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Abstract

In this paper we prove that any nontrivial connected strong product
graph can be uniquely reconstructed from each of its one vertex deleted
subgraphs.

Math. Subj. Class. (1991): 05C

Key words: reconstruction problem, strong product, composite graphs.

Dedicated to W. Imrich on the occasion of his 60th birthday.

1 Introduction

In [11] S.M.Ulam asked the question whether a graph G is uniquely deter-
mined up to isomorphism by its deck, which is the set of all graphs G \ =
obtained from G by deleting a vertex x and all edges incident to it. While the
conjecture is false for infinite graphs it still is open for finite graphs. When
reconstructing a class of graphs, the problem of reconstruction partitions nat-
urally into two subproblems, namely recognition: showing that membership in
the class is determined by the deck and weak reconstruction: showing that no
two nonisomorphic members of the class have the same deck.
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Recently, the weak reconstruction of Cartesian product graphs from one single—
vertex deleted subgraph was studied [7]. It was shown that both the recogni-
tion and the weak reconstruction problem can be solved from a single vertex—
deleted subgraph for nontrivial, connected Cartesian product graphs. Exten-
sions of finite and infinite connected graphs to Cartesian products were also
considered in [7]. In most cases, it is not possible to extend a given connected
graph H to a nontrivial Cartesian product. However, if such extensions exist,
they are all isomorphic (Theorem 2). In fact, unless H has a special structure,
there is exactly one such extension. (For more details see section Preliminar-
ies.) Equivalent result for finite graphs, given in terms of semistability, appears
in [10]. An algorithm for the weak reconstruction of Cartesian product graphs
of time complexity O(|E||V|(A? + |E|log|V])) is given in [4]. In [6] the case
of k-vertex deleted subgraphs of Cartesian products is considered, and it is
proved that one can decide whether a graph H is a k-vertex deleted subgraph
of a Cartesian product G with at least k + 1 prime factors on at least k£ + 1
vertices each, and that inthis case H uniquely determines G.

Dérfler [2] proved the validity of Ulam’s conjecture for finite nontrivial strong
product graphs under the assumption that at least one factor has a nontrivial
relation S.

In this paper we solve both the recognition problem and the weak reconstruc-
tion problem for nontrivial, connected strong product graphs. We prove that
nontrivial, connected strong product graph can be reconstructed from each of
its single vertex—deleted subgraphs. Moreover, from any single vertex—deleted
subgraph there is exactly one extension. Note that this is a stronger property
compared to the case of the Cartesian product where all the extensions are
unique only up to isomorphism.

The paper is organized as follows. In the next section definitions and some
previous results are recalled. In Section 3 we prove the main result:

Theorem 1 A connected nontrival strong product graph is uniquely deter-
maned by each of its one vertezx-deleted subgraphs.

More precisely, we prove, that given a vertex deleted subgraph of a strong
product graph there is exactly one set of vertices to which the new (i.e. the
deleted) vertex has to be connected in order to reconstruct the original graph.

2 Preliminaries

We will consider only finite connected simple graphs, i.e. graphs without loops
and multiple edges. The vertex set of graph G is denoted by V(G) and the



edge set will be denoted by E(G). We write shortly uv for edge {u,v}. Two
edges are adjacent if they have a common vertex. G = H denotes graph
isomorphism, i.e. the existence of a bijection b : V(G) — V(H) such that
vertices gi, go are adjacent in G exactly if vertices b(g;),b(g2) are adjacent in
H. A maximal complete subgraph is called a clique. Vertices of a complete
graph K, will usually be denoted by {0,1,...,¢ — 1}. The star graphs S, are
defined as follows: The vertex set of S, consists of a central vertex ¢y of degree
a and of a vertices ¢i, ¢s, . . ., ¢, adjacent to ¢y. The (closed) neighborhood of a
vertex x is Ng(z) = {2z} U{y | zy € E(G)}.

G \ x denotes the subgraph of G induced by the vertex set V(G) \ {z}.

The strong product Gy ® G5 of graphs G and G5, has as vertices the pairs (g, h)
where g € V(G1) and h € V(G). Vertices (g1, h1) and (g2, ho) are adjacent if
either {g1, g2} is an edge of Gy and h; = hy or if g = ¢ and {hy, ho} is an
edge of Gy or if {g1, go} is an edge of G and {h4, ho} is an edge of G5. A graph
G is prime (with respect to the strong product) if it cannot be expressed as a
product Gy ® G5 unless one of Gy or G5 is a K;. The strong product graphs
enjoy the unique factorization property, i.e. for every graph G there is a unique
set, of prime graphs G, Ga, ... Gy such that G = Gy R Gy X ... R G}, and none
of the factors is a K; [1, 8]. An algorithm for finding the prime factors of strong
direct product graphs in polynomial time is given in [3].

We will also need the definition of Cartesian product of graphs. The Cartesian
product of G; and G5 is the graph G0G, with vertex set V(G1) x V(G»)
and (z1,72)(y1,y2) € E(G10G5) whenever z1y; € E(Gp) and xy = 1, or
xoys € E(G3) and 21 = y;. The unique factorization property for Cartesian
product graphs is due to Sabidussi [9)].

The following relation, defined on the vertex set of G which was first defined
in [1], proved to be useful in studies of the strong product. The equivalence
relation S is defined as follows: zSx and for z # y, xSy if

e 1y € F(G) and
e N(z)\z=N(y)\y.

In [3], vertices = and y with xSy are called interchangeable.

We define a graph G/S on equivalence classes of S as follows. Vertices are
equivalence classes of S, V(G/S) = {[z] | = € V(G)}, where [z] denotes the
S-equivalence class of vertex z. By definition, two vertices [z], [y] € V(G/S)
are adjacent if there is an edge between the representatives. In other words,
[x] ~ [y] if and only if there are vertices v € [z] and u € [y], which are adjacent
in G. It is easy to see that then all pairs v € [z], u € [y] must be adjacent in
G. Tt can also be seen easily that (G/S)/S = G/S.



Example: In any product Ky X G vertices (0,v) and (1,v) are in relation S
for any v € G. O

Suppose that we have factored G and its factorizationis G = Gi X Gy X ... X G}.
Then we can label the vertices of G with distinct k-tuples from V(G;) x
V(G3) X ... x V(Gg) so that the edges are consistent with the definition of the
strong product. An edge is a Cartesian edge if the labels of its endpoints differ
in exactly one component and is a direct edge if the labels of its endpoints
differ in more than one component. Graph induced on the Cartesian edges of
graph G will be called a Cartesian skeleton of G. Although the factorization of
G with respect to the strong product is unique, its vertex labeling may not be.
There may be more than one labeled version of a given strong product graph.
In particular, there are examples (see [3]) of graphs for which even the sets
of Cartesian and direct edges differ in different labelings. However, (compare
Lemma 1.3 of [3])

Lemma 1 IfG has no interchangeable vertices then the set of Cartesian edges
15 uniquely determined.

It will be useful to remember sizes of equivalence classes of S. We therefore
define the weight function ¢ : V(G/S) — N with c([v]) = |[v]|, where |[v]] is
the cardinality of the equivalence class of v. When needed, we will consider
G/S as a weighted graph (G/S,c).

Two weighted graphs (G, ¢s) and (H, cy) are, by definition, isomorphic if and
only if

e there is an isomorphism 7 : G/S — H/S such that
e c(v) =cy(m(v)) for all v € V(G/S)

It can be shown (see [1]) that

Lemma 2 Two graphs G and H are isomorphic if and only if the correspond-
ing weighted graphs G/S and H/S are isomorphic.

We will later refer to the following theorem on uniqueness of the reconstruction
of Cartesian product graphs [7].

Theorem 2 Let G and H be finite or infinite connected Cartesian product
graphs. If the one vertex deleted subgraphs G, and H,, where v € G and
y € H, are isomorphic, then G ~ H.

A one vertex extension is obviously determined by the set of vertices, say
N, in G, which have to be adjacent to the new vertex. In general, there
may be more different subsets /N, which all yield a Cartesian product graph.



Figure 1: Nonunique extensions, example G, = Ck.

The above theorem assures that in all cases, when the resulting graph is a
Cartesian product, they are isomorphic. If there is exactly one such subset N,
in G, we say that the reconstruction is unique. (In terminology of [10] this is
equivalent to G' being semistable at z.) Characterization of graphs G for which
the reconstruction is always unique is given in [7]. This characterization implies
that there are two different cases where the reconstruction of a Cartesian
product graph is not unique:

1. Cy ~ P;OP3\{central — vertex} has two isomorphic reconstructions (see
Fig. 1.)

2. Let G be a product K>;OP where P is a prime graph and let x5 be a
vertex of P such that P,, has at least one connected component which
has at least one Ky factor. Then the reconstruction is not unique (See
example on Fig 2.)
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Figure 2: Nonunique extensions, example G = K,OP;.

3 Reconstruction of the strong product

There are more edges in the strong product graphs. Therefore it is likely that,
provided we can reconstruct the Cartesian skeleton, it will be less posibilities
for valid strong reconstructions. See, for example, Fig. 3 and Fig. 6.

Lemma 3 The relation S on G\ x is the same relation as the relation S
computed on G and restricted to G \ x. Formally,

SG|G\:1: = SG\I

Proof: Let u, v be any pair of vertices of GG. If either x is in both neighborhoods
Ne(u) and Ng(v) or in none of them, then clearly u and v are in relation S



and not
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Figure 3: Unique extension, example G = Ky X Pj.

on G \ z if and only if they are in relation S on G.

If 2 is in one, but not in the other neighborhood, then the only (”bad”)
possibility is that Ng(u) # Ne(v) and Ngo(u) = Nao(v). It implies that
N¢(u) and Ng(v) differ in exactly one vertex, x.

But this is not possible, as

CLAIM: two (closed) neighborhoods in a nontrivial strong product are either
the same sets or they differ in at least two vertices. O

Lemma 4 The weak reconstruction of strong product is unique.
Proof: In the proof we will consider two cases:

In this case (G \ x)/S as a vertex weighted graph (prime or composite) must
have all weights (but one) divisible by & (for some k£ # 1) and one vertex
weight of the form w(v) = Ck — 1. The reconstruction in this case is obtained
by replacing a vertex of weight C'k by a clique K.

CASE 2, K}, is not a factor in the factorization of strong product G, hence
G/S is a nontrivial strong product, say G/S = G X GS.

In this case the relation S is trivial on G| ® GG5. First consider G; R GG, without
weights. The decomposition of G ® G5 is unique, as S is trivial on G'\ S. Hence
the Cartesian skeleton is well defined and unique. Hence, the decomposition
to the Cartesian and the direct edges is well defined.

In this case we have two possibilities:
SUBCASE 2.1: The equivalence class of the vertex x in GG has only one vertex.

After deletion of x the graph (G'\ z)/S (= (G/S) \ z, by Lemma 3) has a
well defined Cartesian skeleton which is (as unweighted graph) a single vertex
deleted Cartesian product graph. It has trivial S, hence the set of Cartesian



edges is well defined, hence its Cartesian skeleton can be (up to isomorphism)
reconstructed by Theorem 2.

Lemma 5 There is at most one way of reconstruction of strong product graph
of factors on more than two vertices, which is consistent with the direct edges.

Proof: The only interesting case, where the reconstruction of a Cartesian
skeleton of strong product graph is not unique is the graph P; X P3. (The
other cases are handled by Case 1. One factor of a graph of type Ky X P has
only two vertices.) The reconstruction of Py X Pj is unique because: In each
reconstruction of Cartesian skeleton the new vertex is adjacent to at least
one vertex y in the same (Gj-layer and to at least one vertex z in the same
Go-layer (Fig. 4). From the definition of strong product, there exists an edge

z

Figure 4: Cartesian skeleton

yz in the strong product graph which specifies the vertices y and z which are
adjacent to the missing vertex in the strong product (Fig. 5). In particular,

Figure 5: Direct edge yz specifies the neighbors of z.

there are two isomorphic reconstructions of Cartesian skeleton of the graph
(Py® P3) \ = (see Fig. 1), but on the other hand only one reconstruction of
the strong product exists. In the second case, one has to add some edges not
incident to the new vertex in order to obtain a strong product (see Fig. 6). O

SUBCASE 2.2: The equivalence class of the vertex x in G has more than one
vertex.

In this case (G'\ z) has a well defined Cartesian skeleton which is (as un-
weighted graph) a Cartesian product graph. There must be exactly one vertex
with invalid weight and x must be interchangeable with vertices from the
equivalence class of the vertex x. The vertex with invalid weight can be iden-
tified as follows. For any edge zy in E(G;) consider the ratios 2% of edges

w(y,u)




and n
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Figure 6: Unique reconstruction of (P; X P;) \ x.

(x,u)(y,u). Note that there are at least three such edges. Exactly all edges

with both valid weight endpoints have equal ratios w(zy) = ZEZZ; If there is
an edge with a different ratio, then we know one of its endpoints has invalid
weight. In this way, all edges incident to the invalid weight vertex can be iden-

tified. O

Theorem 1 follows.

In conclusion, let us note that we have shown uniqueness of the reconstruction,
but did not provide an algorithm. We believe that the reconstruction of a
finite strong product graph from one vertex deleted subgraph is a polynomial
problem, however the details of the algorithmic solution may be nontrivial.
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