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Abstract

The following problems are considered here:

Problem 1. Given a large collection of points S in 3D space and a
small pattern set P find all occurrences of a subset P’ in S such
that P’ is obtained from P as a result of rotation, translation,
reflection, and scaling.

Problem 2. Same as Problem 1, except that points in both sets are
labeled (colored).

Efficient algorithms for both problems are presented. Both problems
could be diversified into a series of problems by modifying the set of
allowed transformations like dropping the scaling transformation or
introducing the mirror transformations.

The algorithms developed here should find applications in correct-
ing the approximate geometries of fullerenes and other cages to achieve
presumed symmetry.

1 Introduction

Recognition of the presence of a geometric pattern in a large set of points
is a fundamental problem of computational geometry. It arises in such di-
verse applications as chemistry (recognition of substructures in molecules),
astronomy (recognition of constellations), etc.
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Figure 1: Pattern set P and sample set S with occurrences of P as a result
of translation and scaling (A), translation and rotation (B), translation and
reflection (C).

The problem can be described as follows. Given a pattern set P and a
sample set S in R® with 0 < k = |P| < |S| = n, identify all subsets of S
which are

P itself, as a subset of S,

a translate of P,

a rotation of P,

a scaled set P,

a reflection of P.

Moreover, if P and S are considered to be colored we search only for occur-
rences of P in S which respect the coloring. See Figure 1.

Among the papers in which variants of the Point Set Pattern Matching
Problem have been studied are Boxer 1992 [2], de Redzende and Lee [4],
Boxer 1996 [3], Boxer 1998 [1].

2 The Algorithm

Let S = {s1,82,...,5,} C R? be the sample set and P = {py,p2,...,pr} C
R3 be the pattern set. We try to find translated, rotated, scaled, or reflected



occurrences of P in S.
We give the following algorithm.
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. Sort P by lexicographic order. This takes O(klogk) time (counting
comparisons of real numbers).

. Sort S by lexicographic order. This takes O(nlogn) time.

. If P is collinear then perform a simpler algorithm, else select from P
three non-collinear points ¢y, to, t3, i.e. points that form a triangle T

. For each s; € S construct asorted set S; = {d;j,, d;j,,...,dij,_, } where
d;1, is a distance between s; and s. This takes O(n?logn) time.

. Consider a pair (s;,s;) and try to match (¢1,%2) to it — now we try to
find an occurrence of T in S scaled for the factor f = |s; —s;|/|t1 —t2].

The candidates for s; (the image of ¢3) are points on the intersection
of the sphere of radius 1 = f|t; — t3| centered in s; and the sphere
of radius o = f|ta — t3| centered in s;. If the number of points at
equal distance from s; can be bounded by a constant A for each i, we
have to verify at most A candidates for s;. These candidates can be
efficiently selected from the sets S; and S; in O(logn) time.

For each s found in the previous step a mapping from (t1,t2,%3) to
(8iy85,5k) uniquely determines an image of P in S. We must verify
the existence of (transformed) P in S for the remaining k£ — 3 points.
Since S is sorted, this can be done in O(klogn) time.

. If there exists an unchecked pair (s;, s;) then go to step 5, else stop.

Theorem 2.1. Let S be the sample set and P be the pattern set. If the
number of points at distance d from s can be bounded by a constant for each

S €

S and d € R, then the algorithm described above solves the Pattern

Matching Problem in O(kn?logn) time, where n = |S| and k = |P)|.

Proof. This follows from the greater of two estimations in steps 5 and 6
above and taking into account all O(n?) pairs (s;,s;). These steps clearly

exceed the preparation which is done in steps 1 to 4. ]
Remarks.
1. To extend the algorithm to colored sets P and S we must additionally

pay attention to the colors of elements when matching them in steps
5 and 6. This does not affect the estimation of the running time.

The space complexity of the algorithm is O(n?) since we must build n
sets S; of length n — 1 in step 4. In practice, the storage of these sets
in memory limits the size of the input which can be processed more
than the actual time complexity.



3. In practice (see the next section), the comparisons of points must be
performed with a desired tolerance to find patterns that “approxi-
mately” match P. Formally, this can be realized by introducing the
function e : R? x R? — {false,true} where e(s,t) = true precisely
when the points s and ¢ should be treated as equal. It should be used
by the algorithm at every test for equality of two points. For “ap-
proximate” matching we can, for instance, use e(s,t) = |s — | < ¢
introducing an additional parameter ¢ (tolerance) to the algorithm.

In the papers mentioned in the introduction we find several other algo-
rithms.

The paper [4] gives point set pattern matching algorithms for exactly
matching a pattern P of cardinality k£ in a sampling set of cardinality n in
R?, d > 2, with running time of O(kn?).

The paper [3] presents an algorithm for d = 3 with running time O(kn
Ag(n)/n])'/*logn) (where \g(n)/n is “nearly” a constant). This algorithm,
however, does not feature searching for scaled patterns.

The upper bound for time complexity was further improved in [1] where
the algorithm is given, for d = 3, with running time O (kn?[\¢(n)/n]'/? log n).
Here, scaling is also omitted from the list of allowed operations.
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3 Two Examples from Chemistry

We present two examples from chemistry which show possible applications
of the algorithm in finding substructures in molecules.

In the first example we searched for (approximately) regular hexagons
(pattern set P) in a set of 772 points (sample set S) which represent a part
of a DNA molecule. The result is shown in Figure 2.

In the second example the sample set .S consists of atoms of Cyy fullerene
and the pattern P is regular pentagon. As expected, 12 pentagons were
found which (approximately) match P, see Figure 3.



Figure 2: In this case, our algorithm was used to find all (colored) regular
hexagons. The sample set is a part of a DNA molecule.



Figure 3: The algorithm was used to find all regular pentagons in a Cyy
fullerene.
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