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Planar graph oloringswithout short monohromati ylesTom�a�s Kaiser�Department of MathematisUniversity of West BohemiaUniverzitn�� 8306 14 Plze�nCzeh Republikaisert�kma.zu.z
Riste �Skrekovski�yDepartment of MathematisUniversity of LjubljanaJadranska 191111 LjubljanaSloveniaskreko�fmf.uni-lj.siInstitute of TheoretialComputer Siene (ITI)Charles UniversityPraha, Czeh RepubliJanuary 27, 2001AbstratIt is well known that every planar graph G is 2-olorable in suh a waythat no 3-yle of G is monohromati. In this paper, we prove that G has a2-oloring suh that no yle of length 3 or 4 is monohromati. Equivalently,every ubi bridgeless planar graph G has a 2-fator whih intersets everyedge-ut of G of size 3 or 4. On the other hand, there are planar graphs withthe property that any of their 2-olorings has a monohromati yle of lengthat most 5. In this sense, our result is best possible.1 IntrodutionLet G be a simple graph and k � 3. Let C�k(G) be the hypergraph on V (G) (thevertex set of G) whose edges are (the vertex sets of) yles in G of length at mostk. Similarly, let Codd(G) be the hypergraph on V (G) whose edges are the odd ylesof G. For the hypergraph of odd yles, one has the following result:�The researh was supported by projet LN00A056 of the Czeh Ministery of Eduation.ySupported in part by the Ministry of Siene and Tehnology of Slovenia, Researh ProjetZ1-3129. 1



Theorem 1.1 For every planar graph G, the hypergraph Codd(G) is 2-olorable.Stein [5℄ gave a straightforward argument to dedue the above laim from theFour Color Theorem (whih was still a onjeture at the time). Color verties of Gproperly by olors 1, 2, 3, and 4. Reolor the odd-olored verties by blak and theeven-olored ones by white. It is easy to see that the new 2-oloring is proper forthe hypergraph Codd(G).In partiular, the above theorem implies that for a planar graph G, the hyper-graph C�3(G) is 2-olorable. A proof of Theorem 1.1, not based on the Four ColorTheorem, is given in [5℄ for triangulations without separating 3-yles (see the endof this setion for the de�nition of a separating yle). It uses the fat that a planartriangulation has a 2-oloring without monohromati faes if and only if its dualhas a 2-fator. This equivalene an be easily generalized to non-faial yles.Let us �rst review a few de�nitions. The edge set of a graph G is denotedby E(G). Reall that an edge-ut in G is a set A � E(G) suh that G � A isdisonneted and A is minimal with this property. Sine we shall not be interestedin vertex-uts, we refer to edge-uts simply as uts. If the size of a ut is k, wealso use the term k-ut. Similarly, we speak about k-yles and k-faes. Verties ofdegree k are referred to as k-verties.The dual of a planar graph G is denoted by G�. We use the notation e� to referto the edge of G� whih orresponds to e 2 E(G). If A � E(G) is a set of edges, welet A� = f e� : e 2 A g. Also if w 2 V (G�), then w� denotes the orresponding faeof G.An even fator of a graph G is a spanning subgraph in whih all degrees areeven and non-zero. Thus, for instane, any 2-fator is an even fator. If there is nodanger of onfusion, we identify fators with their edge sets.Proposition 1.2 Let G be a planar graph with faes of size at most k. Then,C�k(G) is 2-olorable if and only if the dual G� of G has an even fator whihintersets every ut of size at most k.Proof. Let  be a 2-oloring of C�k(G). Let C� be the set of edges e� of G� withthe property that the endverties of e are olored di�erently by . Every vertex ofG� is inident with a positive even number of edges in C�. Thus C� is an even fatorof G�. Sine a ut of G� orresponds to a yle in G of the same size (and vieversa), and sine  has no monohromati yle of length at most k, it follows thatC� intersets all uts of size at most k in G�.To prove the other diretion, we use an analogue of the argument from [5℄. LetC� be an even fator in G� whih meets every ut of G� of size at most k. As asubgraph of G�, C� is spanning and Eulerian. We an properly 2-olor the faes ofC�. This oloring indues a (possibly improper) 2-oloring of the faes of G�, and2



thus a 2-oloring of the verties of G. Now, if G has a monohromati yle of lengtht � k, we obtain a t-ut in G� whih is disjoint from C�, a ontradition.The well-known Petersen theorem asserts that every bridgeless ubi graph hasa 2-fator. Sh�onberger [4℄ proved the following generalization.Theorem 1.3 Let G be a ubi bridgeless multigraph and let e; f be two edges ofG. Then, G has a 2-fator whih ontains both e and f .Observe that this is equivalent to the assertion that every edge of a bridgelessubi graph is ontained in a 1-fator (f. [2℄, Chapter 4).As noted in [5℄, D. Barnette has pointed out that Theorem 1.3 an be used toprove that the hypergraph C�3(G) is 2-olorable for every planar graph G. A diretindutive proof of this fat was found by Kr�al [3℄.In this paper, we prove that for every planar graph G, the hypergraph C�4(G)is 2-olorable. Equivalently, every bridgeless ubi graph G has a 2-fator whihintersets every ut of G of size 3 or 4. However, there exist planar graphs for whihC�5(G) is not 2-olorable. It was noted in [5℄ that one suh graph is the dual of thewell-known non-hamiltonian planar ubi graph used by Tutte [6℄ to disprove Tait'sConjeture. In this sense, our result is best possible.We onlude this setion with a few more de�nitions. If C is a yle of a planegraph G, then Int(C) is the subgraph of G onsisting of all verties and edges whihbelong to C or are ontained inside it (with respet to the �xed embedding of G inthe plane). The graph Out(C) is de�ned symmetrially. We say that a yle C isseparating if both Int(C) and Out(C) ontain verties not belonging to C.2 Colorings and typesLet G be a plane graph. For a given fae F of G, an F -type is any non-empty subsetof E(F ) of size 2. A type vetor � for G is a mapping whih assigns an F -type toeah inner 4-fae F of G. We denote this F -type by �(F ).Let  : V (G)! f1; 2g be a 2-oloring of a planar graph G. For brevity, any yleof length at most 4 will be alled short. If no short yle of G is monohromati,then  is a good oloring. Denote by D() the set of edges xy of G with (x) 6= (y).A oloring  rosses an F -type T if D() \ E(F ) 6= T and D() \ T 6= ;. We saythat  rosses a type vetor � if for eah inner 4-fae F of G, the oloring  rosses�(F ). Saying that  rosses � at F , where F is a 4-fae of G, means simply that rosses the F -type �(F ).A 4-yle C of a planar graph G is nie, if for every 4-yle C 0 of G either(a) C 0 is a yle of Int(C) or Out(C), or3



(b) some edge of C is a diagonal of C 0.In order to prove our main theorem, we will �rst onsider the following speialase:Lemma 2.1 Let G be a plane graph isomorphi to K2;n (n � 2) with outer faeO, and let � be a type vetor of G. Then there exists an O-type T suh that everygood oloring of O whih rosses T an be extended to a good oloring of G whihrosses � .Proof. Label the verties of G in suh a way that the two partites of G are fx; ygand fa1; a2; : : : ; ang, and furthermore, O = xa1yan and for eah i = 1; : : : ; n�1, the4-yle xaiyai+1 bounds a fae Fi of G. We may assume that for eah inner fae Fi ofG, the type �(Fi) ontains the edge xai (otherwise, replae �(Fi) by its omplementE(Fi)n�(Fi)). We may also restrit our attention to olorings of O assigning olor1 to x.Note �rst that the oloring  of V (O) given by (x) = (y) = 1, (a1) = (an) = 2an always be extended to a good oloring ~ of G whih rosses � . Indeed, one anset ~(ai) = 2 for all i 2 f2; : : : ; n� 1g. The oloring ~ is good, and sine for eah i,D(~) � E(Fi), it follows that ~ rosses � . Also note that no matter whih O-type Twill be hosen, the oloring ~ rosses T . At this point, we distinguish the followingtwo ases.Case 1. For some k, �(Fk) = fxak; yakg.In this ase, we set T = fxa1; ya1g. Let  be a oloring of V (O) whih rosses T .Neessarily (x) 6= (y). It follows that no extension of  has a monohromati yle.We extend  to a oloring ~ by the following rule. First, olor a2; : : : ; ak, one by onein the given order, in suh a way that ~ rosses � at Fi for all i < k. This is alwayspossible sine of the two hoies for ~(ai+1), at most one fails to produe a oloringwhih rosses � at Fi.Similarly, olor an�1; : : : ; ak+1 (in this order), making sure that ~ rosses � at Fifor all i > k. It remains to hek the fae Fk. The fat that (x) 6= (y) implies thatexatly one of the edges xak; yak is in D(~). Sine �(Fk) = fxak; yakg, ~ neessarilyrosses the Fk-type �(Fk). Hene, ~ rosses � as desired.Case 2. For all i, �(Fi) is di�erent from fxai; yaig.Assume �rst that we wish to extend the oloring d of O given by d(x) = d(y) =d(a1) = 1 and d(an) = 2. Setting ~d(ai) = 2 for i = 2; : : : ; n� 1, we learly obtain agood oloring. Moreover, for i � 2, E(Fi) � D( ~d); thus to verify that ~d rosses � ,it is suÆient to show that it rosses � at F1. This is immediate from the fat that�(F1) 6= fxa1; ya1g. 4



By symmetry, we onlude that any oloring of O whih assigns the same olorto x and y, and distint olors to a1 and an, extends to a good oloring whih rosses� . To �nd other olorings with this property, let 1 be the oloring of fx; y; a1ggiven by 1(x) = 1(a1) = 1, 1(y) = 2. There is a unique extension ~1 of 1 to Gwhih rosses � . To see this, extend 1 to a2; : : : ; an in sequene and note that ateah step, setting ~1(ai+1) = ~1(ai) if �(Fi) = fxai; yai+1g, and ~1(ai+1) 6= ~1(ai)otherwise, is the only hoie for whih ~1 rosses � at Fi. The resulting oloring isthe unique extension of 1.In partiular, this implies that another good oloring ~2 of G whih rosses �an be obtained from ~1 by hanging its value on all the verties ai. In fat, ~2 isthe only other oloring of G whih rosses � and agrees with ~1 on x and y. It iseasy to hek that D(~1) and D(~2) interset E(O) in non-empty disjoint subsets.Consequently, ~1 rosses an O-type if and only if ~2 does.If ~1(an) = 1, then set T = fxa1; yang; otherwise, set T = fxa1; xang. Observethat in both ases, the above disussion implies that T meets the requirement of thetheorem.We are now ready to prove our main result.Theorem 2.2 Let G be a (simple) plane graph with eah fae of size 3 or 4. Let Obe the outer fae of G and � be a type vetor of G. Then,(a) If O is a triangle, then every good oloring of O an be extended to a goodoloring of G whih rosses � .(b) If O is a quadrangle, then there exists an O-type T suh that every (good)oloring of O whih rosses T an be extended to a good oloring of G whihrosses � .Proof. By ontradition. Let G; � be a ounterexample with jV (G)j + jE(G)jminimum.Claim 1. G has no separating 3-yles.Suppose that the laim is false, i.e. G has a separating 3-yle C. Sine every inner4-fae of Int(C) or Out(C) is a fae of G, it follows that � indues type vetors �intand �out in Int(C) and Out(C), respetively.Assume �rst that O is of length 3. Let  be an arbitrary good oloring of O.Then, by the minimality, extend  to a good oloring of Out(C) whih rosses �out.Note that C is not monohromati. Now, again by the minimality, we an extend (or rather, its restrition to C) to a good oloring of Int(C) whih rosses �int. Welaim that the resulting oloring of G is good. Certainly, no 4-yle ontained in5



Int(C) or Out(C) is monohromati. All the other 4-yles have a diagonal whihis an edge of C. Consider the two triangles formed by this diagonal and the edgesof the 4-yle. Sine one of the triangles is ontained in Int(C) (and the other oneis ontained in Out(C)), it follows that the 4-yle annot be monohromati. So is a good oloring of G whih rosses � .Suppose now that O is of length 4. By the minimality, there exists an O-typeTout suh that every good oloring  of O whih rosses Tout an be extended to agood oloring of Out(C) whih rosses �out. Afterwards, extend the oloring  ofC to a good oloring of Int(C) whih rosses �int. Sine, by the above,  is a goodoloring of G whih rosses � , just set T = Tout to establish this ase.Claim 2. G has no nie separating 4-yles.Assume that the laim is false and C is a nie separating 4-yle. The fat that Cis nie allows us to use indution, sine every 4-yle C 0 of G is ontained either inInt(C) or in Out(C), or else some edge of C is a diagonal of C 0, in whih ase threeverties of C 0 form a triangle in Int(C). Denote by �int the type vetor indued by �on Int(C). By the minimality, there exists a C-type Tint whih satis�es requirementsof part (b) of this theorem for the graph Int(C) and the type vetor �int. Denote by�out the type vetor indued by � on Out(C) with the addition that �out(C) = Tint.We argue similarly as in Claim 1. Assume �rst that O is a triangle. Given agood oloring  of O, extend it �rst to Out(G). Sine �out(C) = Tint, it follows that rosses Tint. By the minimality, we an extend the oloring indued by  on C toa good oloring of Int(C). We obtain a good oloring of G whih rosses � .Suppose now that O is a quadrangle. By the minimality, there exists an O-typeTout suh that every good oloring  of O whih rosses Tout an be extended to agood oloring of Out(C). As above, we extend  to Int(C) and obtain the requiredoloring of G. Finally, we set T = Tout.Claim 3. G has no separating 4-yles.Assume C = x1x2x3x4 is a separating 4-yle. By Claim 2, it follows that C is notnie. In other words, there exists a 4-yle C 0 of G whih is neither ontained inInt(C) nor in Out(C) and no edge of C is a diagonal of C 0. It is easy to observethat there are essentially two possibilities as shown in Fig. 1.In ase (a), an edge of C 0 is a diagonal of C, say x1x3. We may assume thatC 0 = zyx1x3 and z; y are both in Int(C)� C or Out(C)� C. As C is a separating4-yle, we infer that one of the 3-yles x1x3x2, x1x3x4 is separating, whih is aontradition by Claim 1.In ase (b), C 0 has two verties suh that one is in Int(C) � C and the otherone is in Out(C)�C. Without loss of generality we may assume that C 0 = zx1yx3.Consider a omplete bipartite (plane) subgraph B of G suh that one of its partites is6



x1
x3C C C 0C 0zx4 x1x2 x2x4 x3

y y z(a) (b)Figure 1: The two possibilities for C and C 0 in Claim 3.B1 = fx1; x3g and the size of the other partite B2 is as large as possible. Enumeratethe verties of B2 as a1; a2; : : : ; an in suh a way that for eah i 2 f1; : : : ; n� 1g, the4-yle Fi = x3aix1ai+1 is an inner fae of B. Sine x2; x4; y; z 2 B2, we have n � 4.Note that x1x3 is not an edge of G, for otherwise we would obtain a separating3-yle.We shall show that no fae Fi of B is a separating yle in G. Assume theopposite. Claim 2 implies that Fi is not a nie 4-yle. By the de�nition, there isa 4-yle H whih is ontained neither in Int(Fi) nor in Out(Fi). One again, wehave two possibilities as in Fig. 1. In ase (a), sine x1x3 =2 E(G), it follows that aiand ai+1 are adjaent. But then we obtain a separating 3-yle in G. In ase (b),either x1; x3 2 V (H), or ai; ai+1 2 V (H). The former possibility is ruled out bythe maximality of B. The latter one would ontradit the planarity of G sine Hseparates x1 from x3, while they are known to have ommon neighbors other thanthose in V (H). We have shown that Fi annot be separating in G. It follows thatfor eah i, either aiai+1 2 E(G) or Fi is a 4-fae of G. Note also that B is neessarilya spanning subgraph of G, i.e. V (B) = V (G).If some 4-yle in G is edge-disjoint from B, then all of its verties must belongto B2. The planarity of G implies easily that there are no other verties in B2, sothat n = 4 and G must be the otahedron. Thus, O is triangular and G has no4-faes. Fig. 2 exhibits a good oloring of the otahedron; by symmetry, any goodoloring of the outer fae extends to the whole graph. Heneforth, we assume thatevery 4-yle of G intersets E(B).Suppose �rst that O is a triangle, say O = x3a1an. Then observe that the 4-yleC = x3a1x1an is nie (but not separating). We argue similarly as in Claim 2. Bythe minimality, there exists a C-type Tint suh that any good oloring of C whihrosses Tint an be extended to a good oloring of Int(C) whih rosses �int (in thisase, �int = �). Finally, observe that for eah good oloring  of O, one an hoosea olor (x1) so that D() \ E(C) rosses Tint.Assume now that O is a 4-fae. Thus, O = x1a1x3an. If some aiai+1 is an edge7



Figure 2: A good oloring of the otahedron.of G then let G0 = G� aiai+1 and let � 0 be the type vetor for G0 obtained from �by setting �(Fi) = fx1ai; x1ai+1g. By the minimality, there exists some O-type T 0for the pair G0; � 0. Sine a good oloring of G whih rosses � is a good oloring ofG0 whih rosses � 0, just set T = T 0 to omplete this ase.The remaining possibility is that no aiai+1 is an edge of G. In this ase, G = B,and Claim 3 follows by Lemma 2.1.By Claims 1 and 3, we may assume that no short yle of G is separating. Itfollows that any 2-oloring of G without monohromati faes is a good oloring ofG. We use the following notation. Reall that for A � E(G), A� is de�ned as the setof the orresponding edges in the dual. If F is an inner 4-fae of G, we abbreviate(�(F ))� as � �(F ). The vertex of G� orresponding to the outer fae of G is denotedby O�.We de�ne the graph G�� as follows. Eah 4-vertex w 6= O� of G� is split into twoadjaent verties w1, w2 of degree 3, suh that w1 is adjaent to the two edges in� �(F ) (where F = w� is the fae of G orresponding to w), and w2 is adjaent tothe remaining two edges in E(w). The proess is illustrated in Fig. 3.
x yd 
fe ba f a

d e bx2x1 y2 y1
Figure 3: The splitting of 4-verties x,y, where � �(x�) = fxd; xyg and � �(y�) =fya; yg.
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The resulting graph G�� has at most one vertex of degree 4, namely the vertexO�. Note that G�� need not be planar. We laim that it is bridgeless. To begin with,G is 2-onneted, sine it is simple with eah fae of size 3 or 4. It is well knownthat the dual of any 2-onneted plane graph is 2-onneted (or onsists of 2 vertiesand at least one edge). Furthermore, it is easily heked that the splitting of anyvertex of degree 4, as above, does not introdue any ut-vertex. Sine G�� arises bya series of suh splittings, it must be 2-onneted and hene bridgeless.We onsider separately the ases of O being a triangle or a quadrangle, respe-tively. Assume �rst that O is triangular. In this ase, G�� is ubi. Let  be a goodoloring of O. Clearly, (D())� onsists of two edges of G� inident with O�. ByTheorem 1.3, the orresponding pair of edges of G�� is ontained in a 2-fator Q ofG�� .Performing the obvious identi�ation of E(G�) with the orresponding subsetof E(G�� ), onsider the set Q0 = Q \ E(G�). This is an even fator of G�. As inthe proof of Proposition 1.2, Q0 indues a 2-oloring Q of G. It is neessarily agood oloring as it has no monohromati faes (Q is a 2-fator), while G has noseparating short yles. Furthermore, we laim that Q rosses � . Consider an inner4-fae F of G. By the onstrution, Q0 \ E(F �) must be di�erent from both � �(F )and E(F �) n � �(F ), for otherwise Q would not over one of the two verties intowhih F � was split. Hene Q rosses � as laimed. This onludes the proof of the�rst subase.If O is a quadrangle, the situation is a little more ompliated. We start byde�ning possible splittings of the single remaining 4-vertex O� of G�� . Let S bea subset of E(O�) of size 2. The graph G��;S is obtained by replaing O� by twonew adjaent 3-verties O�S; O��S, making O�S inident with the two edges in S,and making O��S inident with the remaining two edges in E(O�). Any G��;S is abridgeless ubi graph.If there is some S � E(O�) of size 2 suh that one annot �nd any even fatorQ of G�� with the property that Q\ E(O�) = S, then set T = S� (where T is as inthe theorem). Otherwise, hoose T to be an arbitrary O-type.Assume that we are given a oloring  of O whih rosses T . If D() = E(O),then the required even fator Q of G�� is obtained by extending any pair S � E(O�)to a 2-fator of G��;S (by Theorem 1.3), and ontrating the edge O�SO��S. SineQ obviously ontains all of E(O�), the assoiated oloring Q extends . By theargument of the preeding ase, it is good and rosses � .It remains to disuss the possibility thatD() is of size 2. If every pair S � E(O�)an be obtained as the intersetion of an even fator of G�� with E(O�) (that is, if Twas hosen arbitrarily), then we simply hoose suh an even fator Q for S = D�()and we are done.Thus we may assume that there is no even fator of G�� whose intersetion with9



E(O�) is T �. Sine  rosses T , the symmetri di�erene S = T � �D�() is of size2. Use Theorem 1.3 to �nd a 2-fator Q0 of G��;S ontaining both O�SO��S and theunique edge e in T �\D�(). Let Q be the even fator of G�� obtained by ontratingthe edge O�SO��S. Sine O�SO��S 2 Q0, the intersetion I = Q \ E(O�) has size2. The remaining element of I annot be the edge whih is missing in both T �and D�(), for O��S would have degree 3 in Q0. Further, if I ontained the edgein T � n feg, we would get a ontradition with the way we hose T . We onludethat I = D�(). But this implies that the oloring Q assoiated to Q extends .The above arguments show that Q has all the required properties. The proof of thetheorem is omplete.From the last theorem, we immediately obtain the following result:Theorem 2.3 Any planar graph G has a 2-oloring in whih no yle of length atmost 4 is monohromati.3 RemarksTheorem 2.3 shows that the hypergraph C�4(G) is 2-olorable for every planar graphG. Combining it with Proposition 1.2, we obtain the following result. (Note thatthe result annot be extended to 2-uts, as shown by the ubi bridgeless graph inFig. 4 whih has no 2-fator interseting every 2-ut.)
Figure 4: A bridgeless ubi graph with no 2-fator meeting every 2-ut.Theorem 3.1 Any ubi bridgeless planar graph G has a 2-fator whih intersetsevery edge-ut of size 3 or 4.Proof. The dual G� of G is a triangulation but it may not be a simple graph.Let H� be the graph obtained by removing multiple edges of G�. Note that H�is a simple plane graph with eah fae of size 3 or 4. By Theorem 2.3, H� has a2-oloring  without monohromati yles of length 3 or 4. Observe that  hasthe same property as a oloring of G. As in the proof of Proposition 1.2, one an10



show that the properly olored edges of G� indue a 2-fator in G whih meets everyedge-ut of size 3 or 4.Our last remark onerns Theorem 1.1. Let G be a planar graph. Eah of theolor lasses of a 2-oloring of Codd(G) indues a bipartite subgraph in G, by whihwe easily onstrut a proper 4-oloring of G. Thus, Theorem 1.1 is equivalent to theFour Color Theorem. Going further, to get rid of planarity, one an de�ne that aninteger k-ow f of a direted graph G is no-odd-ut-zero (or shortly NOCZ) if thereis no odd edge-ut suh that f is zero on all of its edges. Using the onept of evenspanning subgraphs introdued by Arhdeaon [1℄, one an easily show that a graphadmits a nowhere zero 2k-ow if and only it admits NOCZ k-ow. Thus, the 4-FlowConjeture is equivalent to the laim that if a bridgeless graph does not ontain thePetersen graph as a minor, then it admits a NOCZ 2-ow. This is a generalizationof the equivalene between the Four Color Theorem and Theorem 1.1.Referenes[1℄ D. Arhdeaon, Fae olorings of embedded graphs, J. Graph Theory 8 (1984),387{398.[2℄ D. A. Holton and J. Sheehan, The Petersen Graph, Australian MathematialSoiety Leture Series, vol. 7, Cambridge University Press, Cambridge, 1993.[3℄ D. Kr�al, private ommuniation, 2001.[4℄ T. Sh�onberger, Ein Beweis des Petersenhen Graphensatzes, Ata Litt. Si.Szeged, 7 (1934), 51{57.[5℄ S. K. Stein, B-sets and planar graphs, Pai� J. Math. 37 (1971), 217{224.[6℄ W. T. Tutte, On hamiltonian iruits, J. London Math. So. 21 (1946), 98{101.
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