
University of Ljubljana

Institute of Mathematics, Physics and Mechanics
Department of Mathematics

Jadranska 19, 1000 Ljubljana, Slovenia

Preprint series, Vol. 40 (2002), 817

PLANAR GRAPH COLORINGS
WITHOUT SHORT

MONOCHROMATIC CYCLES
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tIt is well known that every planar graph G is 2-
olorable in su
h a waythat no 3-
y
le of G is mono
hromati
. In this paper, we prove that G has a2-
oloring su
h that no 
y
le of length 3 or 4 is mono
hromati
. Equivalently,every 
ubi
 bridgeless planar graph G has a 2-fa
tor whi
h interse
ts everyedge-
ut of G of size 3 or 4. On the other hand, there are planar graphs withthe property that any of their 2-
olorings has a mono
hromati
 
y
le of lengthat most 5. In this sense, our result is best possible.1 Introdu
tionLet G be a simple graph and k � 3. Let C�k(G) be the hypergraph on V (G) (thevertex set of G) whose edges are (the vertex sets of) 
y
les in G of length at mostk. Similarly, let Codd(G) be the hypergraph on V (G) whose edges are the odd 
y
lesof G. For the hypergraph of odd 
y
les, one has the following result:�The resear
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t LN00A056 of the Cze
h Ministery of Edu
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Theorem 1.1 For every planar graph G, the hypergraph Codd(G) is 2-
olorable.Stein [5℄ gave a straightforward argument to dedu
e the above 
laim from theFour Color Theorem (whi
h was still a 
onje
ture at the time). Color verti
es of Gproperly by 
olors 1, 2, 3, and 4. Re
olor the odd-
olored verti
es by bla
k and theeven-
olored ones by white. It is easy to see that the new 2-
oloring is proper forthe hypergraph Codd(G).In parti
ular, the above theorem implies that for a planar graph G, the hyper-graph C�3(G) is 2-
olorable. A proof of Theorem 1.1, not based on the Four ColorTheorem, is given in [5℄ for triangulations without separating 3-
y
les (see the endof this se
tion for the de�nition of a separating 
y
le). It uses the fa
t that a planartriangulation has a 2-
oloring without mono
hromati
 fa
es if and only if its dualhas a 2-fa
tor. This equivalen
e 
an be easily generalized to non-fa
ial 
y
les.Let us �rst review a few de�nitions. The edge set of a graph G is denotedby E(G). Re
all that an edge-
ut in G is a set A � E(G) su
h that G � A isdis
onne
ted and A is minimal with this property. Sin
e we shall not be interestedin vertex-
uts, we refer to edge-
uts simply as 
uts. If the size of a 
ut is k, wealso use the term k-
ut. Similarly, we speak about k-
y
les and k-fa
es. Verti
es ofdegree k are referred to as k-verti
es.The dual of a planar graph G is denoted by G�. We use the notation e� to referto the edge of G� whi
h 
orresponds to e 2 E(G). If A � E(G) is a set of edges, welet A� = f e� : e 2 A g. Also if w 2 V (G�), then w� denotes the 
orresponding fa
eof G.An even fa
tor of a graph G is a spanning subgraph in whi
h all degrees areeven and non-zero. Thus, for instan
e, any 2-fa
tor is an even fa
tor. If there is nodanger of 
onfusion, we identify fa
tors with their edge sets.Proposition 1.2 Let G be a planar graph with fa
es of size at most k. Then,C�k(G) is 2-
olorable if and only if the dual G� of G has an even fa
tor whi
hinterse
ts every 
ut of size at most k.Proof. Let 
 be a 2-
oloring of C�k(G). Let C� be the set of edges e� of G� withthe property that the endverti
es of e are 
olored di�erently by 
. Every vertex ofG� is in
ident with a positive even number of edges in C�. Thus C� is an even fa
torof G�. Sin
e a 
ut of G� 
orresponds to a 
y
le in G of the same size (and vi
eversa), and sin
e 
 has no mono
hromati
 
y
le of length at most k, it follows thatC� interse
ts all 
uts of size at most k in G�.To prove the other dire
tion, we use an analogue of the argument from [5℄. LetC� be an even fa
tor in G� whi
h meets every 
ut of G� of size at most k. As asubgraph of G�, C� is spanning and Eulerian. We 
an properly 2-
olor the fa
es ofC�. This 
oloring indu
es a (possibly improper) 2-
oloring of the fa
es of G�, and2



thus a 2-
oloring of the verti
es of G. Now, if G has a mono
hromati
 
y
le of lengtht � k, we obtain a t-
ut in G� whi
h is disjoint from C�, a 
ontradi
tion.The well-known Petersen theorem asserts that every bridgeless 
ubi
 graph hasa 2-fa
tor. S
h�onberger [4℄ proved the following generalization.Theorem 1.3 Let G be a 
ubi
 bridgeless multigraph and let e; f be two edges ofG. Then, G has a 2-fa
tor whi
h 
ontains both e and f .Observe that this is equivalent to the assertion that every edge of a bridgeless
ubi
 graph is 
ontained in a 1-fa
tor (
f. [2℄, Chapter 4).As noted in [5℄, D. Barnette has pointed out that Theorem 1.3 
an be used toprove that the hypergraph C�3(G) is 2-
olorable for every planar graph G. A dire
tindu
tive proof of this fa
t was found by Kr�al [3℄.In this paper, we prove that for every planar graph G, the hypergraph C�4(G)is 2-
olorable. Equivalently, every bridgeless 
ubi
 graph G has a 2-fa
tor whi
hinterse
ts every 
ut of G of size 3 or 4. However, there exist planar graphs for whi
hC�5(G) is not 2-
olorable. It was noted in [5℄ that one su
h graph is the dual of thewell-known non-hamiltonian planar 
ubi
 graph used by Tutte [6℄ to disprove Tait'sConje
ture. In this sense, our result is best possible.We 
on
lude this se
tion with a few more de�nitions. If C is a 
y
le of a planegraph G, then Int(C) is the subgraph of G 
onsisting of all verti
es and edges whi
hbelong to C or are 
ontained inside it (with respe
t to the �xed embedding of G inthe plane). The graph Out(C) is de�ned symmetri
ally. We say that a 
y
le C isseparating if both Int(C) and Out(C) 
ontain verti
es not belonging to C.2 Colorings and typesLet G be a plane graph. For a given fa
e F of G, an F -type is any non-empty subsetof E(F ) of size 2. A type ve
tor � for G is a mapping whi
h assigns an F -type toea
h inner 4-fa
e F of G. We denote this F -type by �(F ).Let 
 : V (G)! f1; 2g be a 2-
oloring of a planar graph G. For brevity, any 
y
leof length at most 4 will be 
alled short. If no short 
y
le of G is mono
hromati
,then 
 is a good 
oloring. Denote by D(
) the set of edges xy of G with 
(x) 6= 
(y).A 
oloring 
 
rosses an F -type T if D(
) \ E(F ) 6= T and D(
) \ T 6= ;. We saythat 
 
rosses a type ve
tor � if for ea
h inner 4-fa
e F of G, the 
oloring 
 
rosses�(F ). Saying that 
 
rosses � at F , where F is a 4-fa
e of G, means simply that 

rosses the F -type �(F ).A 4-
y
le C of a planar graph G is ni
e, if for every 4-
y
le C 0 of G either(a) C 0 is a 
y
le of Int(C) or Out(C), or3



(b) some edge of C is a diagonal of C 0.In order to prove our main theorem, we will �rst 
onsider the following spe
ial
ase:Lemma 2.1 Let G be a plane graph isomorphi
 to K2;n (n � 2) with outer fa
eO, and let � be a type ve
tor of G. Then there exists an O-type T su
h that everygood 
oloring of O whi
h 
rosses T 
an be extended to a good 
oloring of G whi
h
rosses � .Proof. Label the verti
es of G in su
h a way that the two partites of G are fx; ygand fa1; a2; : : : ; ang, and furthermore, O = xa1yan and for ea
h i = 1; : : : ; n�1, the4-
y
le xaiyai+1 bounds a fa
e Fi of G. We may assume that for ea
h inner fa
e Fi ofG, the type �(Fi) 
ontains the edge xai (otherwise, repla
e �(Fi) by its 
omplementE(Fi)n�(Fi)). We may also restri
t our attention to 
olorings of O assigning 
olor1 to x.Note �rst that the 
oloring 
 of V (O) given by 
(x) = 
(y) = 1, 
(a1) = 
(an) = 2
an always be extended to a good 
oloring ~
 of G whi
h 
rosses � . Indeed, one 
anset ~
(ai) = 2 for all i 2 f2; : : : ; n� 1g. The 
oloring ~
 is good, and sin
e for ea
h i,D(~
) � E(Fi), it follows that ~
 
rosses � . Also note that no matter whi
h O-type Twill be 
hosen, the 
oloring ~
 
rosses T . At this point, we distinguish the followingtwo 
ases.Case 1. For some k, �(Fk) = fxak; yakg.In this 
ase, we set T = fxa1; ya1g. Let 
 be a 
oloring of V (O) whi
h 
rosses T .Ne
essarily 
(x) 6= 
(y). It follows that no extension of 
 has a mono
hromati
 
y
le.We extend 
 to a 
oloring ~
 by the following rule. First, 
olor a2; : : : ; ak, one by onein the given order, in su
h a way that ~
 
rosses � at Fi for all i < k. This is alwayspossible sin
e of the two 
hoi
es for ~
(ai+1), at most one fails to produ
e a 
oloringwhi
h 
rosses � at Fi.Similarly, 
olor an�1; : : : ; ak+1 (in this order), making sure that ~
 
rosses � at Fifor all i > k. It remains to 
he
k the fa
e Fk. The fa
t that 
(x) 6= 
(y) implies thatexa
tly one of the edges xak; yak is in D(~
). Sin
e �(Fk) = fxak; yakg, ~
 ne
essarily
rosses the Fk-type �(Fk). Hen
e, ~
 
rosses � as desired.Case 2. For all i, �(Fi) is di�erent from fxai; yaig.Assume �rst that we wish to extend the 
oloring d of O given by d(x) = d(y) =d(a1) = 1 and d(an) = 2. Setting ~d(ai) = 2 for i = 2; : : : ; n� 1, we 
learly obtain agood 
oloring. Moreover, for i � 2, E(Fi) � D( ~d); thus to verify that ~d 
rosses � ,it is suÆ
ient to show that it 
rosses � at F1. This is immediate from the fa
t that�(F1) 6= fxa1; ya1g. 4



By symmetry, we 
on
lude that any 
oloring of O whi
h assigns the same 
olorto x and y, and distin
t 
olors to a1 and an, extends to a good 
oloring whi
h 
rosses� . To �nd other 
olorings with this property, let 
1 be the 
oloring of fx; y; a1ggiven by 
1(x) = 
1(a1) = 1, 
1(y) = 2. There is a unique extension ~
1 of 
1 to Gwhi
h 
rosses � . To see this, extend 
1 to a2; : : : ; an in sequen
e and note that atea
h step, setting ~
1(ai+1) = ~
1(ai) if �(Fi) = fxai; yai+1g, and ~
1(ai+1) 6= ~
1(ai)otherwise, is the only 
hoi
e for whi
h ~
1 
rosses � at Fi. The resulting 
oloring isthe unique extension of 
1.In parti
ular, this implies that another good 
oloring ~
2 of G whi
h 
rosses �
an be obtained from ~
1 by 
hanging its value on all the verti
es ai. In fa
t, ~
2 isthe only other 
oloring of G whi
h 
rosses � and agrees with ~
1 on x and y. It iseasy to 
he
k that D(~
1) and D(~
2) interse
t E(O) in non-empty disjoint subsets.Consequently, ~
1 
rosses an O-type if and only if ~
2 does.If ~
1(an) = 1, then set T = fxa1; yang; otherwise, set T = fxa1; xang. Observethat in both 
ases, the above dis
ussion implies that T meets the requirement of thetheorem.We are now ready to prove our main result.Theorem 2.2 Let G be a (simple) plane graph with ea
h fa
e of size 3 or 4. Let Obe the outer fa
e of G and � be a type ve
tor of G. Then,(a) If O is a triangle, then every good 
oloring of O 
an be extended to a good
oloring of G whi
h 
rosses � .(b) If O is a quadrangle, then there exists an O-type T su
h that every (good)
oloring of O whi
h 
rosses T 
an be extended to a good 
oloring of G whi
h
rosses � .Proof. By 
ontradi
tion. Let G; � be a 
ounterexample with jV (G)j + jE(G)jminimum.Claim 1. G has no separating 3-
y
les.Suppose that the 
laim is false, i.e. G has a separating 3-
y
le C. Sin
e every inner4-fa
e of Int(C) or Out(C) is a fa
e of G, it follows that � indu
es type ve
tors �intand �out in Int(C) and Out(C), respe
tively.Assume �rst that O is of length 3. Let 
 be an arbitrary good 
oloring of O.Then, by the minimality, extend 
 to a good 
oloring of Out(C) whi
h 
rosses �out.Note that C is not mono
hromati
. Now, again by the minimality, we 
an extend 
(or rather, its restri
tion to C) to a good 
oloring of Int(C) whi
h 
rosses �int. We
laim that the resulting 
oloring of G is good. Certainly, no 4-
y
le 
ontained in5



Int(C) or Out(C) is mono
hromati
. All the other 4-
y
les have a diagonal whi
his an edge of C. Consider the two triangles formed by this diagonal and the edgesof the 4-
y
le. Sin
e one of the triangles is 
ontained in Int(C) (and the other oneis 
ontained in Out(C)), it follows that the 4-
y
le 
annot be mono
hromati
. So 
is a good 
oloring of G whi
h 
rosses � .Suppose now that O is of length 4. By the minimality, there exists an O-typeTout su
h that every good 
oloring 
 of O whi
h 
rosses Tout 
an be extended to agood 
oloring of Out(C) whi
h 
rosses �out. Afterwards, extend the 
oloring 
 ofC to a good 
oloring of Int(C) whi
h 
rosses �int. Sin
e, by the above, 
 is a good
oloring of G whi
h 
rosses � , just set T = Tout to establish this 
ase.Claim 2. G has no ni
e separating 4-
y
les.Assume that the 
laim is false and C is a ni
e separating 4-
y
le. The fa
t that Cis ni
e allows us to use indu
tion, sin
e every 4-
y
le C 0 of G is 
ontained either inInt(C) or in Out(C), or else some edge of C is a diagonal of C 0, in whi
h 
ase threeverti
es of C 0 form a triangle in Int(C). Denote by �int the type ve
tor indu
ed by �on Int(C). By the minimality, there exists a C-type Tint whi
h satis�es requirementsof part (b) of this theorem for the graph Int(C) and the type ve
tor �int. Denote by�out the type ve
tor indu
ed by � on Out(C) with the addition that �out(C) = Tint.We argue similarly as in Claim 1. Assume �rst that O is a triangle. Given agood 
oloring 
 of O, extend it �rst to Out(G). Sin
e �out(C) = Tint, it follows that
 
rosses Tint. By the minimality, we 
an extend the 
oloring indu
ed by 
 on C toa good 
oloring of Int(C). We obtain a good 
oloring of G whi
h 
rosses � .Suppose now that O is a quadrangle. By the minimality, there exists an O-typeTout su
h that every good 
oloring 
 of O whi
h 
rosses Tout 
an be extended to agood 
oloring of Out(C). As above, we extend 
 to Int(C) and obtain the required
oloring of G. Finally, we set T = Tout.Claim 3. G has no separating 4-
y
les.Assume C = x1x2x3x4 is a separating 4-
y
le. By Claim 2, it follows that C is notni
e. In other words, there exists a 4-
y
le C 0 of G whi
h is neither 
ontained inInt(C) nor in Out(C) and no edge of C is a diagonal of C 0. It is easy to observethat there are essentially two possibilities as shown in Fig. 1.In 
ase (a), an edge of C 0 is a diagonal of C, say x1x3. We may assume thatC 0 = zyx1x3 and z; y are both in Int(C)� C or Out(C)� C. As C is a separating4-
y
le, we infer that one of the 3-
y
les x1x3x2, x1x3x4 is separating, whi
h is a
ontradi
tion by Claim 1.In 
ase (b), C 0 has two verti
es su
h that one is in Int(C) � C and the otherone is in Out(C)�C. Without loss of generality we may assume that C 0 = zx1yx3.Consider a 
omplete bipartite (plane) subgraph B of G su
h that one of its partites is6



x1
x3C C C 0C 0zx4 x1x2 x2x4 x3

y y z(a) (b)Figure 1: The two possibilities for C and C 0 in Claim 3.B1 = fx1; x3g and the size of the other partite B2 is as large as possible. Enumeratethe verti
es of B2 as a1; a2; : : : ; an in su
h a way that for ea
h i 2 f1; : : : ; n� 1g, the4-
y
le Fi = x3aix1ai+1 is an inner fa
e of B. Sin
e x2; x4; y; z 2 B2, we have n � 4.Note that x1x3 is not an edge of G, for otherwise we would obtain a separating3-
y
le.We shall show that no fa
e Fi of B is a separating 
y
le in G. Assume theopposite. Claim 2 implies that Fi is not a ni
e 4-
y
le. By the de�nition, there isa 4-
y
le H whi
h is 
ontained neither in Int(Fi) nor in Out(Fi). On
e again, wehave two possibilities as in Fig. 1. In 
ase (a), sin
e x1x3 =2 E(G), it follows that aiand ai+1 are adja
ent. But then we obtain a separating 3-
y
le in G. In 
ase (b),either x1; x3 2 V (H), or ai; ai+1 2 V (H). The former possibility is ruled out bythe maximality of B. The latter one would 
ontradi
t the planarity of G sin
e Hseparates x1 from x3, while they are known to have 
ommon neighbors other thanthose in V (H). We have shown that Fi 
annot be separating in G. It follows thatfor ea
h i, either aiai+1 2 E(G) or Fi is a 4-fa
e of G. Note also that B is ne
essarilya spanning subgraph of G, i.e. V (B) = V (G).If some 4-
y
le in G is edge-disjoint from B, then all of its verti
es must belongto B2. The planarity of G implies easily that there are no other verti
es in B2, sothat n = 4 and G must be the o
tahedron. Thus, O is triangular and G has no4-fa
es. Fig. 2 exhibits a good 
oloring of the o
tahedron; by symmetry, any good
oloring of the outer fa
e extends to the whole graph. Hen
eforth, we assume thatevery 4-
y
le of G interse
ts E(B).Suppose �rst that O is a triangle, say O = x3a1an. Then observe that the 4-
y
leC = x3a1x1an is ni
e (but not separating). We argue similarly as in Claim 2. Bythe minimality, there exists a C-type Tint su
h that any good 
oloring of C whi
h
rosses Tint 
an be extended to a good 
oloring of Int(C) whi
h 
rosses �int (in this
ase, �int = �). Finally, observe that for ea
h good 
oloring 
 of O, one 
an 
hoosea 
olor 
(x1) so that D(
) \ E(C) 
rosses Tint.Assume now that O is a 4-fa
e. Thus, O = x1a1x3an. If some aiai+1 is an edge7



Figure 2: A good 
oloring of the o
tahedron.of G then let G0 = G� aiai+1 and let � 0 be the type ve
tor for G0 obtained from �by setting �(Fi) = fx1ai; x1ai+1g. By the minimality, there exists some O-type T 0for the pair G0; � 0. Sin
e a good 
oloring of G whi
h 
rosses � is a good 
oloring ofG0 whi
h 
rosses � 0, just set T = T 0 to 
omplete this 
ase.The remaining possibility is that no aiai+1 is an edge of G. In this 
ase, G = B,and Claim 3 follows by Lemma 2.1.By Claims 1 and 3, we may assume that no short 
y
le of G is separating. Itfollows that any 2-
oloring of G without mono
hromati
 fa
es is a good 
oloring ofG. We use the following notation. Re
all that for A � E(G), A� is de�ned as the setof the 
orresponding edges in the dual. If F is an inner 4-fa
e of G, we abbreviate(�(F ))� as � �(F ). The vertex of G� 
orresponding to the outer fa
e of G is denotedby O�.We de�ne the graph G�� as follows. Ea
h 4-vertex w 6= O� of G� is split into twoadja
ent verti
es w1, w2 of degree 3, su
h that w1 is adja
ent to the two edges in� �(F ) (where F = w� is the fa
e of G 
orresponding to w), and w2 is adja
ent tothe remaining two edges in E(w). The pro
ess is illustrated in Fig. 3.
x yd 

fe ba f a

d 
e bx2x1 y2 y1
Figure 3: The splitting of 4-verti
es x,y, where � �(x�) = fxd; xyg and � �(y�) =fya; y
g.

8



The resulting graph G�� has at most one vertex of degree 4, namely the vertexO�. Note that G�� need not be planar. We 
laim that it is bridgeless. To begin with,G is 2-
onne
ted, sin
e it is simple with ea
h fa
e of size 3 or 4. It is well knownthat the dual of any 2-
onne
ted plane graph is 2-
onne
ted (or 
onsists of 2 verti
esand at least one edge). Furthermore, it is easily 
he
ked that the splitting of anyvertex of degree 4, as above, does not introdu
e any 
ut-vertex. Sin
e G�� arises bya series of su
h splittings, it must be 2-
onne
ted and hen
e bridgeless.We 
onsider separately the 
ases of O being a triangle or a quadrangle, respe
-tively. Assume �rst that O is triangular. In this 
ase, G�� is 
ubi
. Let 
 be a good
oloring of O. Clearly, (D(
))� 
onsists of two edges of G� in
ident with O�. ByTheorem 1.3, the 
orresponding pair of edges of G�� is 
ontained in a 2-fa
tor Q ofG�� .Performing the obvious identi�
ation of E(G�) with the 
orresponding subsetof E(G�� ), 
onsider the set Q0 = Q \ E(G�). This is an even fa
tor of G�. As inthe proof of Proposition 1.2, Q0 indu
es a 2-
oloring 
Q of G. It is ne
essarily agood 
oloring as it has no mono
hromati
 fa
es (Q is a 2-fa
tor), while G has noseparating short 
y
les. Furthermore, we 
laim that 
Q 
rosses � . Consider an inner4-fa
e F of G. By the 
onstru
tion, Q0 \ E(F �) must be di�erent from both � �(F )and E(F �) n � �(F ), for otherwise Q would not 
over one of the two verti
es intowhi
h F � was split. Hen
e 
Q 
rosses � as 
laimed. This 
on
ludes the proof of the�rst sub
ase.If O is a quadrangle, the situation is a little more 
ompli
ated. We start byde�ning possible splittings of the single remaining 4-vertex O� of G�� . Let S bea subset of E(O�) of size 2. The graph G��;S is obtained by repla
ing O� by twonew adja
ent 3-verti
es O�S; O��S, making O�S in
ident with the two edges in S,and making O��S in
ident with the remaining two edges in E(O�). Any G��;S is abridgeless 
ubi
 graph.If there is some S � E(O�) of size 2 su
h that one 
annot �nd any even fa
torQ of G�� with the property that Q\ E(O�) = S, then set T = S� (where T is as inthe theorem). Otherwise, 
hoose T to be an arbitrary O-type.Assume that we are given a 
oloring 
 of O whi
h 
rosses T . If D(
) = E(O),then the required even fa
tor Q of G�� is obtained by extending any pair S � E(O�)to a 2-fa
tor of G��;S (by Theorem 1.3), and 
ontra
ting the edge O�SO��S. Sin
eQ obviously 
ontains all of E(O�), the asso
iated 
oloring 
Q extends 
. By theargument of the pre
eding 
ase, it is good and 
rosses � .It remains to dis
uss the possibility thatD(
) is of size 2. If every pair S � E(O�)
an be obtained as the interse
tion of an even fa
tor of G�� with E(O�) (that is, if Twas 
hosen arbitrarily), then we simply 
hoose su
h an even fa
tor Q for S = D�(
)and we are done.Thus we may assume that there is no even fa
tor of G�� whose interse
tion with9



E(O�) is T �. Sin
e 
 
rosses T , the symmetri
 di�eren
e S = T � �D�(
) is of size2. Use Theorem 1.3 to �nd a 2-fa
tor Q0 of G��;S 
ontaining both O�SO��S and theunique edge e in T �\D�(
). Let Q be the even fa
tor of G�� obtained by 
ontra
tingthe edge O�SO��S. Sin
e O�SO��S 2 Q0, the interse
tion I = Q \ E(O�) has size2. The remaining element of I 
annot be the edge whi
h is missing in both T �and D�(
), for O��S would have degree 3 in Q0. Further, if I 
ontained the edgein T � n feg, we would get a 
ontradi
tion with the way we 
hose T . We 
on
ludethat I = D�(
). But this implies that the 
oloring 
Q asso
iated to Q extends 
.The above arguments show that 
Q has all the required properties. The proof of thetheorem is 
omplete.From the last theorem, we immediately obtain the following result:Theorem 2.3 Any planar graph G has a 2-
oloring in whi
h no 
y
le of length atmost 4 is mono
hromati
.3 RemarksTheorem 2.3 shows that the hypergraph C�4(G) is 2-
olorable for every planar graphG. Combining it with Proposition 1.2, we obtain the following result. (Note thatthe result 
annot be extended to 2-
uts, as shown by the 
ubi
 bridgeless graph inFig. 4 whi
h has no 2-fa
tor interse
ting every 2-
ut.)
Figure 4: A bridgeless 
ubi
 graph with no 2-fa
tor meeting every 2-
ut.Theorem 3.1 Any 
ubi
 bridgeless planar graph G has a 2-fa
tor whi
h interse
tsevery edge-
ut of size 3 or 4.Proof. The dual G� of G is a triangulation but it may not be a simple graph.Let H� be the graph obtained by removing multiple edges of G�. Note that H�is a simple plane graph with ea
h fa
e of size 3 or 4. By Theorem 2.3, H� has a2-
oloring 
 without mono
hromati
 
y
les of length 3 or 4. Observe that 
 hasthe same property as a 
oloring of G. As in the proof of Proposition 1.2, one 
an10



show that the properly 
olored edges of G� indu
e a 2-fa
tor in G whi
h meets everyedge-
ut of size 3 or 4.Our last remark 
on
erns Theorem 1.1. Let G be a planar graph. Ea
h of the
olor 
lasses of a 2-
oloring of Codd(G) indu
es a bipartite subgraph in G, by whi
hwe easily 
onstru
t a proper 4-
oloring of G. Thus, Theorem 1.1 is equivalent to theFour Color Theorem. Going further, to get rid of planarity, one 
an de�ne that aninteger k-
ow f of a dire
ted graph G is no-odd-
ut-zero (or shortly NOCZ) if thereis no odd edge-
ut su
h that f is zero on all of its edges. Using the 
on
ept of evenspanning subgraphs introdu
ed by Ar
hdea
on [1℄, one 
an easily show that a graphadmits a nowhere zero 2k-
ow if and only it admits NOCZ k-
ow. Thus, the 4-FlowConje
ture is equivalent to the 
laim that if a bridgeless graph does not 
ontain thePetersen graph as a minor, then it admits a NOCZ 2-
ow. This is a generalizationof the equivalen
e between the Four Color Theorem and Theorem 1.1.Referen
es[1℄ D. Ar
hdea
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iety Le
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i.Szeged, 7 (1934), 51{57.[5℄ S. K. Stein, B-sets and planar graphs, Pa
i�
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