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Let G be a simple graph and k > 3. Let C<;x(G) be the hypergraph on V(G) (the
vertex set of G) whose edges are (the vertex sets of) cycles in G of length at most
k. Similarly, let Coqq(G) be the hypergraph on V(G) whose edges are the odd cycles
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Abstract

It is well known that every planar graph G is 2-colorable in such a way
that no 3-cycle of G is monochromatic. In this paper, we prove that G has a
2-coloring such that no cycle of length 3 or 4 is monochromatic. Equivalently,
every cubic bridgeless planar graph G has a 2-factor which intersects every
edge-cut of G of size 3 or 4. On the other hand, there are planar graphs with
the property that any of their 2-colorings has a monochromatic cycle of length
at most 5. In this sense, our result is best possible.

Introduction

of G. For the hypergraph of odd cycles, one has the following result:
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Theorem 1.1 For every planar graph G, the hypergraph Coqq(G) is 2-colorable.

Stein [5] gave a straightforward argument to deduce the above claim from the
Four Color Theorem (which was still a conjecture at the time). Color vertices of G
properly by colors 1, 2, 3, and 4. Recolor the odd-colored vertices by black and the
even-colored ones by white. It is easy to see that the new 2-coloring is proper for
the hypergraph Coqq(G).

In particular, the above theorem implies that for a planar graph G, the hyper-
graph C<3(G) is 2-colorable. A proof of Theorem 1.1, not based on the Four Color
Theorem, is given in [5] for triangulations without separating 3-cycles (see the end
of this section for the definition of a separating cycle). It uses the fact that a planar
triangulation has a 2-coloring without monochromatic faces if and only if its dual
has a 2-factor. This equivalence can be easily generalized to non-facial cycles.

Let us first review a few definitions. The edge set of a graph G is denoted
by E(G). Recall that an edge-cut in G is a set A C F(G) such that G — A is
disconnected and A is minimal with this property. Since we shall not be interested
in vertex-cuts, we refer to edge-cuts simply as cuts. If the size of a cut is k, we
also use the term k-cut. Similarly, we speak about k-cycles and k-faces. Vertices of
degree k are referred to as k-vertices.

The dual of a planar graph G is denoted by G*. We use the notation e* to refer
to the edge of G* which corresponds to e € E(G). If A C E(G) is a set of edges, we
let A*={e* : ec A}. Also if w € V(G*), then w* denotes the corresponding face
of G.

An even factor of a graph GG is a spanning subgraph in which all degrees are
even and non-zero. Thus, for instance, any 2-factor is an even factor. If there is no
danger of confusion, we identify factors with their edge sets.

Proposition 1.2 Let G be a planar graph with faces of size at most k. Then,
C<k(G) is 2-colorable if and only if the dual G* of G has an even factor which

intersects every cut of size at most k.

Proof. Let ¢ be a 2-coloring of C<;(G). Let C* be the set of edges e* of G* with
the property that the endvertices of e are colored differently by c. Every vertex of
G* is incident with a positive even number of edges in C*. Thus C* is an even factor
of G*. Since a cut of G* corresponds to a cycle in G of the same size (and vice
versa), and since ¢ has no monochromatic cycle of length at most k, it follows that
C* intersects all cuts of size at most k in G*.

To prove the other direction, we use an analogue of the argument from [5]. Let
C* be an even factor in G* which meets every cut of G* of size at most k. As a
subgraph of G*, C* is spanning and Eulerian. We can properly 2-color the faces of
C*. This coloring induces a (possibly improper) 2-coloring of the faces of G*, and



thus a 2-coloring of the vertices of G. Now, if G has a monochromatic cycle of length
t < k, we obtain a t-cut in G* which is disjoint from C*, a contradiction. O

The well-known Petersen theorem asserts that every bridgeless cubic graph has
a 2-factor. Schonberger [4] proved the following generalization.

Theorem 1.3 Let G be a cubic bridgeless multigraph and let e, f be two edges of
G. Then, G has a 2-factor which contains both e and f.

Observe that this is equivalent to the assertion that every edge of a bridgeless
cubic graph is contained in a 1-factor (cf. [2], Chapter 4).

As noted in [5], D. Barnette has pointed out that Theorem 1.3 can be used to
prove that the hypergraph C<3(G) is 2-colorable for every planar graph G. A direct
inductive proof of this fact was found by Krél [3].

In this paper, we prove that for every planar graph G, the hypergraph C<4(G)
is 2-colorable. Equivalently, every bridgeless cubic graph G has a 2-factor which
intersects every cut of GG of size 3 or 4. However, there exist planar graphs for which
C<5(G) is not 2-colorable. It was noted in [5] that one such graph is the dual of the
well-known non-hamiltonian planar cubic graph used by Tutte [6] to disprove Tait’s
Conjecture. In this sense, our result is best possible.

We conclude this section with a few more definitions. If C' is a cycle of a plane
graph G, then Int(C) is the subgraph of G consisting of all vertices and edges which
belong to C' or are contained inside it (with respect to the fixed embedding of G in
the plane). The graph Out(C) is defined symmetrically. We say that a cycle C' is
separating if both Int(C') and Out(C') contain vertices not belonging to C.

2 Colorings and types

Let GG be a plane graph. For a given face F' of G, an F'-type is any non-empty subset
of E(F) of size 2. A type vector T for G is a mapping which assigns an F-type to
each inner 4-face F' of G. We denote this F-type by 7(F).

Let ¢: V(G) — {1,2} be a 2-coloring of a planar graph G. For brevity, any cycle
of length at most 4 will be called short. If no short cycle of G is monochromatic,
then ¢ is a good coloring. Denote by D(c) the set of edges xy of G with ¢(z) # c(y).
A coloring ¢ crosses an F-type T if D(¢) N E(F) # T and D(c) N T # (). We say
that ¢ crosses a type vector 7 if for each inner 4-face F' of GG, the coloring ¢ crosses
7(F). Saying that ¢ crosses T at F, where F'is a 4-face of G, means simply that ¢
crosses the F-type 7(F).

A 4-cycle C of a planar graph G is nice, if for every 4-cycle C' of G either

(a) C"is a cycle of Int(C') or Out(C'), or



(b) some edge of C' is a diagonal of C".

In order to prove our main theorem, we will first consider the following special
case:

Lemma 2.1 Let G be a plane graph isomorphic to Ks, (n > 2) with outer face
O, and let T be a type vector of G. Then there exists an O-type T such that every
good coloring of O which crosses T can be extended to a good coloring of G which
CTOSSES T.

Proof. Label the vertices of G in such a way that the two partites of G are {z,y}
and {a,as,...,a,}, and furthermore, O = xa ya, and foreach i =1,...,n—1, the
4-cycle xa;ya; 1 bounds a face F; of G. We may assume that for each inner face F; of
G, the type 7(F;) contains the edge xa; (otherwise, replace 7(F;) by its complement
E(F;)\7(F;)). We may also restrict our attention to colorings of O assigning color
1 to x.

Note first that the coloring ¢ of V(O) given by ¢(z) = ¢(y) = 1, ¢(a1) = ¢(a,) = 2
can always be extended to a good coloring ¢ of G which crosses 7. Indeed, one can
set ¢(a;) =2 for all i € {2,...,n — 1}. The coloring ¢ is good, and since for each i,
D(¢) D E(F;), it follows that ¢ crosses 7. Also note that no matter which O-type T
will be chosen, the coloring ¢ crosses T'. At this point, we distinguish the following
two cases.

Case 1. For some k, 7(Fy) = {xag, yag}.

In this case, we set T' = {zay,ya;}. Let ¢ be a coloring of V' (O) which crosses T.
Necessarily c¢(z) # c(y). It follows that no extension of ¢ has a monochromatic cycle.
We extend c to a coloring ¢ by the following rule. First, color as, ..., ax, one by one
in the given order, in such a way that ¢ crosses 7 at F; for all « < k. This is always
possible since of the two choices for é(a;11), at most one fails to produce a coloring
which crosses 7 at Fj.

Similarly, color a,_1, ..., ax;; (in this order), making sure that ¢ crosses 7 at F;
for all i > k. It remains to check the face Fj. The fact that ¢(x) # c(y) implies that
exactly one of the edges xag, yay is in D(¢é). Since 7(Fy) = {zay, yai}, ¢ necessarily
crosses the Fy-type 7(F}). Hence, é crosses 7 as desired.

Case 2. For all i, 7(F;) is different from {xa;,ya;}.

Assume first that we wish to extend the coloring d of O given by d(z) = d(y) =
d(a;) = 1 and d(a,) = 2. Setting d(a;) = 2 for i = 2,...,n — 1, we clearly obtain a

good coloring. Moreover, for i > 2, E(F;) C D(d); thus to verify that d crosses 7,
it is sufficient to show that it crosses 7 at Fj. This is immediate from the fact that

T(Fy) # {xay,yai}.



By symmetry, we conclude that any coloring of O which assigns the same color
to x and y, and distinct colors to a; and a,,, extends to a good coloring which crosses
T.

To find other colorings with this property, let ¢; be the coloring of {z,y,a;}
given by ¢ (z) = ¢1(a1) = 1, ¢1(y) = 2. There is a unique extension ¢ of ¢; to G
which crosses 7. To see this, extend ¢; to as,...,a, in sequence and note that at
each step, setting é1(a;11) = ¢1(a;) if 7(F;) = {xa;,ya;41}, and & (a;41) # é(a;)
otherwise, is the only choice for which ¢; crosses 7 at F;. The resulting coloring is
the unique extension of ¢;.

In particular, this implies that another good coloring ¢, of G which crosses 7
can be obtained from ¢; by changing its value on all the vertices a;. In fact, ¢, is
the only other coloring of G' which crosses 7 and agrees with ¢; on x and y. It is
easy to check that D(¢;) and D(¢,) intersect E(O) in non-empty disjoint subsets.
Consequently, ¢; crosses an O-type if and only if ¢, does.

If ¢,(an) = 1, then set T' = {xay, ya,}; otherwise, set T' = {xay, za,}. Observe
that in both cases, the above discussion implies that 7" meets the requirement of the
theorem. O

We are now ready to prove our main result.

Theorem 2.2 Let G be a (simple) plane graph with each face of size 8 or 4. Let O
be the outer face of G and T be a type vector of G. Then,

(a) If O is a triangle, then every good coloring of O can be extended to a good
coloring of G which crosses T.

(b) If O is a quadrangle, then there exists an O-type T such that every (good)
coloring of O which crosses T can be extended to a good coloring of G which
Crosses T.

Proof. By contradiction. Let G, 7 be a counterexample with |V (G)| + |E(G)]
minimum.

Claim 1. G has no separating 3-cycles.

Suppose that the claim is false, i.e. GG has a separating 3-cycle C'. Since every inner
4-face of Int(C') or Out(C) is a face of G, it follows that 7 induces type vectors Tin
and 7T,y in Int(C) and Out(C'), respectively.

Assume first that O is of length 3. Let ¢ be an arbitrary good coloring of O.
Then, by the minimality, extend ¢ to a good coloring of Out(C') which crosses Toys.
Note that C' is not monochromatic. Now, again by the minimality, we can extend c
(or rather, its restriction to C') to a good coloring of Int(C') which crosses 7. We
claim that the resulting coloring of G is good. Certainly, no 4-cycle contained in



Int(C) or Out(C) is monochromatic. All the other 4-cycles have a diagonal which
is an edge of C. Consider the two triangles formed by this diagonal and the edges
of the 4-cycle. Since one of the triangles is contained in Int(C') (and the other one
is contained in Out(C')), it follows that the 4-cycle cannot be monochromatic. So ¢
is a good coloring of G which crosses 7.

Suppose now that O is of length 4. By the minimality, there exists an O-type
T,y such that every good coloring ¢ of O which crosses T,,; can be extended to a
good coloring of Out(C') which crosses 7oy. Afterwards, extend the coloring ¢ of
C to a good coloring of Int(C') which crosses 7. Since, by the above, ¢ is a good
coloring of G’ which crosses 7, just set T' = Ty, to establish this case.

Claim 2. G has no nice separating 4-cycles.

Assume that the claim is false and C' is a nice separating 4-cycle. The fact that C
is nice allows us to use induction, since every 4-cycle C' of G is contained either in
Int(C) or in Out(C), or else some edge of C' is a diagonal of C’, in which case three
vertices of C' form a triangle in Int(C'). Denote by 7, the type vector induced by 7
on Int(C'). By the minimality, there exists a C-type Ti,, which satisfies requirements
of part (b) of this theorem for the graph Int(C') and the type vector 7. Denote by
Tout the type vector induced by 7 on Out(C') with the addition that T,y (C) = Tins.

We argue similarly as in Claim 1. Assume first that O is a triangle. Given a
good coloring ¢ of O, extend it first to Out(G). Since 7oy (C) = Tiyt, it follows that
c crosses Tin;. By the minimality, we can extend the coloring induced by ¢ on C' to
a good coloring of Int(C). We obtain a good coloring of G which crosses 7.

Suppose now that O is a quadrangle. By the minimality, there exists an O-type
Tout such that every good coloring ¢ of O which crosses Ti,,; can be extended to a
good coloring of Out(C'). As above, we extend ¢ to Int(C') and obtain the required
coloring of GG. Finally, we set T' = T,.

Claim 3. G has no separating 4-cycles.

Assume C' = xix9x374 is a separating 4-cycle. By Claim 2, it follows that C' is not
nice. In other words, there exists a 4-cycle C' of G which is neither contained in
Int(C) nor in Out(C) and no edge of C is a diagonal of C'. It is easy to observe
that there are essentially two possibilities as shown in Fig. 1.

In case (a), an edge of C" is a diagonal of C, say x;x3. We may assume that
C' = zyziz3 and z,y are both in Int(C) — C or Out(C) — C. As C is a separating
4-cycle, we infer that one of the 3-cycles xx375, x12374 is separating, which is a
contradiction by Claim 1.

In case (b), C' has two vertices such that one is in Int(C') — C and the other
one is in Out(C) — C. Without loss of generality we may assume that C' = zzyxs.
Consider a complete bipartite (plane) subgraph B of G such that one of its partites is



Figure 1: The two possibilities for C' and C’ in Claim 3.

By = {z1, 23} and the size of the other partite By is as large as possible. Enumerate
the vertices of By as ay, as, . .., a, in such a way that for each i € {1,...,n — 1}, the
4-cycle F; = x3a;r1a;41 is an inner face of B. Since x, 74, y, 2 € By, we have n > 4.
Note that x;z3 is not an edge of GG, for otherwise we would obtain a separating
3-cycle.

We shall show that no face F; of B is a separating cycle in G. Assume the
opposite. Claim 2 implies that F; is not a nice 4-cycle. By the definition, there is
a 4-cycle H which is contained neither in Int(F;) nor in Out(F;). Once again, we
have two possibilities as in Fig. 1. In case (a), since 123 ¢ E(G), it follows that a;
and a;4; are adjacent. But then we obtain a separating 3-cycle in G. In case (b),
either zy,z3 € V(H), or a;,a;41 € V(H). The former possibility is ruled out by
the maximality of B. The latter one would contradict the planarity of G since H
separates r; from x3, while they are known to have common neighbors other than
those in V(H). We have shown that F; cannot be separating in G. It follows that
for each i, either a;a;11 € E(G) or F; is a 4-face of G. Note also that B is necessarily
a spanning subgraph of G, i.e. V(B) = V(G).

If some 4-cycle in G is edge-disjoint from B, then all of its vertices must belong
to B,. The planarity of G implies easily that there are no other vertices in Bsy, so
that n = 4 and G must be the octahedron. Thus, O is triangular and G' has no
4-faces. Fig. 2 exhibits a good coloring of the octahedron; by symmetry, any good
coloring of the outer face extends to the whole graph. Henceforth, we assume that
every 4-cycle of G intersects E(B).

Suppose first that O is a triangle, say O = z3a,a,. Then observe that the 4-cycle
C = x3a1x1a, is nice (but not separating). We argue similarly as in Claim 2. By
the minimality, there exists a C-type T}, such that any good coloring of C' which
crosses Tin, can be extended to a good coloring of Int(C) which crosses 7y (in this
case, Tyt = 7). Finally, observe that for each good coloring ¢ of O, one can choose
a color ¢(xy) so that D(c) N E(C') crosses Tiys.

Assume now that O is a 4-face. Thus, O = xia1x30a,. If some a;a;,1 is an edge



Figure 2: A good coloring of the octahedron.

of G then let G' = G — a;a;41 and let 7’ be the type vector for G' obtained from 7
by setting 7(F;) = {z1a;,210;41}. By the minimality, there exists some O-type T"
for the pair G', 7. Since a good coloring of G which crosses 7 is a good coloring of
G' which crosses 7/, just set T'=T"' to complete this case.

The remaining possibility is that no a;a;,; is an edge of GG. In this case, G = B,
and Claim 3 follows by Lemma 2.1.

By Claims 1 and 3, we may assume that no short cycle of G is separating. It
follows that any 2-coloring of G’ without monochromatic faces is a good coloring of
G. We use the following notation. Recall that for A C E(G), A* is defined as the set
of the corresponding edges in the dual. If F'is an inner 4-face of GG, we abbreviate
(T(F))* as 7*(F). The vertex of G* corresponding to the outer face of G is denoted
by O*.

We define the graph G7 as follows. Each 4-vertex w # O* of G* is split into two
adjacent vertices w;, wy of degree 3, such that w; is adjacent to the two edges in
7*(F) (where F' = w* is the face of G corresponding to w), and wy is adjacent to
the remaining two edges in E(w). The process is illustrated in Fig. 3.

Figure 3: The splitting of 4-vertices z,y, where 7*(z*) = {xd,zy} and 7"(y*) =
{ya, yc}.



The resulting graph G has at most one vertex of degree 4, namely the vertex
O*. Note that G need not be planar. We claim that it is bridgeless. To begin with,
G is 2-connected, since it is simple with each face of size 3 or 4. It is well known
that the dual of any 2-connected plane graph is 2-connected (or consists of 2 vertices
and at least one edge). Furthermore, it is easily checked that the splitting of any
vertex of degree 4, as above, does not introduce any cut-vertex. Since G arises by
a series of such splittings, it must be 2-connected and hence bridgeless.

We consider separately the cases of O being a triangle or a quadrangle, respec-
tively. Assume first that O is triangular. In this case, G is cubic. Let ¢ be a good
coloring of O. Clearly, (D(c))* consists of two edges of G* incident with O*. By
Theorem 1.3, the corresponding pair of edges of G} is contained in a 2-factor Q of
Gr.

Performing the obvious identification of E(G*) with the corresponding subset
of E(G%), consider the set @ = QN E(G*). This is an even factor of G*. As in
the proof of Proposition 1.2, @' induces a 2-coloring co of G. It is necessarily a
good coloring as it has no monochromatic faces (Q is a 2-factor), while G' has no
separating short cycles. Furthermore, we claim that cg crosses 7. Consider an inner
4-face F' of G. By the construction, @ N E(F*) must be different from both 7*(F)
and E(F*) \ 7*(F), for otherwise Q@ would not cover one of the two vertices into
which F™* was split. Hence cg crosses 7 as claimed. This concludes the proof of the
first subcase.

If O is a quadrangle, the situation is a little more complicated. We start by
defining possible splittings of the single remaining 4-vertex O* of G%. Let S be
a subset of E(O*) of size 2. The graph G7 g is obtained by replacing O* by two
new adjacent 3-vertices OF, O* ¢, making OF incident with the two edges in S,
and making O* ¢ incident with the remaining two edges in E(O*). Any G} g is a
bridgeless cubic graph.

If there is some S C E(O*) of size 2 such that one cannot find any even factor
Q of G* with the property that @ N E(O*) = S, then set T = S* (where T is as in
the theorem). Otherwise, choose T' to be an arbitrary O-type.

Assume that we are given a coloring ¢ of O which crosses T'. If D(c) = E(O),
then the required even factor Q of G* is obtained by extending any pair S C E(O*)
to a 2-factor of G ¢ (by Theorem 1.3), and contracting the edge O5O* 4. Since
Q obviously contains all of E(O*), the associated coloring cg extends c¢. By the
argument of the preceding case, it is good and crosses 7.

It remains to discuss the possibility that D(c) is of size 2. If every pair S C E(O*)
can be obtained as the intersection of an even factor of G% with E(O*) (that is, if T
was chosen arbitrarily), then we simply choose such an even factor Q for S = D*(c¢)
and we are done.

Thus we may assume that there is no even factor of G whose intersection with



E(O*) is T*. Since ¢ crosses T, the symmetric difference S = T* @& D*(c) is of size
2. Use Theorem 1.3 to find a 2-factor Q' of G} ¢ containing both O50* ¢ and the
unique edge e in T*N D*(c). Let Q be the even factor of G obtained by contracting
the edge Ot0* 4. Since O:0* ¢ € Q', the intersection I = Q N E(O*) has size
2. The remaining element of I cannot be the edge which is missing in both 7™
and D*(c), for O* ; would have degree 3 in Q'. Further, if I contained the edge
in 7"\ {e}, we would get a contradiction with the way we chose T. We conclude
that I = D*(c¢). But this implies that the coloring cg associated to Q extends c.
The above arguments show that cg has all the required properties. The proof of the
theorem is complete. O

From the last theorem, we immediately obtain the following result:

Theorem 2.3 Any planar graph G has a 2-coloring in which no cycle of length at
most 4 1s monochromatic.

3 Remarks

Theorem 2.3 shows that the hypergraph C<4(G) is 2-colorable for every planar graph
G. Combining it with Proposition 1.2, we obtain the following result. (Note that
the result cannot be extended to 2-cuts, as shown by the cubic bridgeless graph in
Fig. 4 which has no 2-factor intersecting every 2-cut.)

Figure 4: A bridgeless cubic graph with no 2-factor meeting every 2-cut.

Theorem 3.1 Any cubic bridgeless planar graph G has a 2-factor which intersects
every edge-cut of size 3 or 4.

Proof. The dual G* of GG is a triangulation but it may not be a simple graph.
Let H* be the graph obtained by removing multiple edges of G*. Note that H*
is a simple plane graph with each face of size 3 or 4. By Theorem 2.3, H* has a
2-coloring ¢ without monochromatic cycles of length 3 or 4. Observe that ¢ has
the same property as a coloring of G. As in the proof of Proposition 1.2, one can
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show that the properly colored edges of G* induce a 2-factor in G which meets every
edge-cut of size 3 or 4. O

Our last remark concerns Theorem 1.1. Let G be a planar graph. Each of the
color classes of a 2-coloring of Coqq(G) induces a bipartite subgraph in G, by which
we easily construct a proper 4-coloring of G. Thus, Theorem 1.1 is equivalent to the
Four Color Theorem. Going further, to get rid of planarity, one can define that an
integer k-flow f of a directed graph G is no-odd-cut-zero (or shortly NOCZ) if there
is no odd edge-cut such that f is zero on all of its edges. Using the concept of even
spanning subgraphs introduced by Archdeacon [1], one can easily show that a graph
admits a nowhere zero 2k-flow if and only it admits NOCZ k-flow. Thus, the 4-Flow
Conjecture is equivalent to the claim that if a bridgeless graph does not contain the
Petersen graph as a minor, then it admits a NOCZ 2-flow. This is a generalization
of the equivalence between the Four Color Theorem and Theorem 1.1.
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