of convergence z. = 4'/3/3.

11



The last statement is obtained using the Stirling formula. Note that one also
has the following closed form expressions:

_ r . [arcsin ((32)%/2/2)
&) = 2\/; sm( 3 ),
b@) = cos (arcsin ((2@3/?/?)) |

We shall now consider the &;(z) as functions of a complex variable . We
choose a determination of the square root that coincides with the usual deter-
mination on R

Vreit = \/;eieﬂ for —T <O <.

Figure 5 shows the (real) values of the functions ¢; for real values of . When
x is positive, the plots show, from bottom to top, & (z), & (x) and & (z). When
x is negative, the only real branch is &.

0.8 —0.6 -04 =02
.

Figure 5: The real values of §;(z) for a real z.

The implicit function theorem implies that the singularities of the functions
&; are to be found among the complex numbers z such that the pair (z,y) =
(z,&(x)) satisfies 3y? = = (and, of course, z® + ¢ = zy); that is,

(z,y) € {(0,0), (zc,yec), (jxcaj2yc)a (j2xcajy6)} (11)

where . = 22/3/3, y. = 21/3/3 and j = exp(2i7/3). A more detailed investiga-
tion gives the following result.

Lemma 6 The singularities of the functions &; are given by:

Sing(éo) = {we, jwe, j*ac}, Sing(§) ={0,2c} and  Sing(&) = {0, jac, jzc}.

12



In particular, & is not singular at z., as suggested by Figure 5. All the above
singularities are of the square root type.

Proof. For each of the values of x given by (11), we first have to compute the
values &;(z), 0 < i < 2, in order to determine which pairs (z,&;(z)) are actually
critical, and then, to check the existence and nature of the singularity.

At x = 0, all the & (z) are zero. The explicit expansion of Lemma 5, com-
bined with the fact that ¢ and £ have a positive radius of convergence, shows
that only & and & are singular — their singularity being obviously of a square
root type.

When x = z., factoring the polynomial 2® 4+ y® — 2y shows that the multiset
{o(z¢), &1 (xe), &2(x)} equals {ye,ye, —2y.}. The functions &;(z) are real and
continuous on [0, z.], and the expansions of Lemma 5 show that &y(z) and & ()
are positive as ¢ — 01, while & (z) is negative. As the &; can only vanish at 0,
this sign pattern must go on until z., so that

o(we) = &i(ze) = e and  &a(we) = —2y.. (12)

In view of (11), xz. cannot be a singularity of &. Now a local expansion of
23 +y® — zy around (z.,y.) shows that as x approaches z_,

1
Ye F %\/xc —z(1+0(1)), (13)

which confirms that the singularity of & and &; at x. is of the square root type.
The values (12) imply in particular that

Ve dj(xC) = 3yc/2 = 2_2/3'
Using this result, the fact that ) and ¢ are essentially functions of 2%, and the

values
Vi==i> and Vj?=—j,

fo,1(x) =

we now compute

fo(jl“c) = j2yc 60(j2xc) = jyc
fl(jxc) = _2j2yc fl(j2xc) = _ijc
Ea(jze) = j2yc 52(.7.23%) = JYe

so that & cannot be singular at jz. or j2z.. Finally, local expansions of 2 +
y> — xy confirm as above the existence of square roots singularities of & and &»
at jz. and j2z..

]

Each of the functions & has a unique analytic continuation on any sim-
ply connected domain avoiding Sing(¢;), for instance the domain obtained by
removing from C the four half-lines of Figure 6.

Observe that the series & and & can also be substituted for y in the func-
tional equation (3); thus for ¢ € {0,1, 2}, the following equation holds

G(z) + G(&i(z)) = 2%&(2)?, (14)

13



Figure 6: A domain on which all the functions &; are holomorphic.

at least as an identity between power series.
We end this subsection with a lemma that will be useful to build large
singularities from small ones.

Lemma 7 Let x € C, x # 0. Then one of the roots of 2 + y* — zy = 0 has
modulus larger than |z|.

Proof. Let yg,y1,y> denote the three roots, and assume none of then has

modulus larger than |z|. The relation yoy1y2 = —x3 forces |yo| = |y1| = |y2| =
|z|. Then, the relation yo + y1 + y2 = 0 implies {y1,vy2} = {jyo,j>vo}. Finally,
the relation yoy1 + yoy2 + y1y2 = —z yields z = 0. =

3.4 The series G(x) is not D-finite
We now turn our attention to the series G(z) defined by (4).

Proposition 8 The series G(x) has radius of convergence x. = 4'/3/3. It is
singular at ., with

G(z) = A—By1—2z/z.(1+0(1)),

where A and B are non-zero real numbers.

Proof. We start from the functional equation defining G
G(z) + G(& () = 2%&(2)”.

Recall that G(z) and &(z) have nonnegative coefficients (G(z) counts walks,
and & (z) = £(z) is given explicitly by (5)). Hence G(&(z)) and z?&(z)? also
have nonnegative coefficients. The radius of convergence of & (z) being z., the
series G(z) and G(&o(x)) have radius at least z.. The fact that G(z) has radius
at least x. can also be directly derived from the upper bound (2).

For |z| < x., one has |[&(z)| < & () = y., and y, is smaller than x.. This
means that the above functional equation now holds as an identity between

14



analytic functions of z in the disk |z| < z.. As z approaches z.. inside this disk,
a local expansion gives, thanks to (13),

G(:L‘) = wgyf - G(yc) - —F7=VITc— T (2373?/6 - Gl(yc)) + O(Z‘C - :L‘)

The upper bound (2) yields

3i— 2 .
! < 3(z+1)_
6 <X (327

i>1

This sum can be evaluated numerically, and is found to be smaller than 0.16.
Comparing with 2z2y. ~ 0.23 gives the announced result.

Observe that (14) now holds as an identity between functions of z, as long
as |z| < z. and |§(z)] < z. (and z ¢ R™ if i = 1 or 2).

Proposition 9 The series G(z) that counts knight walks ending on the x-azis
is mot D-finite.

Proof. Assume G is D-finite. Then, it has a finite number of singularities, and
has a unique analytic continuation on any simply connected domain avoiding
these singularities. For i € {0,1,2}, the series G(§;) are also D-finite (since ¢;
is algebraic). Moreover, by analytic continuation of (14),

G(z) + G(&i(x)) = 2%&(x)? (15)

for all x in any domain where all our functions are analytically defined. Let
us consider the identity (15) for ¢ = 2. As x approaches ., the function G(x)
becomes singular, while & (x) does not: this shows that &(z.) = —2y. is a
singularity of G.

Now let zs be a singularity of G of maximal modulus. According to Lemma 7,
there exists ¢ such that |&;(zs)| > |zs|. By assumption, G(z) is singular at .
But |zs| > 2y. > ., so that x4 is not a singularity of ;. Hence (15) implies that
G is singular at &;(z5). But |;(xs)| > |zs|, which contradicts the maximality of
|2s|-

]

Remarks

1. The only property of D-finite series we have really used is the fact that
these series have finitely many singularities. Hence, what we have actually
proved is that G cannot have finitely many singularities.

2. The principle of the proof can be applied to other functional equations
of the same type. We apply it in the next section to a (minor) variation of the
knight walks.

There remains to prove Proposition 4: the generating function for knight
walks ending on the diagonal is not D-finite.
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Proof of Proposition 4. The length generating function for walks ending on
the diagonal is the coefficient of z° in the series t2Q(tx,t%), where = 1/x.
This series is a power series in ¢t whose coefficients are Laurent polynomials in
z. Let us denote u = #® and @& = 1/u. Then, by Eq. (3),

tt — S(t3u) — S(t?u)

2 =) —
FQ(t, t7) = —— t(u+ 1)

; (16)

where the series S(z) is defined by S(z3) = G(z). Let us convert 1/(1 —t(u+ 1))
in partial fractions of u. We obtain

1 1 < 1 N 1 _1>
I—tlu+a) 1—42 \1—uU(t) 1-—aU(t) ’

where
1—+/1—4¢2
U = - V1= 4
2t
We can now extract the constant term in z from (16):
_ 1 S(t3u) S(t3u)
N20(te. t7) — A0 [0
1PQUrt7) = s (1= W s~ [
1

i (t* = 2S(£U(t))) .

Assume this series is D-finite: then the series D(t) defined by D(t) = S(t3U(t))
is D-finite in ¢ too. Let T'(s) be the unique power series in s such that 7'(0) = 0,
T'(0) =1 and T® — s*T? + s% = 0. Then the fact that D-finite series are stable
by any algebraic substitution tells us that D(T'(s)) = S(T?U(T)) is D-finite.
But T3U(T) = s*, so that S(s*) itself, and hence S(s) and G(s), are D-finite
too, which we have proved to be wrong.

[

4 A link with multidimensional linear recur-
rences with constant coefficients

In [7], we considered d-dimensional sequences of complex numbers, denoted
Gn = Gpn, ns,..ny, defined by recurrence relations of the following form:

an = Z ChUn+h for n > s, (17)
heH
where H = {hy,ha, ..., hy} C Z%is the set of shifts, (Ch)p e are given nonzero

constants, and s € N? is the starting point satisfying s + H C N?. We think of
the h; as having mostly (but not necessarily only) negative coordinates, and of
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the point n as depending on the points n + hy,n + hso, ..., + hy, as far as the
value of a,, is concerned. A given function ¢ specifies the initial conditions:

an =pmn) form>0 n%s. (18)

The convex hull of the set H is assumed not to intersect the first orthant (i.e.,
n > 0). This condition, as shown in [7], guarantees that the numbers a,, can
be computed recursively using (17).

The enumeration of walks in a quadrant fits exactly in this framework, with
d = 3. Indeed, denoting @); ;j(n) the number of walks that start from a given
point (79, Jo), end at (7,) and have length n, we have

1 if (Zyjan) = (i07j070)
ifi<Oorj<Oorn<0

0
Z Qi—n,j—r(n —1) otherwise,
(h,k)ES

Qij(n) =

where G is the set of steps. A translation of the indices i and j transforms this
recursion into one of the above type, with d = 3 and H = {(—h, —k,—1),(h,k) €
S}

The paper [7] mostly dealt with the algebraic nature of the generating func-
tion of the solution of such recurrences, and we started a classification, based
on the apex of the recurrence, defined as the componentwise maximum of the
points in H U {0}. We proved that when the initial conditions have rational
generating functions and the apex is 0, the generating function of the solution is
rational. Next, when the initial conditions have algebraic generating functions
and the apex has at most one positive coordinate, the generating function of
the solution is algebraic.

When the apex has two positive coordinates, and d = 3, our study of walks in
a quadrant shows that the solution might be, or not, D-finite. For 2-dimensional
sequences, the “simplest” example with apex (1,1) was introduced in [32]: For
i,j >0, let

| g2 Fai—2 1 ifd, 5> 2,
G = { 1 otherwise. (19)
This recurrence is obviously closely connected to the knight walk. Again, it
has a unique solution whose terms can be computed inductively. The first few
values are given in the following array.

J

T

61 1 5 7 - .

5(1 1 3 5 10 14

4111 3 4 6 10 -
3(11.2 2 4 5 7
2(112 2 3 3 5
111 111 1 1 1
of(r 111 1 1 1

01 23 4 5 6 —1
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Defining the generating function

Alz,y) = D aia™y 2,

0,j>2

we obtain, by summing the recurrence relation over i,j > 2, the following
functional equation:

(wy —2® —y*)A(z,y) = R(z,y) - F(z) = F(y) (20)
where
R _ 1+y 14z _ il 3
(a:,y)—a:y<1_w+l_y> and F(x)—Zama: =z°A(z,0).

i>2

We have used the symmetry of the problem in ¢ and j. It was first proved in [32]
that F(z) and A(x,y) are irrational. Then, we claimed in [7, p. 74] that they
are even not D-finite, but without giving a proof. The tools developed above
for the knight walk apply perfectly to this problem.

Proposition 10 The series F(z) and A(x,y) are not D-finite.

Proof. The argument is very close to the knight one. The kernel method first
gives

F(z) + F(&i(2)) = R(z, &(2)), (21)

for any of the three roots &; of the kernel.

The only difference with the knight treatment comes from the fact that
R(z,&;(z)) might have — and indeed, has — more singularities than &;. They
can be determined exactly, but we shall only use the following obvious informa-
tion

Sing(R(z,&(z))) C Sing(&)U{1}u{z:2® —z +1=0}. (22)

In particular, all singularities of R(z,&;(x)) have modulus at most 1.33 (an
upper bound for the modulus of the largest root of 23 — z + 1).

We start from Eq. (21), in the case i = 0. As R(z,&(z)) has radius z.,
we find again that the radius of F'(z) is at least x.. Moreover, comparing the
recurrence relations (1) and (19), and the corresponding tables, shows that for
i,j > 2,onehasa;; > Q;—2 j—2. Thisimplies that the radius of F(z) is bounded
from above by the radius of G(x), which was proved to be exactly z.. Hence
F(z) has radius z..

Assume F'(z) is D-finite. As in the proof of Proposition 9, we first construct
large singularities of F' (here, large means larger than 1.33). Let us start from
zo = z. = 4'/3/3 ~ 0.53, which is a singularity of F. As it is not a singularity
of R(z,&(x)), Eq. (21) implies that x; := &(z.) = —2y, ~ —0.84 is singular
for F.

But z; is singular for none of the R(z,&;(z)). Moreover,

{&(21),& (1), Ea(x1)} = {m0, —0.26... £1.02...i}.
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Using the same trick as above, we see that zo & —0.26 — 1.02i is singular for F.
One more step: Among the &(z2), one is z3 ~ 0.92 — 1.02¢, which has
modulus larger than 1.33. As x» is not singular for any of the R(z,&;(x)), the
&i(z2) are singularities of F'. In particular, z3 is singular for F.
We conclude as above, by considering the largest singularity zs of F (in
modulus), showing that one of the &;(z;) is singular for F' and larger than |z|
in modulus.

References

[1] D. André, Solution directe du probléme résolu par M. Bertrand, C. R.
Acad. Sci. Paris 105 (1887) 436-437.

[2] C. Banderier, M. Bousquet-Mélou, A. Denise, D. Gardy, D. Gouyou-
Beauchamps and P. Flajolet, Generating functions for generating trees,
to appear in Discrete Math.

[3] C. Banderier and P. Flajolet, Basic analytic combinatorics of directed lat-
tice paths, to appear in Theoret. Comput. Sci.

[4] E. Barcucci, E. Pergola, R. Pinzani and S. Rinaldi, A bijection for some
paths on the slit plane, Adv. in Appl. Math. 26, no. 2 (2001) 89-96.

[5] M. Bousquet-Mélou, Walks in the quarter plane: Kreweras’ algebraic
model, in preparation.

[6] M. Bousquet-Mélou, Walks on the slit plane: other approaches, Adv. in
Appl. Math. 27, no. 2-3 (2001) 243-288.

[7] M. Bousquet-Mélou and M. Petkovsek, Linear recurrences with constant
coefficients: the multivariate case, Discrete Math. 225 (2000) 51-75.

[8] M. Bousquet-Mélou and G. Schaeffer, Walks on the slit plane, preprint
2000, arXiv:math.C0/0012230. To appear in Probab. Theory Related
Fields.

[9] R. Cori and L. Chottin, Une preuve combinatoire de la rationalité d’une
série génératrice associée aux arbres, RAIRO Inform. Théor. 16, no. 2
(1982) 113-128.

[10] P. Duchon, On the enumeration and generation of generalized Dyck words,
Discrete Math. 225 (2000) 121-135.

[11] A. Dvoretzky and Th. Motzkin, A problem of arrangements, Duke Math.
J. 14 (1947) 305-313.

[12] W. Feller, An Introduction to Probability Theory and its Applications,
Vol.1, John Wiley and Sons, New York, 1950.

19



[13] P. Flajolet, Analytic models and ambiguity of context-free languages, The-
oret. Comput. Sci. 49 (1987) 283-309.

[14] I. M. Gessel, A probabilistic method for lattice path enumeration, J. Statist.
Plann. Infererence 14 (1986) 49-58.

[15] I. M. Gessel, A factorization for formal Laurent series and lattice path
enumeration, J. Combin. Theory. Ser. A 28 (1980) 321-337.

[16] I. M. Gessel and D. Zeilberger, Random walk in a Weyl chamber, Proc.
Amer. Math. Soc. 115 (1992) 27-31.

[17] D. J. Grabiner, Random walk in an alcove of an affine Weyl group, and
non-colliding random walks on an interval, Proceedings of FPSAC 2001,
Tempe, Arizona, pp. 217-225.

[18] K. Ishizaki, Hypertranscendency of meromorphic solutions of a linear func-
tional equation, Aequationes Math. 56 (1998) 271-283.

[19] G. Kreweras, Sur une classe de problemes liés au treillis des partitions
d’entiers, Cahiers du B.U.R.O. 6 (1965) 5-105.

[20] J. Labelle, Langages de Dyck généralisés, Ann. Sci. Math. Québec 17 (1993)
53-64.

[21] J. Labelle and Y.-N. Yeh, Generalized Dyck paths, Discrete Math. 82
(1990) 1-6.

[22] G. F. Lawler, Intersections of Random Walks, Probabilities and its appli-
cations, Birkhauser Boston, 1991.

[23] L. Lipshitz, The diagonal of a D-finite power series is D-finite, J. Algebra
113 (1988) 373-378.

[24] L. Lipshitz, D-finite power series, J. Algebra 122 (1989) 353-373.

[25] L. Lipshitz and L. A. Rubel, A gap theorem for power series solutions of
algebraic differential equations, Amer. J. Math. 108, no. 2 (1986) 1193-
1213.

[26] J. H. Loxton and A. J. van der Poorten, A class of hypertranscendental
functions, Aequationes Math. 16 (1977) 93-106.

[27] S. G. Mohanty, Lattice Path Counting and Applications, Academic Press,
1979.

[28] T. V. Narayana, A partial order and its applications to probability theory,
Sankhya 21 (1959) 91-98.

[29] H. Niederhausen, The ballot problem with three candidates, Furop. J.
Combin. 4 (1983) 161-167.

20



[30] H. Niederhausen, Lattice paths between diagonal boundaries, Electronic J.
Combinatorics 5 (1998) R30.

[31] K. Nishioka, Mahler Functions and Transcendence, Lect. Notes Math.
1631, Springer-Verlag, Berlin, Heidelberg, 1996.

[32] M. Petkovsek, The irrational chess knight, in: Proceedings of the 10t" Con-
ference “Formal Power Series and Algebraic Combinatorics”, pp. 513-522,
Toronto, June 1998.

[33] M. Petkovsek, H. S. Wilf, and D. Zeilberger, A = B, A. K. Peters,
Wellesley, Massachusetts, 1996.

[34] F. Spitzer, Principles of Random Walk, The University Series in Higher
Mathematics, Van Nostrand Company, Princeton, 1964.

[35] R. P. Stanley, Differentiably finite power series, Furop. J. Combin. 1 (1980)
175-188.

21



