UNIVERSITY OF LJUBLJANA INSTITUTE OF MATHEMATICS, PHYSICS AND MECHANICS DEPARTMENT OF MATHEMATICS JADRANSKA 19, 1000 LJUBLJANA, SLOVENIA

Preprint series, Vol. 40 (2002), 817

PLANAR GRAPH COLORINGS WITHOUT SHORT MONOCHROMATIC CYCLES

Tomáš Kaiser Riste Škrekovski

ISSN 1318-4865

March 11, 2002

Ljubljana, March 11, 2002

Planar graph colorings without short monochromatic cycles

Tomáš Kaiser*

Riste Škrekovski^{*†}

Department of Mathematics University of West Bohemia Univerzitní 8 306 14 Plzeň Czech Republic kaisert@kma.zcu.cz Department of Mathematics University of Ljubljana Jadranska 19 1111 Ljubljana Slovenia skreko@fmf.uni-lj.si

Institute of Theoretical Computer Science (ITI) Charles University Praha, Czech Republic

January 27, 2001

Abstract

It is well known that every planar graph G is 2-colorable in such a way that no 3-cycle of G is monochromatic. In this paper, we prove that G has a 2-coloring such that no cycle of length 3 or 4 is monochromatic. Equivalently, every cubic bridgeless planar graph G has a 2-factor which intersects every edge-cut of G of size 3 or 4. On the other hand, there are planar graphs with the property that any of their 2-colorings has a monochromatic cycle of length at most 5. In this sense, our result is best possible.

1 Introduction

Let G be a simple graph and $k \geq 3$. Let $\mathcal{C}_{\leq k}(G)$ be the hypergraph on V(G) (the vertex set of G) whose edges are (the vertex sets of) cycles in G of length at most k. Similarly, let $\mathcal{C}_{odd}(G)$ be the hypergraph on V(G) whose edges are the odd cycles of G. For the hypergraph of odd cycles, one has the following result:

^{*}The research was supported by project LN00A056 of the Czech Ministery of Education.

[†]Supported in part by the Ministry of Science and Technology of Slovenia, Research Project Z1-3129.

Theorem 1.1 For every planar graph G, the hypergraph $\mathcal{C}_{odd}(G)$ is 2-colorable.

Stein [5] gave a straightforward argument to deduce the above claim from the Four Color Theorem (which was still a conjecture at the time). Color vertices of G properly by colors 1, 2, 3, and 4. Recolor the odd-colored vertices by black and the even-colored ones by white. It is easy to see that the new 2-coloring is proper for the hypergraph $\mathcal{C}_{odd}(G)$.

In particular, the above theorem implies that for a planar graph G, the hypergraph $\mathcal{C}_{\leq 3}(G)$ is 2-colorable. A proof of Theorem 1.1, not based on the Four Color Theorem, is given in [5] for triangulations without separating 3-cycles (see the end of this section for the definition of a separating cycle). It uses the fact that a planar triangulation has a 2-coloring without monochromatic faces if and only if its dual has a 2-factor. This equivalence can be easily generalized to non-facial cycles.

Let us first review a few definitions. The edge set of a graph G is denoted by E(G). Recall that an *edge-cut* in G is a set $A \subset E(G)$ such that G - A is disconnected and A is minimal with this property. Since we shall not be interested in vertex-cuts, we refer to edge-cuts simply as *cuts*. If the size of a cut is k, we also use the term *k-cut*. Similarly, we speak about *k-cycles* and *k-faces*. Vertices of degree k are referred to as *k-vertices*.

The dual of a planar graph G is denoted by G^* . We use the notation e^* to refer to the edge of G^* which corresponds to $e \in E(G)$. If $A \subset E(G)$ is a set of edges, we let $A^* = \{e^* : e \in A\}$. Also if $w \in V(G^*)$, then w^* denotes the corresponding face of G.

An even factor of a graph G is a spanning subgraph in which all degrees are even and non-zero. Thus, for instance, any 2-factor is an even factor. If there is no danger of confusion, we identify factors with their edge sets.

Proposition 1.2 Let G be a planar graph with faces of size at most k. Then, $C_{\leq k}(G)$ is 2-colorable if and only if the dual G^* of G has an even factor which intersects every cut of size at most k.

Proof. Let c be a 2-coloring of $\mathcal{C}_{\leq k}(G)$. Let \mathcal{C}^* be the set of edges e^* of G^* with the property that the endvertices of e are colored differently by c. Every vertex of G^* is incident with a positive even number of edges in \mathcal{C}^* . Thus \mathcal{C}^* is an even factor of G^* . Since a cut of G^* corresponds to a cycle in G of the same size (and vice versa), and since c has no monochromatic cycle of length at most k, it follows that \mathcal{C}^* intersects all cuts of size at most k in G^* .

To prove the other direction, we use an analogue of the argument from [5]. Let \mathcal{C}^* be an even factor in G^* which meets every cut of G^* of size at most k. As a subgraph of G^* , \mathcal{C}^* is spanning and Eulerian. We can properly 2-color the faces of \mathcal{C}^* . This coloring induces a (possibly improper) 2-coloring of the faces of G^* , and

thus a 2-coloring of the vertices of G. Now, if G has a monochromatic cycle of length $t \leq k$, we obtain a *t*-cut in G^* which is disjoint from \mathcal{C}^* , a contradiction.

The well-known Petersen theorem asserts that every bridgeless cubic graph has a 2-factor. Schönberger [4] proved the following generalization.

Theorem 1.3 Let G be a cubic bridgeless multigraph and let e, f be two edges of G. Then, G has a 2-factor which contains both e and f.

Observe that this is equivalent to the assertion that every edge of a bridgeless cubic graph is contained in a 1-factor (cf. [2], Chapter 4).

As noted in [5], D. Barnette has pointed out that Theorem 1.3 can be used to prove that the hypergraph $\mathcal{C}_{\leq 3}(G)$ is 2-colorable for every planar graph G. A direct inductive proof of this fact was found by Král [3].

In this paper, we prove that for every planar graph G, the hypergraph $\mathcal{C}_{\leq 4}(G)$ is 2-colorable. Equivalently, every bridgeless cubic graph G has a 2-factor which intersects every cut of G of size 3 or 4. However, there exist planar graphs for which $\mathcal{C}_{\leq 5}(G)$ is not 2-colorable. It was noted in [5] that one such graph is the dual of the well-known non-hamiltonian planar cubic graph used by Tutte [6] to disprove Tait's Conjecture. In this sense, our result is best possible.

We conclude this section with a few more definitions. If C is a cycle of a plane graph G, then Int(C) is the subgraph of G consisting of all vertices and edges which belong to C or are contained inside it (with respect to the fixed embedding of G in the plane). The graph Out(C) is defined symmetrically. We say that a cycle C is *separating* if both Int(C) and Out(C) contain vertices not belonging to C.

2 Colorings and types

Let G be a plane graph. For a given face F of G, an F-type is any non-empty subset of E(F) of size 2. A type vector τ for G is a mapping which assigns an F-type to each inner 4-face F of G. We denote this F-type by $\tau(F)$.

Let $c: V(G) \to \{1, 2\}$ be a 2-coloring of a planar graph G. For brevity, any cycle of length at most 4 will be called *short*. If no short cycle of G is monochromatic, then c is a good coloring. Denote by D(c) the set of edges xy of G with $c(x) \neq c(y)$. A coloring c crosses an F-type T if $D(c) \cap E(F) \neq T$ and $D(c) \cap T \neq \emptyset$. We say that c crosses a type vector τ if for each inner 4-face F of G, the coloring c crosses $\tau(F)$. Saying that c crosses τ at F, where F is a 4-face of G, means simply that ccrosses the F-type $\tau(F)$.

A 4-cycle C of a planar graph G is *nice*, if for every 4-cycle C' of G either

(a) C' is a cycle of Int(C) or Out(C), or

(b) some edge of C is a diagonal of C'.

In order to prove our main theorem, we will first consider the following special case:

Lemma 2.1 Let G be a plane graph isomorphic to $K_{2,n}$ $(n \ge 2)$ with outer face O, and let τ be a type vector of G. Then there exists an O-type T such that every good coloring of O which crosses T can be extended to a good coloring of G which crosses τ .

Proof. Label the vertices of G in such a way that the two partites of G are $\{x, y\}$ and $\{a_1, a_2, \ldots, a_n\}$, and furthermore, $O = xa_1ya_n$ and for each $i = 1, \ldots, n-1$, the 4-cycle xa_iya_{i+1} bounds a face F_i of G. We may assume that for each inner face F_i of G, the type $\tau(F_i)$ contains the edge xa_i (otherwise, replace $\tau(F_i)$ by its complement $E(F_i) \setminus \tau(F_i)$). We may also restrict our attention to colorings of O assigning color 1 to x.

Note first that the coloring c of V(O) given by c(x) = c(y) = 1, $c(a_1) = c(a_n) = 2$ can always be extended to a good coloring \tilde{c} of G which crosses τ . Indeed, one can set $\tilde{c}(a_i) = 2$ for all $i \in \{2, \ldots, n-1\}$. The coloring \tilde{c} is good, and since for each i, $D(\tilde{c}) \supset E(F_i)$, it follows that \tilde{c} crosses τ . Also note that no matter which O-type Twill be chosen, the coloring \tilde{c} crosses T. At this point, we distinguish the following two cases.

Case 1. For some $k, \tau(F_k) = \{xa_k, ya_k\}.$

In this case, we set $T = \{xa_1, ya_1\}$. Let c be a coloring of V(O) which crosses T. Necessarily $c(x) \neq c(y)$. It follows that no extension of c has a monochromatic cycle. We extend c to a coloring \tilde{c} by the following rule. First, color a_2, \ldots, a_k , one by one in the given order, in such a way that \tilde{c} crosses τ at F_i for all i < k. This is always possible since of the two choices for $\tilde{c}(a_{i+1})$, at most one fails to produce a coloring which crosses τ at F_i .

Similarly, color a_{n-1}, \ldots, a_{k+1} (in this order), making sure that \tilde{c} crosses τ at F_i for all i > k. It remains to check the face F_k . The fact that $c(x) \neq c(y)$ implies that exactly one of the edges xa_k, ya_k is in $D(\tilde{c})$. Since $\tau(F_k) = \{xa_k, ya_k\}$, \tilde{c} necessarily crosses the F_k -type $\tau(F_k)$. Hence, \tilde{c} crosses τ as desired.

Case 2. For all i, $\tau(F_i)$ is different from $\{xa_i, ya_i\}$.

Assume first that we wish to extend the coloring d of O given by $d(x) = d(y) = d(a_1) = 1$ and $d(a_n) = 2$. Setting $\tilde{d}(a_i) = 2$ for $i = 2, \ldots, n-1$, we clearly obtain a good coloring. Moreover, for $i \ge 2$, $E(F_i) \subset D(\tilde{d})$; thus to verify that \tilde{d} crosses τ , it is sufficient to show that it crosses τ at F_1 . This is immediate from the fact that $\tau(F_1) \neq \{xa_1, ya_1\}$.

By symmetry, we conclude that any coloring of O which assigns the same color to x and y, and distinct colors to a_1 and a_n , extends to a good coloring which crosses τ .

To find other colorings with this property, let c_1 be the coloring of $\{x, y, a_1\}$ given by $c_1(x) = c_1(a_1) = 1$, $c_1(y) = 2$. There is a unique extension \tilde{c}_1 of c_1 to Gwhich crosses τ . To see this, extend c_1 to a_2, \ldots, a_n in sequence and note that at each step, setting $\tilde{c}_1(a_{i+1}) = \tilde{c}_1(a_i)$ if $\tau(F_i) = \{xa_i, ya_{i+1}\}$, and $\tilde{c}_1(a_{i+1}) \neq \tilde{c}_1(a_i)$ otherwise, is the only choice for which \tilde{c}_1 crosses τ at F_i . The resulting coloring is the unique extension of c_1 .

In particular, this implies that another good coloring \tilde{c}_2 of G which crosses τ can be obtained from \tilde{c}_1 by changing its value on all the vertices a_i . In fact, \tilde{c}_2 is the only other coloring of G which crosses τ and agrees with \tilde{c}_1 on x and y. It is easy to check that $D(\tilde{c}_1)$ and $D(\tilde{c}_2)$ intersect E(O) in non-empty disjoint subsets. Consequently, \tilde{c}_1 crosses an O-type if and only if \tilde{c}_2 does.

If $\tilde{c}_1(a_n) = 1$, then set $T = \{xa_1, ya_n\}$; otherwise, set $T = \{xa_1, xa_n\}$. Observe that in both cases, the above discussion implies that T meets the requirement of the theorem.

We are now ready to prove our main result.

Theorem 2.2 Let G be a (simple) plane graph with each face of size 3 or 4. Let O be the outer face of G and τ be a type vector of G. Then,

- (a) If O is a triangle, then every good coloring of O can be extended to a good coloring of G which crosses τ .
- (b) If O is a quadrangle, then there exists an O-type T such that every (good) coloring of O which crosses T can be extended to a good coloring of G which crosses τ .

Proof. By contradiction. Let G, τ be a counterexample with |V(G)| + |E(G)| minimum.

Claim 1. G has no separating 3-cycles.

Suppose that the claim is false, i.e. G has a separating 3-cycle C. Since every inner 4-face of Int(C) or Out(C) is a face of G, it follows that τ induces type vectors τ_{int} and τ_{out} in Int(C) and Out(C), respectively.

Assume first that O is of length 3. Let c be an arbitrary good coloring of O. Then, by the minimality, extend c to a good coloring of Out(C) which crosses τ_{out} . Note that C is not monochromatic. Now, again by the minimality, we can extend c (or rather, its restriction to C) to a good coloring of Int(C) which crosses τ_{int} . We claim that the resulting coloring of G is good. Certainly, no 4-cycle contained in $\operatorname{Int}(C)$ or $\operatorname{Out}(C)$ is monochromatic. All the other 4-cycles have a diagonal which is an edge of C. Consider the two triangles formed by this diagonal and the edges of the 4-cycle. Since one of the triangles is contained in $\operatorname{Int}(C)$ (and the other one is contained in $\operatorname{Out}(C)$), it follows that the 4-cycle cannot be monochromatic. So cis a good coloring of G which crosses τ .

Suppose now that O is of length 4. By the minimality, there exists an O-type T_{out} such that every good coloring c of O which crosses T_{out} can be extended to a good coloring of Out(C) which crosses τ_{out} . Afterwards, extend the coloring c of C to a good coloring of Int(C) which crosses τ_{int} . Since, by the above, c is a good coloring of G which crosses τ , just set $T = T_{\text{out}}$ to establish this case.

Claim 2. G has no nice separating 4-cycles.

Assume that the claim is false and C is a nice separating 4-cycle. The fact that C is nice allows us to use induction, since every 4-cycle C' of G is contained either in Int(C) or in Out(C), or else some edge of C is a diagonal of C', in which case three vertices of C' form a triangle in Int(C). Denote by τ_{int} the type vector induced by τ on Int(C). By the minimality, there exists a C-type T_{int} which satisfies requirements of part (b) of this theorem for the graph Int(C) and the type vector τ_{int} . Denote by τ_{out} the type vector induced by τ on Out(C) with the addition that $\tau_{out}(C) = T_{int}$.

We argue similarly as in Claim 1. Assume first that O is a triangle. Given a good coloring c of O, extend it first to Out(G). Since $\tau_{out}(C) = T_{int}$, it follows that c crosses T_{int} . By the minimality, we can extend the coloring induced by c on C to a good coloring of Int(C). We obtain a good coloring of G which crosses τ .

Suppose now that O is a quadrangle. By the minimality, there exists an O-type T_{out} such that every good coloring c of O which crosses T_{out} can be extended to a good coloring of Out(C). As above, we extend c to Int(C) and obtain the required coloring of G. Finally, we set $T = T_{\text{out}}$.

Claim 3. G has no separating 4-cycles.

Assume $C = x_1 x_2 x_3 x_4$ is a separating 4-cycle. By Claim 2, it follows that C is not nice. In other words, there exists a 4-cycle C' of G which is neither contained in Int(C) nor in Out(C) and no edge of C is a diagonal of C'. It is easy to observe that there are essentially two possibilities as shown in Fig. 1.

In case (a), an edge of C' is a diagonal of C, say x_1x_3 . We may assume that $C' = zyx_1x_3$ and z, y are both in Int(C) - C or Out(C) - C. As C is a separating 4-cycle, we infer that one of the 3-cycles $x_1x_3x_2$, $x_1x_3x_4$ is separating, which is a contradiction by Claim 1.

In case (b), C' has two vertices such that one is in Int(C) - C and the other one is in Out(C) - C. Without loss of generality we may assume that $C' = zx_1yx_3$. Consider a complete bipartite (plane) subgraph B of G such that one of its partites is

Figure 1: The two possibilities for C and C' in Claim 3.

 $B_1 = \{x_1, x_3\}$ and the size of the other partite B_2 is as large as possible. Enumerate the vertices of B_2 as a_1, a_2, \ldots, a_n in such a way that for each $i \in \{1, \ldots, n-1\}$, the 4-cycle $F_i = x_3 a_i x_1 a_{i+1}$ is an inner face of B. Since $x_2, x_4, y, z \in B_2$, we have $n \ge 4$. Note that $x_1 x_3$ is not an edge of G, for otherwise we would obtain a separating 3-cycle.

We shall show that no face F_i of B is a separating cycle in G. Assume the opposite. Claim 2 implies that F_i is not a nice 4-cycle. By the definition, there is a 4-cycle H which is contained neither in $Int(F_i)$ nor in $Out(F_i)$. Once again, we have two possibilities as in Fig. 1. In case (a), since $x_1x_3 \notin E(G)$, it follows that a_i and a_{i+1} are adjacent. But then we obtain a separating 3-cycle in G. In case (b), either $x_1, x_3 \in V(H)$, or $a_i, a_{i+1} \in V(H)$. The former possibility is ruled out by the maximality of B. The latter one would contradict the planarity of G since H separates x_1 from x_3 , while they are known to have common neighbors other than those in V(H). We have shown that F_i cannot be separating in G. It follows that for each i, either $a_i a_{i+1} \in E(G)$ or F_i is a 4-face of G. Note also that B is necessarily a spanning subgraph of G, i.e. V(B) = V(G).

If some 4-cycle in G is edge-disjoint from B, then all of its vertices must belong to B_2 . The planarity of G implies easily that there are no other vertices in B_2 , so that n = 4 and G must be the octahedron. Thus, O is triangular and G has no 4-faces. Fig. 2 exhibits a good coloring of the octahedron; by symmetry, any good coloring of the outer face extends to the whole graph. Henceforth, we assume that every 4-cycle of G intersects E(B).

Suppose first that O is a triangle, say $O = x_3 a_1 a_n$. Then observe that the 4-cycle $C = x_3 a_1 x_1 a_n$ is nice (but not separating). We argue similarly as in Claim 2. By the minimality, there exists a C-type T_{int} such that any good coloring of C which crosses T_{int} can be extended to a good coloring of Int(C) which crosses $\tau_{\text{int}} = \tau$). Finally, observe that for each good coloring c of O, one can choose a color $c(x_1)$ so that $D(c) \cap E(C)$ crosses T_{int} .

Assume now that O is a 4-face. Thus, $O = x_1 a_1 x_3 a_n$. If some $a_i a_{i+1}$ is an edge

Figure 2: A good coloring of the octahedron.

of G then let $G' = G - a_i a_{i+1}$ and let τ' be the type vector for G' obtained from τ by setting $\tau(F_i) = \{x_1 a_i, x_1 a_{i+1}\}$. By the minimality, there exists some O-type T' for the pair G', τ' . Since a good coloring of G which crosses τ is a good coloring of G' which crosses τ' , just set T = T' to complete this case.

The remaining possibility is that no $a_i a_{i+1}$ is an edge of G. In this case, G = B, and Claim 3 follows by Lemma 2.1.

By Claims 1 and 3, we may assume that no short cycle of G is separating. It follows that any 2-coloring of G without monochromatic faces is a good coloring of G. We use the following notation. Recall that for $A \subset E(G)$, A^* is defined as the set of the corresponding edges in the dual. If F is an inner 4-face of G, we abbreviate $(\tau(F))^*$ as $\tau^*(F)$. The vertex of G^* corresponding to the outer face of G is denoted by O^* .

We define the graph G_{τ}^* as follows. Each 4-vertex $w \neq O^*$ of G^* is split into two adjacent vertices w_1 , w_2 of degree 3, such that w_1 is adjacent to the two edges in $\tau^*(F)$ (where $F = w^*$ is the face of G corresponding to w), and w_2 is adjacent to the remaining two edges in E(w). The process is illustrated in Fig. 3.

Figure 3: The splitting of 4-vertices x, y, where $\tau^*(x^*) = \{xd, xy\}$ and $\tau^*(y^*) = \{ya, yc\}$.

The resulting graph G^*_{τ} has at most one vertex of degree 4, namely the vertex O^* . Note that G^*_{τ} need not be planar. We claim that it is bridgeless. To begin with, G is 2-connected, since it is simple with each face of size 3 or 4. It is well known that the dual of any 2-connected plane graph is 2-connected (or consists of 2 vertices and at least one edge). Furthermore, it is easily checked that the splitting of any vertex of degree 4, as above, does not introduce any cut-vertex. Since G^*_{τ} arises by a series of such splittings, it must be 2-connected and hence bridgeless.

We consider separately the cases of O being a triangle or a quadrangle, respectively. Assume first that O is triangular. In this case, G^*_{τ} is cubic. Let c be a good coloring of O. Clearly, $(D(c))^*$ consists of two edges of G^* incident with O^* . By Theorem 1.3, the corresponding pair of edges of G^*_{τ} is contained in a 2-factor \mathcal{Q} of G^*_{τ} .

Performing the obvious identification of $E(G^*)$ with the corresponding subset of $E(G^*_{\tau})$, consider the set $\mathcal{Q}' = \mathcal{Q} \cap E(G^*)$. This is an even factor of G^* . As in the proof of Proposition 1.2, \mathcal{Q}' induces a 2-coloring $c_{\mathcal{Q}}$ of G. It is necessarily a good coloring as it has no monochromatic faces (\mathcal{Q} is a 2-factor), while G has no separating short cycles. Furthermore, we claim that $c_{\mathcal{Q}}$ crosses τ . Consider an inner 4-face F of G. By the construction, $\mathcal{Q}' \cap E(F^*)$ must be different from both $\tau^*(F)$ and $E(F^*) \setminus \tau^*(F)$, for otherwise \mathcal{Q} would not cover one of the two vertices into which F^* was split. Hence $c_{\mathcal{Q}}$ crosses τ as claimed. This concludes the proof of the first subcase.

If O is a quadrangle, the situation is a little more complicated. We start by defining possible splittings of the single remaining 4-vertex O^* of G^*_{τ} . Let S be a subset of $E(O^*)$ of size 2. The graph $G^*_{\tau,S}$ is obtained by replacing O^* by two new adjacent 3-vertices O^*_S, O^*_{-S} , making O^*_S incident with the two edges in S, and making O^*_{-S} incident with the remaining two edges in $E(O^*)$. Any $G^*_{\tau,S}$ is a bridgeless cubic graph.

If there is some $S \subset E(O^*)$ of size 2 such that one cannot find any even factor \mathcal{Q} of G^*_{τ} with the property that $\mathcal{Q} \cap E(O^*) = S$, then set $T = S^*$ (where T is as in the theorem). Otherwise, choose T to be an arbitrary O-type.

Assume that we are given a coloring c of O which crosses T. If D(c) = E(O), then the required even factor \mathcal{Q} of G^*_{τ} is obtained by extending any pair $S \subset E(O^*)$ to a 2-factor of $G^*_{\tau,S}$ (by Theorem 1.3), and contracting the edge $O^*_S O^*_{-S}$. Since \mathcal{Q} obviously contains all of $E(O^*)$, the associated coloring $c_{\mathcal{Q}}$ extends c. By the argument of the preceding case, it is good and crosses τ .

It remains to discuss the possibility that D(c) is of size 2. If every pair $S \subset E(O^*)$ can be obtained as the intersection of an even factor of G^*_{τ} with $E(O^*)$ (that is, if T was chosen arbitrarily), then we simply choose such an even factor \mathcal{Q} for $S = D^*(c)$ and we are done.

Thus we may assume that there is no even factor of G^*_{τ} whose intersection with

 $E(O^*)$ is T^* . Since c crosses T, the symmetric difference $S = T^* \oplus D^*(c)$ is of size 2. Use Theorem 1.3 to find a 2-factor \mathcal{Q}' of $G^*_{\tau,S}$ containing both $O^*_S O^*_{-S}$ and the unique edge e in $T^* \cap D^*(c)$. Let \mathcal{Q} be the even factor of G^*_{τ} obtained by contracting the edge $O^*_S O^*_{-S}$. Since $O^*_S O^*_{-S} \in \mathcal{Q}'$, the intersection $I = \mathcal{Q} \cap E(O^*)$ has size 2. The remaining element of I cannot be the edge which is missing in both T^* and $D^*(c)$, for O^*_{-S} would have degree 3 in \mathcal{Q}' . Further, if I contained the edge in $T^* \setminus \{e\}$, we would get a contradiction with the way we chose T. We conclude that $I = D^*(c)$. But this implies that the coloring $c_{\mathcal{Q}}$ associated to \mathcal{Q} extends c. The above arguments show that $c_{\mathcal{Q}}$ has all the required properties. The proof of the theorem is complete.

From the last theorem, we immediately obtain the following result:

Theorem 2.3 Any planar graph G has a 2-coloring in which no cycle of length at most 4 is monochromatic.

3 Remarks

Theorem 2.3 shows that the hypergraph $\mathcal{C}_{\leq 4}(G)$ is 2-colorable for every planar graph G. Combining it with Proposition 1.2, we obtain the following result. (Note that the result cannot be extended to 2-cuts, as shown by the cubic bridgeless graph in Fig. 4 which has no 2-factor intersecting every 2-cut.)

Figure 4: A bridgeless cubic graph with no 2-factor meeting every 2-cut.

Theorem 3.1 Any cubic bridgeless planar graph G has a 2-factor which intersects every edge-cut of size 3 or 4.

Proof. The dual G^* of G is a triangulation but it may not be a simple graph. Let H^* be the graph obtained by removing multiple edges of G^* . Note that H^* is a simple plane graph with each face of size 3 or 4. By Theorem 2.3, H^* has a 2-coloring c without monochromatic cycles of length 3 or 4. Observe that c has the same property as a coloring of G. As in the proof of Proposition 1.2, one can show that the properly colored edges of G^* induce a 2-factor in G which meets every edge-cut of size 3 or 4.

Our last remark concerns Theorem 1.1. Let G be a planar graph. Each of the color classes of a 2-coloring of $C_{odd}(G)$ induces a bipartite subgraph in G, by which we easily construct a proper 4-coloring of G. Thus, Theorem 1.1 is equivalent to the Four Color Theorem. Going further, to get rid of planarity, one can define that an integer k-flow f of a directed graph G is no-odd-cut-zero (or shortly NOCZ) if there is no odd edge-cut such that f is zero on all of its edges. Using the concept of even spanning subgraphs introduced by Archdeacon [1], one can easily show that a graph admits a nowhere zero 2k-flow if and only it admits NOCZ k-flow. Thus, the 4-Flow Conjecture is equivalent to the claim that if a bridgeless graph does not contain the Petersen graph as a minor, then it admits a NOCZ 2-flow. This is a generalization of the equivalence between the Four Color Theorem and Theorem 1.1.

References

- D. Archdeacon, Face colorings of embedded graphs, J. Graph Theory 8 (1984), 387–398.
- [2] D. A. Holton and J. Sheehan, *The Petersen Graph*, Australian Mathematical Society Lecture Series, vol. 7, Cambridge University Press, Cambridge, 1993.
- [3] D. Král, private communication, 2001.
- [4] T. Schönberger, Ein Beweis des Petersenchen Graphensatzes, Acta Litt. Sci. Szeged, 7 (1934), 51–57.
- [5] S. K. Stein, B-sets and planar graphs, Pacific J. Math. 37 (1971), 217–224.
- [6] W. T. Tutte, On hamiltonian circuits, J. London Math. Soc. 21 (1946), 98– 101.