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y, Toma�z PisanskizUniversity of Ljubljana, IMFMJadranska 19, SI-1000 Ljubljana, SloveniaAnte Graova
xRudjer Bo�skovi�
 InstitutePOB 180, HR-10002 Zagreb, CroatiaAbstra
tThe following problems are 
onsidered here:Problem 1. Given a large 
olle
tion of points S in 3D spa
e and asmall pattern set P �nd all o

urren
es of a subset P 0 in S su
hthat P 0 is obtained from P as a result of rotation, translation,re
e
tion, and s
aling.Problem 2. Same as Problem 1, ex
ept that points in both sets arelabeled (
olored).EÆ
ient algorithms for both problems are presented. Both problems
ould be diversi�ed into a series of problems by modifying the set ofallowed transformations like dropping the s
aling transformation orintrodu
ing the mirror transformations.The algorithms developed here should �nd appli
ations in 
orre
t-ing the approximate geometries of fullerenes and other 
ages to a
hievepresumed symmetry.1 Introdu
tionRe
ognition of the presen
e of a geometri
 pattern in a large set of pointsis a fundamental problem of 
omputational geometry. It arises in su
h di-verse appli
ations as 
hemistry (re
ognition of substru
tures in mole
ules),astronomy (re
ognition of 
onstellations), et
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P SFigure 1: Pattern set P and sample set S with o

urren
es of P as a resultof translation and s
aling (A), translation and rotation (B), translation andre
e
tion (C).The problem 
an be des
ribed as follows. Given a pattern set P and asample set S in R3 with 0 < k = jP j � jSj = n, identify all subsets of Swhi
h are� P itself, as a subset of S,� a translate of P ,� a rotation of P ,� a s
aled set P ,� a re
e
tion of P .Moreover, if P and S are 
onsidered to be 
olored we sear
h only for o

ur-ren
es of P in S whi
h respe
t the 
oloring. See Figure 1.Among the papers in whi
h variants of the Point Set Pattern Mat
hingProblem have been studied are Boxer 1992 [2℄, de Redzende and Lee [4℄,Boxer 1996 [3℄, Boxer 1998 [1℄.2 The AlgorithmLet S = fs1; s2; : : : ; sng � R3 be the sample set and P = fp1; p2; : : : ; pkg �R3 be the pattern set. We try to �nd translated, rotated, s
aled, or re
e
ted2



o

urren
es of P in S.We give the following algorithm.1. Sort P by lexi
ographi
 order. This takes O(k log k) time (
ounting
omparisons of real numbers).2. Sort S by lexi
ographi
 order. This takes O(n logn) time.3. If P is 
ollinear then perform a simpler algorithm, else sele
t from Pthree non-
ollinear points t1; t2; t3, i.e. points that form a triangle T .4. For ea
h si 2 S 
onstru
t a sorted set Si = fdij1 ; dij2 ; : : : ; dijn�1g wheredik is a distan
e between si and sk. This takes O(n2 log n) time.5. Consider a pair (si; sj) and try to mat
h (t1; t2) to it { now we try to�nd an o

urren
e of T in S s
aled for the fa
tor f = jsi�sjj=jt1� t2j.The 
andidates for sk (the image of t3) are points on the interse
tionof the sphere of radius r1 = f jt1 � t3j 
entered in si and the sphereof radius r2 = f jt2 � t3j 
entered in sj. If the number of points atequal distan
e from si 
an be bounded by a 
onstant A for ea
h i, wehave to verify at most A 
andidates for sk. These 
andidates 
an beeÆ
iently sele
ted from the sets Si and Sj in O(log n) time.6. For ea
h sk found in the previous step a mapping from (t1; t2; t3) to(si; sj ; sk) uniquely determines an image of P in S. We must verifythe existen
e of (transformed) P in S for the remaining k � 3 points.Sin
e S is sorted, this 
an be done in O(k log n) time.7. If there exists an un
he
ked pair (si; sj) then go to step 5, else stop.Theorem 2.1. Let S be the sample set and P be the pattern set. If thenumber of points at distan
e d from s 
an be bounded by a 
onstant for ea
hs 2 S and d 2 R, then the algorithm des
ribed above solves the PatternMat
hing Problem in O(kn2 log n) time, where n = jSj and k = jP j.Proof. This follows from the greater of two estimations in steps 5 and 6above and taking into a

ount all O(n2) pairs (si; sj). These steps 
learlyex
eed the preparation whi
h is done in steps 1 to 4.Remarks.1. To extend the algorithm to 
olored sets P and S we must additionallypay attention to the 
olors of elements when mat
hing them in steps5 and 6. This does not a�e
t the estimation of the running time.2. The spa
e 
omplexity of the algorithm is O(n2) sin
e we must build nsets Si of length n� 1 in step 4. In pra
ti
e, the storage of these setsin memory limits the size of the input whi
h 
an be pro
essed morethan the a
tual time 
omplexity.3



3. In pra
ti
e (see the next se
tion), the 
omparisons of points must beperformed with a desired toleran
e to �nd patterns that \approxi-mately" mat
h P . Formally, this 
an be realized by introdu
ing thefun
tion e : R3 � R3 ! ffalse; trueg where e(s; t) = true pre
iselywhen the points s and t should be treated as equal. It should be usedby the algorithm at every test for equality of two points. For \ap-proximate" mat
hing we 
an, for instan
e, use e(s; t) = js � tj � "introdu
ing an additional parameter " (toleran
e) to the algorithm.In the papers mentioned in the introdu
tion we �nd several other algo-rithms.The paper [4℄ gives point set pattern mat
hing algorithms for exa
tlymat
hing a pattern P of 
ardinality k in a sampling set of 
ardinality n inRd , d � 2, with running time of O(knd).The paper [3℄ presents an algorithm for d = 3 with running time O(kn5=2[�6(n)=n℄1=4 log n) (where �6(n)=n is \nearly" a 
onstant). This algorithm,however, does not feature sear
hing for s
aled patterns.The upper bound for time 
omplexity was further improved in [1℄ wherethe algorithm is given, for d = 3, with running timeO(kn2[�6(n)=n℄1=2 log n).Here, s
aling is also omitted from the list of allowed operations.3 Two Examples from ChemistryWe present two examples from 
hemistry whi
h show possible appli
ationsof the algorithm in �nding substru
tures in mole
ules.In the �rst example we sear
hed for (approximately) regular hexagons(pattern set P ) in a set of 772 points (sample set S) whi
h represent a partof a DNA mole
ule. The result is shown in Figure 2.In the se
ond example the sample set S 
onsists of atoms of C94 fullereneand the pattern P is regular pentagon. As expe
ted, 12 pentagons werefound whi
h (approximately) mat
h P , see Figure 3.
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Figure 2: In this 
ase, our algorithm was used to �nd all (
olored) regularhexagons. The sample set is a part of a DNA mole
ule.
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Figure 3: The algorithm was used to �nd all regular pentagons in a C94fullerene.
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