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THE HOMOTOPY PRINCIPLE IN COMPLEX ANALYSIS:A SURVEYFranc Forstneri�cContentsIntroduction : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 11. The homotopy principle and the Oka principle : : : : : : : : : : : : : : : : : : : : : : : : 52. The Oka principle for mappings: �rst examples : : : : : : : : : : : : : : : : : : : : : : : 83. Mappings of Stein manifolds into subelliptic manifolds : : : : : : : : : : : : : : : : 114. Removing intersections with complex subvarieties. : : : : : : : : : : : : : : : : : : : : 165. Embeddings and immersions of Stein manifolds : : : : : : : : : : : : : : : : : : : : : : : 196. Embeddings of open Riemann surfaces in the a�ne plane : : : : : : : : : : : : : 227. Noncritical holomorphic functions and submersions : : : : : : : : : : : : : : : : : : : 24References : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 27IntroductionWe say that the homotopy principle holds for a certain analytic or geo-metric problem if a solution exists provided there are no topological (or ho-motopical, cohomological,: : :) obstructions. One of the principal examples isthe theory of smooth immersions developed during 1958{61 by S. Smale [Sm1,Sm2] and M. Hirsch [Hi1, Hi2]: Immersions of a smooth manifold X to a�nespaces IRN can be classi�ed up to regular homotopy by their tangent maps, andhence by vector bundle injections from the tangent bundle TX to the trivialbundle X � T IRN . In particular, an immersion X ! IRN exists if and only ifTX admits a vector bundle injection into X � IRN .Slightly earlier J. Nash [N1, N2] proved that every Riemannian manifoldadmits an isometric immersion into a Euclidean spaces with the at metric.In the process he discovered an important new method for inverting certainclasses of non-linear partial di�erential operators by using a suitably modi�edNewton's iteration to pass from solutions of the linearized problem to a solu-tion of the non-linear problem. The Nash-Moser-Kolmogorov implicit functiontheorem became one of the key methods for proving the homotopy principle inproblems involving underdetermined systems of partial di�erential equations.



The homotopy principle was discovered even earlier in complex analysiswhere the customary expression for this phenomenon is the Oka principle. In1939 Kiyoshi Oka [Oka] studied the second Cousin problem: Given an open cov-ering U = fUjg of a complex manifold X and a collection of nowhere vanishingholomorphic functions fij 2 O�(Uij) satisfying the 1-cocycle condition (fii = 1,fijfji = 1, fijfjkfki = 1), the problem is to �nd a collection of nonvanishingholomorphic functions fi 2 O�(Ui) such that fi = fijfj on Uij = Ui \ Uj .(Here O� denotes the multiplicative sheaf of nonvanishing holomorphic func-tions on X.) Oka proved that, if X is a domain of holomorphy in Cn, a secondCousin problem can be solved by holomorphic functions fi provided that it canbe solved by continuous functions. A modern formulation of Oka's theoremis that the Picard group Pic(X) = H1(X;O�) of equivalence classes of holo-morphic line bundles is isomorphic to the group H2(X;Z), the isomorphismarising by applying the cohomology sequence to the exponential sheaf sequence0! Z ,! O ! O� ! 1, where the map O ! O� is f ! exp(2�if).In 1951 K. Stein [Stn] introduced an important class of complex mani-folds, now called Stein manifolds, on which the algebra of global holomorphicfunctions has similar properties as on domains of holomorphy. It soon becameclear throught the work of Remmert [Rem] that Stein manifolds can be char-acterized as being biholomorphic to closed complex submanifolds of the a�necomplex spaces. (See also Narasimhan [Na1, Na2] and Bishop [Bis]. For thegeneral theory of Stein manifolds we refer to the monographs [GR], [GRe] and[H�or].) H. Cartan proved that every coherent analytic sheaf on a Stein mani-fold is generated by global sections and has vanishing cohomology groups in alldimensions q � 1 (Theorems A and B of Cartan). Thus every analytic problemon a Stein manifold whose only obstruction lies in such a group is solvable.An equivalent formulation of Oka's result on the second Cousin problem isthat two holomorphic line bundles on a Stein manifold are holomorphically iso-morphic provided they are isomorphic as topological complex vector bundles.This problem has an immediate extension to vector bundles of rank q > 1. Theholomorphic equivalence classes of such bundles are represented by the coho-mology group H1(X;Gq) with coe�cients in the non-abelian sheaf of (germs of)holomorphic maps X ! GLq(C). Cartan's theory does not apply directly tosuch sheaves and one must in some sense linearize the problem. This was doneby H. Grauert in seminal papers [Gra1, Gra2] from 1957-58 in which he provedthat for complex vector bundles over Stein manifolds, holomorphic classi�ca-tion agrees with topological classi�cation. (See also the expositions in [Ram],[Ca], a recent di�erent proof in [HL1, HL2], and the survey [Lei].) Grauert re-duced the problem to the homotopy classi�cation of sections of principal �berbundles with homogeneous �bers, showing that the inclusion of the space ofholomorphic sections into the space of continuous sections of such bundles is aweak homotopy equivalence (the Oka-Grauert principle).Progress during the 1960's brought improvements and extensions of theHirsch{Smale theory in real geometry and of Grauert's theory in complex geom-2



etry. Phillips [Ph1, Ph2, Ph3] showed that the homotopy principle, analogousto the Hirsch-Smale theory of immersions, holds for smooth submersions andfoliations of open manifolds. Forster [Fs1, Fs2] applied the Oka-Grauert prin-ciple to study holomorphic embeddings of Stein manifolds in low dimensionala�ne spaces. Forster and Ramspott [FRa] proved the Oka principle in theproblem of holomorphic complete intersections. In another direction, Gunningand Narasimhan [GN] (1967) constructed noncritical holomorphic functions onany open Riemann surfaces.The subject was revolutionized by Mikhael Gromov in 1973. In his seminalpaper [Gr1] Gromov developed the method of convex integration of di�erentialrelations which established the homotopy principle in many seemingly unrelatedgeometric problems and showed that many of the earlier theorems, such as theSmale-Hirsch theory of immersions, as well as Phillips's results on submersionsand foliations, were special cases of a general theorem. Gromov's methodsinitiated rapid progress in the subject, and new examples which �t into thisframework are being found even today. We refer the reader to Gromov's mono-graph [Gro2, 1986]. During recent years other monographs appeared on thistopic, see e.g. [Sp] and [EM]. The convex integration method, together withother methods for solving global problems such as the removal of singularities(Gromov and Eliashberg [GE, Gro2]), continuous sheaves [Gro2], inversions ofdi�erential operators (Nash [N1, N2], Hamilton [Ham], Gromov [Gro2]), todayprovides one of the cornestones of di�erential topology and geometry.In this paper we survey the homotopy principle in complex analysis andgeometry, drawing parallels with the `smooth' geometry where appropriate.Results of this type are commonly referred to (as instances of) the Oka principlewhen the underlying manifold is Stein. To our knowledge this notion has neverbeen precisely de�ned, or at least there is no universal agreement on it. In themonograph [GRe] of Grauert and Remmert one �nds the following formulationon p. 145: Analytic problems (on Stein manifolds) which can be cohomologicallyformulated have only topological obstructions. If `cohomologically' is interpretedin the sense that the obstruction to a given problem lies in a cohomology groupwith coe�cients in a coherent analytic sheaf then this is just Cartan's TheoremB. The Oka-Grauert theory goes a step further by reducing a holomorphicproblem to a problem in homotopy theory. Hence one is tempted to includein the Oka principle all those analytic problems on Stein manifolds which canbe homotopically formulated. There is a serious limitation to such attemptssince certain analytic problems have no solution due to hyperbolicity (Picard'stheorems, Kobayashi hyperbolicity, etc.).What is then a sensible notion of the Oka principle which would adequatelycover the known results? It's probably impossible to �nd one. We adopt theconventionOka principle = the homotopy principle in complex analysis.We give precise de�nitions, conforming to Gromov's [Gro2], in Section 1.3



It is not surprising that some of the most powerful methods to prove thehomotopy principle in the smooth category do not extend to the holomorphiccategory. The absence of partitions of unity can be substituted to a largeextent by Cartan's theory and the @-methods of H�ormander, Kohn and oth-ers. A more serious problem is that boundary values completely determineholomorphic objects. This disquali�es the convex integration method which isbased on extending a solution by induction over the skeleta of a CW-complex.Fortunately some of the other methods mentioned above remain applicable inStein geometry. This holds for the elimination of singularities which reducesdi�erential conditions to essentially algebraic conditions along submanifolds(or complex subvarieties), as well as for the Nash-Moser theory of invertingdi�erential operators.In 1970's it became clear that progress on many problems depended onextending the Oka-Grauert principle to sections of more general types of holo-morphic submersions onto Stein manifolds. A crucial contribution was madeby Henkin and Leiterer [HL1, HL2] who reproved Grauert's theorem using the`bumping method' and a solution of the @-equation with uniform estimateson strongly pseudoconvex domains. Another key development was made byGromov in 1989 [Gro3] who introduced dominating sprays to replace the expo-nential maps in linearization problems which appear in the Oka-Grauert theory.The presence of a dominating spray on the �ber of a holomorphic bundle overa Stein manifold implies the Oka principle for its sections. Results on this topicare given in Section 3.In Section 4 we look at the question of removing intersections of holomor-phic maps from Stein source manifolds with closed complex subvarieties of the(not necessarily Stein) target manifolds. Progress in this direction was madepossible by the techniques developed to prove Gromov's Oka principle men-tioned above. In the classical case of complete intersections the Oka principlewas proved in 1967 by Forster and Ramspott [FRa].In Section 5 we survey the results on embeddings and immersions of Steinmanifolds into a�ne spaces. In 1956 R. Remmert proved [Rem] that every Steinmanifold Xn admits a proper holomorphic embedding in C2n+1 and immersionin C2n (see also Narasimhan [Na1, Na2] and Bishop [Bis]). For embeddingsof smooth manifolds Xn ! IRN the general minimal dimension is N = 2n.However, an n-dimensional Stein manifoldXn behaves in the sense of homotopytheory as being at most real n-dimensional. After the initial work of Forster[Fs1, Fs2] the optimal embedding dimension N = [3n=2] + 1 was conjecturedby Gromov and Eliashberg in 1971 [GE] and proved in 1992 [EG] (for odd nthe proof was completed in [Sch]). The problem of embedding open Riemannsurfaces to C2 is still open and we survey it in Section 6.In Section 7 we mention the recent results from [F8] on the existence ofnoncritical holomorphic functions on Stein manifolds. In particular, the Okaprinciple has been proved for holomorphic submersions of Stein manifolds Xto Euclidean spaces Cq of dimension q < dimX.4



The survey is not comprehensive in any way, and the choice of materialreects personal tastes and limitations of its author. Among the many topicswhich are not discussed we mention the existence and homotopy classi�cationof Stein structures on even dimensional smooth manifolds; see Eliashberg'spaper [El] and the monographs by Gromov [Gro2] and Gompf and Stipsicz[GSt]. I apologize to all authors whose contributions to this �eld may havebeen unjustly left out.&1. The homotopy principle and the Oka principle.We begin by recalling from [Gro2] the notion of a di�erential relation.Consider a smooth submersion h:Z ! X between smooth real manifolds. LetZ(r) denote the space of r-jets of (germs of) smooth sections f :X ! Z forr = 0; 1; 2; : : :. The 0-jet of f at x 2 X is its value f(x) 2 Zx = h�1(x). Ther-jet jrx(f) 2 Z(r) is determined in local coordinates near x 2 X resp. f(x) 2 Zby the partial derivatives of f of order � r at x.We have natural projections pr:Z(r) ! Z and psr:Z(s) ! Z(r) for s > r �0, where Z(0) = Z. The jet bundles Z(r) carry natural smooth structures, aswell as a�ne structures in �bers (see [Gro2] for more details). When X andZ are complex manifolds and h:Z ! X is a holomorphic submersion, we shalldenote by Z(r) the space of r-jets of holomorphic sections f :X ! Z.Note that for every section g:X ! Z(r) we get a corresponding `base point'section f = pr(g):X ! Z. In general g need not equal jr(f); when g = jr(f)we say that the section g is holonomic.1.1 De�nition. [Gro2, p. 2]) A di�erential relation of order r is a subsetR � Z(r) of the r-jet bundle Z(r). A Cr section f :X ! Z is said to satisfy (orto be a solution of) R if jr(f):X ! Z(r) has values in R (i.e., jrx(f) belongsto the �ber Rf(x) = (pr)�1(f(x)) of R over the point f(x) 2 Z).The relation R � Z(r) is said to be open (resp. closed) when R is an open(resp. closed) subset of the jet bundle Z(r). Natural examples of closed relationswhich arise in geometric problems are unions of submanifolds (or subvarieties)of the jet bundle Z(r), and open relations as complements of submanifolds (orsubvarieties). Di�erential equations are examples of closed di�erential relations.1.2 De�nition. (a) ([Gro2, p. 3]) Let r be a nonnegative integer and lets 2 fr; r+1; : : : ;1g. We say that solutions of class Cs of a di�erential relationR � Z(r) satisfy the basic h-principle if every continuous section �0:X ! Ris homotopic through sections �t:X ! R (t 2 [0; 1]) to a holonomic section�1 = jr(f) for some Cs section f :X ! Z.(b) Assume that h:Z ! X is a holomorphic submersion. We say that sectionsX ! Z of h satisfy the basic Oka principle if every continuous section ishomotopic to a holomorphic section. (For the parametric Oka principle seeDe�nition 2.1.) 5



(c) ([Gro2, p. 66]; assumptions as in (b).) For r � 1 we say that a di�erentialrelation R � Z(r) satis�es the holomorphic h-principle if every holomorphicsection �0:X ! R is homotopic through holomorphic sections �t:X ! R toa holonomic holomorphic section �1 = jr(f):X ! R (where f :X ! Z isa holomorphic section of h:Z ! X). We say that R satis�es the basic Okaprinciple if every continuous section �0:X !R is homotopic through a familyof continuous sections of R to a holomorphic holonomic section of R.1.3 Remarks. (a) In the Cs-smooth case one usually takes the �ne Cs topologyon the space of Cs sections X ! Z. In the holomorphic case one must use theweaker compact-open topology to obtain meaningful results.(b) One can introduce more re�ned notions such as the parametric h-principle,the h-principle with approximation (or interpolation), the relative h-principle,etc. We refer the reader to [Gro2]. In section two we introduce some of thesenotions in the holomorphic case (for relations of order zero).(c) The problem of deforming a continuous section �0:X !R to a holomorphicholonomic section can be treated in two steps:- �rst deform �0 through continuous sections of R to a holomorphic section�1:X !R (the ordinary Oka principle for sections X !R);- deform a (non-holonomic) holomorphic section �1:X ! R through a ho-motopy of holomorphic sections �t:X ! R (t 2 [1; 2]) to a holomorphicholonomic section �2 = jr(f) (the holomorphic h-principle).1.4 Examples. (a) Mappings X ! Y . An open di�erential relation oforder zero is speci�ed by an open subset 
 � Y , and the h-principle requiresthat every continuous map X ! 
 is homotopic to a smooth (real-analytic,holomorphic) map through a homotopy with range in 
. For smooth mapsthis follows from Whitney's approximation theorem. The problem is highlynontrivial in the holomorphic case (Sections 2 and 3).(b) Smooth immersions. Let X be a smooth manifold. A map f =(f1; : : : ; fq):X ! IRq is an immersion if its di�erential dfx:TxX ! Tf(x)IRq 'IRq is a injective for every x 2 X. The pertinent di�erential relation (of orderone) consists of all points (x; y; �) where x 2 X, y 2 IRq and � 2 Hom(TxX; IRq)with � injective. Clearly the value f(x) is unimportant due to translation in-variance, and we can reduce the problem to the relation R whose sections areinjective vector bundle maps TX ! X � IRq from the tangent bundle of Xinto the trivial bundle X � IRq. (Alternatively, we can consider the relationwhose sections are q-tuples of di�erential 1-forms � = (�1; : : : ; �q) on X whichtogether span the cotangent space T �xX at each point x 2 X.) The h-principleof Smale [Sm1, Sm2] and Hirsch [Hi1, Hi2] asserts that if either q > dimX, or ifq = dimX and X is open, then the regular homotopy classes of smooth immer-sions X ! IRq are in one-to-one correspondence with the homotopy classes ofvector bundle injections TX ! X � IRq. In particular, an immersion X ! IRqexists if and only if the cotangent bundle T �X is generated by q sections.6



(c) Holomorphic immersions. The Oka principle for holomorphic immer-sions X ! Cq of Stein manifolds to a�ne spaces of dimension q > dimX wasproved by Eliashberg and Gromov [Gro2] (Section 5 below). The problem isopen in the critical dimension q = dimX except for a positive result in dimen-sion n = 1 due to Gunning and Narasimhan [GN]. The Oka principle also holdsfor relative immersions (maps g:X ! Cn such that f = b� g:X ! Cm+n is aholomorphic immersion, where b:X ! Cm is a �xed holomorphic map).(d) Smooth submersions. These are smooth maps X ! Y of rank equalto dimY at each point of X (hence dimY � dimX). The tangent map of asubmersion Xn ! IRq induces a surjective vector bundle map TX ! X � IRq.The homotopy principle due to Phillips [Ph1, Ph3] asserts that for any openmanifold X, the regular homotopy classes of submersions X ! IRq are in one-to-one correspondence with surjective vector bundle maps TX ! X � IRq. Inparticular, a submersion X ! IRq exists if the tangent bundle TX admits atrivial subbundle of rank q. (See also Gromov [Gro2, pp. 26, 53].) In factthe h-principle holds for smooth submersions of open manifolds to arbitrarymanifolds. It also holds for smooth maps X ! Y of constant rank k [Ph2] orrank � k (Feit [Fe], [Gro2, p. 27]).(e) Holomorphic submersions. In 1967 Gunning and Narasimhan provedthat every open Riemann surface admits a holomorphic function without criticalpoints [GN]. Very recently it was proved in [F8] that the same holds on everyStein manifold X. Moreover, holomorphic submersions X ! Cq satisfy theOka principle when q < dimX (Section 7 below). In the maximal dimensionq = dimX the problem is still open: Does every Stein manifold Xn with trivialtangent bundle admit a locally biholomorphic map f :X ! Cn?(f) Foliations. A foliation F of rank q of an n-dimensional manifold Xis determined by an integrable rank q subbundle E � TX whose �ber Exis the tangent space to the leaf of F through x 2 X. The correspondinghomotopy principle was proved for smooth open manifolds by Phillips [Ph2],and for closed manifolds by Thurston [Th1, Th2] (see also [Gro2], p. 102 andp. 106]): If a smooth subbundle E � TX has a trivial normal bundle TX=Ethen E is homotopic to an integrable smooth subbundle in TX (which thereforedetermines a smooth foliation on X). The same holds if N = TX=E admitsthe structure of a bundle with a�ne �bers Nx ' IRm whose structure groupis a discrete subgroup of Di�(IRm); in this case one obtains a foliation F ofX whose tangent bundle is homotopic to E and whose normal bundle equalsN . These results have been extended in [F8] to holomorphic foliations on Steinmanifolds. The h-principle fails for real-analytic foliations on closed manifoldssince no closed simply connected real-analytic manifold admits a real-analyticfoliation of codimension one (Haeiger [Hae]). For example, the seven-sphereS7 admits a smooth codimension one foliation but no real-analytic one.(g) Totally real immersions and embeddings. Let S be a smooth manifoldand X a complex (or almost complex) manifold. An immersion f :S ! X is7



totally real if for each p 2 S the image �p = dfp(TpS) � Tf(p)X is a totally reallinear subspaces of Tf(p)X, i.e, �p \ J(�p) = f0g where J 2 End(TX) is thealmost complex structure on X. The pertinent di�erential relation is the setof tripples (p; x; �) where p 2 S, x 2 X and � 2 Hom(TpS; TxX) is an injectiveIR-linear map whose image is a totally real subspace of TxX. When X = Cn wecan reduce the problem to a relation whose sections are injective IR-linear vectorbundle maps �:TS ! S � Cn with �(TpS) \ i�(TpS) = f0g for all p 2 S. Thehomotopy principle holds for totally real immersions and embeddings of anysmooth manifold into any complex manifold. An important point is that theWhitney trick can be performed through totally real submanifolds. See [Gro2,EH, F1, Au], and for dimension two also [F2, F7].(h) Isometric immersions and embeddings. The fundamental work ofNash [Na1, Na2] initiated a rich and complex theory. An interesting featureof Nash's discovery is that every smooth Riemannian manifold (Xn; g) admitslocal isometric immersions of class C1 already in IRn+1 (codimension one!), butC1 isometric immersions require larger codimension. For q � 12(n+ 2)(n+ 3)free isometric immersions Xn ! IRq satisfy the homotopy principle [Gro2, p.12]. Important results in this �eld were obtained by R. Greene and collabora-tors [Gre, GW, GSh]. We refer to [Gro2] for further results and references.&2. The Oka principle for mappings: �rst examples.Let X and Y be complex manifolds. We say that mappings X ! Y satisfythe basic Oka principle if every continuous map is homotopic to a holomor-phic map. More generally, let P be a compact Hausdor� space (the parameterspace) and P0 � P be a compact subset which is a strong deformation re-traction of some neighborhood of P0 in P . We consider the following strongerversions of the Oka principle (see the notion of Ell1 �brations in [Gro3], aswell as Theorem 1.5 in [FP2].)A compact set K in a Stein manifold X is holomorphically convex if forevery point p 2 XnK there is an f 2 O(X) such that f(p0) > supx2K jf(x)j.2.1 De�nition. (a) Maps X ! Y satisy the parametric Oka principleif for any continuous map f :X � P ! Y such that fp = f(� ; p):X ! Y isholomorphic for each p 2 P0 there is a homotopy of continuous maps f t:X �P ! Y (t 2 [0; 1]) such that (i) f0 = f , (ii) the map f1p := f1(� ; p):X ! Y isholomorphic for each p 2 P , and (iii) f tp = fp for each p 2 P0 and t 2 [0; 1].(b) Let X be a Stein manifold and let � be a metric on the complex manifoldY inducing the manifold topology. Maps X ! Y satisfy the parametric Okaprinciple with approximation if for every compact holomorphically convexsubset K � X and for every f :X � P ! Y as in (a) such that all maps fp(p 2 P ) are holomorphic in an open neighborhood of K in X, there is for every� > 0 a homotopy f t:X�P ! Y satisfying (a) and also �(f t(x; p); f(x; p))< �(x 2 K; p 2 P ). 8



(c) Maps X ! Y satisfy the parametric Oka principle with interpolationif for every closed complex subvariety X0 � X and for every f :X � P ! Y asin (a) such that all maps fp (p 2 P ) are holomorphic in an open neighborhoodof X0 in X, there is for every r 2 IN a homotopy f t:X �P ! Y as in (a) suchthat f tp agrees with fp to order r on X0 for every t 2 [0; 1] and p 2 P .The above notions clearly extend to sections f :X ! Z of a holomorphicsubmersion h:Z ! X (see [Gro3] or [FP2]).2.2 Remark. The parametric Oka principle for maps X ! Y implies thatthe inclusion �: Holo(X;Y ) ,! Cont(X;Y ) (2:1)of the space of holomorphic maps into the space of continuous maps is a weakhomotopy equivalence, i.e., it induces isomorphisms of the corresponding ho-motopy groups of the two spaces which are equipped with the compact-opentopology [FP1]. (In some papers this is the de�nition of the parametric Okaprinciple.) In particular, each connected component of Cont(X;Y ) containsprecisely one connected component of Holo(X;Y ) which means that (a) everycontinuous map is homotopic to a holomorphic map, and (b) every homotopybetween a pair of holomorphic maps can be continuously deformed to a homo-topy consisting of holomorphic maps. �The basic Oka principle can hold for a trivial reason that either of themanifolds X or Y is contractible (hence every map is homotopic to constant).However, topological contractibility does not necessarily imply the parametric(or any other) Oka principle. In all nontrivial situations where the Oka principlehas been established for all Stein source manifolds X, it was actually proved inthe strongest form (parametric, with interpolation and approximation). Thisis no coincidence since at least the approximation is built into all the knownproofs.We collect positive results on the Oka principle for maps (and sections) inSection 3 below. In the remainder of this section we give examples illustratingthe failure of the Oka principle for maps from Stein source manifolds. In mostexamples the reason for the failure is hyperbolicity of the target manifold.2.3 Example. If either X or Y is contractible then the Oka principle for mapsX ! Y trivially holds. However, the Oka principle with approximation failsalready for self-maps of the unit disc U = fz 2 C: jzj < 1g: If a 2 Unf0g and0 < r < 1�jaj, the translation f(z) = z+amaps fjzj < rg holomorphically intoU and it extends to a smooth a map U ! U , but it cannot be approximateduniformly on any neighborhood of the origin 0 2 U by a holomorphic mapg:U ! U since this would give g0(0) � f 0(0) = 1 in contradiction to theSchwarz lemma.2.4 Example. This and the next example can be found in [Gro3]. Let X =f1 < jzj < rg and Y = f1 < jzj < Rg be annuli in C. The space of homotopy9



classes of maps X ! Y equals �1(Y ) = Z. However, if 1 < R < r thenevery holomorphic map X ! Y is homotopic to constant and hence the Okaprinciple fails. Furthermore, for any choice of values of r; R > 1 only �nitelymany homotopy classes of maps X ! Y are represented by holomorphic maps.To see this, observe that the in�mum of the Kobayashi length of closed curvesin X or Y which generate the respective fundamental group is positive, andholomorphic maps do not increase the length. On the other hand, the Okaprinciple holds for maps X ! Cnf0g from any Stein manifold X (Section 3).2.5 Example. The argument in Example 2.4 extends to any Kobayashi hy-perbolic target manifold. (A complex manifold Y is Kobayashi hyperbolic if forany point y 2 Y and tangent vector v 2 TyY 2 f0g the set of all numbers� 2 C of the form f 0(0) = �v for some holomorphic map f :U ! Y , f(0) = y,is bounded: j�j � M for some M = M(y; v) < +1. For instance, the twicepunctured plane Cnf0; 1g is hyperbolic by Picard's theorem.) If we take asbefore X to be an annulus then even the basic Oka principle fails for mapsX ! Y = Cnf0; 1g which is seen by the following argument from [Gro3, p.853]. Take a circle S = fjzj = �g � X and wrap is su�ciently many timesaround each of the points 0; 1 by a smooth map f :S ! Y . Since the mini-mal Kobayashi length of closed curves representing a given homotopy class in�1(Y ) increases to +1 when we increase the number of rotations around thetwo punctures, the length of f(S) in Y will exceed the length of S in X forany f representing a suitably chosen class in �1(Y ). Since holomorphic mapsdo not increase the Kobayashi length, it follows that such f is not homotopicto any holomorphic map X ! Y . In fact, only �nitely many classes in �1(Y )can be represented by holomorphic maps X ! Y .2.6 Example. The following example, due to J.-P. Rosay (private communica-tion), is an improvement of Proposition 2.2 in [�CF]. It shows that holomorphicgraphs over the unit disc cannot avoid even fairly simple complex curves in C2.Let (z; w) be complex coordinates on C2. For k 2 C let�k = fw = 0g [ fw = 1g [ fw = kzg [ fzw = 1g � C2:Proposition. (J.-P. Rosay) There is a k > 0 such that the graph of anyholomorphic function f :U = fjzj < 1g ! C intersects �k. (Indeed this is truefor every su�ciently large jkj.) On the other hand, for any k there exists asmooth function U ! C whose graph avoids �k.This should be compared with Examples 3.4 and 3.5 below on avoidingsubvarieties of codimension at least two. This is also in strong contrast to thesituation for holomorphic motions, i.e., disjoint unions of holomorphic graphsover the disc, which can always be extended to maximal motions according toSlodkowski [Sl1, Sl1].Proof. The last statement is a simple topological exercise. Suppose now thatf :U ! Cnf0; 1g is a holomorphic function omitting 0 and 1. Denote by l the10



length of the circle C = fjzj = 1=2g with respect to the Kobayashi (=Poincar�e)metric on U . Denote by d the Kobayashi distance function on Cnf0; 1g. Letk0 = supfj�j 2 Cnf0; 1g: inf� d(�; 2ei�) � lg:We have k0 < +1 since Cnf0; 1g is complete hyperbolic. Observe that theKobayashi length of f(C) � Cnf0; 1g is at most l. We consider two cases.Case 1. There exists a � 2 IR such that jf(ei�=2)j � 2. Then for all  2 IRwe have jf(ei=2)j � k0 by the choice of k0. Rouch�e's theorem shows that forevery k > 2k0 the equation kz� f(z) = 0 has a solution with jzj < 1=2, and atthis point the graph of f intersects �k.Case 2. For every � 2 IR we have jf(ei�=2)j > 2. Since f has values inCnf0; 1g, so does g = 1=f , and the above gives jg(ei�=2)j < 1=2 for every �.Rouch�e's theorem implies that z� g(z) = z� 1f(z) has one zero with jzj < 1=2,which means that zf(z) = 1 has a solution with jzj < 1=2. At this point thegraph of f intersects �k. This completes the proof.2.7 Example. This example is taken from [FP3]. For every n 2 IN thereexists a discrete subset P � Cn such that the basic Oka principle fails for mapsX ! CnnP from some Stein manifold X. In fact this holds for any discrete setP which is unavoidable in the sense of Rosay and Rudin [RR], i.e., such thatany entire map Cn ! Cn of generically maximal rank intersects P in�nitelyoften. Alternatively, any entire map Ck ! CnnP has rank < n at each point(here k may be di�erent from n). The same holds for maps X ! CnnP for anyX covered by an a�ne space.A simple argument shows that any holomorphic map X ! CnnP of rank< n is homotopic to the constant map in CnnP . However, for certain Xcovered by an a�ne space there exist homotopically nontrivial smooth mapsX ! CnnP and hence the Oka principle fails. To obtain such an example letn = 2 and X = (Cnf0g)3 (which is universally covered by C3). There is asmooth contraction of X onto the standard torus T 3 � C3. Let f :T 3 ! C2nPbe an embedding of T 3 onto a small hypersurface torus surrounding a pointp0 2 P . Composing f with the contraction X ! T 3 we get a nontrivial smoothmap X ! C2nP which is not homotopic to any holomorphic map.Note that the in�nitesimal Kobayashi pseudometric on Y = CnnP is to-tally degenerate, but the Kobayashi-Eisenmann volume form on Y is nontrivial(when P is unavoidable).&3. Mappings of Stein manifolds into subelliptic manifolds.In this section we present results on the Oka principle for maps X ! Yfrom Stein source manifolds, as well as for section of submersions onto a Steinbase. Our main references are the papers by Grauert [Gra1, Gra2], Cartan[Ca], Gromov [Gro3], and [FP1, FP2, FP3, F5].11



By de�nition every Stein manifold admits plenty of holomorphic maps tocomplex a�ne spaces Cq. The basic idea introduced by Gromov [Gro3] is thefollowing. Suppose that a complex manifold Y admits su�ciently many dom-inating holomorphic maps s: Cq ! Y , where the domination property meanss is a submersion outside a subvariety of Cq. Then there also exist plenty ofholomorphic maps X ! Y from any Stein X. (In some sense the idea is tofactor maps X ! Y as X ! Cq ! Y .) What is needed in the proofs isa family of dominating maps sy: Cq ! Y , depending holomorphically on thepoint y = sy(0) 2 Y . This leads to the following concept of a dominating sprayintroduced by Gromov [Gro3]. The notion of a dominating family of spraysand of subelliptic manifolds was introduced in [F5].3.1 De�nition. A spray on a complex manifold Y is a holomorphic maps:E ! Y , de�ned on the total space of a holomorphic vector bundle p:E ! Y ,such that s(0y) = y for every y 2 Y . The spray is dominating at y if itsdi�erential ds0y :T0yE ! TyY maps Ey (which is a linear subspace of T0y (E))onto TyY ; it is dominating if this holds at every point y 2 Y . A dominatingfamily of sprays is a collection of sprays sj:Ej ! Y (j = 1; 2; : : : ; k) suchthat for every y 2 Y we have(ds1)0y (E1;y) + (ds2)0y (E2;y) � � �+ (dsk)0y(Ek;y) = TyY: (3:1)A manifold Y is called elliptic if it admits a dominating spray, and subellipticif it admits a �nite dominating family of sprays.3.2 Theorem. (The Oka principle for maps to subelliptic manifolds.)If X is a Stein manifold and Y is a subelliptic manifold then mappings X ! Ysatisfy the parametric Oka principle with interpolation and approximation.Furthermore, the Oka principle holds (in all forms) for sections X ! Z of anyholomorphic �ber bundle h:Z ! X with subelliptic �ber Zx = h�1(x).We emphasize that there is no restriction on the structure group of Z ! X(we may use the entire group of holomorphic automorphisms of the �ber). The-orem 3.2 includes the results of Grauert [Gra1, Gra2] and Gromov [Gro3, Sec.2]. Observe that (sub)ellipticity of a complex manifold eliminates Kobayashior Eisenman hyperbolicity.Theorem 3.2 is proved constructively by approximation and gluing of holo-morphic maps to Y (resp. of sections X ! Z) de�ned on holomorphically con-vex subsets of X. The main steps have been developed in the papers citedabove and in [FP1, FP2, FP3]. In [F5] the result was proved in the �nal formas stated here. For an extension to sections of subelliptic submersions seeTheorem 3.8 below.We now give examples of sprays and (sub)elliptic manifolds; thus the Okaprinciple holds for maps from any Stein manifold to any manifold on this list.Most of them can be found in [Gro3]. 12



3.3 Example: Complex homogeneous manifolds. Let G be a complexLie group which acts holomorphically and transitively on a complex manifoldY by holomorphic automorphisms. Let g = TeG denote its Lie algebra andexp:g! G the associated exponential map. The map Y �g! Y , (y; t)! ety,is a dominating spray on Y and hence Y is elliptic. The Oka principle for mapsX ! Y is due to Grauert [Gra1, Gra2].3.4 Example: Sprays induced by complete vector �elds. (See [Gro3]and [FP1].) Let V1; : : : ; Vk be holomorphic vector �elds on Y which are com-plete in complex time. Denote by �j:Y � C ! Y the ow of Vj . The super-position of these ows (in any order) gives a spray s:Y � Ck ! Y which isdominating at a point y 2 Y if the vectors V1(y); : : : ; Vk(y) span the tangentspace TyY . For example, if A � Cn is an algebraic subvariety of complex codi-mension at least two then the complement Y = CnnA admits a dominatingpolynomial spray of this kind. (This fails for most complex hypersurfaces A,see Example 2.6.) A complex Lie group admits sprays of this kind induced byleft (or right) invariant vector �elds spanning the Lie algebra.3.5 Example: Complements of projective subvarieties. If A is a closedcomplex (=algebraic) subvariety of the complex codimension at least two in thecomplex projective space CIPn then the manifold Y = CIPnnA is subelliptic.The same holds if we replace CIPn by a complex Grassmanian. The proofgoes as follows (see [F5], Proposition 1.2; the idea is due to Gromov [Gro3]).Removing a complex hyperplane L from CIPn we are left with CnnA whichadmits a dominating algebraic (polynomial) spray de�ned on a trivial bundleE = (CnnA)� Ck ! CnnA (Example 3.4). Let [L] = OCIPn(1) denote the linebundle on CIPn determined by the divisor of L (the so called hyperplane sectionbundle). For su�ciently large m > 0 the spray s extends to an algebraic sprayes:E 
 [L]�m ! CIPn which is dominating over CIPnn(L [ A). Repeating thiswith n+1 hyperplanes in general position we obtain a �nite dominating familyof sprays on Y . The bundles of these sprays are nontrivial (in fact negative)and hence we cannot combine them into a single dominating spray as we didwith the ows �j in Example 3.4. It is not known whether CIPnnA is ellipticfor every such A.3.6 Example: Matrix-valued maps with nonzero determinant. Let Xbe a Stein manifold and g1; : : : ; gk:X ! Cn holomorphic maps (with 1 � k < n)such that the vectors g1(x); : : : ; gk(x) 2 Cn are C-linearly independent forevery x 2 X. The problem is to �nd holomorphic maps gk+1; : : : ; gn:X ! Cnsuch that the matrix g(x) = (g1(x); : : : ; gn(x)) with columns gj(x) satis�esdet g(x) 6= 0 (or even det g(x) = 1) for every x 2 X. The Oka principle holds inthis problem (in all forms); in particular, a holomorphic solution exists providedthere exists a continuous solution. To see this we consider the manifoldZ = f(x; vk+1; : : : ; vn):x 2 X; vj 2 Cn for j = k + 1; : : : ; n;det(g1(x); : : : ; gk(x); vk+1; : : : ; vn) 6= 0g13



with the projection h:Z ! X onto the �rst factor. A solution to the problemis a section X ! Z of this �bration. The Oka principle follows from theobservation that Z ! X is a holomorphic �ber bundle whose �ber GLn�k(C)�Ck(n�k) is a complex Lie group. For maps into SLn(C) is su�ces to divide oneof the columns by the (nonvanishing) determinant function. �Theorem 3.2 extends to sections of subelliptic submersions which we norintroduce. Let h:Z ! X be a holomorphic submersion onto X. For U � X wewrite ZjU = h�1(U). For z 2 Z we denote by V TzZ the kernel of dhz (whichequals the tangent space to the �ber of Z at z) and call it the vertical tangentspace of Z at z. The space V T (Z) ! Z with �bers V TzZ is a holomorphicvector subbundle of the tangent bundle TZ.If p:E ! Z is a holomorphic vector bundle we denote by 0z 2 E the basepoint in the �ber Ez = p�1(z). At each point z 2 Z (=the zero section of E)we have a natural splitting T0zE = TzZ � Ez.3.7 De�nition. [Gro3, sec. 1.1.B] A spray associated to a holomorphicsubmersion h:Z ! X (an h-spray) is a triple (E; p; s), where p:E ! Z is aholomorphic vector bundle and s:E ! Z is a holomorphic map such that foreach z 2 Z we have s(0z) = z and s(Ez) � Zh(z). The spray s is dominatingat the point z 2 Z if the derivative ds:T0zE ! TzZ maps Ez (which is alinear subspace of T0zE) surjectively onto V TzZ = ker dhz. The submersionh:Z ! X is called subelliptic if each point in X has an open neighborhoodU � X such that h:ZjU ! U admits �nitely many h-sprays (Ej; pj ; sj) forj = 1; : : : ; k satisfying(ds1)0z (E1;z) + (ds2)0z(E2;z) � � �+ (dsk)0z(Ek;z) = V TzZ (3:2)for each z 2 ZjU . A collection of sprays satisfying (3.1) is said to be dominatingat z. A submersion h is elliptic if the above holds with k = 1.Comparing with De�nition 3.1 we see that a spray on a manifold Y is thesame thing as a spray associated to the trivial submersion Y ! point. Byde�nition every elliptic submersion is also subelliptic, but the converse is notknown. A holomorphic �ber bundle Z ! X is (sub)elliptic if and only if the�ber has this property (since a spray on E induces an h-spray on the productbundle h:U �E ! U).3.8 Theorem. If h:Z ! X is a subelliptic submersion onto a Stein manifoldX then sections f :X ! Z satisfy the parametric Oka principle with interpo-lation and approximation.For elliptic submersions Theorem 3.8 coincides with Gromov's Main The-orem in [Gro3, Sec. 4.5]. The result is proved in [FP1] for �ber bundles withelliptic �bers, in [FP2] for elliptic submersions but without interpolation, in14



[FP3] for elliptic submersions with interpolation, and the extension to subel-liptic submersions is obtained in [F5]. A version of the Oka principle for multi-valued sections of rami�ed holomorphic maps can be found in [F6]. F. L�arusson[L�ar] explained this result from the homotopy theory point of view.Historical comments. The so-called classical case of Theorem 3.8 (for sec-tions of principal �ber bundles with complex homogeneous �bers) is Grauert'stheorem [Gra1, Gra2, Ca, Ram]. A very important develoment which reallyopened the way to generalizations was the work of Henkin and Leiterer in 1984[HL1] (which was eventually published in 1998 [HL2]) where they introducedthe bumping method to this problem. Its main advantage over the originalmethod of Grauert is that one only needs the Oka-Weil approximation theo-rem for sections of Z ! X over small subsets of the base X. The second maincontribution was made by Gromov [Gro3] who replaced the exponential mapon the �ber (which was used in Grauert's proof to linearize the problems) bythe more exible notion of a dominating spray. The idea of using several spraysinstead of one is implicitly present in [Gro3], but the condition which we callsubellipticity was not formulated there explicitly, and the Oka principle wasstated in [Gro3] only for elliptic submersions.3.9 Example: Avoiding subvarieties with algebraic �bers. Let h:Z !X be a �ber bundle with �ber Zx = h�1(x) ' CIPn or a complex Grassmanian.Assume that A is a closed complex subvariety of Z whose �ber Ax = A\Zx hascomplex codimension at least two in Zx for every x 2 X. (Ax is algebraic byChow's theorem.) Then the restricted submersion h:ZnA ! X is subellipticand hence Theorem 3.8 applies (Proposition 1.2 (b) in [F5]). If Z is obtainedfrom a holomorphic vector bundle E ! X by taking projective closure of each�ber (i.e., Zx ' CIPn is obtained by adding to Ex ' Cn the hyperplane atin�nity �x ' CIPn�1 for every x 2 X), the restricted submersion h:EnA! Xis even elliptic (Corollary 1.8 in [FP2]). The Oka principle for such submersionsis used in the constructions of proper holomorphic immersion and embeddingsof Stein manifolds in a�ne spaces of minimal dimension (Section 5).3.10 Discussion: Ellipticity versus subellipticity. By de�nition everyelliptic complex manifold is also subelliptic. It is not known whether thereexist subelliptic manifolds which are not elliptic. Natural candidates for apossible counterexample are the complements Y = CIPnnA of generic algebraicsubvarieties A � CIPn of codimension at least two (and of su�ciently largedegree); see Example 3.5. Such Y admits a �nite dominating family of algebraicsprays de�ned on negative line bundles over CIPn, but we don't see how toobtain a dominating spray. (See [F5] for more.)3.11 Problem. It is not known whether the Oka principle holds for mapsfrom Stein manifolds into the complement Y = CnnK of any in�nite compactset K � Cn (this is unknown even if K is a closed ball). Such complementshave no Kobayashi-Eisenman hyperbolicity. If K is convex then every pointy 2 Y = CnnK is contained in a Fatou-Bieberbach domain 
y � Y . However,15



it is not known whether Y = CnnK admits any nontrivial sprays. (It is easilyseen that there are no sprays s:Y � CN ! Y from a trivial bundle.) A goodtest case for the validity of the Oka principle might be the holomorphic mapSL(2;C)! C2nf0g; �� � � �! (�; �) (�� � � = 1):This map is clearly homotopic to a smooth map into Y = fz 2 C2: jzj > 1gbut it is unknown whether it is homotopic to a holomorphic map to Y . (Thisproblem has been mentioned in [FP3].)The main problem in this connection is the following. Suppose that C �B � Cm is a pair of compact convex sets. Let K be a closed ball in Cn andlet f : eC ! CnnK be a holomorphic map on a neighborhood of C whose rangeavoids K. Is it possible to approximate f uniformly on C by a holomorphicmap ef : eB ! CnnK de�ned on a neighborhood of B ?3.12 Problem. For any Stein manifold Y Theorem 3.2 has the followingconverse: If the Oka principle holds for maps X ! Y from any Stein manifoldX, with second order interpolation on any closed complex submanifold X0 � X,then Y admits a dominating spray [Gro3, FP3]. In [Gro3] the reader can �ndsome further examples of target manifolds Y for which this holds. Does theOka principle for maps X ! Y from all Stein X implies (sub)ellipticity of Yfor all complex manifolds Y ?&4. Removing intersections with complex subvarieties.LetX and Y be complex manifolds and A � Y a closed complex subvarietyof Y . Given a holomorphic map f :X ! Y we write f�1(A) = fx 2 X: f(x) 2Ag and call it the intersection set of f with A. The question is to what extent isit possible to prescribe f�1(A) within the family of holomorphic maps X ! Ywhich are homotopic to f . More precisely, we consider the following4.1 Problem. Suppose that f�1(A) = X0[X1, where X0; X1 � X are disjointcomplex subvarieties of X. When is it possible to remove X1 from f�1(A) byhomotopy of holomorphic maps ft:X ! Y (t 2 [0; 1]) which is �xed on X0 andsatis�es f0 = f , f�11 (A) = X0?In the simplest case when X = C and A consists of d points in Y = CIP1the answer changes when passing from d = 2 to d = 3: One can prescribe thepull-back of any two points in CIP1 by a holomorphic map f : C! CIP1 (andthere are in�nitely many such maps), but when d � 3 the pull-back divisor f�Acompletely determines the map f . Similar situation occurs when A consists of dhyperplanes in general position in Y = CIPn: we have exibility up to d = n+1and rigidity for d � n+ 2 (due to hyperbolicity of CIPnnA).We say that the Oka principle holds if the existence of a homotopy ofcontinuous maps X ! Y (which remain holomorphic near X0 and remove X116



from the preimage) implies the existence of a holomorphic homotopy with therequired properties. We break down the problem as follows:Step 1: Find a homotopy ft:X ! Y (0 � t � 1=2), with f0 = f , such thateach ft equals f in an open neighborhood of X0 in X and f�11=2(A) =X0. This is a homotopy theoretical problem.Step 2: With f1=2 as in Step 1, �nd a homotopy ft:X ! Y (1=2 � t � 1) suchthat each ft is holomorphic near X0 and matches f on X0, f�1t (A) =X0 for each t, and f1 is holomorphic on X. A solution is given byTheorem 4.2 below provided that X is Stein and Y nA is subelliptic.Step 3: Deform the combined homotopy ft (0 � t � 1) from Steps 1 and 2,with �xed f0 and f1, to a holomorphic homotopy eft:X ! Y (t 2 [0; 1])such that the entire two-parameter homotopy is �xed along X0. Thisis possible if X is Stein and Y is subelliptic (Theorem 4.4 below).Hence the Oka principle holds in Problem 4.1 provided that X is Stein andthe manifolds Y and Y nA are subelliptic. Examples of such pairs A � Y arealgebraic subvarieties of codimension at least two (or those with homogeneouscomplement) in Cn, CIPn, or in a complex Grassmanian manifold.We now present the results mentioned above (see [F4, F5] for more). ThusTheorem 4.2 provides a solution to Step 2 (under suitable assumption on Y nA),and Theorem 4.4 provides a solution to Step 3.4.2 Theorem. Let A be a closed complex subvariety of a complex manifoldY such that Y nA is subelliptic. If X is a Stein manifold, K is a compactholomorphically convex subset of X and f :X ! Y is a continuous map whichis holomorphic in an open set U0 � X containing f�1(A)[K then for any r 2 INthere exist a smaller open set U � f�1(A) [ K and a homotopy ft:X ! Y(t 2 [0; 1]) of continuous maps such that f0 = f , ft is holomorphic in U andtangent to f to order r along f�1t (A) = f�1(A) for each t 2 [0; 1], and f1 isholomorphic on X.4.3 Corollary. The conclusion of Theorem 4.2 holds in the following cases:(a) Y is an a�ne space Cn, a projective space CIPn or a complex Grassmanianand A � Y is an algebraic subvariety of codimension at least two.(b) Y = CIPn and A consists of at most n+1 hyperplanes in general position.(c) A complex Lie group acts transitively on Y nA.In any of these cases Y nA is subelliptic by the results stated in sectionthree. Note that (b) is a special case of (c).4.4 Theorem. (The Oka principle for removing intersections.) As-sume that f :X ! Y is a holomorphic map, A is a complex subvariety of Y andf�1(A) = X0 [X1, where X0 and X1 are unions of connected components off�1(A) and X0 \X1 = ;. Assume that the manifold X is Stein and the man-ifolds Y and Y nA are both subelliptic. If there exists a homotopy eft:X ! Y17



(t 2 [0; 1]) of continous maps satisfying ef0 = f , ef�11 (A) = X0, and eftjU = ftjUfor some open set U � X0 and for all t 2 [0; 1], then for each r 2 IN there existsa homotopy of holomorphic maps ft:X ! Y such that f = f0, f�11 (A) = X0,and for each t 2 [0; 1] the map ft agrees to order r with f along X0 (which isa union of connected components of f�1t (A)).In plain language Theorem 4.4 says the following. Suppose that we canremove X1 from f�1(A) = X0 [X1 by a homotopy of continuous maps X !Y which agree with f in a neighborhood of X0. If Y and Y nA are bothsubelliptic then X1 can also be removed from the preimage of A by a homotopyof holomorphic maps X ! Y which agree with f to any given order on X0.Theorem 4.4 applies if Y is any of the manifolds Cn, CIPn or a complexGrassmanian (these are complex homogeneous and therefore elliptic) and A �Y is as in Corollary 4.3. When Y = Cd and Y nA is elliptic, Theorem 4.4coincides with Theorem 1.3 in [F5].4.5 Example: The Oka principle for complete intersections. When Ais the origin in Y = Cd Theorem 4.4 implies the following result of Forster andRamspott [FRa] from 1967. Suppose that a complex subvariety X0 � X is acomplete intersection of codimension d in an open set U � X0 in X, given byd functions f1; : : : ; fd 2 O(U) which together generate the ideal of X0 at eachpoint. If these functions admit continuous extensions to X with no additionalcommon zeros then X0 is a (global) complete intersection in X. The analogousresult holds for set-theoretic complete intersections.4.6 Example: Smooth versus holomorphic complete intersections. In[F4] it was proved that there exists a three dimensional closed complex sub-manifold X in C5 which is a smooth (even real-analytic) complete intersectionbut which is not a holomorphic complete intersection. More precisely, givenany compact orientable two dimensional surface M of genus g � 2, there is athree dimensional Stein manifold X which is homotopy equivalent to M andwhose tangent bundle TX is trivial as a real vector bundle but is nontrivialas a complex vector bundle over X. The image of any proper holomorphicembedding of X in C5 (or in C7) is a smooth complete intersection in C5 (resp.C7) but is not a holomorphic complete intersection in any open neighborhoodof X (since its normal bundle is nontrivial as a complex vector bundle on X).The following problem remains open.Problem: Let X � Cn be a closed complex submanifold such that (i) X isa smooth complete intersection in Cn, and (ii) its normal bundle TCnjX=TXis trivial as a complex vector bundle (hence X is a holomorphic complete in-tersection in an open neighborhood U � Cn). Is X a holomorphic completeintersection in Cn ?4.7 Example: Unavoidable discrete sets. Theorem 4.4 fails if Y = Cnand A is any unavoidable discrete subset of Cn (see Example 2.7 above). Tosee this, write A = fpg [ A1 for some p 2 A. Then A1 is still unavoidable and18



consequently every entire map F : Cn ! CnnA1 has rank < n at each point.Take X = Cn, f = Id: Cn ! Cn, X0 = fpg and X1 = A1. The conditions ofTheorem 4.4 are clearly satis�ed but its conclusion fails since the rank conditionfor holomorphic maps F : Cn ! CnnA1 implies that F�1(p) contains no isolatedpoints, and hence X0 = fpg cannot be a connected component of F�1(p).&5. Embeddings and immersions of Stein manifolds.In this section we collect the main results on holomorphic immersions andembeddings of Stein manifolds into a�ne complex spaces. The �rst generalembedding result is due to Remmert [Rem] (1956) who proved that every Steinmanifold of dimension n � 1 admits a proper holomorphic embedding in C2n+1and a proper holomorphic immersion in C2n. Further results were obtained bymany authors, in particular Narasimhan [Na1, Na2], Bishop [Bis], Ramspott[Ram], Forster [Fs1, Fs2], Schaft [Sht]. The following optimal result is due toEliashberg and Gromov (announced in 1971 [GE], proved in 1992 [EG]); animprovement of the dimenison for odd n is due to Sch�urmann [Sch] (1997).5.1 Theorem. Every Stein manifold X of dimension n > 1 admits a properholomorphic embedding in C[3n=2]+1 and a proper holomorphic immersion inC[3n=2].Sch�urmann [Sch] also proved an embedding theorem into spaces of minimaldimension for singular Stein spaces with bounded local embedding dimension.Recently J. Prezelj [Pr2] constructed proper weakly holomorphic embeddingsof Stein spaces with isolated singular points in Euclidean spaces of minimaldimension. The following example of Forster [Fs1] shows that the dimensionsin Theorem 5.1 cannot be lowered for a general X.5.2 Example. LetY = f[x: y: z] 2 CIP2:X2 + y2 + z2 6= 0gX = �Y m; if n = 2m;Y m � C; if n = 2m+ 1.A calculation of Stiefel-Whitney classes shows that X does not embed in C[3n=2]and it does not immerse in C[3n=2]�1. �The main reason why Stein manifolds admit embeddings in relatively lowdimensional Euclidean spaces is that they are topologically fairly simple: EveryStein manifold is homotopic to a CW-complex of real dimension at most dimXby a theorem of Lefschetz [AF].The proof of Theorem 5.1 in [EG] and [Sch] relies on the elimination ofsingularities method and on the Oka principle for sections of certain submer-sions onto Stein manifolds (see Example 3.9 above). We describe the main idea.One begins by choosing a generic almost proper holomorphic map b:Xn ! Cn19



constructed by Bishop [Bis]. This means that the b-preimage of any compactset in Cn has (at most countably many) compact connected components. Wethen try to �nd a map g:X ! Cq which `desingularizes b' in the sense thatf = (b; g):X ! Cn+q is a proper holomorphic embedding (resp. immersion).Properness is easily achieved by choosing g su�ciently large on a certain se-quence of compact sets in X (here we need that b is almost proper).To insure that f = (b; g) is an immersion we must choose g such thatits di�erential dgx is nondegenerate on the kernel of dbx at each x 2 X. Toobtain injectivity we must choose g to separate points on the �bers of b. Bothrequirements can be satis�ed if q � [n=2] + 1 and this number is determinedby topological restrictions. (The immersion condition requires q � [n=2].) Oneproves this by a �nite induction. We stratify X by a descending �nite chain ofclosed complex subvarieties X = X0 � X1 � X2 : : : � Xm = ; such that thekernel of dbx has constant dimension on each stratum Sk = XknXk+1 (whichis chosen to be nonsingular), and the number of distinct points in b�1(x) isconstant for x 2 Sk. (In the actual proof we must replace X by a suitablesubset B � X which is mapped by b properly onto a bounded domain in Cn;in the end we perform an induction by increasing B to X.) Furthermore, oncewe have a map gk:X ! Cq satisfying these conditions along Xk, we choosegk�1:X ! Cq such that it sats�es both condition on the next stratum Sk�1and agrees with gk to second order alongXk (so that gk�1 does not destroy whatgk has achieved). A suitable gk�1 is obtained by the Oka principle (Section 3)provided there are no topological obstructions, and this is so when q � [n=2]+1.Although Theorem 5.1 gives the optimal result for the entire collection ofn-dimensional Stein manifolds, the method does not give a better result for`simple' Stein manifolds which are expected to embed in lower dimensionalspace. For instance, it is not known what is the minimal proper embeddingdimension of the polydisc or the ball in Cn. Globevnik proved by a di�erentmethod (using shear automorphisms of Cn) that there are arbitrarily smallperturbations of the polydisc in Cn which embed in Cn+1 [Gl2].5.3 Question. What is the proper holomorhic embedding dimension of theball? The polydisc? A general convex domains in Cn? On which property ofthe domain does it depend?We now consider the existence of relative embeddings. The following resultwas proved in [ABT] following the method of Narasimhan [Na2].5.4 Theorem. Suppose that X is a Stein manifold of dimension n, Y � Xis a closed complex submanifold in X and f :Y ! CN is a proper holomorphicembedding. If N � 2n+1 there exists a proper holomorphic embedding ef :X !CN extending f .It is not known whether Theorem 5.4 is valid for N = 2n, but it is falsefor N � 2n� 1 by Corollary 5.7 below which follows from the following inter-polation results for holomorphic embeddings from [BFn] and [F3].20



5.5 Theorem. Let � be a discrete subset of CN for some N > 1. If a Steinmanifold X admits a proper holomorphic embedding f0:X ! CN then X alsoadmits an embedding f :X ! CN whose image f(X) contains �. In additionwe may choose f such that for every entire map  : Cd ! CN whose rank equalsd = N � dimX at most points of Cd the set  (Cd)\ f(X) is in�nite. If d = 1,we may insure that CNnf(X) is Kobayashi hyperbolic.5.6 Corollary. Let n; d � 1; N = n+ d. There exists a proper holomorphicembedding f : Cn ! CN such that every entire map  : Cd ! CN of rank dintersects f(Cn) at in�nitely many points. For d = 1 we may choose f suchthat Cn+1nf(Cn) is Kobayashi hyperbolic.The proofs in [BFn] and [F3] use results on holomorphic automorphismsof CN obtained in [And, AL, FRo]. The �rst result in this direction [FGR]was that there exist holomorphically embedded complex lines in C2 which arenot equivalent to the standard embedding C! C�f0g � C2 by automorphismsof C2. This is in strong contrast to the situation for algebraic (polynomial)embeddings C ! C2 which are all equivalent to the standard embedding bypolynomial automorphisms of C2 according to Abhyankar and Moh [AM]. Usingsuch `twisted' holomorphic embeddings of C in C2 Derksen and Kutzschebauchconstructed nonlinearizable periodic holomorphic automorphisms of C4 [DK].5.7 Corollary. For every n � 2 there exists a proper holomorphic embeddingf : Cn�1 ! C2n�1 which does not admit an injective holomorphic extensionef : Cn ! C2n�1.Proof. Choose f : Cn�1 ! C2n�1 as in Corollary 5.6 such that the range of anyentire map Cn ! C2n�1 of generic rank n intersects f(Cn�1). If ef : Cn ! C2n�1is an injective holomorphic extension of f : Cn�1 � f0g ! C2n�1 then (z) =  (z1; : : : ; zn) = ef�z1; : : : ; zn�1; ezn� (z 2 Cn)is an entire map which has rank n at a generic point of Cn and whose imagemisses f(Cn�1) � C2n�1 in contradiction to the assumption on f . �In Theorem 5.5 the image f(X) � CN contains a given discrete set fpjg �CN , but we don't specify the points in X which correspond to the points pjunder the embedding f . The following more precise interpolation theorem wasproved recently by J. Prezelj [Pr1].5.8 Theorem. Let X be a Stein manifold of dimension n � 1. De�ne q(n) =minf[n+12 ] + 1; 3g. Then for any N � n + q(n) and any pair of discrete setsfakg � X, fbkg � CN there exists a proper holomorphic embedding f :X !CN satisfying f(ak) = bk for every k = 1; 2; 3; : : :. The analogous conclusionholds for proper holomorphic immersions X ! CN when N � n + q0(n) forq0(n) = minf[n+12 ]; 2g. 21



Comparing with Theorem 5.1 we see that the embedding dimension is min-imal for even n and is o� by at most one for odd n. Prezelj's proof in [Pr1]uses an improved version of the scheme from [EG] and [Sch]. By entirely di�er-ent methods (using holomorphic automorphisms) J. Globevnik proved that theconclusion of Theorem 5.8 also holds for proper holomorphic embeddings of theunit disc in C2 [Gl3]. A Carleman type embedding theorem (approximatinga given smooth proper embedding IR ! Cn in the �ne C1 topology on IR byproper holomorphic embeddings C! Cn) was proved in [BF].It is not known whether proper holomorphic immersions or embeddings ofStein manifolds satisfy the Oka principle. However, non-proper holomorphicimmersions of Stein manifolds do satisfy the following Oka principle (Gromovand Eliashberg [GE]; see also section 2.1.5. in [Gro2]).5.9 Theorem. If the cotangent bundle T �X of a Stein manifold is generatedby q di�erential (1; 0)-forms �1; : : : ; �q for some q > dimX then there exists aholomorphic immersionX ! Cq. More precisely, every such q-tuple (�1; : : : ; �q)can be changed by a homotopy (through q-tuples generating T �X) to a q-tuple(df1; : : : ; dfq) where f = (f1; : : : ; fq):X ! Cq is a holomorphic immersion.The idea of the proof is the following. By the Oka-Grauert principle wemay assume that �j are holomorphic 1-forms. In the �rst step one of the forms,say �q, is replaced by the di�erential dfq of a holomorphic function on X suchthat �1; : : : ; �q�1; dfq still generate T �X. Since q > dimX, we may assumethat the forms �1; : : : ; �q�1 already generate T �X outside a proper complexsubvariety � � X, and fq must satisfy an essentially algebraic condition onits jet along �. Once fq has been chosen one proceeds in the same way andreplaces �q�1 with an exact di�erential. In �nitely many steps all forms arereplaced with di�erentials. The technical details of the proof are considerable.&6. Embeddings of open Riemann surfaces in the a�ne plane.In this section we describe the state of knowledge on the following6.1 Problem. Does every open Riemann surface admit a proper holomorphicembedding in C2? Is the algebra of global holomorphic functions on such asurface always doubly generated?Open Riemann surfaces are precisely Stein manifolds of dimension one,and in view of Theorem 5.1 (on embedding n-dimensional Stein manifolds inC[3n=2]+1 for n > 1) one might expect that they embed in C2. (For compar-ison we recall that every compact Riemann surface embeds in CIP3 but mostof them don't embed in CIP2 [FK].) Unfortunately the proof of Theorem 5.1breaks down in dimension one and it only gives embeddings into C3. The ob-struction to the proof is explained by Example 2.6 in Section 2 and is causedby hyperbolicity. The main di�culty is to �nd injective holomorphic mapsfrom open Riemann surfaces to C2; this is essentially equivalent to the alge-22



bra of holomorphic functions being doubly generated. Here are some Riemannsurfaces which are known to embed in C2:{ the disc U = fz 2 C: jzj < 1g (Kasahara and Nishino [Ste]);{ annuli f1 < jzj < rg (Laufer [Lau]),{ punctured disc Unf0g (Alexander [Ale]),{ all �nitely connected planar domains 
 � C di�erent from C whose bound-ary contains no isolated points (Globevnik and Stens�nes [GS]).We now consider the embedding problem for bordered Riemann surfaces.Let R be a compact, orientable, smooth real surfaces whose boundary bR =[mj=1Cj consists of �nitely many curves and no isolated points. Such R is asphere with g handles (g is the geometric genus ofR) andm � 1 holes (removeddiscs). A complex structure onR is determined by a real endomorphism J of thetangent bundle TR satisying J2 = �Id (Gauss-Ahlfors-Bers). Without loss ofgenerality we may assume that J is H�older continuous of class C�(R) for a �xed� 2 (0; 1). A di�erentiable function f :R! C is J -holomorphic if df � J = idfwhere i = p�1. Two complex structures J0 and J1 are equivalent if thereexists a di�eomorphism �:R ! R of class C1;�(R) satisfying d� �J0 = J1 �d�.The set of equivalence classes of complex structures on R is the moduli spaceM(R) of Riemann surface structures on R. The following result from [�CF]shows that there are no topological obstructions for embeddings in C2.6.2 Theorem. For every smooth bordered surface R there exists a nonemptyopen set 
 �M(R) such that for every complex structure J on R with [J ] 2 
the open Riemann surface R� = RnbR admits a proper J -holomorphic embed-ding in C2.Theorem 6.2 follows from the following result in [�CF] which contains allknown results on embeddings in C2 except for the punctured disc. (For planardomains see [GS] and [�CG]). Let U = fz 2 C: jzj < 1g.6.3 Theorem. Let (R; J) be a �nite bordered Riemann surface of genus gwith m boundary components, where J is of class C�(R) for some � 2 (0; 1).Assume that there exists an injective immersion f = (f1; f2):R ! U � C ofclass C2 which is J -holomorphic in R�, jf1j = 1 on bR, and the generic �ber off1 contains at least 2g+m�1 points. Then R� admits a proper J -holomorphicembedding in C2. Furthermore, for every complex structure eJ su�ciently C�close to J the surface R� also admits a proper eJ -holomorphic embedding in C2.6.4 Corollary. The following Riemann surfaces admit a proper holomorphicembedding in C2:(i) �nitely connected domains in C without isolated boundary points,(ii) every complex torus with one hole,(iii) every bordered Riemann surface whose double is hyperelliptic.23



The proof of Theorems 6.2 and 6.3 in [�CF] is based partly on the methoddeveloped by Globevnik and Sten�nes [GS] who proved the result for planardomains. In this case the conditions in Theorem 6.3 are satis�ed if we takeg(z) = z and f an inner function of degree � m� 1, where m is the number ofboundary components of the domain.A hyperelliptic (compact) Riemann surface X is the normalization of acurve in CIP2 given by y2 = gYj=0(x� �j)(1� �jx) (6:1)for distinct points �j 2 U (0 � j � g), where g = g(X) is the genus of X. IfX is the double of a bordered Riemann surface R then g(X) = 2g(R) +m� 1where m is the number of boundary curves of R (which equals either 1 or 2 inthis case), and the representation (6.1) can be chosen such that R = f(x; y) 2X: jxj � 1g. The pair of functionsf1 = y= gYj=0(1� �jx); f2 = xprovides an embedding f = (f1; f2):R ! U2 which maps bR into the torus(bU)2. Clearly g has multiplicity two. From f21 = Qgj=0(f2 � �j)=(1 � �jf2)which follows from (6.1) we see that f1 has multiplicity g+1 = 2g(R)+m andhence Theorem 6.3 applies. Sikorav gave a slightly di�erent proof for embed-ding of complex tori with one hole (unpublished); these are all hyperelliptic.The proof of Theorem 6.3 goes as follows. Let P = (2U) � (RU) � C2for some R > sup jf2j. Globevnik and Stens�nes [GS, Gl1] found arbitrarilysmall smooth perturbations S � C2 of the cylinder S0 = bU � C such that theconnected component 
S of PnS containing the origin is of the form 
S =e
S \ P for some Fatou-Bieberbach domain e
S � C2. Let �S : e
S ! C2 bea biholomorphic (Fatou-Bieberbach) map. If fS = (fS1 ; fS2 ):R ! 
S is acontinuous map which maps R� holomorphically into 
S and maps bR intoS \ P then clearly �S � fS :R� ! C2 is a proper holomorphic embedding. Amap fS with these properties is obtained from the initial map f satisfyingthe hypothesis of Theorem 6.3 by solving a Riemann-Hilbert boundary valueproblem on R (in fact we only need to perturb the �rst component of f).6.5 Open problems.(a) Does every �nite Riemann surface with boundary consisting of �nitelymany closed curves and isolated points embed in C2?(b) Does every planar domain with �nitely many punctures embed in C2?&7. Noncritical holomorphic functions and submersions.In 1967 Gunning and Narasimhan proved that every open Riemann sur-face admits a holomorphic function without critical points, thus giving an af-�rmative answer to a long standing question [GN]. Open Riemann surfaces are24



precisely Stein manifolds of complex dimension one. In the recent paper [F8]the result of [GN] was extended to Stein manifolds of any dimension.7.1 Theorem. (Theorem A in [F8].) Every Stein manifold admits a holo-morphic function without critical points.Furthermore, for any discrete subset P in a Stein manifold X there existsa holomorphic function f 2 O(X) whose critical set equals P , and we can pre-scribe the �nite order jet of f at each point of P . Any noncritical holomorphicfunction on a closed complex submanifold X0 in a Stein manifold X extendsto a noncritical holomorphic function on X. For precise results see [F8].There are many consequences for holomorphic foliations. In particular,every Stein manifold X admits a holomorphic foliation by closed complex hy-persurfaces transverse to any given closed complex submanifold in X. Anyclosed complex hypersurface in X with trivial normal bundle is a leaf in aholomorphic foliation by closed complex hypersurfaces.The main question considered in [F8] is how many holomorphic functionswith everywhere linearly independent di�erentials do there exist on a givenStein manifold X. Thus for a given q � dimX we are looking for f1; : : : ; fq 2O(X) such that df1^� � �^dfq 6= 0 on X. Equivalently, f = (f1; : : : ; fq):X ! Cqis a holomorphic submersion. A clear necessary condition is that there existsa q-tuple � = (�1; : : : ; �q) of di�erential (1; 0)-forms on X with continuous (orsmooth) coe�cients such that �1 ^ � � � ^ �q 6= 0at each point of X. Any such q-tuple will be called a q-coframe on X. Aholomorphic q-coframe consists of holomorphic 1-form. The main result of [F8]is that for q < dimX this necessary condition is also su�cient.7.2 Theorem. (The Oka principle for holomorphic submersions.)Let X be a Stein manifold. For every q-coframe � = (�1; : : : ; �q) on X with1 � q < dimX there exists a homotopy of q-coframes �t = (�t1; : : : ; �tq) (t 2[0; 1]) starting at �0 = � and ending at an exact holomorphic q-coframe �1 =(df1; : : : ; dfq), where f1; : : : ; fq 2 O(X). If � is holomorphic then �t can bechosen holomorphic for each t 2 [0; 1].In particular it follows that every trivial complex subbundle � � T �X ofrank q < dimX in the cotangent bundle T �X is homotopic to a subbundleof T �X generated by independent holomorphic di�erentials df1; : : : ; dfq. Thereis a dual formulation in terms of subbundles of the tangent bundle (takingE = ker� � TX, with � ' (TX=E)� � T �X):7.3 Corollary. Let X be a Stein manifold of dimension n and E � TXa complex subbundle of rank k � 1. If the quotient bundle TX=E is triv-ial then E is homotopic to an integrable holomorphic subbundle eE = ker df ,25



where f = (f1; : : : ; fq):X ! Cq (q = n � k) is a holomorphic submersion.If E is holomorphic then the homotopy may be chosen through holomorphicsubbundles.The corresponding homotopy principle for submersions of smooth openmanifolds to IRq is due to Phillips [Ph1, Ph3] (see also [Gr2]). For an extensionto smooth (or real-analytic) foliations see [Ph2] and [Th1, Th2].By the Lefschetz theorem [AF] a Stein manifold X of complex dimensionn is homotopic to a CW-complex of real dimension at most n. Elementaryhomotopy theory implies that every complex vector bundle of rankm � [n=2]+1 on X admits a nonvanishing section, and hence it admits a trivial complexline subbundle. Applying this inductively we see that T �X admits a trivialcomplex subbundle of rank [(n+ 1)=2]. Hence Corollary 7.3 implies7.4 Corollary. Every n-dimensional Stein manifold X admits a holomor-phic submersion to Cq for any q = 1; : : : ; [(n + 1)=2], and hence it admitsk-dimensional holomorphic foliations for k = [n=2]; : : : ; n� 1. A parallelizableStein manifold Xn admits a holomorphic submersion X ! Cn�1 and holomor-phic foliations of any dimension 1; 2; : : : ; n� 1.For example, the complex seven sphere �7 = fz 2 C8:P8j=1 z2j = 1g is par-allelizable and hence admits holomorphic foliations of all dimensions 1; 2; : : : ; 6.The construction of noncritical holomorphic functions and submersions in[F8] depends on three main ingredients. The �rst is a method for approximat-ing noncritical holomorphic functions on polynomially convex subsets of Cnby entire noncritical functions. This uses the theory of holomorphic automor-phisms of a�ne complex spaces from [And, AL, FRo]. A similar method isused for submersions Cn ! Cq with 1 < q < n, but with a weaker conclusion.The second one is a tool for patching holomorphic maps preserving themaximal rank condition. It is based on a compositional splitting of the biholo-morphic transition map between two such maps on certain special con�gura-tions of domains.The construction of holomorphic submersions X ! Cq for q > 1 also usesa new device for crossing the critical points of a strongly plurisubharmonicexhaustion function �:X ! IR. (This is not needed for q = 1.) Let p 2 X be acritical point of �. Using the ordinary homotopy principle we obtain a smoothmaximal rank extension of the map f from a sublevel set f� � cg � X (wherec < �(p) is close to �(p)) to a totally real handle E � X attached to f� � cgwhich describes the change of topology at p. We then construct a family ofincreasing regular strongly pseudoconvex neigborhoods of f� � cg [ E suchthat the largest one contains a sublevel set f� < c0g for some c0 > �(p). Thisreduces the extension problem to the noncritical case for a di�erent stronglyplurisubharmonic function and lets us pass the critical level of � at p.The construction of holomorphic submersions X ! Cq in [F8] breaks downfor q = dimX due to a Picard type obstruction in the approximation problem26
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