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Walks con�ned in a quadrant are not alwaysD-�niteMireille Bousquet-M�elou�CNRS, LaBRI, Universit�e Bordeaux 1351 cours de la Lib�eration33405 Talence Cedex, Francemireille.bousquet@labri.fr Marko Petkov�sekyDepartment of MathematicsUniversity of LjubljanaJadranska 19, SI-1000 Ljubljana, SloveniaMarko.Petkovsek@fmf.uni-lj.siAbstractWe consider planar lattice walks that start from a prescribed position,take their steps in a given �nite subset of Z2, and always stay in thequadrant x � 0; y � 0. We �rst give a criterion which guarantees thatthe length generating function of these walks is D-�nite, that is, satis�esa linear di�erential equation with polynomial coe�cients. This criterionapplies, among others, to the ordinary square lattice walks. Then, weprove that walks that start from (1; 1), take their steps in f(2;�1); (�1; 2)gand stay in the �rst quadrant have a non-D-�nite generating function. Ourproof relies on a functional equation satis�ed by this generating function,and on elementary complex analysis.1 IntroductionThe enumeration of lattice walks is one of the most venerable topics in enumera-tive combinatorics, which has numerous applications in probabilities [12, 22, 34].These walks take their steps in a �nite subset S of Zd, and might be constrainedin various ways. One can only cite a small percentage of the relevant litterature,which dates back at least to the next-to-last century [1, 11, 14, 19, 27, 28]. Manyrecent publications show that the topic is still active [4, 6, 8, 16, 17, 29, 30].After the solution of many explicit problems, certain patterns have emerged,and a more recent trend consists in developing methods that are valid for genericsets of steps. Special attention is being paid to the nature of the generatingfunction of the walks under consideration. For instance, the generating functionfor unconstrained walks on the line Z is rational, while the generating functionfor walks constrained to stay in the half-line N is always algebraic [3]. Thisresult has often been described in terms of partially directed 2-dimensional walks�Partially supported by the INRIA, via the cooperative research action Alcophys.yPartially supported by MZT RS under grant P0-0511-0101.1



con�ned in a quadrant (or generalized Dyck walks [10, 15, 20, 21]), but is,essentially, of a 1-dimensional nature.Similar questions can be addressed for real 2-dimensional walks. Again,the generating function for unconstrained walks starting from a given point isclearly rational. Moreover, the argument used for 1-dimensional walks con�nedin N can be recycled to prove that the generating function for the walks thatstay in the half-plane x � 0 is always algebraic. What about doubly-restrictedwalks, that is, walks that are con�ned in the quadrant x � 0; y � 0? It wouldbe satisfactory if the hierarchy unconstrained walks / mono-constrained walks /bi-constrained walks could match the classical hierarchy of generating functions:rational series, algebraic series, D-�nite series1 (also called holonomic series). Arapid inspection of the most standard cases only corroborates this hope. Forinstance, the generating function for walks on the square lattice (with North,East, South and West steps) that start from the origin and stay in the �rstquadrant isXm;n�0�m+ nm �� mbm=2c�� nbn=2c�tm+n =Xn�0� nbn=2c��n+ 1dn=2e�tn;which is a D-�nite series. The �rst expression comes from the fact that thesewalks are shu�es of two pre�xes of Dyck walks, and the Chu-Vandermondeidentity transforms it into the second simpler expression.
y

xFigure 1: A walk on the diagonal square lattice con�ned in the �rst quadrant.The case of the diagonal square lattice, where the steps are North-East,South-East, North-West and South-West (Figure 1) is even simpler: by project-ing the walks on the x- and y-axes, we obtain two decoupled pre�xes of Dyck1A series F (t) is D-�nite if it satis�es a linear di�erential equation with polynomial coe�-cients in t. 2



paths, so that the generating function for walks in the �rst quadrant is nowXn�0� nbn=2c�2tn;another D-�nite series. In both cases, the number of n-step walks can be shownto grow asymptotically like 4n=n, which prevents the corresponding generatingfunction from being algebraic (see [13] for the possible asymptotic behavioursof coe�cients of algebraic series).In Section 2 of this paper, we shall generalize this result by proving that, ifthe set of steps S is symmetric with respect to the x-axis and satis�es a smallheight variation condition, then the generating function for walks with stepsin S, starting from any given point (i0; j0), is D-�nite. This result covers theabove two cases.However, and most importantly, we shall also prove in Section 3 that thisholonomy result does not hold for any set of steps: walks that start from (1; 1),take their steps in S = f(2;�1); (�1; 2)g and always stay in the �rst quadranthave a non-D-�nite generating function. The central point of our proof is thestudy of a series G(x), de�ned by an equation of the formG(x) +G(�(x)) = A(x);where �(x) and A(x) are explicit algebraic series in x. We consider the solutionG(x) to this equation as a function of a complex variable x, and prove that it hasin�nitely many singularities , which prevents it from being D-�nite. Hence ourproof is based on complex analysis. To our knowledge, there is no classi�cation ofthe solutions to this type of equation. In some very speci�c cases (like �(x) = xpor �(x) = cx) some hypertranscendence results2 have been obtained, either bysome ad hoc methods [18, 26, 31], or via general results about \very" lacunaryseries [25].These two sections raise the question of a classi�cation of the sets S ac-cording to the nature of the generating function for walks in a quadrantthat take their steps in S. Let us mention that some sets of steps, likeS = f(1; 1); (0;�1); (�1; 0)g yield, for non-trivial reasons, algebraic generat-ing functions [5, 14, 19, 29].Finally, in Section 4, we say a few words about the closely related topicof multidimensional linear recurrences with constant coe�cients, and prove anon-holonomy result that was announced (but not proven) in [7].Let us conclude this introduction with a few more formal de�nitions on walksand power series.Let S be a �nite subset of Z2. A walk with steps in S is a �nite sequencew = (w0; w1; : : : ; wn) of vertices of Z2 such that wi � wi�1 2 S for 1 � i � n.The number of steps, n, is the length of w. The starting point of w is w0, and its2A series is hypertranscendental if it does not satisfy any polynomial di�erential equationof the type P (x;F (x); F 0(x); : : : ; F (k)(x)) = 0, where P is a polynomial.3



endpoint is wn. The complete generating function for a set A of walks startingfrom a given point w0 is the seriesA(x; y; t) =Xn�0 tn Xi;j2Zai;j(n)xiyj ;where ai;j(n) is the number of walks of A that have length n and end at (i; j).This series is a formal power series in t whose coe�cients are polynomials inx; y; 1=x; 1=y. We shall often denote �x = 1=x and �y = 1=y. The length generat-ing function for walks of A is simplyA(t) =Xn�0 a(n)tnwhere a(n) is the number of walks of A that have length n. Note that A(t) =A(1; 1; t).Given a ring L and k indeterminates x1; : : : ; xk, we denote by L[x1 ; : : : ; xk](resp. L[[x1 ; : : : ; xk]]) the ring of polynomials (resp. formal power series) inx1; : : : ; xk with coe�cients in L. If L is a �eld, we denote by L(x1 ; : : : ; xk)the �eld of rational functions in x1; : : : ; xk with coe�cients in L.Assume L is a �eld. A series F in L[[x1 ; : : : ; xk]] is rational if there existpolynomials P and Q in L[x1 ; : : : ; xk], with Q 6= 0, such that QF = P . It isalgebraic (over the �eld L(x1 ; : : : ; xk)) if there exists a non-trivial polynomialP with coe�cients in L such that P (F; x1; : : : ; xk) = 0: The sum and productof algebraic series is algebraic.The series F is D-�nite (or holonomic) if the partial derivatives of F span a�nite dimensional vector space over the �eld L(x1 ; : : : ; xk) (this vector space isa subspace of the fraction �eld of L[[x1 ; : : : ; xk]]); see [35] for the one-variablecase, and [23, 24] otherwise. In other words, for 1 � i � k, the series F satis�esa non-trivial partial di�erential equation of the formdiX̀=0 P`;i @`F@xì = 0;where P`;i is a polynomial in the xj . Any algebraic series is holonomic. The sumand product of two holonomic series is still holonomic. The specializations ofan holonomic series (obtained by giving values from L to some of the variables)are holonomic, if well-de�ned. Moreover, if F is an algebraic series and G(t) isa holonomic series of one variable, then the substitution G(F ) (if well-de�ned)is holonomic [24, Prop. 2.3].2 A su�cient condition for holonomyLet S be a �nite subset of Z2. We say that S is symmetric with respect to thex-axis if (i; j) 2 S) (i;�j) 2 S:4



We say that S has small height variation if(i; j) 2 S) jjj � 1:The usual square lattice steps satisfy these two conditions. So do the steps ofthe diagonal square lattice (Figure 1).Theorem 1 Let S be a �nite subset of Z2 that is symmetric with respect tothe x-axis and has small height variations. Let (i0; j0) 2 N 2. Then the lengthgenerating function for walks that start from (i0; j0), take their steps in S andstay in the �rst quadrant is D-�nite.We shall need the following preliminary result, which does not require any prop-erty on S.Proposition 2 Let S be a �nite subset of Z2. Let (i0; j0) 2 N � Z. Then thecomplete generating function for walks that start from (i0; j0), take their stepsin S and stay in the right half-plane x � 0 is algebraic.Proof. The problem being invariant by any vertical translation, we can assumej0 = 0. Let us also assume that i0 = 0. The argument is easily adapted wheni0 > 0.Projecting the walks on the x-axis reduces the problem to the enumerationof 1-dimensional walks on the half-line N , starting from 0, in which each step ofsize i is weighted by a Laurent polynomial in y:Xj:(i;j)2S yj :The weight of a walk is taken to be the product of the weights of its steps. Wecan now invoke some 1-dimensional results, like those of [3], and conclude thatthe complete generating function for walks in the right-half plane is algebraicover Q (x; y; t).Proof of Theorem 1. Let Q denote the set of walks that start from (i0; j0),take their steps in S and stay in the �rst quadrant. We shall prove that walksof Q are, roughly speaking, \equivalent to" walks in the right half-plane endingon the x-axis.We claim that it su�ces to prove that the subset of Q consisting of the walksthat hit the x-axis at some point has a D-�nite generating function. Indeed,the remaining walks are, by a vertical translation, in one-to-one correspondencewith walks that start from (i0; j0 � k), for some k 2 [1; j0], stay in the �rstquadrant and hit the x-axis.Let us �rst focus on the set Q(0)e of walks in the �rst quadrant that startfrom (i0; j0), hit the x-axis and end at an even ordinate. These walks are inbijection with the set H0 of walks that start from (i0; j0), stay in the righthalf-plane and end on the x-axis. This bijection, illustrated by Figure 2, is a5



mere adaptation of a classical 1-dimensional correspondence, which establishesthat Dyck pre�xes ending at an even ordinate are equivalent to bilateral Dyckwalks (see the Catalan factorisation in [9].) Starting from a walk w of Q(0)e ,ending at level 2k, we denote by s1; : : : ; sk the steps that follow the last visit ofw to a point of level (ordinate) 0; : : : ; k � 1. Replacing these k steps by theirsymmetric steps with respect to the x-axis yields a walk �w that belongs to H0.The ordinate of the lowest point(s) visited by �w is �k. Conversely, the steps�s1; : : : ; �sk of �w that we have to 
ip back to recover w are the �rst steps of wthat lead to level �j, for 1 � j � k.

i0 �s2
j0 j0421 s2s1 �s1i0Figure 2: The bijection between some walks in the quadrant and walks in theright half-plane ending on the x-axis.Let H(x; y; t) be the complete generating function for walks in the right half-plane. The length generating function for walks of H0 is obtained by extractingthe coe�cient of y0 in the generating functionH(1; y; t). Extracting the constantterm of a D-�nite series is known to give another D-�nite series [23]: thus thegenerating function for walks of H0, and hence of Q(0)e , is D-�nite.A similar argument holds for the set Q(0)o of walks in the �rst quadrant thatstart from (i0; j0), hit the x-axis and end at an odd ordinate: they are in one-to-one correspondence with the set H�1 of walks that start from (i0; j0), stayin the right half-plane and end at level �1. The generating function for walksof H�1 is the coe�cient of y0 in yH(1; y; t), and hence is D-�nite. Given thatthe sum of D-�nite series is D-�nite, this concludes the proof of Theorem 1.
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3 The knight walk is not holonomic3.1 The main resultWe study walks that start at (1; 1), take their steps in f(�1; 2); (2;�1)g and stayin the �rst quadrant. We call them knight walks , since their steps correspondto two of the knight moves on a chessboard (Figure 3). We note that a walkending at (i; j) has always i + j � 2 steps: hence the information contained inthe complete generating function is actually already contained in the followingbivariate series: Q(x; y) = Xi�0;j�0Qi;j xiyj ;where Qi;j denotes the number of knight walks ending at (i; j).

Figure 3: A knight walk.The coe�cients Qi;j satisfy the following recurrence relation:Qi;j = 8<: 0 if i < 0 or j < 0;1 if i = j = 1;Qi+1;j�2 +Qi�2;j+1 otherwise. (1)This recurrence allows us to compute the numbers Qi;j inductively, for instancediagonal by diagonal. The �rst few values are given in Table 1 below, in whichthe zero entries are left out. The non-zero entries lie on the lines i = j mod 3.Applying the transformation (i; j)! ((2i+ j)=3; (i+2j)=3) shows that Qi;jis also the number of walks made of North and East steps, that start from (1; 1),end at ((2i+ j)=3; (i+ 2j)=3) and always stay above the line 2y = x and belowthe line 2x = y (see Figure 4). Ignoring these two conditions gives the followingsimple bound: Qi;j � � i+ j � 2(2i+ j � 3)=3�:7



j"12 2411 10810 24 3129 6 84 7208 24 204 14407 6 60 4086 2 18 120 7205 6 36 2044 2 12 60 3123 1 4 18 842 2 6 24 1081 1 2 6 240 1 2 6 240 1 2 3 4 5 6 7 8 9 10 11 12 ! iTable 1: The number Qi;j of knight walks ending at (i; j).In particular, Q3i;0 � �3i� 2i� 1 �: (2)This bound could be sharpened by counting walks that stay above the line2y = x (see e.g. [11] or [7, Example 4]), but the above bound will be enough forour purpose.By summing the recurrence relation we obtain:Q(x; y) = Xi;j�0Qi;jxiyj = xy + Xi;j�0(Qi+1;j�2 +Qi�2;j+1)xiyj= xy + y2=x(Q(x; y)�Q(0; y)) + x2=y(Q(x; y)�Q(x; 0));that is (xy � x3 � y3)Q(x; y) = x2y2 �G(x) �G(y) (3)where G(x) = x3Xi�0 Qi;0xi = x3Q(x; 0) (4)counts knight walks ending on the x-axis. (We have used the symmetry of theproblem in x and y.) Note that the length generating function for all knightwalks is t�2Q(t; t). The above equation, combined with the elementary proper-ties of D-�nite series, imply that the following three statements are equivalent:| the bivariate generating function Q(x; y) for knight walks is D-�nite,| the generating function Q(x; 0) for knight walks ending on the x-axis isD-�nite,| the length generating function t�2Q(t; t) for knight walks is D-�nite.8



Figure 4: Another description of the knight walk.Our main result asserts that none of these statements hold.Theorem 3 The length generating function for walks that start from (1; 1), taketheir steps in f(�1; 2); (2;�1)g and always stay in the �rst quadrant (knightwalks) is not D-�nite. Nor is the generating function for knight walks that endon the x-axis.Looking at Table 1, one might still have some hope that the numbers Qi;j arenot so bad. In particular, they seem to have small prime factors. This patternactually does not go on, and, in case there would still be a doubt, the followingproposition reinforces the non-holonomic character of these numbers.Proposition 4 The length generating function for knight walks ending on themain diagonal x = y is not D-�nite.3.2 The kernel methodThe so-called kernel method solves completely the functional equation (3). Thismethod has been around since, at least, the 70's, and is currently the subjectof a certain rebirth (see the references in [2, 3, 7]).Applied to our equation, this method consists in coupling the variables xand y so as to cancel the kernel xy�x3�y3; this yields the missing informationabout the series G(x). More precisely, let �(x) be the unique formal power seriesin x satisfying x� � x3 � �3 = 0:The Lagrange inversion formula, applied to �(x)=x, provides an explicit expres-9



sion for �(x): �(x) = x2 Xm�0 x3m2m+ 1�3mm � = O(x2): (5)Replacing y by �(x) in (3) gives a functional equation that de�nes the powerseries G(x): G(x) +G(�(x)) = x2�(x)2: (6)Indeed we obtain, after iterating this equation in�nitely many times:G(x) =Xi�0(�1)i ��(i)(x)�(i+1)(x)�2where �(i) = � � � � � � � is the ith iterate of �. Note that �(i)(x) = O(x2i ), so thatthe sum is convergent in the ring C [[x]]. Replacing G(x) by the above explicitvalue in (3) would give an expression for Q(x; y).However, we shall not exploit these expressions, but rather the functionalequation (6), to prove that G(x), hence Q(x; y), is not D-�nite. Our proof willbe of an analytic nature. The idea is to consider G(x) as a function of a complexvariable x and study its singularities. Using functional equations like (6), weshall build new singularities of G from old ones { and end up with in�nitelymany singularities, thus proving that G cannot be holonomic.However, even though (6) de�nes G(x) uniquely, this equation itself is notsu�cient for our purpose: we shall introduce the other two roots �1(x) and�2(x) of the kernel, and the corresponding analogues of (6), to obtain enoughsingularities.3.3 The roots of x3 + y3 = xyAs a polynomial in y, the kernel xy�x3�y3 has three roots. Only one of them,given by (5), is a power series in x. We shall denote it, from now on, by �0:�0(x) = x2 + x5 + 3x8 + 12x11 + 55x14 + 273x17 + � � �The other two roots are power series inpx, and their expansion can be computedinductively:�1(x) = +px� x22 � 38x3px� x52 � 105128x6px� � � ��2(x) = �px� x22 + 38x3px� x52 + 105128x6px� � � �Of course, �2(x) is derived from �1(x) by replacing px by �px. Guided by theabove expressions, let us write�1(x) = +px (x) � �(x) (7)�2(x) = �px (x) � �(x)10



where  and � are formal power series in x. As the three roots sum to zero, onehas �(x) = �0(x)=2: (8)In order to compute the coe�cients of  , we shall use again the Lagrangeinversion formula (LIF). Let �(x) be de�ned by�1(x) = px(1� �(x)): (9)Then � = xpx(1� �)(2� �) ;so that the LIF gives, for n � 1,an := [x3n=2]�(x) = 1n2n n�1Xk=0 12k�n+ k � 1k ��2n� k � 2n� 1 �: (10)Using the package ekhad [33], we prove that the sequence an satis�es, for n � 1,an+2 = 3(3n+ 1)(3n� 1)4(n+ 2)(n+ 1) an:When n is odd, say n = 2m+1, we derive from (9) and (7) that the coe�cientan is [x3m+2]�(x), and the above recursion yields an = �3mm �=(4m+2). We thusrecover (8). Similarly, when n = 2m, the coe�cient an is �[x3m] (x) and theabove recursion now gives (x) = �Xm�0 m!(6m)!(6m� 1)(2m)!2(3m)! x3m16m :Let us summarize the results we have obtained.Lemma 5 Let � and  be the following power series in x:� = x2 Xm�0 x3m2m+ 1�3mm �; = �Xm�0 m!(6m)!(6m� 1)(2m)!2(3m)! x3m16m :Then the three roots of x3 + y3 = xy are�0(x) = ��1(x) = px � �=2�2(x) = �px � �=2:Both �(x) and  (x) have radius of convergence xc = 41=3=3.11



The last statement is obtained using the Stirling formula. Note that one alsohas the following closed form expressions:�(x) = 2rx3 sin arcsin �(3x)3=2=2�3 ! ; (x) = cos arcsin �(3x)3=2=2�3 ! :We shall now consider the �i(x) as functions of a complex variable x. Wechoose a determination of the square root that coincides with the usual deter-mination on R+: prei� = prei�=2 for � � < � < �:Figure 5 shows the (real) values of the functions �i for real values of x. Whenx is positive, the plots show, from bottom to top, �2(x), �0(x) and �1(x). Whenx is negative, the only real branch is �0.
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Figure 5: The real values of �i(x) for a real x.The implicit function theorem implies that the singularities of the functions�i are to be found among the complex numbers x such that the pair (x; y) �(x; �i(x)) satis�es 3y2 = x (and, of course, x3 + y3 = xy); that is,(x; y) 2 f(0; 0); (xc; yc); (jxc; j2yc); (j2xc; jyc)g (11)where xc = 22=3=3, yc = 21=3=3 and j = exp(2i�=3). A more detailed investiga-tion gives the following result.Lemma 6 The singularities of the functions �i are given by:Sing(�0) = fxc; jxc; j2xcg; Sing(�1) = f0; xcg and Sing(�2) = f0; jxc; j2xcg:12



In particular, �2 is not singular at xc, as suggested by Figure 5. All the abovesingularities are of the square root type.Proof. For each of the values of x given by (11), we �rst have to compute thevalues �i(x), 0 � i � 2, in order to determine which pairs (x; �i(x)) are actuallycritical, and then, to check the existence and nature of the singularity.At x = 0, all the �i(x) are zero. The explicit expansion of Lemma 5, com-bined with the fact that  and � have a positive radius of convergence, showsthat only �1 and �2 are singular | their singularity being obviously of a squareroot type.When x = xc, factoring the polynomial x3+y3�xy shows that the multisetf�0(xc); �1(xc); �2(xc)g equals fyc; yc;�2ycg. The functions �i(x) are real andcontinuous on [0; xc], and the expansions of Lemma 5 show that �0(x) and �1(x)are positive as x! 0+, while �2(x) is negative. As the �i can only vanish at 0,this sign pattern must go on until xc, so that�0(xc) = �1(xc) = yc and �2(xc) = �2yc: (12)In view of (11), xc cannot be a singularity of �2. Now a local expansion ofx3 + y3 � xy around (xc; yc) shows that as x approaches x�c ,�0;1(x) = yc � 1p3pxc � x(1 + o(1)); (13)which con�rms that the singularity of �0 and �1 at xc is of the square root type.The values (12) imply in particular thatpxc  (xc) = 3yc=2 = 2�2=3:Using this result, the fact that  and � are essentially functions of x3, and thevalues pj = �j2 and pj2 = �j;we now compute�0(jxc) = j2yc �0(j2xc) = jyc�1(jxc) = �2j2yc �1(j2xc) = �2jyc�2(jxc) = j2yc �2(j2xc) = jycso that �1 cannot be singular at jxc or j2xc. Finally, local expansions of x3 +y3�xy con�rm as above the existence of square roots singularities of �0 and �2at jxc and j2xc.Each of the functions �i has a unique analytic continuation on any sim-ply connected domain avoiding Sing(�i), for instance the domain obtained byremoving from C the four half-lines of Figure 6.Observe that the series �1 and �2 can also be substituted for y in the func-tional equation (3); thus for i 2 f0; 1; 2g, the following equation holdsG(x) +G(�i(x)) = x2�i(x)2; (14)13



xc
Figure 6: A domain on which all the functions �i are holomorphic.at least as an identity between power series.We end this subsection with a lemma that will be useful to build largesingularities from small ones.Lemma 7 Let x 2 C , x 6= 0. Then one of the roots of x3 + y3 � xy = 0 hasmodulus larger than jxj.Proof. Let y0; y1; y2 denote the three roots, and assume none of then hasmodulus larger than jxj. The relation y0y1y2 = �x3 forces jy0j = jy1j = jy2j =jxj. Then, the relation y0 + y1 + y2 = 0 implies fy1; y2g = fjy0; j2y0g. Finally,the relation y0y1 + y0y2 + y1y2 = �x yields x = 0.3.4 The series G(x) is not D-�niteWe now turn our attention to the series G(x) de�ned by (4).Proposition 8 The series G(x) has radius of convergence xc = 41=3=3. It issingular at xc, with G(x) = A�Bp1� x=xc(1 + o(1));where A and B are non-zero real numbers.Proof. We start from the functional equation de�ning G:G(x) +G(�0(x)) = x2�0(x)2:Recall that G(x) and �0(x) have nonnegative coe�cients (G(x) counts walks,and �0(x) � �(x) is given explicitly by (5)). Hence G(�0(x)) and x2�0(x)2 alsohave nonnegative coe�cients. The radius of convergence of �0(x) being xc, theseries G(x) and G(�0(x)) have radius at least xc. The fact that G(x) has radiusat least xc can also be directly derived from the upper bound (2).For jxj < xc, one has j�0(x)j < �0(xc) = yc, and yc is smaller than xc. Thismeans that the above functional equation now holds as an identity between14



analytic functions of x in the disk jxj < xc. As x approaches xc inside this disk,a local expansion gives, thanks to (13),G(x) = x2cy2c �G(yc)� 1p3pxc � x �2x2cyc �G0(yc)�+O(xc � x):The upper bound (2) yieldsG0(yc) �Xi�1 �3i� 2i� 1 �y3(i+1)c :This sum can be evaluated numerically, and is found to be smaller than 0:16.Comparing with 2x2cyc � 0:23 gives the announced result.Observe that (14) now holds as an identity between functions of x, as longas jxj < xc and j�i(x)j < xc (and x 62 R� if i = 1 or 2).Proposition 9 The series G(x) that counts knight walks ending on the x-axisis not D-�nite.Proof. Assume G is D-�nite. Then, it has a �nite number of singularities, andhas a unique analytic continuation on any simply connected domain avoidingthese singularities. For i 2 f0; 1; 2g, the series G(�i) are also D-�nite (since �iis algebraic). Moreover, by analytic continuation of (14),G(x) +G(�i(x)) = x2�i(x)2 (15)for all x in any domain where all our functions are analytically de�ned. Letus consider the identity (15) for i = 2. As x approaches xc, the function G(x)becomes singular, while �2(x) does not: this shows that �2(xc) = �2yc is asingularity of G.Now let xs be a singularity ofG of maximal modulus. According to Lemma 7,there exists i such that j�i(xs)j > jxsj. By assumption, G(x) is singular at xs.But jxsj � 2yc > xc, so that xs is not a singularity of �i. Hence (15) implies thatG is singular at �i(xs). But j�i(xs)j > jxsj, which contradicts the maximality ofjxsj.Remarks1. The only property of D-�nite series we have really used is the fact thatthese series have �nitely many singularities. Hence, what we have actuallyproved is that G cannot have �nitely many singularities.2. The principle of the proof can be applied to other functional equationsof the same type. We apply it in the next section to a (minor) variation of theknight walks.There remains to prove Proposition 4: the generating function for knightwalks ending on the diagonal is not D-�nite.15



Proof of Proposition 4. The length generating function for walks ending onthe diagonal is the coe�cient of x0 in the series t�2Q(tx; t�x), where �x = 1=x.This series is a power series in t whose coe�cients are Laurent polynomials inx. Let us denote u = x3 and �u = 1=u. Then, by Eq. (3),t2Q(tx; t�x) = t4 � S(t3u)� S(t3�u)1� t(u+ �u) ; (16)where the series S(z) is de�ned by S(z3) = G(z): Let us convert 1=(1� t(u+�u))in partial fractions of u. We obtain11� t(u+ �u) = 1p1� 4t2 � 11� uU(t) + 11� �uU(t) � 1� ;where U(t) = 1�p1� 4t22t :We can now extract the constant term in x from (16):[x0]t2Q(tx; t�x) = 1p1� 4t2 �t4 � [u0] S(t3u)1� �uU(t) � [u0] S(t3�u)1� uU(t)�= 1p1� 4t2 �t4 � 2S(t3U(t))� :Assume this series is D-�nite: then the series D(t) de�ned by D(t) = S(t3U(t))is D-�nite in t too. Let T (s) be the unique power series in s such that T (0) = 0,T 0(0) = 1 and T 6 � s4T 2 + s8 = 0: Then the fact that D-�nite series are stableby any algebraic substitution tells us that D(T (s)) = S(T 3U(T )) is D-�nite.But T 3U(T ) = s4, so that S(s4) itself, and hence S(s) and G(s), are D-�nitetoo, which we have proved to be wrong.4 A link with multidimensional linear recur-rences with constant coe�cientsIn [7], we considered d-dimensional sequences of complex numbers, denotedan = an1;n2;:::nd , de�ned by recurrence relations of the following form:an = Xh2H chan+h for n � s; (17)where H = fh1;h2; : : : ;hkg � Zd is the set of shifts , (ch)h2H are given nonzeroconstants, and s 2 Nd is the starting point satisfying s+H � Nd. We think ofthe hi as having mostly (but not necessarily only) negative coordinates, and of16



the point n as depending on the points n+h1;n+h2; : : : ;n+hk as far as thevalue of an is concerned. A given function ' speci�es the initial conditions:an = '(n) for n � 0; n 6� s : (18)The convex hull of the set H is assumed not to intersect the �rst orthant (i.e.,n � 0). This condition, as shown in [7], guarantees that the numbers an canbe computed recursively using (17).The enumeration of walks in a quadrant �ts exactly in this framework, withd = 3. Indeed, denoting Qi;j(n) the number of walks that start from a givenpoint (i0; j0), end at (i; j) and have length n, we haveQi;j(n) = 8>><>>: 1 if (i; j; n) = (i0; j0; 0)0 if i < 0 or j < 0 or n < 0X(h;k)2SQi�h;j�k(n� 1) otherwise,where S is the set of steps. A translation of the indices i and j transforms thisrecursion into one of the above type, with d = 3 andH = f(�h;�k;�1); (h; k) 2Sg.The paper [7] mostly dealt with the algebraic nature of the generating func-tion of the solution of such recurrences, and we started a classi�cation, basedon the apex of the recurrence, de�ned as the componentwise maximum of thepoints in H [ f0g. We proved that when the initial conditions have rationalgenerating functions and the apex is 0, the generating function of the solution isrational. Next, when the initial conditions have algebraic generating functionsand the apex has at most one positive coordinate, the generating function ofthe solution is algebraic.When the apex has two positive coordinates, and d = 3, our study of walks ina quadrant shows that the solution might be, or not, D-�nite. For 2-dimensionalsequences, the \simplest" example with apex (1; 1) was introduced in [32]: Fori; j � 0, let ai;j = � ai+1;j�2 + ai�2;j+1 if i; j � 2;1 otherwise. (19)This recurrence is obviously closely connected to the knight walk. Again, ithas a unique solution whose terms can be computed inductively. The �rst fewvalues are given in the following array.j"6 1 1 5 7 � � �5 1 1 3 5 10 14 �4 1 1 3 4 6 10 �3 1 1 2 2 4 5 72 1 1 2 2 3 3 51 1 1 1 1 1 1 10 1 1 1 1 1 1 10 1 2 3 4 5 6 ! i17



De�ning the generating functionA(x; y) = Xi;j�2 ai;jxi�2yj�2;we obtain, by summing the recurrence relation over i; j � 2, the followingfunctional equation:(xy � x3 � y3)A(x; y) = R(x; y)� F (x)� F (y) (20)whereR(x; y) = xy�1 + y1� x + 1 + x1� y� and F (x) =Xi�2 ai;2xi+1 = x3A(x; 0):We have used the symmetry of the problem in i and j. It was �rst proved in [32]that F (x) and A(x; y) are irrational. Then, we claimed in [7, p. 74] that theyare even not D-�nite, but without giving a proof. The tools developed abovefor the knight walk apply perfectly to this problem.Proposition 10 The series F (x) and A(x; y) are not D-�nite.Proof. The argument is very close to the knight one. The kernel method �rstgives F (x) + F (�i(x)) = R(x; �i(x)); (21)for any of the three roots �i of the kernel.The only di�erence with the knight treatment comes from the fact thatR(x; �i(x)) might have | and indeed, has | more singularities than �i. Theycan be determined exactly, but we shall only use the following obvious informa-tion Sing(R(x; �i(x))) � Sing(�i) [ f1g [ fx : x3 � x+ 1 = 0g: (22)In particular, all singularities of R(x; �i(x)) have modulus at most 1:33 (anupper bound for the modulus of the largest root of x3 � x+ 1).We start from Eq. (21), in the case i = 0. As R(x; �0(x)) has radius xc,we �nd again that the radius of F (x) is at least xc. Moreover, comparing therecurrence relations (1) and (19), and the corresponding tables, shows that fori; j � 2, one has ai;j � Qi�2;j�2. This implies that the radius of F (x) is boundedfrom above by the radius of G(x), which was proved to be exactly xc. HenceF (x) has radius xc.Assume F (x) is D-�nite. As in the proof of Proposition 9, we �rst constructlarge singularities of F (here, large means larger than 1:33). Let us start fromx0 = xc = 41=3=3 � 0:53, which is a singularity of F . As it is not a singularityof R(x; �2(x)), Eq. (21) implies that x1 := �2(xc) = �2yc � �0:84 is singularfor F .But x1 is singular for none of the R(x; �i(x)). Moreover,f�0(x1); �1(x1); �2(x1)g = fx0;�0:26:::� 1:02:::ig:18



Using the same trick as above, we see that x2 � �0:26� 1:02i is singular for F .One more step: Among the �i(x2), one is x3 � 0:92 � 1:02i, which hasmodulus larger than 1:33. As x2 is not singular for any of the R(x; �i(x)), the�i(x2) are singularities of F . In particular, x3 is singular for F .We conclude as above, by considering the largest singularity xs of F (inmodulus), showing that one of the �i(xs) is singular for F and larger than jxsjin modulus.References[1] D. Andr�e, Solution directe du probl�eme r�esolu par M. Bertrand, C. R.Acad. Sci. Paris 105 (1887) 436{437.[2] C. Banderier, M. Bousquet-M�elou, A. Denise, D. Gardy, D. Gouyou-Beauchamps and P. Flajolet, Generating functions for generating trees,to appear in Discrete Math.[3] C. Banderier and P. Flajolet, Basic analytic combinatorics of directed lat-tice paths, to appear in Theoret. Comput. Sci.[4] E. Barcucci, E. Pergola, R. Pinzani and S. Rinaldi, A bijection for somepaths on the slit plane, Adv. in Appl. Math. 26, no. 2 (2001) 89{96.[5] M. Bousquet-M�elou, Walks in the quarter plane: Kreweras' algebraicmodel, in preparation.[6] M. Bousquet-M�elou, Walks on the slit plane: other approaches, Adv. inAppl. Math. 27, no. 2-3 (2001) 243{288.[7] M. Bousquet-M�elou and M. Petkov�sek, Linear recurrences with constantcoe�cients: the multivariate case, Discrete Math. 225 (2000) 51{75.[8] M. Bousquet-M�elou and G. Schae�er, Walks on the slit plane, preprint2000, arXiv:math.CO/0012230. To appear in Probab. Theory RelatedFields.[9] R. Cori and L. Chottin, Une preuve combinatoire de la rationalit�e d'unes�erie g�en�eratrice associ�ee aux arbres, RAIRO Inform. Th�eor. 16, no. 2(1982) 113{128.[10] P. Duchon, On the enumeration and generation of generalized Dyck words,Discrete Math. 225 (2000) 121{135.[11] A. Dvoretzky and Th. Motzkin, A problem of arrangements, Duke Math.J. 14 (1947) 305{313.[12] W. Feller, An Introduction to Probability Theory and its Applications ,Vol.1, John Wiley and Sons, New York, 1950.19



[13] P. Flajolet, Analytic models and ambiguity of context-free languages, The-oret. Comput. Sci. 49 (1987) 283{309.[14] I. M. Gessel, A probabilistic method for lattice path enumeration, J. Statist.Plann. Infererence 14 (1986) 49{58.[15] I. M. Gessel, A factorization for formal Laurent series and lattice pathenumeration, J. Combin. Theory. Ser. A 28 (1980) 321{337.[16] I. M. Gessel and D. Zeilberger, Random walk in a Weyl chamber, Proc.Amer. Math. Soc. 115 (1992) 27-31.[17] D. J. Grabiner, Random walk in an alcove of an a�ne Weyl group, andnon-colliding random walks on an interval, Proceedings of FPSAC 2001,Tempe, Arizona, pp. 217{225.[18] K. Ishizaki, Hypertranscendency of meromorphic solutions of a linear func-tional equation, Aequationes Math. 56 (1998) 271{283.[19] G. Kreweras, Sur une classe de probl�emes li�es au treillis des partitionsd'entiers, Cahiers du B.U.R.O. 6 (1965) 5{105.[20] J. Labelle, Langages de Dyck g�en�eralis�es,Ann. Sci. Math. Qu�ebec 17 (1993)53{64.[21] J. Labelle and Y.-N. Yeh, Generalized Dyck paths, Discrete Math. 82(1990) 1{6.[22] G. F. Lawler, Intersections of Random Walks , Probabilities and its appli-cations, Birkh�auser Boston, 1991.[23] L. Lipshitz, The diagonal of a D-�nite power series is D-�nite, J. Algebra113 (1988) 373{378.[24] L. Lipshitz, D-�nite power series, J. Algebra 122 (1989) 353{373.[25] L. Lipshitz and L. A. Rubel, A gap theorem for power series solutions ofalgebraic di�erential equations, Amer. J. Math. 108, no. 2 (1986) 1193{1213.[26] J. H. Loxton and A. J. van der Poorten, A class of hypertranscendentalfunctions, Aequationes Math. 16 (1977) 93{106.[27] S. G. Mohanty, Lattice Path Counting and Applications, Academic Press,1979.[28] T. V. Narayana, A partial order and its applications to probability theory,Sankhya 21 (1959) 91{98.[29] H. Niederhausen, The ballot problem with three candidates, Europ. J.Combin. 4 (1983) 161-167. 20



[30] H. Niederhausen, Lattice paths between diagonal boundaries, Electronic J.Combinatorics 5 (1998) R30.[31] K. Nishioka, Mahler Functions and Transcendence, Lect. Notes Math.1631, Springer-Verlag, Berlin, Heidelberg, 1996.[32] M. Petkov�sek, The irrational chess knight, in: Proceedings of the 10th Con-ference \Formal Power Series and Algebraic Combinatorics", pp. 513{522,Toronto, June 1998.[33] M. Petkov�sek, H. S. Wilf, and D. Zeilberger, A = B, A. K. Peters,Wellesley, Massachusetts, 1996.[34] F. Spitzer, Principles of Random Walk , The University Series in HigherMathematics, Van Nostrand Company, Princeton, 1964.[35] R. P. Stanley, Di�erentiably �nite power series, Europ. J. Combin. 1 (1980)175{188.

21


