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On uniqueness of Cartesian produ
ts of surfa
eswith boundaryJ. Male�si�
, D. Repov�s, W. Rosi
ki and A. ZastrowJanuary 29, 2003Abstra
t. It is known that if one of the fa
tors of a de
omposition of a manifoldinto Cartesian produ
t is an interval then the de
omposition is not unique. We provethat the de
omposition of a 4-manifold (possibly with boundary) into 2-dimensionalfa
tors is unique, provided that the fa
tors are not produ
ts of 1-manifolds.11 Introdu
tionIn 1945 Borsuk [B2℄ showed that any 
onne
ted 
ompa
t n-dimensional mani-fold without boundary has at most one de
omposition into a Cartesian prod-u
t of fa
tors of dimension � 2. If we 
onsider Cartesian produ
ts of higher-dimensional manifolds then su
h uniqueness property does not hold (see Theo-rem 11.5 in [C-R℄ and [K-R℄). Even if we 
onsider the 
lassi
al Ulam problem [U℄of uniqueness of Cartesian squares, one 
an �nd 
ounterexamples for 3-manifolds(
f. [K-S℄).The uniqueness of the de
omposition into Cartesian produ
ts fails if the fa
torsare 2-manifolds with boundary. A torus with a hole and a disk with two holes arenot homeomorphi
, however, their Cartesian produ
ts with the interval I=[0,1℄are homeomorphi
.Similarly, the produ
t of a M�obius band with a hole and the interval I is home-omorphi
 to the produ
t of a Klein bottle with a hole and the interval I . All2-manifolds in the examples above 
an be 
onstru
ted by identifying two pairsof disjoint ar
s in the boundary of a disk. After multipli
ation by the intervalI , the order of identi�ed ar
s on the boundaries of disks be
omes inessential. If3-manifold or more general 3-polyhedron has two di�erent de
ompositions intoCartesian produ
t then one of the fa
tors in these de
ompositions must be aninterval (see [R2℄).1MSC 2000 Classi�
ation: Primary:54B10, Se
ondary:57N13, 57N05.Key words: Cartesian produ
t, K�unneth formula, prime 2-manifold, splitting theorem, suÆ-
iently large 3-manifold, essential torus, surfa
e.1



The uniqueness property holds for Cartesian squares (
f. [F℄) and Cartesianpowers (
f. [R3℄) of 2-manifolds with boundary. The uniqueness (up to per-mutation of fa
tors) of a Cartesian produ
t of 
ir
les and intervals is obvious.We have the uniqueness of de
omposition into a �nite Cartesian produ
t of1-polyhedra (
f. [B1℄) and 1-dimensional lo
ally 
onne
ted 
ontinua (
f. [C℄).A Cartesian produ
t of 1-polyhedra does not have another de
omposition intoa Cartesian produ
t of polyedra of dimension � 2 (
f. [R4℄). Before we be-gin to 
onsider uniqueness of Cartesian produ
ts of 
onne
ted 2-manifolds withboundary we need some preliminaries.De�nition 1.1 Let X be a 
ompa
t 
onne
ted 2-manifold with non-empty bound-ary. We asso
iate to X the following number:s(X) = rankH1(X)� rankH1(�X) + 1:Lemma 1.1 Let X;Y;X 0; and Y 0 be any 
ompa
t 
onne
ted 2-manifolds withnon-empty boundary and suppose that the Cartesian produ
ts X�Y and X 0�Y 0are homeomorphi
. Then s(X)s(Y ) = s(X 0)s(Y 0):Proof. We use an argument similar to the one in [R3℄, Theorem 2.1. We
onsider the map i� : H2(X � Y )! H2(X � Y; �(X � Y )),whi
h is indu
ed by the in
lusion of the pair (X �Y; ;). The image of this mapis generated by all produ
ts �1
 �2 su
h that �1 2 H1(X) and �2 2 H1(Y ), su
hthat jk�(�k) 6= 0, for k = 1; 2, wherej1� : H1(X)! H1(X; �X) and j2� : H1(Y )! H1(Y; �Y )are given by in
lusions. The number s(X) is equal to rank im j1� and thenumber s(Y ) is equal to rank im j2�. So s(X)s(Y ) is equal to rank im i�.Hen
e if X � Y and X 0 � Y 0 are homeomorphi
 it follows that s(X)s(Y ) =s(X 0)s(Y 0).Lemma 1.2 Let X;Y;X 0; and Y 0 be any 
ompa
t 
onne
ted 2-manifolds withnon-empty boundary and suppose that the Cartesian produ
ts X�Y and X 0�Y 0are homeomorphi
. Then with respe
t to the order of the fa
tors we have:(i) H1(X) = H1(X 0) and H1(Y ) = H1(Y 0)(ii) H1(X; �X) = H1(X 0; �X 0) and H1(Y; �Y ) = H1(Y 0; �Y 0):Proof. Let H1(X) = Zx; H1(Y ) = Zy; H1(X 0) = Zx0 and H1(Y 0) = Zy0 .By the K�unneth formula we 
on
lude that:2



Zxy �= H2(X � Y ) �= H2(X 0 � Y 0) �= Zx0y0 andZx+y �= H1(X � Y ) �= H1(X 0 � Y 0) �= Zx0+y0 .Hen
e, x = x0 and y = y0 or x = y0 and y = x0. We 
an assume that the �rst
ase holds. This 
ompletes the proof of (i).If X is orientable then H1(X; �X) = Zx. If it is not then H1(X; �X) = Zx�1�Z2. Similarly, for Y;X 0; and Y 0. By the relative K�unneth formula,H2(X � Y; �(X � Y )) = Zxy�o2x�o1y+o1o2 � Zo2x+o1y�o1o22 ;where o1 = 1 if X is nonorientable and o1 = 0 if X is orientable, and o2 = 1if Y is nonorientable and o2 = 0 if Y is orientable. Similarly for X 0 and Y 0.Hen
e xy � o2x � o1y + o1o2 = xy � o02x � o01y + o01o02. So, if x > 1 and y > 1then H1(X; �X) = H1(X 0; �X 0) and H1(Y; �Y ) = H1(Y 0; �Y 0).If x = 0 then X and X 0 are homeomorphi
 to the disk. Therefore Y and Y 0 areboth orientable or both nonorientable, and their relative �rst homology groupsare the same.If x = 1 then X 
an be the annulus A = S1�I or the M�obius bandM . Similarlyfor X 0.If X is an annulus then H2(X�Y; �(X�Y )) = Z
H1(Y; �Y ) = H1(Y; �Y ). IfX 0 is a M�obius band then H2(X 0 � Y 0; �(X 0 � Y 0)) = Z2 
H1(Y 0; �Y 0). Thesegroups 
an be isomorphi
 only if H1(Y; �Y ) = Z2 and if H1(Y 0; �Y 0) is equal toZ or Z2. The spa
es A�M and M �M are not homeomorphi
 by Lemma 1.1;by de�nition s(A) = 0, and s(M) = 1, so s(A)s(M) 6= s(M)s(M).We start the 
onsideration of the Cartesian produ
ts of 
onne
ted 2-manifoldswith boundary by presenting the 
ase where one of the fa
tors is not prime. Inthis paper a prime manifold is a manifold whi
h is not a nontrivial Cartesianprodu
t. There exist three nonprime surfa
es: I � I; I � S1; and S1 � S1. Wehave the following:Proposition 1.1 Let X and Y be any 
ompa
t 2-manifolds, possibly with bound-ary, and suppose that the Cartesian produ
ts X � Y and X 0 � Y 0 are homeo-morphi
. If X is prime and Y is a produ
t of two 1-manifolds, then X 0 is also aprime 2-manifold and Y 0 is a produ
t of two 1-manifolds (up to a permutationof X 0 and Y 0). In both 
ases, Y and Y 0 are homeomorphi
. Furthermore, if Xand X 0 are not homeomorphi
, then Y and Y 0 are homeomorphi
 either to I2or to S1 � I.Proof. By Kosi�nski's theorem [K℄, all 2-dimensional Cartesian fa
tors of apolyhedron are polyhedra, so X 0 and Y 0 are 2-manifolds, possibly with bound-ary. If �X = � and Y = S1 � S1 then we have the uniquenes by a 
lassi
alresult of Borsuk [B2℄.If �X = � and Y = I � S1, then one of the fa
tors X 0; Y 0, say X 0 hasan empty boundary, be
ause H3(X � Y ;Z2) = H3(X 0 � Y 0;Z2) 6= 0. Sin
e3



�(X � Y ) = X � �Y = X 0 � �Y 0 = �(X 0 � Y 0), the surfa
es X and X 0 arehomeomorphi
. Hen
e, 
omparing the homology groups we obtain that Y 0 is anannulus, also.Now, let �X = � and Y = I2. If X is non-orientable then 0 = H2(X) =H2(X � Y ) = H2(X 0 � Y 0) , so one of the fa
tors X 0; Y 0 is a disk. The se
ondfa
tor is homeomorphi
 to X . If X is orientable, �X 0 6= � and �Y 0 6= � thenZ = H2(X) = H1(X 0) 
 H1(Y 0). Therefore X 0 and Y 0 are homeomorphi
 toS1 � I and X is a torus. If �X 0 = � then the boundaries �(X � Y ) and�(X 0�Y 0) are homeomorphi
, so X and X 0 are homeomorphi
 and Y 0 is a disk.If �X 6= � and Y = S1 � S1, then Y 0 = S1 � S1 be
ause �(X � Y ) is adisjoint union of the sets homeomorphi
 to S1 � S1 � S1. Hen
e X and X 0 arehomeomorphi
 by a spe
ial 
ase of Theorem 2 [R4℄. If Y is homeomorphi
 to adisk or to an annulus and �X 6= ;, then by Lemma 1.2, Y 0 is also homeomorphi
to a disk or to an annulus.2 The Main ResultThe following is the main result of our paper:Theorem 2.1 Any 
onne
ted 4-dimensional manifold, possibly with boundary,has at most one de
omposition into Cartesian produ
ts of prime 2-manifolds,possibly with boundary.The te
hniques whi
h were used in a similar lemma in [R1℄ are not strongenough for our purpose. We shall use the Splitting Theorem in the proof ofour theorem above (see [J-S℄, [Jo℄) { for investigation of the boundaries of themanifolds X � Y and X 0 � Y 0. So we use this theorem in the 
ase when �M isempty.In [J-S℄,[Jo℄ manifolds are orientable, so we must also assume that the manifoldM is orientable. We denote by �W (M) the 3-manifold obtained by splitting Malong W . Similarly we de�ne the 2-manifold ��W (�M), whi
h 
an be naturallyidenti�ed with a submanifold of the boundary of �W (M).Theorem 2.2 (Splitting Theorem [J-S℄ p.157) LetM be any 
ompa
t, ori-entable, suÆ
iently-large, irredu
ible and boundary-irredu
ible 3-manifold. Thenthere exists a two-sided, in
ompressible 2-manifold, W properly embedded in M ,unique up to ambient isotopy, having the following three properties:(a) The 
omponents of W are annuli and tori, and none of them is boundary-parallel in M ;(b) Ea
h 
omponent of (�W (M); ��W (�M)) is either a Seifert pair or a simplepair; and(
) W is minimal with respe
t to in
lusion among all two-sided 2-manifoldsin M having properties (a) and (b).4



Proof. of Theorem 2.1. If both surfa
es X and Y are without boundary, theuniquness holds by Borsuk's theorem [B2℄ .If �X = � and �Y 6= � then �(X � Y ) = X � �Y . Sin
e Y 6= I2 , like inthe proof of Proposition 1.1, one of the fa
tors X 0; Y 0, say X 0 has an emptyboundary, be
ause H3(X � Y ;Z2) = H3(X 0 � Y 0;Z2) 6= 0 and �Y 0 6= �. So,�(X 0�Y 0) = X 0��Y 0. ThereforeX andX 0 are homeomorphi
 and the numbersof the 
omponents of the boundaries �Y and �Y 0 are the same. Looking at thehomology and relative homology groups we obtain that the surfa
es Y and Y 0are also homeomorphi
.Now we 
onsider the 
ase when �X and �Y are nonempty. Again by Lemma 1.2,the �rst Betti numbers of X and X 0 are the same and the �rst Betti numbersof Y and Y 0, are also the same. The 
oin
iden
e of the �rst relative homologygroups implies that the orientability of X and Y agree with the orientability ofX 0 and Y 0, respe
tively . We 
onsider three 
ases.In the �rst 
ase, X and Y are orientable, M = �(X �Y );W = �X��Y . Sin
eby assumption, X and Y are not homeomorphi
 to I2 or S1 � I , the manifoldsM and W satisfy the hypotheses of the Splitting Theorem. Sin
e the boundaryof M is empty, the manifold W is a disjoint union of tori.For somebody who is familiar with 3-manifolds the irredu
ibility ofM is a simpleexer
ise, but for the reader's 
ovenien
e we outline a proof. If S is a 2-sphere
ontained in M we 
an assume that it is in a general position with W , so theinterse
tion S \W is a disjoint union of 
losed 
urves. Some of them boundinnermost disks in S. Su
h a disk lies in one of 
omponents of �W (M). Theboundaries of the 
omponents are in
ompressible (II.2.4 [J-S℄), so the boundaryof the disk bound a disk inW . The 
omponents of �W (M) are irredu
ible (II.2.3[J-S℄) , so the union of our two disk bounds a ball. Via this ball we isotope partsof S into the adja
ent 
omponent of of �W (M) eliminating one 
losed 
urve ofS \W . We repeat this operation as many times as S lies in one 
omponent andit bounds a ball.We will show thatW is minimal. Assume that V =W n(S1�S2) where S1�S2 isa 
omponent of W also gives a splitting in the sense of Theorem 2.2. A

ordingto V , we have U = (X � S2) [ (S1 � Y ) as a 
omponent of �V (M). It must beeither a Seifert pair or a simple pair. The set U is not a simple pair be
ause thein
ompressible torus S1 � S2 is not boundary-parallel in U (see [J-S℄, p.154).The fundamdntal group of U is in�nite, so by Corollary 8.3 in [G℄ or VI.11.a in[J℄, the manifold U is a Seifert manifold if and only if its fundamental group has anormal 
y
li
 in�nite subgroup. Let an element � of �1(U) be a generator of thissubgroup. By Seifert-van Kampen theorem �1(U) is a sum with amalgamationof the groups �1(X � S2) and �1(S1 � Y ). The natural proje
tions map theelement � onto elements of the 
enters of �1(X � S2) and �1(S1 � Y ). So, if�1(X) and �1(Y ) have more than one generator, it is impossible.The same holds for X 0 and Y 0, where M 0 = �(X 0 � Y 0);W 0 = �X 0 � �Y 0.The 
omponents of �W (M) are homeomorphi
 to spa
es X � S1 and S1 � Y .Be
ause the manifolds M and M 0 are homeomorphi
 and W is unique up to5



ambient isotopy, the 
omponents of �W (M) and the 
omponents of �W 0 (M 0)are homeomorphi
. The 
omponents of �W 0(M 0) are homeomorphi
 to spa
esX 0 � S1 and S1 � Y 0, so the manifolds X and Y are homeomorphi
 to X 0 andY 0.In the se
ond 
ase only one manifold is orientable. Let X be non-orientableand Y be orientable. We 
onsider the oriented double 
overs ~X and ~X 0 ofX and X 0. The manifolds ~X � Y; and ~X 0 � Y 0 are orientable double 
oversof the homeomorphi
 manifolds X � Y and X 0 � Y 0 , so our manifolds arehomeomorphi
.If X is the M�obius band, then X 0 is also nonorientable and H1(X) = H1(X 0) =Z, by Lemma 1.2, so X 0 is the M�obius band, too.If X is not the M�obius band, then as before, we have homeomorphy eithera

ording to ~X � ~X 0 and Y � Y 0 or a

ording to ~X � Y 0 and Y � ~X 0 by theSplitting theorem. In the �rst 
ase X and X 0 are also homeomorphi
. In these
ond 
ase if H1(X) = Zx then H1(Y ) = Z2x�1. Putting s(X 0) = s(X) + a ,s(Y 0) = s(Y )+b , s( ~X) = 2(s(X)�1) and s( ~X 0) = 2(s(X 0)�1) to the equationss(X)s(Y ) = s(X 0)s(Y 0)s( ~X)s(Y ) = s( ~X 0)s(Y 0)we obtain s(Y ) = s(Y 0) , so Y and Y 0 are homeomorphi
. Then~X � Y 0 � Y � ~X 0,so X � X 0 also.IfX andX 0 are M�obius bands then we use Lemma 1.1. We have that s(X)s(Y ) =s(X 0)s(Y 0). Hen
e s(Y ) = s(Y 0), be
ause s(X) = s(X 0) = 1. Sin
e H1(Y ) =H1(Y 0) and s(Y ) = s(Y 0), they have the same number of 
omponents of theirboundaries, so they are homeomorphi
.In the third 
ase both surfa
es X and Y are nonorientable. We 
annot useexa
tly the same argument, but we make a similar 
onsideration. First, weknow by Lemma 1.2 that both surfa
es X 0 and Y 0 are also nonorientable. We
onsider the manifolds X � Si where Si are 
ompoments of �Y , and Sj � Ywhere Sj are 
omponents of �X .Next, we take the oriented double 
overs ~X and ~Y of X and Y . The manifolds~X�Si and Sj� ~Y are the oriented double 
overs of X�Si and Sj�Y . Ea
h ofthe tori Sj � Si is 
overed by tori S0j �Si and S00j � Si in ~X �Si and is 
overedby tori Sj � S0i and Sj � S00i in Sj � ~Y .By identifying S0j � Si with Sj � S0i and S00j � Si with Sj � S00i , we obtain theoriented double 
overM of �(X�Y ). It is not essential whi
h 
ir
les we denotedby S0i; S0j and S00i ; S00j be
ause in every 
ase we obtain the unique the orienteddouble 
over of �(X � Y ).Analogously, we 
onstru
t the oriented double 
overM 0 of �(X 0�Y 0). Of 
ourseM and M 0 are homeomorphi
. If the manifolds X and Y are not the M�obiusbands then we solve the problem by the Splitting Theorem.6



If X is a M�obius band then we solve the problem using Lemma 1.1, like in these
ond 
ase. 2We also in
lude the following new related result:Theorem 2.3 Let X1; :::; Xn and Y1; :::; Yn be any surfa
es with nonempty bound-ary and suppose that their Cartesian produ
ts X1 � ::: �Xn and Y1 � ::: � Ynare homeomorphi
. Then there exists a one-to-one 
orresponden
e between them(assume Xi 
orresponds to Yi) su
h that rankH1(Xi) = rankH1(Yi) and ifs(Xi) = rankH1(Xi)� rankH1(�Xi) + 1for i = 1; 2; :::; n thens(X1)s(X2):::s(Xn) = s(Y1)s(Y2):::s(Yn).Proof. Let H1(Xi) = Zni and H1(Y1) = Zmi . We 
an 
on
lude from theK�unneth formula that H1(X1 � :::�Xn) = ZPni=1 ni ;H2(X1 � :::�Xn) = ZPi1 6=i2 ni1ni2 ; and..Hn(X1 � :::�Xn) = Zn1:::nn .We obtain similar formulae for the produ
t Y1� :::�Yn. Be
ause rankHi(X1�:::�Xn) = rankHi(Y1� :::�Yn) we 
an 
on
lude that ni = mi for i = 1; 2; :::; n.This follows from the fa
t that the ranks of the homology groups above are the
oeÆ
ients of the polynomialsQni=1(x�ni) andQni=1(x�mi). The polynomialsare equal, so the numbers ni and mi are the same.We obtain the equality s(X1)s(X2):::s(Xn) = s(Y1)s(Y2):::s(Yn) like in the pre-vious proof. 2
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