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.Abstra
tFor a given simple 
onne
ted graph G with at least one edge, the 
liquehypergraph is de�ned as the one with the same vertex set as G but whosehyperedges are the maximal 
liques of G. We 
hara
terize that C5 is theonly graph without indu
ed P3 + P1, whose 
lique hypergraph is not 2-
olorable. We prove also that the 
lique hypergraph is 2-
olorable providingthat the underlined graph is without indu
ed P5 and C5. The later resultis best possible in the sense that if we omit some of the forbidden graphs,then the 
laim is not true.1 Introdu
tionAll graphs 
onsidered in this paper are simple, 
onne
ted and with at least oneedge. Let G be su
h a graph. The hypergraph H = H(G) with the same vertexset as G, whose hyperedges are the vertex sets of the maximal 
liques of G, is�This resear
h was partially supported by the PROTEUS Proje
t 00874RL.ySupported in part by Resear
h Proje
t Z1-3129 of the Ministry of S
ien
e and Te
hnologyof Slovenia, and supported in part by a postdo
toral fellowship of Pa
i�
 Institute for theMathemati
al S
ienses at Simon Fraser University, Canada.1




alled the 
lique hypergraph (or the hypergraph of maximal 
liques) of G. For agivenH(G), we use to say that G is its underlined graph; noti
e that G is uniquelydetermined. A k-
oloring of H is a fun
tion 
 : V (H)! f1; : : : ; kg su
h that nohyperedge of H is mono
hromati
, i.e., j
(e)j � 2 for every e 2 E(H). If thereexists su
h a fun
tion, then we say that H is k-
olorable, or alternatively, we useto say G is k-
lique-
olorable. Otherwise, we say that G is non-k-
lique-
olorable.The minimal k su
h that H admits a k-
oloring is 
alled the 
hromati
 numberof H, and is denoted by �(H).The hypergraph of maximal 
liques was introdu
ed by T. Gallai by posing aquestion about 
lique-transversals of 
hordal graphs (see [3℄). A pioneer work onthe 
lique-transversals one 
an �nd in Erd�os, Gallai, and Tuza [4℄. Du�us, Sands,Sauer, and Woodrow [2℄ proved that the elements of every partially ordered set
an be 2-
olored so that no maximal 
hain is mono
hromati
. In other words, thehypergraph H(G) is 2-
olorable if G is a 
omparability graph. It is well knownthat 
omparability graphs are perfe
t, and hen
e naturally arise the problemfrom [2℄ (see also [8, Problem 15.15℄):Problem 1.1 Does there exists a 
onstant k su
h that every perfe
t graph isk-
lique-
olorable?Re
all that a graph is perfe
t if, for every indu
ed subgraph H, �(H) = !(H),that is the 
hromati
 number of H is equal to its maximum 
lique size.Above question still remains the 
entral problem in this area, and to its sup-port Du�us, Kierstead, and Trotter [3℄ proved that the 
omplement of every
omparability graph, whi
h is known that is a perfe
t graph, is 3-
lique-
olorable.Ba
s�o, Gravier, Gy�arf�as, Preissmann, and Seb�o [1℄ proved that that every 
law-free perfe
t graph is 2-
lique-
olorable. They also proved that every diamond-freeperfe
t graph is 3-
lique-
olorable provading that ea
h edge of the graph is in
i-dent with some triangle, i.e. the graph has no maximal 
liques of size 2. Moreover,they proved that almost all perfe
t graphs are 3-
lique-
olorable. The later re-sult arises 
ertain believe that the 
onstant k from the above problem is a smallinteger { perhaps 3! Noti
e that it is not known the existen
e of a perfe
t graphwhi
h is not 3-
lique-
olorable.The 
lique hypergraph of planar graphs were also 
olored and list-
olored [11℄(see also [10℄). In [11℄ it was shown that every planar graph is 3-
lique-
olorable.Noti
e that if G is a triangle-free graph, then G and H(G) 
oin
ide. Thus, thelater result extends the well known Gr�otzs
h's theorem, whi
h 
laims that everytriangle-free planar graph is 3-
olorable. Moreover, Krato
hv��l and Tuza [9℄ gavean algorithm whi
h de
ides in a polynomial time whether the 
lique hypergraphof a planar graph is 2-
olorable. Thus, these two results imply that the 
hro-mati
 number of the 
lique hypergraph for planar graphs 
an be determined in apolynomial time.The re
ent land-markable result of M. Chudnovsky, N. Robertson. P. Sey-mour, and R. Thomas that Berge's Strong Perfe
t Graph Conje
ture is true2



implies that Problem 1.1 deals with the graphs without forbidden indu
ed oddholes and indu
ed odd anti-holes. Re
all that a hole is an indu
ed 
hordless 
y
lewith at least four verti
es, and anti-holes are their 
omplements. Another widelypublished 
onje
ture about 
olorings of graphs without forbidden 
ertain stru
-ture is Gy�arf�as' Forbidden Subgraph Conje
ture [6℄ (see also [8, Problem 8.11℄),given here in its question form:Problem 1.2 Let F be a forest. Does there exists a fun
tion fF su
h that �(G) �fF (!(G)) for every graph G, whi
h does not 
ontain F as an indu
ed subgraph?The above question in the 
on
ept of the 
lique hypergraphs was resolvedby Gravier, Ho�ang, and Ma�ray [5℄. In parti
ular they proved that for a givengraph F , there exists a fun
tion fF su
h that �(H(G)) � fF (!(G)) for everyF -free graph G if and only if F is a disjoint union of paths. Using this resultand an appli
ation of the 
lique-
oloring problem to the usual graph 
oloringfrom [7℄, it follows that every graph G is (�(G)� 1)!(G)�1-
olorable, where �(G)is the number of verti
es of the largest indu
ed path in G. This improves thebound �(G)!(G)�1 of Gy�arf�as [6℄. Moreover, it is an interesting feedba
k of the
lique-
olorings to the proper 
olorings.The paper [5℄ 
on
ludes with a table, whi
h expose for 
ertain small graphs F ,the upper bound f(F ) of the 
lique-
hromati
 number of the F -free graphs. Theknown F -free graphs for whi
h the bound f(F ) is attained are also presented. Inour work, we 
hara
terize that C5 is the only graph without indu
ed P3+P1, whose
lique hypergraph is not 2-
olorable. In this way, we purify that for F := P3+P1the bound f(F ) = 3 is attained only for C5. We prove also that the 
liquehypergraph is 2-
olorable providing that the underlined graph is without indu
edP5 and C5. The later result is best possible in the sense that if we omit someof the forbidden graphs, the 
laim is not true. The later result implies that forevery graph G without indu
ed P5 and C5, it holds �(G) � 2!(G) � 1.In the paper we use the following notation. Denote by Ck the 
y
le of lengthk and denote by Pk the path on k verti
es. For a given graph F , a graph G is aF -free if it does not 
ontain an indu
ed subgraph isomorphi
 to F . We say that Gis a (F1; : : : ; Fk)-free graph, if it is a Fi-free graph for ea
h Fi with i 2 f1; : : : ; kg.Denote by G+H the union of vertex-disjoint graphs G and H. Denote by N(v)the set of neighbors of a vertex v in a graph G. For a set D of verti
es of Gextend this notion by N(D) = [v2DN(v). We say that a vertex u dominates avertex v if N(v) n fug � N(u) n fvg.2 Coloring P3 + P1-free graphsIn this se
tion, we show that the 
lique hypergraph of a P3 + P1-free graph has
hromati
 number 3 only if the underlined graph is the 5-
y
le C5. Noti
e thatP3+P1 is also 
alled the 
o-paw graph, as it is the 
omplement of the paw graph.3



For the sake of simpli
ity, the 
liques will be 
onsidered also as sets of theirverti
es in the both proofs of this paper.Theorem 2.1 Every P3 + P1-free graph di�erent from C5 is 2-
lique-
olorable.Proof. Suppose that the theorem is false and G is a 
ounterexample with jV (G)jminimum. Thus, G is a P3+P1-free graph, distin
t from C5, and moreover H(G)is not 2-
olorable.Let us �x the notation by assuming that x1; x2 are two adja
ent verti
es ofG. Now, denote by S3 the 
ommon neighbors of x1 and x2 in G. For i = 1; 2, letSi be the set of verti
es whi
h are adja
ent to xi and whi
h are not elements ofS3 [ fx3�ig. Let S = S1 [ S2 [ S3, A = S [ fx1; x2g, and F = V (G) nA. Denoteby F0 the subset of F whi
h verti
es have no neighbor in S1 [S2 [S3. Denote byF1;2;3 the set of verti
es of F whi
h have a neighbor in ea
h of S1; S2; S3. Let F1be the subset of F whi
h verti
es has a neighbor in S1 and not in S2 [ S3, andlet F1;2 be the subset of F whi
h verti
es have a neighbor in ea
h of S1; S2 andno neighbor in S3. We similarly de�ne sets F2; F3; F2;3; F1;3.
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Figure 1: The lo
al stru
ture of GIn Fig. 1, the lo
al stru
ture due to above notion is depi
ted. In this �gure,the subsets (or the verti
es) of fx1; x2g, S, and F are 
onne
ted between if it isassumed the presen
e of edges in G with end-verti
es in the 
orresponding sets(or verti
es). This hierar
hy will be also used in the proof of the later result.In this proof, we follow several simple 
laims:4



Claim 1. The graph G has no two adja
ent verti
es u; v su
h that u dominatesv.Suppose that the 
laim is false, and u; v is su
h a pair of verti
es of G. Then,G� v is a P3 + P1-free graph, and by the minimality of jV (G)j, the graph G� vhas a 2-
lique-
oloring 
 with 
olors f1; 2g. Sin
e u dominates v, by setting
(v) := 3� 
(u), we extend 
 to a 2-
lique-
oloring of G, a 
ontradi
tion.By Claim 1, we may assume that S1 and S2 are non-empty sets.Claim 2. F0 = F1 = F2 = F3 = F2;3 = F1;3 = ;.Suppose that the 
laim is false and x is a vertex 
ontained in one of these sets. Bysymmetry, we may assume that x 2 F0[F1[F3[F1;3. Sin
e, S2 is non-empty, lets 2 S2. Now, observe that x1; x2; s; x indu
e a 
opy of P3 + P1, a 
ontradi
tion.Claim 3. Ea
h vertex from F1;2 [ F1;2;3 is adja
ent to ea
h vertex from S1 [ S2.Suppose that the 
laim is false. Let v be a vertex from F1;2 [ F1;2;3 whi
h isnon-adja
ent to a vertex u from S1 [ S2. By the symmetry, we may assume thatu 2 S1. Then, verti
es v; u; x1; x2 indu
e a 
opy of P3 + P1 in G, a 
ontradi
tion.Claim 4. F1;2 [ F1;2;3 indu
es a 
lique in G.Suppose that u; v are non-adja
ent verti
es in this set. Let w be a vertex fromS1. Then, it is adja
ent two both u and v due to Claim 3. But then x2; u; v; windu
e a 
opy of P3 + P1 in G, a 
ontradi
tion.Claim 5. jF1;2 [ F1;2;3j = 1.Suppose that u; v are two di�erent verti
es from F1;2 [ F1;2;3. Denote by S3;2 theneighbors of u in S3, and set S3;1 := S3 nS3;2. Now, we 
onstru
t a 2-
oloring 
 ofG in the following way: let 
(x1) = 
(u) = 1, 
olor also ea
h vertex from S3;1[S2by 1, and all the remaining verti
es of G by 
olor 2. Thus, v and x2 are 
oloredby 2. We show that 
 is a 2-
lique-
oloring of G.Suppose that we have a maximal mono
hromati
 
liqueM . Assume �rst thatit is 
olored by 1. If this 
lique does not 
ontain u, then all its verti
es are
ontained in fx1g [ S3 [ S2. Sin
e all verti
es from this set are adja
ent to x2,we obtain a 
ontradi
tion to the maximality of M . If M 
ontains u, then M is
ontained in fug[S2 due to the 
hoi
e of S3;2. But in this 
ase, by Claims 3 and4, vertex v is adja
ent to all verti
es of M , a 
ontradi
tion.Suppose now that the verti
es of M are 
olored by 2. Sin
e x1 is 
olored by1 and it is adja
ent to every vertex from S1 [ S3 [ fx2g, it follows that M is
ontained in S1 [S3;2 [F . But in this 
ase, we obtain that u is adja
ent to everyvertex of M due to Claims 3 and 4. This establish Claim 5.By Claim 5, we may assume that F1;2 [ F1;2;3 = fzg.5



Claim 6. Ea
h of S1; S2 indu
es a 
lique.Suppose that S1 or S2 does not indu
e a 
lique, say S2. Let u; v be two non-adja
ent verti
es in S2. Then, verti
es u; v; z; x1 indu
e a 
opy of P3 + P1 in G,a 
ontradi
tion.Claim 7. Ea
h of S1, S2 
ontains only one vertex.Suppose that the 
laim is false and suppose that jS2j � 2. Let u be a vertex inS2. Here, we argue similarly as in Claim 5. Denote by S3;2 the neighbors of uin S3, and set S3;1 := S3 n S3;2. Color ea
h vertex from S3;1 [ S1 [ fx2; ug by 1,and all the remaining verti
es of G by 
olor 2. We 
laim that this 
oloring is a2-
lique-
oloring of G.If there is a maximal 
liqueM whose verti
es are 
olored by 2, then its verti
esare 
ontained either in fx1g[S3;2 or in fzg[S2[S3;2. In the �rst 
ase all verti
esof M are adja
ent to x2, and in the se
ond 
ase, they are adja
ent to u due toClaims 3 and 6 and the 
hoi
e of S3;2, a 
ontradi
tion.Suppose now that there is a maximal 
lique M whose verti
es are 
olored by1. We 
onsider several 
ases regarding whether M 
ontains x2 and u. Assumefor a moment that x2 and u belong to M . Then, V (M) = fx2; ug due to the
hoi
e of S3;2. Sin
e jS2j � 2, there is a vertex in S2 
olored by 2, and adja
entto x2 and u, a 
ontradi
tion. If x2 is in M and u is not in M , then verti
es ofM are 
ontained in fx2g [ S3;1. But then x1 is adja
ent to all verti
es of M . Ifu 2 V (M) and x2 62 V (M), then M is 
ontained in fug [ S1. But in this 
ase,Claim 3 imples that z is adja
ent to all verti
es of M . Finally, if none of x2; u is
ontained in M , then we infer that M belongs to S1 [ S3;1. But then all verti
esof M are adja
ent to x1, a 
ontradi
tion.From the above, we 
on
lude that jS2j = 1. Similarly, one 
an show thatjS1j = 1. This proves Claim 7.By Claim 7, let S1 = fs1g and S2 = fs2g. By the assumption of the theoremthat G 6= C5, we infer S3 6= ; or s1 and s2 are adja
ent. To 
on
lude the proof,we 
onsider two possibilities regarding whether s1 and s2 are adja
ent verti
es.If s1 and s2 are non-adja
ent, then S3 6= ;. Now, 
olor x1; x2; z by 1, andall the remaining verti
es by 2. If there is maximal 
lique 
olored by 1, thenits verti
es are x1; x2 but then there is a vertex in S3 adja
ent to both of them.Suppose that there is a maximal 
lique 
olored by 2. Sin
e s1 and s2 are non-adja
ent, verti
es of the 
lique are 
ontained in either fs1g[S3 or fs2g[S3. Butthen x1 or x2 is adja
ent to all its verti
es.So assume now that s1 and s2 are adja
ent verti
es. If none of s1; s2 has aneighbor in S3, then use the same 
oloring as above and argue similarly thatthere is no mono
hromati
 maximal 
lique. Finally, by the symmetry, we mayassume that s1 has a neighbor in S3. In this 
ase 
olor x1; x2; s1; z by 1 and allother verti
es by 2. A possible maximal 
lique 
olored by 2 has all its verti
es infs2g[S3 but x2 is adja
ent to all of them. And, any maximal 
lique 
olored by 16



is of size two. Observe that for any su
h a pair of verti
es there exists a 
ommonneighbor 
olored by 2. This proves the theorem.3 Coloring (P5; C5)-free graphsA result in [5℄ 
laims that every P4-free graph is 2-
lique-
olorable. Weaking the
ondition of P4-freeness to P5-freeness, it turns that the 
laim is false, sin
e the5-
y
le C5 is a P5-free graph whi
h is not 2-
lique-
olorable. In this se
tion, weprove that if a P5-graph is not 2-
lique-
olorable, then it 
ontains an indu
ed 
opyof C5. Noti
e that odd 
y
les are examples of C5-free graphs whi
h are non-2-
lique-
olorable. Thus, if we omit some of the forbidden graphs from the theorembelow, the 
laim does not hold. In this sense this theorem is best possible.We remark here that beside C5, there exist also in�nitely many P5-free graphswhi
h are not 2-
lique-
olorable. Noti
e that if in a P5-free graph G is repla
ed avertex v by a P5-free graph H so that every vertex of H is 
onne
ted with everyneighbor of v, then the resulting graph G� is also P5-free graph. Moreover, if Gis not 2-
lique-
olorable, then also G� is not 2-
lique-
olorable. Thus, if we applythis operation repeatedly on C5, we obtain arbitrary many graphs with desiredproperties. It is not 
lear, if every P5-free graph whi
h is non-2-
lique-
olorable
an be 
onstru
ted in this way.Theorem 3.1 Every (P5; C5)-free graph is 2-
lique-
olorable.We prove the above theorem by 
ontradi
tion. We suppose that the 
laimis false and that G is a 
ounterexample with jV (G)j minimum. We use thesame notion for verti
es x1; x2, and the sets regarding them given in the se
ondparagraph in the proof of Theorem 2.1. Additionally, let S�1 be those verti
es ofS1, whi
h have a neighbor in F . Similarly de�ne S�2 . We use also the partitionof S3 into the following four sets A;B;C, and D:A = fv 2 S3 jS�2 � N(v) and S�1 6� N(v)g;B = fv 2 S3 jS�2 6� N(v) and S�1 6� N(v)g;C = fv 2 S3 jS�2 6� N(v) and S�1 � N(v)g;D = fv 2 S3 jS�2 � N(v) and S�1 � N(v)g:In the proof of Theorem 3.1, we apply the following two lemmas, whi
h areresults about the lo
al stru
ture of P5-free graphs due to our notion:Lemma 3.2 Every P5-free 
onne
ted graph G has the following properties:(a) Let x and y be two adja
ent verti
es of F n (F3 [ F0). Then,N(x) \ (S1 [ S2) = N(y) \ (S1 [ S2):7



(b) For every vertex x 2 F0, it holds N(x) � F0 [F3. Moreover, if x and y aretwo adja
ent verti
es of F0, then N(x) \ F3 = N(y) \ F3.(
) G has no edge with one end-vertex in F0 [ F3, and the other end-vertex inF n (F0 [ F3).(d) Suppose that N(D) \ F = ;. Then, for every two adja
ent verti
es x 2 F3and y 2 F3 [ F0, it holds N(x) \ S3 = N(y) \ S3. In parti
ular, F0 = ;.(e) Let x 2 S1[S2 be adja
ent to a vertex y 2 F . Then, N(y)\F � N(x)\F .Proof. Suppose that (a) does not hold for verti
es x and y from F n (F3 [ F;).Without lose of generality, we may assume that there is a vertex z 2 S1 [ S2adja
ent to x but non-adja
ent to y. Now, noti
e that verti
es x2; x1; z; x; yindu
e a 
opy of P5 in G, a 
ontradi
tion.Consider now the 
laim (b). If there exists a vertex x 2 F0 with a neighborz 62 F0 [ F3, then z 2 F n (F3 [ F0). In this 
ase, z has a neighbor u 2 S1 [ S2.Observe that x; z; u; x1; x2 indu
e a 
opy of P5. This proves the �rst part of the
laim (b).For the se
ond part of the same 
laim, assume that x; y 2 F0 and z 2 F3are su
h verti
es that x is adja
ent to y, vertex z is adja
ent to x, and z is non-adja
ent to y. Sin
e z 2 F3, there exists a vertex u 2 S3 adja
ent to z. In orderto establish 
laim (b), observe that verti
es y; x; z; u; x1 indu
e a 
opy of P5 in G.For the 
laim (
), suppose that x 2 F0[F3 and y 2 F n(F0[F3) are adja
ent.Then, y has a neighbor z 2 S1 [S2. Sin
e x and z are non-adja
ent, we 
on
ludethat x; y; z; x1; x2 indu
e a 
opy of P5, a 
ontradi
tion.Consider the 
laim (d). Suppose that x 2 F3 and y 2 F3 [ F0 are verti
esthat 
ontradi
t the 
laim. Without lose of generality, we may assume that thereexists a vertex z 2 S3 adja
ent to x and non-adja
ent to y. Sin
e N(D)\F = ;,we infer that z 2 A [ B [ C. Hen
e, there exists a vertex �z 2 S1 [ S2, whi
h isnon-adja
ent to z. Assume that �z 2 S1. Sin
e x; y 2 F0 [ F3, none of these twoverti
es is adja
ent to �z. This implies that y; x; z; x1; �z indu
e a 
opy of P5 in G,a 
ontradi
tion. This establish the �rst part of the 
laim (d).If F0 6= ;, then there is a vertex y 2 F0 adja
ent to a vertex x 2 F3 due to
onne
tivity of G and the 
laim (
). By the �rst part of this 
laim, we infer thatN(x)\S3 = N(y)\S3. Noti
e that the right side of this equality is an empty setsin
e y 2 F0. From other side, x 2 F3 has a neighbor in S3, whi
h implies thatN(x) \ S3 is a non-empty set. This 
ontradi
tion proves the se
ond part of the
laim (d).Finally, for the 
laim (e), suppose that u 2 F is adja
ent to y 2 F and non-adja
ent to x 2 S1 [ S2, and suppose that x and y are adja
ent. Note that x isadja
ent to x1 or x2 (but not both). Also note that neither u nor y is adja
entto x1 or x2. Thus, the following verti
es u; y; x; x1; x2 indu
e a 
opy of P5, a
ontradi
tion. 8



Lemma 3.3 Let M be a maximal 
lique of a P5-free 
onne
ted graph G. Then,M satis�es pre
isely one of the following 
onditions:(1) M � A;(2) M \ S 6= ;, M \ F 6= ; and M \ (F3 [ F0) = ;;(3) M \ S3 6= ;, M \ F3 6= ; and M � S3 [ F3;(4) M � F3;(5) M \ F0 6= ;, M \ F3 6= ;, and M � F3 [ F0.Moreover, if one of the 
onditions (4) and (5) holds, then N(D) \ F 6= ;.Proof. Suppose that (4) holds and N(D) \ F = ;. Then, M is 
ontained ina 
omponent indu
ed by the verti
es of F3. By the 
onne
tivity of G and byLemma 3.2(
), we obtain a vertex z 2 S3 adja
ent to a vertex of this 
omponent.Now, Lemma 3.2(d) implies that z is adja
ent to all verti
es of M , whi
h is a
ontradi
tion to the maximality of M . Similarly, if (5) holds and N(D)\F = ;,then Lemma 3.2(d) implies that F0 = ;. But this is a 
ontradi
tion to theassumption that M \ F0 6= ;. This proves the se
ond part of the lemma.Now, we prove that M always satis�es pre
isely one of the �ve 
onditions.Sin
e A \ F = ;, if (1) holds then none of the other 
onditions holds. Similarly,sin
e A\F = ; and F0 \F3 = ;, if (4) holds then all others are ex
luded. In thesequel, we assume that M 6� A and M 6� F3.Suppose �rst that M has a vertex in F0. Then, by Lemma 3.2(b), all itsverti
es belong to F3[F0. IfM � F0, then M is 
ontained in a 
omponent of F0.Sin
e G is a 
onne
ted, there is a vertex of this 
omponent adja
ent to a vertexz 2 F3. Now, the se
ond part of Lemma 3.2(b) implies that all verti
es of M areadja
ent to z, a 
ontradi
tion. So, we 
on
lude that M must have a vertex in F3,and in this way, we en
ounter 
ondition (5). Noti
e than neither (2) nor (3) 
anappear simultaneously with (5). In what follows, assume that M has no vertexin F0.Suppose now that M has no vertex in F3. Sin
e M 6� A, we may assumethat M has a vertex F n (F0 [ F3). This implies that none of x1; x2 is in M . IfM \ S = ;, then, by Lemma 3.2(a), all verti
es of M are adja
ent to a samevertex from S1 [S2. But this 
ontradi
ts the maximality of M . So, we infer thatM \ S 6= ;. In parti
ular, we infer that 
ondition (2) is satis�ed. Noti
e that
ondition (3) does not hold in the same time.Finally suppose that M has a vertex in F3. Then, by Lemma 3.2(
), we inferthat M has all its verti
es in S3 [ F3 [ F0. Sin
e, we assumed that M is vertex-disjoint from F0 and sin
e M is not 
ontained in F3, we obtain the 
ondition (3).This establish the lemma. 9



Proof of Theorem 3.1. As we said at the begining of this se
tion, we supposethat the theorem is false, and G is a 
ounterexample with jV (G)j minimum.Then, G is a 
onne
ted graph on at least three verti
es. We us the notation forverti
es x1; x2 and the sets regarding them given in the se
ond paragraph in theproof of Theorem 2.1 and depi
ted in Fig 1.Claim 1. Every vertex of S�1 is adja
ent to every vertex of S�2 .Suppose that the 
laim is false, and that verti
es u1 2 S�1 and u2 2 S�2 are non-adja
ent. Let w be a neighbor of u1 in F . If w and u2 are adja
ent, then verti
esw; u1; x1; x2; u2 indu
e a 
opy of C5. Otherwise, these verti
es indu
e a 
opy ofP5. This establish Claim 1.In order to prove the theorem, we distinguish the following two 
ases:Case 1: N(D) \ F = ;.In this 
ase, if D is not an empty set, then ea
h of its elements has no neighborin F . Color verti
es of A so that ea
h vertex of fx1g [B [C [D [ S2 is 
oloredby 2, and ea
h vertex of fx2g [A[ S1 is 
olored by 1. Denote this 
oloring by 
.Sin
e ea
h vertex of S with assigned 
olor i 2 f1; 2g is adja
ent to x3�i, it followsthat there is no mono
hromati
 
lique of G, whose all verti
es are in A.Now, we extend 
 to F . First 
olor every vertex of F2 [ F1;2 [ F1;2;3 by 
olor1. Next, 
olor every vertex of F1 [ F1;3 by 2. Finally, 
olor ea
h v 2 F3 by 
olor2 if N(v) \ S3 � A, and otherwise 
olor v by 1. By Lemma 3.2(d), F0 = ;, andso we have 
olored all the verti
es of G.Let M be an arbitrary maximal 
lique of G whi
h is mono
hromati
. Byabove, M is not 
ontained in A. Sin
e N(D) \ F = ;, the 
lique M satis�esone of 
onditions (2) and (3) of Lemma 3.3. Consequently, we 
onsider these twopossibilities:Sub
ase 1.1: M satis�es 
ondition (2) of Lemma 3.3.Consider �rst the 
ase that all the verti
es ofM are 
olored by 1. Then, M \F �F2 [ F1;2 [ F1;2;3 and M \ S � A [ S1. Sin
e M \ F 6= ;, it follows thatM \ S � A [ S�1 . Let f be a vertex from M \ F . Then, there is a vertex s 2 S�2adja
ent to f . Note that s 62 M . By Lemma 3.2(e), vertex s is adja
ent toall verti
es of M \ F , and by Claim 1, it is adja
ent to all verti
es of M \ S�1 .Moreover, by the de�nition of A, vertex s is also adja
ent to all verti
es of A.We 
on
lude that s is adja
ent to all verti
es of M . Sin
e s 62 M , we obtain a
ontradi
tion.Suppose now that all verti
es ofM are 
olored by 2. Then, M \F � F1[F1;3and M \ S � B [ C [D [ S2. Sin
e M has a vertex in f 2 F1 [ F1;3 and sin
eN(D) \ F = ;, we infer that M \ S � B [ C. By Lemma 3.2(e), there existsa vertex s 2 S�1 adja
ent to all verti
es of M \ (F1 [ F1;3). By the de�nition ofthe set C, vertex s is adja
ent also to all verti
es of M \ C. Now, if M \B = ;,10



we 
on
lude that s is adja
ent to all verti
es of M , whi
h is a 
ontradi
tion. So,assume that there exists a vertex b 2 M \ B whi
h is non-adja
ent to s. Bythe de�nition of B, set S�2 
ontains a vertex �b non-adja
ent to b. By Claim 1, �bis adja
ent to s, and by the de�nitions of F1 and F1;3, it is non-adja
ent to f .Therefore, verti
es s; f; b; x2;�b indu
e a 
opy of C5 in G, a 
ontradi
tion.Sub
ase 1.2: M satis�es 
ondition (3) of Lemma 3.3.Suppose �rst that all verti
es of M are 
olored by 2. In this 
ase, M 
ontains avertex s 2 S3 and a vertex f 2 F3. Sin
e s is 
olored by 2 and sin
e N(D)\F = ;,it follows that s 2 B [ C. From other side, as the 
oloring 
 is de�ned, we knowthat all neighbors of f from S3 are 
ontained in A. Hen
e, we obtain that f ands are non-adja
ent verti
es of M , a 
ontradi
tion.Suppose now that verti
es of M are 
olored by 1. Let f 2 F3 be a vertex ofM . Sin
e f is 
olored by 1, it has a neighbor v 2 B [ C due to the de�nition ofthe 
oloring 
. By Lemma 3.2(d), v is adja
ent to all verti
es from M \ F3. Bymaximality ofM , there exists a vertex a 2 M \A, whi
h is non-adja
ent to v. Bythe de�nitions of B and C, there exists a vertex �v 2 S�2 , whi
h is non-adja
ent tov. Sin
e a 2 A, vertex �v is adja
ent to a. Similarly, by the de�nition of A, thereexists a vertex �a 2 S�1 , whi
h is non-adja
ent to a. Claim 1 implies that verti
es�a and �v are adja
ent. Sin
e f 2 F3, it is neither adja
ent to �a nor �v. Finally,regarding whether �a and v are adja
ent, we en
ounter a 
opy of C5 or a 
opy ofP5 in G, a 
ontradi
tion.This establish the 
ase N(D) \ F = ;.Case 2: N(D) \ F 6= ;.Let d� 2 D be a vertex su
h that the set N(d�)\F is as large as possible. Noti
ethat N(d�) \ F 6= ;. We prove �rst the following 
laim:Claim 2. For every vertex u 2 S3 whi
h is non-adja
ent to d�, it holdsN(u) \ F � N(d�) \ F :Suppose that the 
laim is not true for the vertex u 2 S3. So, u and d� arenon-adja
ent, and there exists a vertex f 2 F adja
ent to u but non-adja
entto d�. If u 62 D, then there exists a vertex �u 2 Si with i 2 f1; 2g su
h that�u is non-adja
ent to u. Note that d� and �u are adja
ent. Now, observe thatregarding whether �u and f are adja
ent, we infer that verti
es f; u; x3�i; d�; �uindu
e a 
opy of C5 or a 
opy of P5 in G, respe
tively. And, if u 2 D, thenby the maximality of jN(d�) \ Fj, there exists a vertex �f 2 N(d�) \ F , whi
his non-adja
ent to u. Again, regarding whether f and �f are adja
ent we obtainthat verti
es f; u; x1; d�; �f indu
e a 
opy of C5 or a 
opy of P5, respe
tively. Thisproves the 
laim.Now, 
onsider the 
oloring 
 of G�F0 whi
h assigns 
olor 1 to ea
h neighborof d�, and whi
h assigns 
olor 2 to all other remaining verti
es of G � F0. Note11



that 
(d�) = 2. In order to extend 
 to the verti
es of F0, we prove �rst thefollowing 
laim:Claim 3. If there is a vertex f 2 F0 adja
ent to two non-adja
ent verti
es u andv of F3, then 
(u) = 
(v).Suppose that the 
laim is false. We may assume that f 2 F0 is adja
ent totwo verti
es u; v 2 F3, whi
h are non-adja
ent and for whi
h 
(u) 6= 
(v). Sin
e
(u) 6= 
(v), pre
isely one of verti
es u and v is adja
ent to d�. Then, verti
esx1; d�; u; f; v indu
e a 
opy of P5 in G, a 
ontradi
tion.Now, extend the 
oloring 
 to verti
es of F0 in the following way: if f 2 F0is adja
ent to some vertex from F3 whi
h is 
olored by 1, then 
olor f by 2,otherwise 
olor f by 1. By the 
onne
tivity of G and by Lemma 3.2(b), ea
hvertex of F0 has a neighbor in F3. Thus, a vertex of F0 is 
olored by 1 if and onlyif all its neighbors from F3 are 
olored by 2.In what follows, we will prove that no maximal 
lique of G is mono
hromati
.This will establish the theorem. So, suppose that M is a maximal 
lique of G,whi
h is mono
hromati
 regarding 
. We 
onsider several possibilities due toLemma 3.3.Sub
ase 2.1: M satis�es 
ondition (5) of Lemma 3.3.Then,M 
ontains a vertex f from F0. If all verti
es ofM are 
olored by 1, then itfollows that all neighbors of f in F3 are 
olored by 2, soM is not mono
hromati
,a 
ontradi
tion. Suppose now that all verti
es of M are 
olored by 2. Then, fhas neighbor f � 2 F3 
olored by 1. Note that by Lemma 3.2(b), all verti
es ofM \ F0 are adja
ent to f �. Thus, by the maximality of M , there exists a vertex�f 2 M \ F3 whi
h is non-adja
ent to f �. Sin
e �f and f � are 
olored di�erently,we obtain a 
ontradi
tion to Claim 3.Suppose now that M satis�es one of the 
onditions (1)-(4) of Lemma 3.3. Then,M \ F0 = ;. Note that if verti
es of M are 
olored by 1, then all of them areadja
ent to d� but this 
ontradi
ts the maximality ofM . So we may assume thatM is 
olored by 2.Sub
ase 2.2: M satis�es 
ondition (1) of Lemma 3.3.By the maximality,M 
ontains a vertex a 2 S1 and a vertex b 2 S2; otherwise x1or x2 is adja
ent to all verti
es of M . Sin
e a and b are 
olored 2, ea
h of them isnon-adja
ent to d�. By the de�nition of D, vertex d� is adja
ent to all verti
es ofS�1 and S�2 . So, we 
on
lude that a 2 S1 n S�1 and b 2 S2 n S�2 . Note that we haveassumed N(D) \ F 6= ;. Hen
e, d� has a neighbor in f 2 F . Noti
e that f isnon-adja
ent ea
h of a; b. Thus, f; d�; x2; b; a indu
e a 
opy of P5, a 
ontradi
tion.Sub
ase 2.3: M satis�es 
ondition (2) or (3) of Lemma 3.3.12



In this 
ase, M meets both S and F . Sin
e all verti
es of M are 
olored by 2,ea
h of them is non-adja
ent to d�. Re
all that d� is adja
ent to all verti
es ofS�1 [ S�2 . This implies that M \ S � S3. Thus, M has a vertex s 2 S3, whi
h isnon-adja
ent to d�. By Claim 2, it holds N(s) \ F � N(d�) \ F . In parti
ular,ea
h vertex of the non-empty set M \F is adja
ent to d�. But then we obtain a
ontradi
tion sin
e ea
h su
h vertex must be 
olored by 1.Sub
ase 2.4: M satis�es 
ondition (4) of Lemma 3.3.In this 
ase, M � F3. Sin
e M is 
olored by 2, no vertex of M is adja
ent to d�.Suppose for a moment that a neighbor f of d� from F is adja
ent to some vertexm belonging toM . By the maximality ofM , there exists a vertex m0 ofM whi
his non-adja
ent to f . In this 
ase, we obtain that verti
es m0; m; f; d�; x1 indu
ea 
opy of P5, a 
ontradi
tion.We may assume now that every vertex of N(d�) \ F has no neighbor in M .Let m be a vertex of M . Then, it has a neighbor in F3, say the vertex s. By itsmaximality, the 
lique M 
ontains a vertex m0 non-adja
ent to s. By Claim 2,verti
es s and d� are adja
ent. If s 62 D, then there exists a vertex �s 2 S�1 [ S�2 ,whi
h is non-adja
ent to s. We may assume that �s 2 S�1 . Noti
e that d� isadja
ent to �s. Sin
e m;m0 2 F3, vertex �s is non-adja
ent to ea
h of m;m0. Thus,we infer that �s; d�; s;m;m0 indu
e a 
opy of P5. So, assume now that s 2 D.Then, the maximality of N(d�) \ F assures us that d� has a neighbor f in F ,whi
h is non-adja
ent to s. Note that by the assumption at the beginning of thisparagraph, f is non-adja
ent to m and m0. Thus, m0; m; s; d�; f indu
e a 
opy ofP5.We 
on
lude that 
 is a 2-
lique-
oloring of G. This establish Case 2 and alsothe theorem.Let G be a (P5; C5)-free graph. By a result from [5℄, it follows that �(G) �3!(G)�1. If G = K1, then �(G) = 1. Otherwise, G 6= K1, let G1; G2 be thesubgraphs of G indu
ed by the 
olor 
lasses of the 2-
lique-
oloring of G givenby Theorem 3.1. Noti
e that for ea
h i 2 f1; 2g, it holds !(Gi) < !(G). Thus,by an indu
tional hypothesis that �(Gi) � 2!(Gi)�1 for ea
h i = f1; 2g, it followsthat �(G) � �(G1) + �(G2) � 2!(G1)�1 + 2!(G2)�1 � 2!(G)�1:The above argument proves the following 
onsequen
e. Perhaps this bound is farfrom optimal for large !(G). But for !(G) = 2 and 3 it is tight just 
onisdersome bipartite graphs or the anti-hole on seven verti
es, respe
tively.Corollary 3.4 Suppose that G is a (P5; C5)-free graph. Then, �(G) � 2!(G)�1.We 
on
lude the paper with a dis
usion of a related 
on
ept to the 
oloringof the 
lique hypergraph, whi
h is introdu
ed by Ho�ang and M
Diarmid [7℄. A13



graph G is 
alled strongly k-divisible, if every indu
ed 
onne
ted subgraph of Gwith at least one edge is k-
lique-
olorable. A k-division of a graph G is a k-
oloring so that no 
lique of maximum size, i.e. of size !(G), is mono
hromati
.And, a graph is k-divisible, if every indu
ed subgraph with at least one edge hasa k-division. Obviously, every strongly k-divisible graph is k-divisible. Spe
ially,of great interest are 2-divisible graphs sin
e the Strong Perfe
t Graph Conje
ture
an be restate as: A graph is perfe
t if and only if it and its 
omplement are2-divisible graphs (see [7℄).Sin
e every indu
ed graph of a F -free graph is also F -free graph, Theorem 3.1implies that that every (P5; C5)-free graph is (strongly) 2-divisible. And, Theo-rem 2.1 implies a result of [7℄ that every (C5; P3+P1)-graph is strongly 2-divisible.Referen
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