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Abstract. It is known that if one of the factors of a decomposition of a manifold
into Cartesian product is an interval then the decomposition is not unique. We prove
that the decomposition of a 4-manifold (possibly with boundary) into 2-dimensional
factors is unique, provided that the factors are not products of 1-manifolds.?

1 Introduction

In 1945 Borsuk [B2] showed that any connected compact n-dimensional mani-
fold without boundary has at most one decomposition into a Cartesian prod-
uct of factors of dimension < 2. If we consider Cartesian products of higher-
dimensional manifolds then such uniqueness property does not hold (see Theo-
rem 11.5in [C-R] and [K-R]). Even if we consider the classical Ulam problem [U]
of uniqueness of Cartesian squares, one can find counterexamples for 3-manifolds
(cf. [K-S)).

The uniqueness of the decomposition into Cartesian products fails if the factors
are 2-manifolds with boundary. A torus with a hole and a disk with two holes are
not homeomorphic, however, their Cartesian products with the interval I=[0,1]
are homeomorphic.

Similarly, the product of a Mébius band with a hole and the interval I is home-
omorphic to the product of a Klein bottle with a hole and the interval I. All
2-manifolds in the examples above can be constructed by identifying two pairs
of disjoint arcs in the boundary of a disk. After multiplication by the interval
I, the order of identified arcs on the boundaries of disks becomes inessential. If
3-manifold or more general 3-polyhedron has two different decompositions into
Cartesian product then one of the factors in these decompositions must be an
interval (see [R2]).

LMSC 2000 Classification: Primary:54B10, Secondary:57N13, 57N05.
Key words: Cartesian product, Kiinneth formula, prime 2-manifold, splitting theorem, suffi-
ciently large 3-manifold, essential torus, surface.



The uniqueness property holds for Cartesian squares (cf. [F]) and Cartesian
powers (cf. [R3]) of 2-manifolds with boundary. The uniqueness (up to per-
mutation of factors) of a Cartesian product of circles and intervals is obvious.
We have the uniqueness of decomposition into a finite Cartesian product of
1-polyhedra (cf. [B1]) and 1-dimensional locally connected continua (cf. [C]).
A Cartesian product of 1-polyhedra does not have another decomposition into
a Cartesian product of polyedra of dimension < 2 (cf. [R4]). Before we be-
gin to consider uniqueness of Cartesian products of connected 2-manifolds with
boundary we need some preliminaries.

Definition 1.1 Let X be a compact connected 2-manifold with non-empty bound-
ary. We associate to X the following number:

s(X) =rankH(X) —rankH,(0X) + 1.

Lemma 1.1 Let X,Y, X', and Y' be any compact connected 2-manifolds with
non-empty boundary and suppose that the Cartesian products X XY and X' xY"'
are homeomorphic. Then

s(X)s(Y) = s(X")s(Y).

Proof. We use an argument similar to the one in [R3], Theorem 2.1. We
consider the map

it Hy(X X Y) = Hy(X x V,0(X x Y)),

which is induced by the inclusion of the pair (X x Y, ). The image of this map
is generated by all products ¢; ® (> such that ¢ € Hi(X) and (> € H{(Y'), such
that j,(Cx) # 0, for k = 1,2, where

jl* : Hl(X) — Hl(X,aX) and j2* : Hl(Y) — Hl(Y,BY)

are given by inclusions. The number s(X) is equal to rank im ji, and the
number s(Y) is equal to rank im ja,. So s(X)s(Y) is equal to rank im i..
Hence if X x Y and X' x Y’ are homeomorphic it follows that s(X)s(Y) =
s(X")s(Y").

Lemma 1.2 Let X,Y, X', and Y' be any compact connected 2-manifolds with
non-empty boundary and suppose that the Cartesian products X XY and X' xY"'
are homeomorphic. Then with respect to the order of the factors we have:

(i) Hi(X) = H(X") and H (V) = H,(Y")
(i) Hy(X,0X) = H\(X',0X") and Hy(Y,0Y) = H,(Y",0Y").

Proof. Let Hy(X) = Z*, H\(Y) = ZY, H|(X') = Z* and H,(Y') = ZV.
By the Kiinneth formula we conclude that:



7%~ Hy(X xY) 2 Hy(X' x V') =2 2%V and
Zet = H (X xY) =2 H (X' xY') = Z%+V

Hence, z = 2’ and y = ¢y’ or x = ¢y’ and y = z’. We can assume that the first
case holds. This completes the proof of (i).

If X is orientable then H;(X,0X) = Z*. If it is not then H; (X,0X) =Z"'&
Z5. Similarly, for Y, X', and Y'. By the relative Kiinneth formula,

HQ(X x Y,B(X x Y)) _ Zmy702z701y+0102 P Z§21+019*0102,

where 0, = 1 if X is nonorientable and 0, = 0 if X is orientable, and 0, = 1
if Y is nonorientable and o, = 0 if Y is orientable. Similarly for X' and Y.
Hence zy — 02z — 01y + 0102 = zy — ohx — oy + 0foh. So,if z > T and y > 1
then Hy(X,0X) = H{(X',0X') and H,(Y,0Y) = H,(Y',0Y").

If z = 0 then X and X' are homeomorphic to the disk. Therefore Y and Y are
both orientable or both nonorientable, and their relative first homology groups
are the same.

If z = 1 then X can be the annulus A = S! x I or the Mébius band M. Similarly
for X'.

If X is an annulus then Ho(X xY,0(X xY)) = Z® H(Y,0Y) = H,(Y,0Y). If
X' is a M6bius band then Ho (X' x Y, 0(X' xY")) = Zo ® H1 (Y',0Y"). These
groups can be isomorphic only if H;(Y,0Y) = Z, and if H,(Y',0Y") is equal to
Z or Zy. The spaces A x M and M x M are not homeomorphic by Lemma 1.1;
by definition s(A) =0, and s(M) =1, so s(A)s(M) # s(M)s(M).

We start the consideration of the Cartesian products of connected 2-manifolds
with boundary by presenting the case where one of the factors is not prime. In
this paper a prime manifold is a manifold which is not a nontrivial Cartesian
product. There exist three nonprime surfaces: I x I,I x S', and S! x S'. We
have the following:

Proposition 1.1 Let X andY be any compact 2-manifolds, possibly with bound-
ary, and suppose that the Cartesian products X xY and X' x Y' are homeo-
morphic. If X is prime and Y is a product of two 1-manifolds, then X' is also a
prime 2-manifold and Y' is a product of two 1-manifolds (up to a permutation
of X" and Y'). In both cases, Y andY' are homeomorphic. Furthermore, if X
and X' are not homeomorphic, then Y and Y' are homeomorphic either to I
orto S' x I.

Proof. By Kosinski’s theorem [K], all 2-dimensional Cartesian factors of a
polyhedron are polyhedra, so X’ and Y are 2-manifolds, possibly with bound-
ary. If 9X = @ and Y = S! x S! then we have the uniquenes by a classical
result of Borsuk [B2].

If 0X = @ and Y = I x S, then one of the factors X’,Y”’, say X' has
an empty boundary, because H3(X % Y;Zs) = H3(X' x Y';Z3) # 0. Since



(X xY)=Xx9Y = X' x9Y' = 9(X' xY'), the surfaces X and X' are
homeomorphic. Hence, comparing the homology groups we obtain that Y’ is an
annulus, also.

Now, let 0X = @ and Y = I%. If X is non-orientable then 0 = Ho(X) =
Hy(X xY) = Hy(X'xY"), so one of the factors X',Y" is a disk. The second
factor is homeomorphic to X. If X is orientable, X' # @ and Y’ # @ then
7Z = Hy(X) = Hi(X') ® Hi(Y'). Therefore X’ and Y’ are homeomorphic to
S x I and X is a torus. If 9X' = @ then the boundaries (X x Y) and
O(X' xY") are homeomorphic, so X and X' are homeomorphic and Y is a disk.

If0X # O and Y = S x St then V' = St x S! because 9(X x V) is a
disjoint union of the sets homeomorphic to S* x S x S'. Hence X and X' are
homeomorphic by a special case of Theorem 2 [R4]. If Y is homeomorphic to a
disk or to an annulus and X # (), then by Lemma 1.2, Y is also homeomorphic
to a disk or to an annulus.

2 The Main Result

The following is the main result of our paper:

Theorem 2.1 Any connected 4-dimensional manifold, possibly with boundary,
has at most one decomposition into Cartesian products of prime 2-manifolds,
possibly with boundary.

The techniques which were used in a similar lemma in [R1] are not strong
enough for our purpose. We shall use the Splitting Theorem in the proof of
our theorem above (see [J-S], [Jo]) — for investigation of the boundaries of the
manifolds X x Y and X’ x Y. So we use this theorem in the case when OM is
empty.

In [J-S],[Jo] manifolds are orientable, so we must also assume that the manifold
M is orientable. We denote by ow (M) the 3-manifold obtained by splitting M
along W. Similarly we define the 2-manifold opw (0M), which can be naturally
identified with a submanifold of the boundary of ow (M).

Theorem 2.2 (Splitting Theorem [J-S] p.157) Let M be any compact, ori-
entable, sufficiently-large, irreducible and boundary-irreducible 3-manifold. Then
there exists a two-sided, incompressible 2-manifold, W properly embedded in M,
unique up to ambient isotopy, having the following three properties:

(a) The components of W are annuli and tori, and none of them is boundary-
parallel in M ;

(b) Each component of (ow (M), cow (OM)) is either a Seifert pair or a simple
pair; and

(c) W is minimal with respect to inclusion among all two-sided 2-manifolds
in M having properties (a) and (b).



Proof. of Theorem 2.1. If both surfaces X and Y are without boundary, the
uniquness holds by Borsuk’s theorem [B2] .
If 0X = @ and 9Y # O then (X xY) = X x Y. Since Y # I? | like in
the proof of Proposition 1.1, one of the factors X',Y”’, say X’ has an empty
boundary, because H3(X x Y;Zs) = H3(X' x Y';Z5) # 0 and Y’ # O. So,
O(X'xY") = X'x0Y"'. Therefore X and X' are homeomorphic and the numbers
of the components of the boundaries Y and Y are the same. Looking at the
homology and relative homology groups we obtain that the surfaces Y and Y’
are also homeomorphic.
Now we consider the case when X and 0Y are nonempty. Again by Lemma 1.2,
the first Betti numbers of X and X' are the same and the first Betti numbers
of Y and Y, are also the same. The coincidence of the first relative homology
groups implies that the orientability of X and Y agree with the orientability of
X' and Y, respectively . We consider three cases.
In the first case, X and Y are orientable, M = 9(X xY),W = 90X x 9Y. Since
by assumption, X and Y are not homeomorphic to I? or S x I, the manifolds
M and W satisfy the hypotheses of the Splitting Theorem. Since the boundary
of M is empty, the manifold W is a disjoint union of tori.
For somebody who is familiar with 3-manifolds the irreducibility of M is a simple
exercise, but for the reader’s covenience we outline a proof. If S is a 2-sphere
contained in M we can assume that it is in a general position with W, so the
intersection S N W is a disjoint union of closed curves. Some of them bound
innermost disks in S. Such a disk lies in one of components of oy (M). The
boundaries of the components are incompressible (IL.2.4 [J-S]), so the boundary
of the disk bound a disk in W. The components of oy (M) are irreducible (I1.2.3
[J-S]) , so the union of our two disk bounds a ball. Via this ball we isotope parts
of S into the adjacent component of of oy (M) eliminating one closed curve of
SNW. We repeat this operation as many times as S lies in one component and
it bounds a ball.
We will show that TV is minimal. Assume that V' = W\ (S; xS2) where Sy x S is
a component of W also gives a splitting in the sense of Theorem 2.2. According
to V, we have U = (X x S3) U (S1 x Y') as a component of oy (M). It must be
either a Seifert pair or a simple pair. The set U is not a simple pair because the
incompressible torus Sy x S is not boundary-parallel in U (see [J-S], p.154).
The fundamdntal group of U is infinite, so by Corollary 8.3 in [G] or VI.11.a in
[J], the manifold U is a Seifert manifold if and only if its fundamental group has a
normal cyclic infinite subgroup. Let an element « of 71 (U) be a generator of this
subgroup. By Seifert-van Kampen theorem 71 (U) is a sum with amalgamation
of the groups m (X x S2) and m1(S; x Y). The natural projections map the
element « onto elements of the centers of 7 (X x S3) and 71 (S1 x Y). So, if
71 (X) and 71 (Y) have more than one generator, it is impossible.
The same holds for X’ and V', where M' = 9(X' x V'), W' = X' x 9Y".
The components of oy (M) are homeomorphic to spaces X x S* and S! x Y.
Because the manifolds M and M’ are homeomorphic and W is unique up to



ambient isotopy, the components of ow (M) and the components of oy (M')
are homeomorphic. The components of oy (M') are homeomorphic to spaces
X' x 8! and S! x Y’, so the manifolds X and Y are homeomorphic to X’ and
Y'.

In the second case only one manifold is orientable. Let X be non-orientable
and Y be orientable. We consider the oriented double covers X and X' of
X and X’. The manifolds X x Y, and X’ x Y’ are orientable double covers
of the homeomorphic manifolds X x Y and X’ x Y’ | so our manifolds are
homeomorphic.

If X is the Mobius band, then X' is also nonorientable and H; (X) = H,(X') =
Z, by Lemma 1.2, so X' is the Mobius band, too.

If X is not the Mdbius band, then as before, we have homeomorphy either
according to X ~ X' and Y ~ Y’ or according to X ~ Y’ and Y ~ X' by the
Splitting theorem. In the first case X and X' are also homeomorphic. In the
second case if Hy(X) = Z% then H,(Y) = Z?*~L. Putting s(X') = s(X) +a ,
s(Y") = s(Y)+b,s(X) =2(s(X)—1) and s(X') = 2(s(X’) — 1) to the equations

s(X)s(Y) = s(X")s(Y")

s(X)s(Y) = s(X")s(Y")

we obtain s(Y) = s(Y') , so Y and Y’ are homeomorphic. Then

XYV Y ~X,

so X ~ X' also.

If X and X' are M6bius bands then we use Lemma 1.1. We have that s(X)s(Y) =
s(X")s(Y"). Hence s(Y) = s(Y’), because s(X) = s(X') = 1. Since H;(Y) =
H,(Y') and s(Y) = s(Y"), they have the same number of components of their
boundaries, so they are homeomorphic.

In the third case both surfaces X and Y are nonorientable. We cannot use
exactly the same argument, but we make a similar consideration. First, we
know by Lemma 1.2 that both surfaces X’ and Y’ are also nonorientable. We
consider the manifolds X x S; where S; are compoments of Y, and S; x Y
where S; are components of 0.X.

Next, we take the oriented double covers X and ¥ of X and Y. The manifolds
X x S; and S; % Y are the oriented double covers of X x S; and S; xY. Each of
the tori S; x S; is covered by tori S;- x S; and S}’ x S; in X x S; and is covered
by tori S; x Si and S; x S/ in Sj x V.

By identifying S} x S; with S; x S} and S} x S; with S; x S}’, we obtain the
oriented double cover M of (X xY"). It is not essential which circles we denoted
by S;,S; and Sj', S} because in every case we obtain the unique the oriented
double cover of (X x V).

Analogously, we construct the oriented double cover M’ of (X' xY"). Of course
M and M’ are homeomorphic. If the manifolds X and Y are not the Mdbius
bands then we solve the problem by the Splitting Theorem.



If X is a Mé6bius band then we solve the problem using Lemma 1.1, like in the
second case. O

We also include the following new related result:

Theorem 2.3 Let Xy, ..., X, and Y1, ..., Y, be any surfaces with nonempty bound-
ary and suppose that their Cartesian products X1 X ... X X, and Y1 X ... X Y},
are homeomorphic. Then there exists a one-to-one correspondence between them
(assume X; corresponds to Y;) such that rankH,(X;) = rankH,(Y;) and if

s(X;) =rankHy(X;) —rankH,(0X;) + 1
fori=1,2,...,n then
5(X1)s(X2)...s(X,) = s(Y1)s(Ys)...s(Yn).

Proof. Let Hy(X;) = Z™ and Hi(Y1) = Z™i. We can conclude from the
Kiinneth formula that

Hl(Xl X ... X Xn) = Zijl ni;

HQ(Xl X ... X Xn) = ZZil;éiZ nilniQ; and

H’n,(Xl X ... X Xn) — Z’ﬂl.._nn.

We obtain similar formulae for the product Y x ... x Y,,. Because rankH;(X; x
X Xp) =rankH; (Y7 x...xY,) we can conclude that n; = m; fori = 1,2, ...,n.
This follows from the fact that the ranks of the homology groups above are the
coefficients of the polynomials []?" | (z—n;) and [T}, (—m;). The polynomials
are equal, so the numbers n; and m; are the same.

We obtain the equality s(X1)s(X2)...s(Xp) = s(¥1)s(Y2)...s(Y},) like in the pre-
vious proof. O

Acknowledgements The first and the second author were supported in part
by the MESS program No. 101-509. The third author was supported in part by
the UG grant No. BW 5100-5-0232-2 and the fourth author was supported in
part by the UG grant No. BW 5100-5-0233-2. This research was also supported
by the Polish-Slovenian grant No. SLO-POL-024 (2002-2003).



References

[B1]

[B2]

[R2]

[R3]

[R4]

K. Borsuk, Sur la décomposition des polyédres en produits cartésians,
Fund.Math. 31 (1938), 137-148.

K. Borsuk, On the decomposition of manifolds into products of curves
and surfaces, Fund. Math. 33 (1945), 273-298.

R. Cauty, Sur les homéomorphismes de certain produits de courbes,
Bull.Acad.Polon.Sci. 27 (1979), 413-416.

P. Conner and F. Raymond, Derived actions, Proc. Second Conf. Com-
pact Transf. Groups, Amherst 1971, Lect. Notes Math. 299 (Berlin-
New York, 1972), 237-310.

R. H. Fox, On a problem of S. Ulam concerning Cartesian products,
Fund. Math. 34 (1947), 278-287.

D. Gabai, Convergence groups are Fuchian groups, Ann. of Math. (2)
136 (1992), 447-510.

W. H. Jaco, Lectures on 3-manifold topology, CBMS Regional Confer-
ence Series in Math. 43 Amer. Math. Soc., Providence, R.I. (1980)

W. H. Jaco and P. B. Shalen, Seifert fibered spaces in 3-manifolds,
Memoirs Amer. Math. Soc. 220 (1979).

K. Johannson, Homotopy equivalences of 3-manifolds with bound-
aries., Lect. Notes Math.761, Springer-Verlag, Berlin 1979

A. Kosinski, On 2-dimensional topological divisors of polytopes, Bull.
Acad. Polon. Sci. 2 (1957), 325-328.

S. Kwasik and W. Rosicki, On stability of 3-manifolds, submitted.

S. Kwasik and R. Schultz, Cartesian products of 3-manifolds, Topology
41 (2002), 321-340.

W. Rosicki, On a problem of S. Ulam concerning Cartesian squares of
2-polyhedra, Fund. Math. 127 (1986), 101-125.

W. Rosicki, On decomposition of 3-polyhedra into Cartesian product,
Fund. Math. 136 (1990), 53-63.

W. Rosicki, On Cartesian powers of 2-polyhedra, Coll. Math. 59
(1990), 141-149.

W. Rosicki, On decomposition of polyhedra into a Cartesian product
of 1-dimensional and 2-dimensional factors, Coll. Math. 72 (1997),
103-109.



U] S. Ulam, Problem 56, Fund. Math. 20 (1933), 285.

Joze Malesic, Institute for Mathematics, Physics and Mechanics, University of
Ljubljana, P. O. Box 2964, Ljubljana, Slovenia 1001, Email address: joze.malesicQuni-
Ij.si.

Dusan Repovs, Institute for Mathematics, Physics and Mechanics, University of
Ljubljana, P. O. Box 2964, Ljubljana, Slovenia 1001, Email address: dusan.repovs@uni-
Ij.si.

Witold Rosicki, Institute of Mathematics, University of Gdansk, Wita Stwosza
57, Gdansk PL-80-952, Poland, Email address: wrosicki@math.univ.gda.pl.

Andreas Zastrow, Institute of Mathematics, University of Gdansk, Wita Stwosza
57, Gdarisk PL-80-952, Poland, Email address: mataz@univ.gda.pl.



