
University of Ljubljana

Institute of Mathematics, Physics and Mechanics
Department of Mathematics

Jadranska 19, 1111 Ljubljana, Slovenia

Preprint series, Vol. 41 (2003), 890

COLORING THE CLIQUE
HYPERGRAPH OF GRAPHS

WITHOUT FORBIDDEN
STRUCTURE

Sylvain Gravier Riste Škrekovski
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Coloring the lique hypergraph of graphs withoutforbidden struture �Sylvain Graviera, and Riste �Skrekovskiyb;Otober 27, 2001a CNRS - GeoD researh group, Laboratoire Leibniz,46 avenue F�elix Viallet,38031 Grenoble Cedex, FraneSylvain.Gravier�imag.frb Department of Mathematis, University of Ljubljana,Jadranska 19, 1111 Ljubljana, Sloveniaskreko�fmf.uni-lj.si Department of Applied Mathematis, Charles University,Malostransk�e n�am. 2/25, 118 00, Prague, Czeh Republi.AbstratFor a given simple onneted graph G with at least one edge, the liquehypergraph is de�ned as the one with the same vertex set as G but whosehyperedges are the maximal liques of G. We haraterize that C5 is theonly graph without indued P3 + P1, whose lique hypergraph is not 2-olorable. We prove also that the lique hypergraph is 2-olorable providingthat the underlined graph is without indued P5 and C5. The later resultis best possible in the sense that if we omit some of the forbidden graphs,then the laim is not true.1 IntrodutionAll graphs onsidered in this paper are simple, onneted and with at least oneedge. Let G be suh a graph. The hypergraph H = H(G) with the same vertexset as G, whose hyperedges are the vertex sets of the maximal liques of G, is�This researh was partially supported by the PROTEUS Projet 00874RL.ySupported in part by Researh Projet Z1-3129 of the Ministry of Siene and Tehnologyof Slovenia, and supported in part by a postdotoral fellowship of Pai� Institute for theMathematial Sienses at Simon Fraser University, Canada.1



alled the lique hypergraph (or the hypergraph of maximal liques) of G. For agivenH(G), we use to say that G is its underlined graph; notie that G is uniquelydetermined. A k-oloring of H is a funtion  : V (H)! f1; : : : ; kg suh that nohyperedge of H is monohromati, i.e., j(e)j � 2 for every e 2 E(H). If thereexists suh a funtion, then we say that H is k-olorable, or alternatively, we useto say G is k-lique-olorable. Otherwise, we say that G is non-k-lique-olorable.The minimal k suh that H admits a k-oloring is alled the hromati numberof H, and is denoted by �(H).The hypergraph of maximal liques was introdued by T. Gallai by posing aquestion about lique-transversals of hordal graphs (see [3℄). A pioneer work onthe lique-transversals one an �nd in Erd�os, Gallai, and Tuza [4℄. Du�us, Sands,Sauer, and Woodrow [2℄ proved that the elements of every partially ordered setan be 2-olored so that no maximal hain is monohromati. In other words, thehypergraph H(G) is 2-olorable if G is a omparability graph. It is well knownthat omparability graphs are perfet, and hene naturally arise the problemfrom [2℄ (see also [8, Problem 15.15℄):Problem 1.1 Does there exists a onstant k suh that every perfet graph isk-lique-olorable?Reall that a graph is perfet if, for every indued subgraph H, �(H) = !(H),that is the hromati number of H is equal to its maximum lique size.Above question still remains the entral problem in this area, and to its sup-port Du�us, Kierstead, and Trotter [3℄ proved that the omplement of everyomparability graph, whih is known that is a perfet graph, is 3-lique-olorable.Bas�o, Gravier, Gy�arf�as, Preissmann, and Seb�o [1℄ proved that that every law-free perfet graph is 2-lique-olorable. They also proved that every diamond-freeperfet graph is 3-lique-olorable provading that eah edge of the graph is ini-dent with some triangle, i.e. the graph has no maximal liques of size 2. Moreover,they proved that almost all perfet graphs are 3-lique-olorable. The later re-sult arises ertain believe that the onstant k from the above problem is a smallinteger { perhaps 3! Notie that it is not known the existene of a perfet graphwhih is not 3-lique-olorable.The lique hypergraph of planar graphs were also olored and list-olored [11℄(see also [10℄). In [11℄ it was shown that every planar graph is 3-lique-olorable.Notie that if G is a triangle-free graph, then G and H(G) oinide. Thus, thelater result extends the well known Gr�otzsh's theorem, whih laims that everytriangle-free planar graph is 3-olorable. Moreover, Kratohv��l and Tuza [9℄ gavean algorithm whih deides in a polynomial time whether the lique hypergraphof a planar graph is 2-olorable. Thus, these two results imply that the hro-mati number of the lique hypergraph for planar graphs an be determined in apolynomial time.The reent land-markable result of M. Chudnovsky, N. Robertson. P. Sey-mour, and R. Thomas that Berge's Strong Perfet Graph Conjeture is true2



implies that Problem 1.1 deals with the graphs without forbidden indued oddholes and indued odd anti-holes. Reall that a hole is an indued hordless ylewith at least four verties, and anti-holes are their omplements. Another widelypublished onjeture about olorings of graphs without forbidden ertain stru-ture is Gy�arf�as' Forbidden Subgraph Conjeture [6℄ (see also [8, Problem 8.11℄),given here in its question form:Problem 1.2 Let F be a forest. Does there exists a funtion fF suh that �(G) �fF (!(G)) for every graph G, whih does not ontain F as an indued subgraph?The above question in the onept of the lique hypergraphs was resolvedby Gravier, Ho�ang, and Ma�ray [5℄. In partiular they proved that for a givengraph F , there exists a funtion fF suh that �(H(G)) � fF (!(G)) for everyF -free graph G if and only if F is a disjoint union of paths. Using this resultand an appliation of the lique-oloring problem to the usual graph oloringfrom [7℄, it follows that every graph G is (�(G)� 1)!(G)�1-olorable, where �(G)is the number of verties of the largest indued path in G. This improves thebound �(G)!(G)�1 of Gy�arf�as [6℄. Moreover, it is an interesting feedbak of thelique-olorings to the proper olorings.The paper [5℄ onludes with a table, whih expose for ertain small graphs F ,the upper bound f(F ) of the lique-hromati number of the F -free graphs. Theknown F -free graphs for whih the bound f(F ) is attained are also presented. Inour work, we haraterize that C5 is the only graph without indued P3+P1, whoselique hypergraph is not 2-olorable. In this way, we purify that for F := P3+P1the bound f(F ) = 3 is attained only for C5. We prove also that the liquehypergraph is 2-olorable providing that the underlined graph is without induedP5 and C5. The later result is best possible in the sense that if we omit someof the forbidden graphs, the laim is not true. The later result implies that forevery graph G without indued P5 and C5, it holds �(G) � 2!(G) � 1.In the paper we use the following notation. Denote by Ck the yle of lengthk and denote by Pk the path on k verties. For a given graph F , a graph G is aF -free if it does not ontain an indued subgraph isomorphi to F . We say that Gis a (F1; : : : ; Fk)-free graph, if it is a Fi-free graph for eah Fi with i 2 f1; : : : ; kg.Denote by G+H the union of vertex-disjoint graphs G and H. Denote by N(v)the set of neighbors of a vertex v in a graph G. For a set D of verties of Gextend this notion by N(D) = [v2DN(v). We say that a vertex u dominates avertex v if N(v) n fug � N(u) n fvg.2 Coloring P3 + P1-free graphsIn this setion, we show that the lique hypergraph of a P3 + P1-free graph hashromati number 3 only if the underlined graph is the 5-yle C5. Notie thatP3+P1 is also alled the o-paw graph, as it is the omplement of the paw graph.3



For the sake of simpliity, the liques will be onsidered also as sets of theirverties in the both proofs of this paper.Theorem 2.1 Every P3 + P1-free graph di�erent from C5 is 2-lique-olorable.Proof. Suppose that the theorem is false and G is a ounterexample with jV (G)jminimum. Thus, G is a P3+P1-free graph, distint from C5, and moreover H(G)is not 2-olorable.Let us �x the notation by assuming that x1; x2 are two adjaent verties ofG. Now, denote by S3 the ommon neighbors of x1 and x2 in G. For i = 1; 2, letSi be the set of verties whih are adjaent to xi and whih are not elements ofS3 [ fx3�ig. Let S = S1 [ S2 [ S3, A = S [ fx1; x2g, and F = V (G) nA. Denoteby F0 the subset of F whih verties have no neighbor in S1 [S2 [S3. Denote byF1;2;3 the set of verties of F whih have a neighbor in eah of S1; S2; S3. Let F1be the subset of F whih verties has a neighbor in S1 and not in S2 [ S3, andlet F1;2 be the subset of F whih verties have a neighbor in eah of S1; S2 andno neighbor in S3. We similarly de�ne sets F2; F3; F2;3; F1;3.
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Figure 1: The loal struture of GIn Fig. 1, the loal struture due to above notion is depited. In this �gure,the subsets (or the verties) of fx1; x2g, S, and F are onneted between if it isassumed the presene of edges in G with end-verties in the orresponding sets(or verties). This hierarhy will be also used in the proof of the later result.In this proof, we follow several simple laims:4



Claim 1. The graph G has no two adjaent verties u; v suh that u dominatesv.Suppose that the laim is false, and u; v is suh a pair of verties of G. Then,G� v is a P3 + P1-free graph, and by the minimality of jV (G)j, the graph G� vhas a 2-lique-oloring  with olors f1; 2g. Sine u dominates v, by setting(v) := 3� (u), we extend  to a 2-lique-oloring of G, a ontradition.By Claim 1, we may assume that S1 and S2 are non-empty sets.Claim 2. F0 = F1 = F2 = F3 = F2;3 = F1;3 = ;.Suppose that the laim is false and x is a vertex ontained in one of these sets. Bysymmetry, we may assume that x 2 F0[F1[F3[F1;3. Sine, S2 is non-empty, lets 2 S2. Now, observe that x1; x2; s; x indue a opy of P3 + P1, a ontradition.Claim 3. Eah vertex from F1;2 [ F1;2;3 is adjaent to eah vertex from S1 [ S2.Suppose that the laim is false. Let v be a vertex from F1;2 [ F1;2;3 whih isnon-adjaent to a vertex u from S1 [ S2. By the symmetry, we may assume thatu 2 S1. Then, verties v; u; x1; x2 indue a opy of P3 + P1 in G, a ontradition.Claim 4. F1;2 [ F1;2;3 indues a lique in G.Suppose that u; v are non-adjaent verties in this set. Let w be a vertex fromS1. Then, it is adjaent two both u and v due to Claim 3. But then x2; u; v; windue a opy of P3 + P1 in G, a ontradition.Claim 5. jF1;2 [ F1;2;3j = 1.Suppose that u; v are two di�erent verties from F1;2 [ F1;2;3. Denote by S3;2 theneighbors of u in S3, and set S3;1 := S3 nS3;2. Now, we onstrut a 2-oloring  ofG in the following way: let (x1) = (u) = 1, olor also eah vertex from S3;1[S2by 1, and all the remaining verties of G by olor 2. Thus, v and x2 are oloredby 2. We show that  is a 2-lique-oloring of G.Suppose that we have a maximal monohromati liqueM . Assume �rst thatit is olored by 1. If this lique does not ontain u, then all its verties areontained in fx1g [ S3 [ S2. Sine all verties from this set are adjaent to x2,we obtain a ontradition to the maximality of M . If M ontains u, then M isontained in fug[S2 due to the hoie of S3;2. But in this ase, by Claims 3 and4, vertex v is adjaent to all verties of M , a ontradition.Suppose now that the verties of M are olored by 2. Sine x1 is olored by1 and it is adjaent to every vertex from S1 [ S3 [ fx2g, it follows that M isontained in S1 [S3;2 [F . But in this ase, we obtain that u is adjaent to everyvertex of M due to Claims 3 and 4. This establish Claim 5.By Claim 5, we may assume that F1;2 [ F1;2;3 = fzg.5



Claim 6. Eah of S1; S2 indues a lique.Suppose that S1 or S2 does not indue a lique, say S2. Let u; v be two non-adjaent verties in S2. Then, verties u; v; z; x1 indue a opy of P3 + P1 in G,a ontradition.Claim 7. Eah of S1, S2 ontains only one vertex.Suppose that the laim is false and suppose that jS2j � 2. Let u be a vertex inS2. Here, we argue similarly as in Claim 5. Denote by S3;2 the neighbors of uin S3, and set S3;1 := S3 n S3;2. Color eah vertex from S3;1 [ S1 [ fx2; ug by 1,and all the remaining verties of G by olor 2. We laim that this oloring is a2-lique-oloring of G.If there is a maximal liqueM whose verties are olored by 2, then its vertiesare ontained either in fx1g[S3;2 or in fzg[S2[S3;2. In the �rst ase all vertiesof M are adjaent to x2, and in the seond ase, they are adjaent to u due toClaims 3 and 6 and the hoie of S3;2, a ontradition.Suppose now that there is a maximal lique M whose verties are olored by1. We onsider several ases regarding whether M ontains x2 and u. Assumefor a moment that x2 and u belong to M . Then, V (M) = fx2; ug due to thehoie of S3;2. Sine jS2j � 2, there is a vertex in S2 olored by 2, and adjaentto x2 and u, a ontradition. If x2 is in M and u is not in M , then verties ofM are ontained in fx2g [ S3;1. But then x1 is adjaent to all verties of M . Ifu 2 V (M) and x2 62 V (M), then M is ontained in fug [ S1. But in this ase,Claim 3 imples that z is adjaent to all verties of M . Finally, if none of x2; u isontained in M , then we infer that M belongs to S1 [ S3;1. But then all vertiesof M are adjaent to x1, a ontradition.From the above, we onlude that jS2j = 1. Similarly, one an show thatjS1j = 1. This proves Claim 7.By Claim 7, let S1 = fs1g and S2 = fs2g. By the assumption of the theoremthat G 6= C5, we infer S3 6= ; or s1 and s2 are adjaent. To onlude the proof,we onsider two possibilities regarding whether s1 and s2 are adjaent verties.If s1 and s2 are non-adjaent, then S3 6= ;. Now, olor x1; x2; z by 1, andall the remaining verties by 2. If there is maximal lique olored by 1, thenits verties are x1; x2 but then there is a vertex in S3 adjaent to both of them.Suppose that there is a maximal lique olored by 2. Sine s1 and s2 are non-adjaent, verties of the lique are ontained in either fs1g[S3 or fs2g[S3. Butthen x1 or x2 is adjaent to all its verties.So assume now that s1 and s2 are adjaent verties. If none of s1; s2 has aneighbor in S3, then use the same oloring as above and argue similarly thatthere is no monohromati maximal lique. Finally, by the symmetry, we mayassume that s1 has a neighbor in S3. In this ase olor x1; x2; s1; z by 1 and allother verties by 2. A possible maximal lique olored by 2 has all its verties infs2g[S3 but x2 is adjaent to all of them. And, any maximal lique olored by 16



is of size two. Observe that for any suh a pair of verties there exists a ommonneighbor olored by 2. This proves the theorem.3 Coloring (P5; C5)-free graphsA result in [5℄ laims that every P4-free graph is 2-lique-olorable. Weaking theondition of P4-freeness to P5-freeness, it turns that the laim is false, sine the5-yle C5 is a P5-free graph whih is not 2-lique-olorable. In this setion, weprove that if a P5-graph is not 2-lique-olorable, then it ontains an indued opyof C5. Notie that odd yles are examples of C5-free graphs whih are non-2-lique-olorable. Thus, if we omit some of the forbidden graphs from the theorembelow, the laim does not hold. In this sense this theorem is best possible.We remark here that beside C5, there exist also in�nitely many P5-free graphswhih are not 2-lique-olorable. Notie that if in a P5-free graph G is replaed avertex v by a P5-free graph H so that every vertex of H is onneted with everyneighbor of v, then the resulting graph G� is also P5-free graph. Moreover, if Gis not 2-lique-olorable, then also G� is not 2-lique-olorable. Thus, if we applythis operation repeatedly on C5, we obtain arbitrary many graphs with desiredproperties. It is not lear, if every P5-free graph whih is non-2-lique-olorablean be onstruted in this way.Theorem 3.1 Every (P5; C5)-free graph is 2-lique-olorable.We prove the above theorem by ontradition. We suppose that the laimis false and that G is a ounterexample with jV (G)j minimum. We use thesame notion for verties x1; x2, and the sets regarding them given in the seondparagraph in the proof of Theorem 2.1. Additionally, let S�1 be those verties ofS1, whih have a neighbor in F . Similarly de�ne S�2 . We use also the partitionof S3 into the following four sets A;B;C, and D:A = fv 2 S3 jS�2 � N(v) and S�1 6� N(v)g;B = fv 2 S3 jS�2 6� N(v) and S�1 6� N(v)g;C = fv 2 S3 jS�2 6� N(v) and S�1 � N(v)g;D = fv 2 S3 jS�2 � N(v) and S�1 � N(v)g:In the proof of Theorem 3.1, we apply the following two lemmas, whih areresults about the loal struture of P5-free graphs due to our notion:Lemma 3.2 Every P5-free onneted graph G has the following properties:(a) Let x and y be two adjaent verties of F n (F3 [ F0). Then,N(x) \ (S1 [ S2) = N(y) \ (S1 [ S2):7



(b) For every vertex x 2 F0, it holds N(x) � F0 [F3. Moreover, if x and y aretwo adjaent verties of F0, then N(x) \ F3 = N(y) \ F3.() G has no edge with one end-vertex in F0 [ F3, and the other end-vertex inF n (F0 [ F3).(d) Suppose that N(D) \ F = ;. Then, for every two adjaent verties x 2 F3and y 2 F3 [ F0, it holds N(x) \ S3 = N(y) \ S3. In partiular, F0 = ;.(e) Let x 2 S1[S2 be adjaent to a vertex y 2 F . Then, N(y)\F � N(x)\F .Proof. Suppose that (a) does not hold for verties x and y from F n (F3 [ F;).Without lose of generality, we may assume that there is a vertex z 2 S1 [ S2adjaent to x but non-adjaent to y. Now, notie that verties x2; x1; z; x; yindue a opy of P5 in G, a ontradition.Consider now the laim (b). If there exists a vertex x 2 F0 with a neighborz 62 F0 [ F3, then z 2 F n (F3 [ F0). In this ase, z has a neighbor u 2 S1 [ S2.Observe that x; z; u; x1; x2 indue a opy of P5. This proves the �rst part of thelaim (b).For the seond part of the same laim, assume that x; y 2 F0 and z 2 F3are suh verties that x is adjaent to y, vertex z is adjaent to x, and z is non-adjaent to y. Sine z 2 F3, there exists a vertex u 2 S3 adjaent to z. In orderto establish laim (b), observe that verties y; x; z; u; x1 indue a opy of P5 in G.For the laim (), suppose that x 2 F0[F3 and y 2 F n(F0[F3) are adjaent.Then, y has a neighbor z 2 S1 [S2. Sine x and z are non-adjaent, we onludethat x; y; z; x1; x2 indue a opy of P5, a ontradition.Consider the laim (d). Suppose that x 2 F3 and y 2 F3 [ F0 are vertiesthat ontradit the laim. Without lose of generality, we may assume that thereexists a vertex z 2 S3 adjaent to x and non-adjaent to y. Sine N(D)\F = ;,we infer that z 2 A [ B [ C. Hene, there exists a vertex �z 2 S1 [ S2, whih isnon-adjaent to z. Assume that �z 2 S1. Sine x; y 2 F0 [ F3, none of these twoverties is adjaent to �z. This implies that y; x; z; x1; �z indue a opy of P5 in G,a ontradition. This establish the �rst part of the laim (d).If F0 6= ;, then there is a vertex y 2 F0 adjaent to a vertex x 2 F3 due toonnetivity of G and the laim (). By the �rst part of this laim, we infer thatN(x)\S3 = N(y)\S3. Notie that the right side of this equality is an empty setsine y 2 F0. From other side, x 2 F3 has a neighbor in S3, whih implies thatN(x) \ S3 is a non-empty set. This ontradition proves the seond part of thelaim (d).Finally, for the laim (e), suppose that u 2 F is adjaent to y 2 F and non-adjaent to x 2 S1 [ S2, and suppose that x and y are adjaent. Note that x isadjaent to x1 or x2 (but not both). Also note that neither u nor y is adjaentto x1 or x2. Thus, the following verties u; y; x; x1; x2 indue a opy of P5, aontradition. 8



Lemma 3.3 Let M be a maximal lique of a P5-free onneted graph G. Then,M satis�es preisely one of the following onditions:(1) M � A;(2) M \ S 6= ;, M \ F 6= ; and M \ (F3 [ F0) = ;;(3) M \ S3 6= ;, M \ F3 6= ; and M � S3 [ F3;(4) M � F3;(5) M \ F0 6= ;, M \ F3 6= ;, and M � F3 [ F0.Moreover, if one of the onditions (4) and (5) holds, then N(D) \ F 6= ;.Proof. Suppose that (4) holds and N(D) \ F = ;. Then, M is ontained ina omponent indued by the verties of F3. By the onnetivity of G and byLemma 3.2(), we obtain a vertex z 2 S3 adjaent to a vertex of this omponent.Now, Lemma 3.2(d) implies that z is adjaent to all verties of M , whih is aontradition to the maximality of M . Similarly, if (5) holds and N(D)\F = ;,then Lemma 3.2(d) implies that F0 = ;. But this is a ontradition to theassumption that M \ F0 6= ;. This proves the seond part of the lemma.Now, we prove that M always satis�es preisely one of the �ve onditions.Sine A \ F = ;, if (1) holds then none of the other onditions holds. Similarly,sine A\F = ; and F0 \F3 = ;, if (4) holds then all others are exluded. In thesequel, we assume that M 6� A and M 6� F3.Suppose �rst that M has a vertex in F0. Then, by Lemma 3.2(b), all itsverties belong to F3[F0. IfM � F0, then M is ontained in a omponent of F0.Sine G is a onneted, there is a vertex of this omponent adjaent to a vertexz 2 F3. Now, the seond part of Lemma 3.2(b) implies that all verties of M areadjaent to z, a ontradition. So, we onlude that M must have a vertex in F3,and in this way, we enounter ondition (5). Notie than neither (2) nor (3) anappear simultaneously with (5). In what follows, assume that M has no vertexin F0.Suppose now that M has no vertex in F3. Sine M 6� A, we may assumethat M has a vertex F n (F0 [ F3). This implies that none of x1; x2 is in M . IfM \ S = ;, then, by Lemma 3.2(a), all verties of M are adjaent to a samevertex from S1 [S2. But this ontradits the maximality of M . So, we infer thatM \ S 6= ;. In partiular, we infer that ondition (2) is satis�ed. Notie thatondition (3) does not hold in the same time.Finally suppose that M has a vertex in F3. Then, by Lemma 3.2(), we inferthat M has all its verties in S3 [ F3 [ F0. Sine, we assumed that M is vertex-disjoint from F0 and sine M is not ontained in F3, we obtain the ondition (3).This establish the lemma. 9



Proof of Theorem 3.1. As we said at the begining of this setion, we supposethat the theorem is false, and G is a ounterexample with jV (G)j minimum.Then, G is a onneted graph on at least three verties. We us the notation forverties x1; x2 and the sets regarding them given in the seond paragraph in theproof of Theorem 2.1 and depited in Fig 1.Claim 1. Every vertex of S�1 is adjaent to every vertex of S�2 .Suppose that the laim is false, and that verties u1 2 S�1 and u2 2 S�2 are non-adjaent. Let w be a neighbor of u1 in F . If w and u2 are adjaent, then vertiesw; u1; x1; x2; u2 indue a opy of C5. Otherwise, these verties indue a opy ofP5. This establish Claim 1.In order to prove the theorem, we distinguish the following two ases:Case 1: N(D) \ F = ;.In this ase, if D is not an empty set, then eah of its elements has no neighborin F . Color verties of A so that eah vertex of fx1g [B [C [D [ S2 is oloredby 2, and eah vertex of fx2g [A[ S1 is olored by 1. Denote this oloring by .Sine eah vertex of S with assigned olor i 2 f1; 2g is adjaent to x3�i, it followsthat there is no monohromati lique of G, whose all verties are in A.Now, we extend  to F . First olor every vertex of F2 [ F1;2 [ F1;2;3 by olor1. Next, olor every vertex of F1 [ F1;3 by 2. Finally, olor eah v 2 F3 by olor2 if N(v) \ S3 � A, and otherwise olor v by 1. By Lemma 3.2(d), F0 = ;, andso we have olored all the verties of G.Let M be an arbitrary maximal lique of G whih is monohromati. Byabove, M is not ontained in A. Sine N(D) \ F = ;, the lique M satis�esone of onditions (2) and (3) of Lemma 3.3. Consequently, we onsider these twopossibilities:Subase 1.1: M satis�es ondition (2) of Lemma 3.3.Consider �rst the ase that all the verties ofM are olored by 1. Then, M \F �F2 [ F1;2 [ F1;2;3 and M \ S � A [ S1. Sine M \ F 6= ;, it follows thatM \ S � A [ S�1 . Let f be a vertex from M \ F . Then, there is a vertex s 2 S�2adjaent to f . Note that s 62 M . By Lemma 3.2(e), vertex s is adjaent toall verties of M \ F , and by Claim 1, it is adjaent to all verties of M \ S�1 .Moreover, by the de�nition of A, vertex s is also adjaent to all verties of A.We onlude that s is adjaent to all verties of M . Sine s 62 M , we obtain aontradition.Suppose now that all verties ofM are olored by 2. Then, M \F � F1[F1;3and M \ S � B [ C [D [ S2. Sine M has a vertex in f 2 F1 [ F1;3 and sineN(D) \ F = ;, we infer that M \ S � B [ C. By Lemma 3.2(e), there existsa vertex s 2 S�1 adjaent to all verties of M \ (F1 [ F1;3). By the de�nition ofthe set C, vertex s is adjaent also to all verties of M \ C. Now, if M \B = ;,10



we onlude that s is adjaent to all verties of M , whih is a ontradition. So,assume that there exists a vertex b 2 M \ B whih is non-adjaent to s. Bythe de�nition of B, set S�2 ontains a vertex �b non-adjaent to b. By Claim 1, �bis adjaent to s, and by the de�nitions of F1 and F1;3, it is non-adjaent to f .Therefore, verties s; f; b; x2;�b indue a opy of C5 in G, a ontradition.Subase 1.2: M satis�es ondition (3) of Lemma 3.3.Suppose �rst that all verties of M are olored by 2. In this ase, M ontains avertex s 2 S3 and a vertex f 2 F3. Sine s is olored by 2 and sine N(D)\F = ;,it follows that s 2 B [ C. From other side, as the oloring  is de�ned, we knowthat all neighbors of f from S3 are ontained in A. Hene, we obtain that f ands are non-adjaent verties of M , a ontradition.Suppose now that verties of M are olored by 1. Let f 2 F3 be a vertex ofM . Sine f is olored by 1, it has a neighbor v 2 B [ C due to the de�nition ofthe oloring . By Lemma 3.2(d), v is adjaent to all verties from M \ F3. Bymaximality ofM , there exists a vertex a 2 M \A, whih is non-adjaent to v. Bythe de�nitions of B and C, there exists a vertex �v 2 S�2 , whih is non-adjaent tov. Sine a 2 A, vertex �v is adjaent to a. Similarly, by the de�nition of A, thereexists a vertex �a 2 S�1 , whih is non-adjaent to a. Claim 1 implies that verties�a and �v are adjaent. Sine f 2 F3, it is neither adjaent to �a nor �v. Finally,regarding whether �a and v are adjaent, we enounter a opy of C5 or a opy ofP5 in G, a ontradition.This establish the ase N(D) \ F = ;.Case 2: N(D) \ F 6= ;.Let d� 2 D be a vertex suh that the set N(d�)\F is as large as possible. Notiethat N(d�) \ F 6= ;. We prove �rst the following laim:Claim 2. For every vertex u 2 S3 whih is non-adjaent to d�, it holdsN(u) \ F � N(d�) \ F :Suppose that the laim is not true for the vertex u 2 S3. So, u and d� arenon-adjaent, and there exists a vertex f 2 F adjaent to u but non-adjaentto d�. If u 62 D, then there exists a vertex �u 2 Si with i 2 f1; 2g suh that�u is non-adjaent to u. Note that d� and �u are adjaent. Now, observe thatregarding whether �u and f are adjaent, we infer that verties f; u; x3�i; d�; �uindue a opy of C5 or a opy of P5 in G, respetively. And, if u 2 D, thenby the maximality of jN(d�) \ Fj, there exists a vertex �f 2 N(d�) \ F , whihis non-adjaent to u. Again, regarding whether f and �f are adjaent we obtainthat verties f; u; x1; d�; �f indue a opy of C5 or a opy of P5, respetively. Thisproves the laim.Now, onsider the oloring  of G�F0 whih assigns olor 1 to eah neighborof d�, and whih assigns olor 2 to all other remaining verties of G � F0. Note11



that (d�) = 2. In order to extend  to the verties of F0, we prove �rst thefollowing laim:Claim 3. If there is a vertex f 2 F0 adjaent to two non-adjaent verties u andv of F3, then (u) = (v).Suppose that the laim is false. We may assume that f 2 F0 is adjaent totwo verties u; v 2 F3, whih are non-adjaent and for whih (u) 6= (v). Sine(u) 6= (v), preisely one of verties u and v is adjaent to d�. Then, vertiesx1; d�; u; f; v indue a opy of P5 in G, a ontradition.Now, extend the oloring  to verties of F0 in the following way: if f 2 F0is adjaent to some vertex from F3 whih is olored by 1, then olor f by 2,otherwise olor f by 1. By the onnetivity of G and by Lemma 3.2(b), eahvertex of F0 has a neighbor in F3. Thus, a vertex of F0 is olored by 1 if and onlyif all its neighbors from F3 are olored by 2.In what follows, we will prove that no maximal lique of G is monohromati.This will establish the theorem. So, suppose that M is a maximal lique of G,whih is monohromati regarding . We onsider several possibilities due toLemma 3.3.Subase 2.1: M satis�es ondition (5) of Lemma 3.3.Then,M ontains a vertex f from F0. If all verties ofM are olored by 1, then itfollows that all neighbors of f in F3 are olored by 2, soM is not monohromati,a ontradition. Suppose now that all verties of M are olored by 2. Then, fhas neighbor f � 2 F3 olored by 1. Note that by Lemma 3.2(b), all verties ofM \ F0 are adjaent to f �. Thus, by the maximality of M , there exists a vertex�f 2 M \ F3 whih is non-adjaent to f �. Sine �f and f � are olored di�erently,we obtain a ontradition to Claim 3.Suppose now that M satis�es one of the onditions (1)-(4) of Lemma 3.3. Then,M \ F0 = ;. Note that if verties of M are olored by 1, then all of them areadjaent to d� but this ontradits the maximality ofM . So we may assume thatM is olored by 2.Subase 2.2: M satis�es ondition (1) of Lemma 3.3.By the maximality,M ontains a vertex a 2 S1 and a vertex b 2 S2; otherwise x1or x2 is adjaent to all verties of M . Sine a and b are olored 2, eah of them isnon-adjaent to d�. By the de�nition of D, vertex d� is adjaent to all verties ofS�1 and S�2 . So, we onlude that a 2 S1 n S�1 and b 2 S2 n S�2 . Note that we haveassumed N(D) \ F 6= ;. Hene, d� has a neighbor in f 2 F . Notie that f isnon-adjaent eah of a; b. Thus, f; d�; x2; b; a indue a opy of P5, a ontradition.Subase 2.3: M satis�es ondition (2) or (3) of Lemma 3.3.12



In this ase, M meets both S and F . Sine all verties of M are olored by 2,eah of them is non-adjaent to d�. Reall that d� is adjaent to all verties ofS�1 [ S�2 . This implies that M \ S � S3. Thus, M has a vertex s 2 S3, whih isnon-adjaent to d�. By Claim 2, it holds N(s) \ F � N(d�) \ F . In partiular,eah vertex of the non-empty set M \F is adjaent to d�. But then we obtain aontradition sine eah suh vertex must be olored by 1.Subase 2.4: M satis�es ondition (4) of Lemma 3.3.In this ase, M � F3. Sine M is olored by 2, no vertex of M is adjaent to d�.Suppose for a moment that a neighbor f of d� from F is adjaent to some vertexm belonging toM . By the maximality ofM , there exists a vertex m0 ofM whihis non-adjaent to f . In this ase, we obtain that verties m0; m; f; d�; x1 induea opy of P5, a ontradition.We may assume now that every vertex of N(d�) \ F has no neighbor in M .Let m be a vertex of M . Then, it has a neighbor in F3, say the vertex s. By itsmaximality, the lique M ontains a vertex m0 non-adjaent to s. By Claim 2,verties s and d� are adjaent. If s 62 D, then there exists a vertex �s 2 S�1 [ S�2 ,whih is non-adjaent to s. We may assume that �s 2 S�1 . Notie that d� isadjaent to �s. Sine m;m0 2 F3, vertex �s is non-adjaent to eah of m;m0. Thus,we infer that �s; d�; s;m;m0 indue a opy of P5. So, assume now that s 2 D.Then, the maximality of N(d�) \ F assures us that d� has a neighbor f in F ,whih is non-adjaent to s. Note that by the assumption at the beginning of thisparagraph, f is non-adjaent to m and m0. Thus, m0; m; s; d�; f indue a opy ofP5.We onlude that  is a 2-lique-oloring of G. This establish Case 2 and alsothe theorem.Let G be a (P5; C5)-free graph. By a result from [5℄, it follows that �(G) �3!(G)�1. If G = K1, then �(G) = 1. Otherwise, G 6= K1, let G1; G2 be thesubgraphs of G indued by the olor lasses of the 2-lique-oloring of G givenby Theorem 3.1. Notie that for eah i 2 f1; 2g, it holds !(Gi) < !(G). Thus,by an indutional hypothesis that �(Gi) � 2!(Gi)�1 for eah i = f1; 2g, it followsthat �(G) � �(G1) + �(G2) � 2!(G1)�1 + 2!(G2)�1 � 2!(G)�1:The above argument proves the following onsequene. Perhaps this bound is farfrom optimal for large !(G). But for !(G) = 2 and 3 it is tight just onisdersome bipartite graphs or the anti-hole on seven verties, respetively.Corollary 3.4 Suppose that G is a (P5; C5)-free graph. Then, �(G) � 2!(G)�1.We onlude the paper with a disusion of a related onept to the oloringof the lique hypergraph, whih is introdued by Ho�ang and MDiarmid [7℄. A13



graph G is alled strongly k-divisible, if every indued onneted subgraph of Gwith at least one edge is k-lique-olorable. A k-division of a graph G is a k-oloring so that no lique of maximum size, i.e. of size !(G), is monohromati.And, a graph is k-divisible, if every indued subgraph with at least one edge hasa k-division. Obviously, every strongly k-divisible graph is k-divisible. Speially,of great interest are 2-divisible graphs sine the Strong Perfet Graph Conjeturean be restate as: A graph is perfet if and only if it and its omplement are2-divisible graphs (see [7℄).Sine every indued graph of a F -free graph is also F -free graph, Theorem 3.1implies that that every (P5; C5)-free graph is (strongly) 2-divisible. And, Theo-rem 2.1 implies a result of [7℄ that every (C5; P3+P1)-graph is strongly 2-divisible.Referenes[1℄ G. Bas�o, S. Gravier, A. Gy�arf�as, M. Preissmann, and A. Seb�o, About oloringthe hypergraph of maximal liques of a graph, submitted.[2℄ D. Du�us, B. Sands, N. Sauer, and R. E. Woodrow, Two-olouring all two-element maximal antihains, J. Combin. Theory Ser. A 57 (1991) 109{116.[3℄ D. Du�us, H. A. Kierstead, and W. T. Trotter, Fibres and ordered set oloring,J. Combin. Theory Ser. A 58 (1991) 158{164.[4℄ P. Erd�os, T. Gallai, and Z. Tuza, Covering the liques of a graph with verties,Disrete Math. 108 (1992) 279{289.[5℄ S. Gravier, C. T. Ho�ang, and F. Ma�ray, Coloring the hypergraph of maximallique of a graph with no long path, to appear in Disrete Maths.[6℄ A. Gy�arf�as, Problems from the world surrounding perfet graphs, Zastos. Mat.19 (1987) 413{441.[7℄ C. T. Ho�ang and C. MDiarmid, On the divisibility of graphs, Disrete Math.242 (2002) 145{156.[8℄ T. R. Jensen and B. Toft, Graph Coloring Problems, Wiley Intersiene,New York, 1995.[9℄ J. Kratohv��l and Z. Tuza, On the omplexity of bioloring lique hypergraphsof graphs, J. Algorithms 45 (2002) 40{54.[10℄ J. Kratohv��l, Z. Tuza, and M. Voigt, New trends in the theory of graph ol-orings: hoosability and list oloring, DIMACS Ser. Disrete Math. Theoret.Comput. Si. 49 183{197. 14
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