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Abstract

For a given simple connected graph G with at least one edge, the clique
hypergraph is defined as the one with the same vertex set as G but whose
hyperedges are the maximal cliques of G. We characterize that C5 is the
only graph without induced P; + P;, whose clique hypergraph is not 2-
colorable. We prove also that the clique hypergraph is 2-colorable providing
that the underlined graph is without induced Ps and C5. The later result
is best possible in the sense that if we omit some of the forbidden graphs,
then the claim is not true.

1 Introduction

All graphs considered in this paper are simple, connected and with at least one
edge. Let G be such a graph. The hypergraph H = H(G) with the same vertex
set as (G, whose hyperedges are the vertex sets of the maximal cliques of G, is
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called the clique hypergraph (or the hypergraph of mazimal cliques) of G. For a
given H(G), we use to say that G is its underlined graph; notice that G is uniquely
determined. A k-coloring of #H is a function ¢ : V(H) — {1,..., k} such that no
hyperedge of H is monochromatic, i.e., |c(e)| > 2 for every e € E(H). If there
exists such a function, then we say that # is k-colorable, or alternatively, we use
to say G is k-clique-colorable. Otherwise, we say that G is non-k-clique-colorable.
The minimal £ such that H admits a k-coloring is called the chromatic number
of H, and is denoted by x(H).

The hypergraph of maximal cliques was introduced by T. Gallai by posing a
question about clique-transversals of chordal graphs (see [3]). A pioneer work on
the clique-transversals one can find in Erdés, Gallai, and Tuza [4]. Duffus, Sands,
Sauer, and Woodrow [2] proved that the elements of every partially ordered set
can be 2-colored so that no maximal chain is monochromatic. In other words, the
hypergraph H(G) is 2-colorable if G is a comparability graph. It is well known
that comparability graphs are perfect, and hence naturally arise the problem
from [2] (see also [8, Problem 15.15]):

Problem 1.1 Does there exists a constant k such that every perfect graph is
k-clique-colorable?

Recall that a graph is perfect if, for every induced subgraph H, x(H) = w(H),
that is the chromatic number of H is equal to its maximum clique size.

Above question still remains the central problem in this area, and to its sup-
port Duffus, Kierstead, and Trotter [3] proved that the complement of every
comparability graph, which is known that is a perfect graph, is 3-clique-colorable.
Bacso, Gravier, Gyarfas, Preissmann, and Sebd [1] proved that that every claw-
free perfect graph is 2-clique-colorable. They also proved that every diamond-free
perfect graph is 3-clique-colorable provading that each edge of the graph is inci-
dent with some triangle, i.e. the graph has no maximal cliques of size 2. Moreover,
they proved that almost all perfect graphs are 3-clique-colorable. The later re-
sult arises certain believe that the constant k from the above problem is a small
integer — perhaps 3! Notice that it is not known the existence of a perfect graph
which is not 3-clique-colorable.

The clique hypergraph of planar graphs were also colored and list-colored [11]
(see also [10]). In [11] it was shown that every planar graph is 3-clique-colorable.
Notice that if G is a triangle-free graph, then G and H(G) coincide. Thus, the
later result extends the well known Grotzsch’s theorem, which claims that every
triangle-free planar graph is 3-colorable. Moreover, Kratochvil and Tuza [9] gave
an algorithm which decides in a polynomial time whether the clique hypergraph
of a planar graph is 2-colorable. Thus, these two results imply that the chro-
matic number of the clique hypergraph for planar graphs can be determined in a
polynomial time.

The recent land-markable result of M. Chudnovsky, N. Robertson. P. Sey-
mour, and R. Thomas that Berge’s Strong Perfect Graph Conjecture is true
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implies that Problem 1.1 deals with the graphs without forbidden induced odd
holes and induced odd anti-holes. Recall that a hole is an induced chordless cycle
with at least four vertices, and anti-holes are their complements. Another widely
published conjecture about colorings of graphs without forbidden certain struc-
ture is Gyérfds’ Forbidden Subgraph Conjecture [6] (see also [8, Problem 8.11]),
given here in its question form:

Problem 1.2 Let F be a forest. Does there exists a function fr such that x(G) <
fr(w(Q)) for every graph G, which does not contain F' as an induced subgraph?

The above question in the concept of the clique hypergraphs was resolved
by Gravier, Hodng, and Maffray [5]. In particular they proved that for a given
graph F', there exists a function fr such that x(H(G)) < fr(w(G)) for every
F-free graph G if and only if F' is a disjoint union of paths. Using this result
and an application of the clique-coloring problem to the usual graph coloring
from [7], it follows that every graph G is (u(G) — 1)“(%)~'_colorable, where 1(G)
is the number of vertices of the largest induced path in G. This improves the
bound (G)“@~1 of Gyarfis [6]. Moreover, it is an interesting feedback of the
clique-colorings to the proper colorings.

The paper [5] concludes with a table, which expose for certain small graphs F,
the upper bound f(F') of the clique-chromatic number of the F-free graphs. The
known F-free graphs for which the bound f(F) is attained are also presented. In
our work, we characterize that C’ is the only graph without induced P34+ P;, whose
clique hypergraph is not 2-colorable. In this way, we purify that for F':= P; + P,
the bound f(F) = 3 is attained only for C5. We prove also that the clique
hypergraph is 2-colorable providing that the underlined graph is without induced
P5 and (5. The later result is best possible in the sense that if we omit some
of the forbidden graphs, the claim is not true. The later result implies that for
every graph G without induced P; and Cj, it holds x(G) < 2@ — 1.

In the paper we use the following notation. Denote by Cj the cycle of length
k and denote by Pj the path on k vertices. For a given graph F', a graph G is a
F-free if it does not contain an induced subgraph isomorphic to F'. We say that G
isa (Fi,..., Fy)-free graph, if it is a Fj-free graph for each F; with i € {1,...,k}.
Denote by G + H the union of vertex-disjoint graphs G and H. Denote by N(v)
the set of neighbors of a vertex v in a graph G. For a set D of vertices of G
extend this notion by N(D) = U,epN(v). We say that a vertex u dominates a
vertex v if N(v) \ {u} C N(u) \ {v}.

2 Coloring P; + P,-free graphs
In this section, we show that the clique hypergraph of a P; + P;-free graph has

chromatic number 3 only if the underlined graph is the 5-cycle Cs. Notice that
P3; + P, is also called the co-paw graph, as it is the complement of the paw graph.
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For the sake of simplicity, the cliques will be considered also as sets of their
vertices in the both proofs of this paper.

Theorem 2.1 FEvery P; + P;-free graph different from Cs is 2-clique-colorable.

Proof. Suppose that the theorem is false and G is a counterexample with |V (G)|
minimum. Thus, G is a P; + P;-free graph, distinct from C5, and moreover H(G)
is not 2-colorable.

Let us fix the notation by assuming that zq,xy are two adjacent vertices of
G. Now, denote by S3 the common neighbors of x; and x5 in G. For i = 1,2, let
S; be the set of vertices which are adjacent to z; and which are not elements of
SzU{x3 ;}. Let S=S1US,US;, A=SU{zy,25}, and F =V (G) \ A. Denote
by Fjy the subset of F which vertices have no neighbor in S; U.S; U S3. Denote by
Fi 55 the set of vertices of F which have a neighbor in each of S, 53, S5. Let F}
be the subset of F which vertices has a neighbor in S; and not in S5 U S3, and
let Fi o be the subset of F which vertices have a neighbor in each of S;, Sy and
no neighbor in S5. We similarly define sets Fy, Iy, Fy 3, F} 3.

Xy %

Figure 1: The local structure of G

In Fig. 1, the local structure due to above notion is depicted. In this figure,
the subsets (or the vertices) of {z1,22}, S, and F are connected between if it is
assumed the presence of edges in G with end-vertices in the corresponding sets
(or vertices). This hierarchy will be also used in the proof of the later result.

In this proof, we follow several simple claims:
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Claim 1. The graph G has no two adjacent vertices u,v such that u dominates
v.

Suppose that the claim is false, and u, v is such a pair of vertices of G. Then,
G — v is a Py + Py-free graph, and by the minimality of |V(G)|, the graph G — v
has a 2-clique-coloring ¢ with colors {1,2}. Since u dominates v, by setting
c(v) := 3 — c(u), we extend ¢ to a 2-clique-coloring of G, a contradiction.

By Claim 1, we may assume that S; and S, are non-empty sets.

Claim 2. Fy=F  =F, =F;=Fy3=Fi3= 0.

Suppose that the claim is false and z is a vertex contained in one of these sets. By
symmetry, we may assume that x € FyUF; UF3UF] 5. Since, S, is non-empty, let
s € Sy. Now, observe that 1, 2, s, x induce a copy of P; + P;, a contradiction.

Claim 3. FEach vertex from Fi o U F} 23 is adjacent to each verter from Sy U Ss.

Suppose that the claim is false. Let v be a vertex from Fjo U Fjo3 which is
non-adjacent to a vertex u from S; U Ss. By the symmetry, we may assume that
u € S7. Then, vertices v, u, x1, x5 induce a copy of P; + P, in G, a contradiction.

Claim 4. Fi, U Fi 53 induces a clique in G.

Suppose that u, v are non-adjacent vertices in this set. Let w be a vertex from
Si1. Then, it is adjacent two both u and v due to Claim 3. But then zo, u, v, w
induce a copy of P; + P; in (G, a contradiction.

Claim 5. |F1’2 U F1’2’3 =1.

Suppose that u,v are two different vertices from Fj o U Fj 2 3. Denote by S35 the
neighbors of w in Ss, and set Ss; := S5\ S52. Now, we construct a 2-coloring ¢ of
G in the following way: let ¢(z1) = ¢(u) = 1, color also each vertex from Sz U S,
by 1, and all the remaining vertices of G' by color 2. Thus, v and z, are colored
by 2. We show that ¢ is a 2-clique-coloring of G.

Suppose that we have a maximal monochromatic clique M. Assume first that
it is colored by 1. If this clique does not contain u, then all its vertices are
contained in {z;} U S3 U Sy. Since all vertices from this set are adjacent to xs,
we obtain a contradiction to the maximality of M. If M contains u, then M is
contained in {u} U .S, due to the choice of S35. But in this case, by Claims 3 and
4, vertex v is adjacent to all vertices of M, a contradiction.

Suppose now that the vertices of M are colored by 2. Since x; is colored by
1 and it is adjacent to every vertex from S; U S3 U {x2}, it follows that M is
contained in S; US55 UF. But in this case, we obtain that u is adjacent to every
vertex of M due to Claims 3 and 4. This establish Claim 5.

By Claim 5, we may assume that Fy , U F} o3 = {2}.



Claim 6. Fach of Si, S, induces a clique.

Suppose that S; or Sy does not induce a clique, say S,. Let u,v be two non-
adjacent vertices in Sy. Then, vertices u, v, z, 1 induce a copy of P; + P; in G,
a contradiction.

Claim 7. Fach of S1, Ss contains only one vertex.

Suppose that the claim is false and suppose that |S;| > 2. Let u be a vertex in
Sy. Here, we argue similarly as in Claim 5. Denote by S;2 the neighbors of u
in S;, and set S5 := S3\ S32. Color each vertex from S;; U S; U {3, u} by 1,
and all the remaining vertices of G' by color 2. We claim that this coloring is a
2-clique-coloring of G.

If there is a maximal clique M whose vertices are colored by 2, then its vertices
are contained either in {z;} US55 orin {2} USyUS;35. In the first case all vertices
of M are adjacent to x9, and in the second case, they are adjacent to u due to
Claims 3 and 6 and the choice of S39, a contradiction.

Suppose now that there is a maximal clique M whose vertices are colored by
1. We consider several cases regarding whether M contains zo and u. Assume
for a moment that xo and u belong to M. Then, V(M) = {x9,u} due to the
choice of S34. Since |Ss| > 2, there is a vertex in Sy colored by 2, and adjacent
to x9 and wu, a contradiction. If x5 is in M and wu is not in M, then vertices of
M are contained in {zy} U S3;. But then z; is adjacent to all vertices of M. If
u € V(M) and zo ¢ V(M), then M is contained in {u} U S;. But in this case,
Claim 3 imples that z is adjacent to all vertices of M. Finally, if none of zs, u is
contained in M, then we infer that M belongs to S; U Ss;. But then all vertices
of M are adjacent to x;, a contradiction.

From the above, we conclude that |Sy| = 1. Similarly, one can show that
|S1| = 1. This proves Claim 7.

By Claim 7, let S; = {s;} and S, = {s2}. By the assumption of the theorem
that G # Cjs, we infer S3 # () or s; and sy are adjacent. To conclude the proof,
we consider two possibilities regarding whether s; and s, are adjacent vertices.

If s; and s, are non-adjacent, then S3 # (. Now, color x, x5,z by 1, and
all the remaining vertices by 2. If there is maximal clique colored by 1, then
its vertices are x1, x> but then there is a vertex in S3 adjacent to both of them.
Suppose that there is a maximal clique colored by 2. Since s; and sy are non-
adjacent, vertices of the clique are contained in either {s;} U S5 or {s2}US;. But
then x or x5 is adjacent to all its vertices.

So assume now that s; and s, are adjacent vertices. If none of sq, s, has a
neighbor in S3, then use the same coloring as above and argue similarly that
there is no monochromatic maximal clique. Finally, by the symmetry, we may
assume that s; has a neighbor in S3. In this case color x1, x5, s1, 2 by 1 and all
other vertices by 2. A possible maximal clique colored by 2 has all its vertices in
{s2} U S5 but x5 is adjacent to all of them. And, any maximal clique colored by 1
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is of size two. Observe that for any such a pair of vertices there exists a common
neighbor colored by 2. This proves the theorem. O

3 Coloring (P, C;)-free graphs

A result in [5] claims that every P,-free graph is 2-clique-colorable. Weaking the
condition of P,-freeness to Ps-freeness, it turns that the claim is false, since the
5-cycle Cy is a Ps-free graph which is not 2-clique-colorable. In this section, we
prove that if a Ps-graph is not 2-clique-colorable, then it contains an induced copy
of Cs. Notice that odd cycles are examples of Cs-free graphs which are non-2-
clique-colorable. Thus, if we omit some of the forbidden graphs from the theorem
below, the claim does not hold. In this sense this theorem is best possible.

We remark here that beside C5, there exist also infinitely many Ps-free graphs
which are not 2-clique-colorable. Notice that if in a Ps-free graph G is replaced a
vertex v by a Ps-free graph H so that every vertex of H is connected with every
neighbor of v, then the resulting graph G* is also Ps-free graph. Moreover, if G
is not 2-clique-colorable, then also G* is not 2-clique-colorable. Thus, if we apply
this operation repeatedly on Cj, we obtain arbitrary many graphs with desired
properties. It is not clear, if every Ps-free graph which is non-2-clique-colorable
can be constructed in this way.

Theorem 3.1 Every (Ps,C5)-free graph is 2-clique-colorable.

We prove the above theorem by contradiction. We suppose that the claim
is false and that G is a counterexample with |V(G)| minimum. We use the
same notion for vertices 1, x5, and the sets regarding them given in the second
paragraph in the proof of Theorem 2.1. Additionally, let ST be those vertices of
Sy, which have a neighbor in F. Similarly define S5. We use also the partition
of S3 into the following four sets A, B, C, and D:

A = {vesS;|S5CN
B = {veS;|S;ZN
C = {vesS;|S; <N
D = {veS;|S5CN

v) and ST € N(v
v) and ST € N(
) (
(

Y

v

Y

v) and ST C N(v
v) and ST C N(v

~—~~ I~

)}
)}
)}
)}

In the proof of Theorem 3.1, we apply the following two lemmas, which are
results about the local structure of Ps-free graphs due to our notion:

Lemma 3.2 Fvery Ps-free connected graph G has the following properties:

(a) Let x and y be two adjacent vertices of F \ (F3 U Fy). Then,

N(z)N(S1USy) = N(y)N(S; USy).



(b) For every vertex x € Fy, it holds N(x) C FyU F3. Moreover, if x and y are
two adjacent vertices of Fy, then N(x) N F3 = N(y) N F3.

(¢) G has no edge with one end-vertex in Fy U F3, and the other end-vertez in
F\ (Fo U Fy).

(d) Suppose that N(D)NF = 0. Then, for every two adjacent vertices x € Fj
and y € F3 U Fy, it holds N(x) NSs = N(y) N S3. In particular, Fy = ().

(e) Letx € S1US, be adjacent to a vertexy € F. Then, N(y)NF C N(zx)NF.

Proof. Suppose that (a) does not hold for vertices z and y from F \ (F3 U Fp).
Without lose of generality, we may assume that there is a vertex z € S; U S,
adjacent to x but non-adjacent to y. Now, notice that vertices x,,xq, 2,2,y
induce a copy of Ps5 in GG, a contradiction.

Consider now the claim (b). If there exists a vertex x € Fy with a neighbor
z & Fy U F3, then z € F \ (F3 U Fp). In this case, z has a neighbor v € S; U S,.
Observe that z, z, u, z1, x5 induce a copy of Ps. This proves the first part of the
claim (b).

For the second part of the same claim, assume that x,y € Fy and z € Fj
are such vertices that z is adjacent to y, vertex z is adjacent to x, and z is non-
adjacent to y. Since z € Fj, there exists a vertex u € S3 adjacent to z. In order
to establish claim (b), observe that vertices y, x, z, u, 21 induce a copy of Ps in G.

For the claim (c), suppose that x € FyUF3 and y € F\ (FyUF3) are adjacent.
Then, y has a neighbor z € S; U S,. Since x and z are non-adjacent, we conclude
that x,y, z, x1, x5 induce a copy of Ps, a contradiction.

Consider the claim (d). Suppose that € F3 and y € F3 U Fy are vertices
that contradict the claim. Without lose of generality, we may assume that there
exists a vertex z € S3 adjacent to x and non-adjacent to y. Since N(D)NJF = 0,
we infer that 2 € AU BUC. Hence, there exists a vertex Z € S; U Sy, which is
non-adjacent to z. Assume that Z € S;. Since x,y € Fy U F3, none of these two
vertices is adjacent to z. This implies that y, z, 2, x1, Z induce a copy of Ps in G,
a contradiction. This establish the first part of the claim (d).

If Fy # (), then there is a vertex y € F, adjacent to a vertex x € F3 due to
connectivity of G and the claim (¢). By the first part of this claim, we infer that
N(z)NS; = N(y)NSs. Notice that the right side of this equality is an empty set
since y € Fy. From other side, € F3 has a neighbor in S3, which implies that
N(z) N Ss is a non-empty set. This contradiction proves the second part of the
claim (d).

Finally, for the claim (e), suppose that u € F is adjacent to y € F and non-
adjacent to x € S; U Sy, and suppose that x and y are adjacent. Note that x is
adjacent to x; or x5 (but not both). Also note that neither u nor y is adjacent
to x; or m9. Thus, the following vertices wu,y, z,x1, xo induce a copy of Ps, a
contradiction. O



Lemma 3.3 Let M be a maximal clique of a Ps-free connected graph G. Then,
M satisfies precisely one of the following conditions:

1) M C A;

2) MNS#OD, MNF #0 and M N (F3U Fy) = 0;

4

(1)
(2)
(3) MNS3#0, MNF3 %0 and M C S3U Fs;
(4) M C F3;

(5)

5) MﬂF[)?éw,MmFg,;é@, andMgF:),UFO

Moreover, if one of the conditions (4) and (5) holds, then N(D) N F # 0.

Proof. Suppose that (4) holds and N(D) N F = (). Then, M is contained in
a component induced by the vertices of F5. By the connectivity of G and by
Lemma 3.2(c), we obtain a vertex z € S5 adjacent to a vertex of this component.
Now, Lemma 3.2(d) implies that z is adjacent to all vertices of M, which is a
contradiction to the maximality of M. Similarly, if (5) holds and N(D)NJF = 0,
then Lemma 3.2(d) implies that Fy = (). But this is a contradiction to the
assumption that M N Fy # (). This proves the second part of the lemma.

Now, we prove that M always satisfies precisely one of the five conditions.
Since AN F =0, if (1) holds then none of the other conditions holds. Similarly,
since ANF = () and FyN F3 = (), if (4) holds then all others are excluded. In the
sequel, we assume that M ¢ A and M ¢ Fj.

Suppose first that M has a vertex in Fy. Then, by Lemma 3.2(b), all its
vertices belong to F3 U Fy. If M C Fj, then M is contained in a component of Fj.
Since (G is a connected, there is a vertex of this component adjacent to a vertex
z € F3. Now, the second part of Lemma 3.2(b) implies that all vertices of M are
adjacent to z, a contradiction. So, we conclude that M must have a vertex in F3,
and in this way, we encounter condition (5). Notice than neither (2) nor (3) can
appear simultaneously with (5). In what follows, assume that M has no vertex
in Fj.

Suppose now that M has no vertex in F;. Since M € A, we may assume
that M has a vertex F \ (Fy U F3). This implies that none of xy, x5 is in M. If
M NS = (), then, by Lemma 3.2(a), all vertices of M are adjacent to a same
vertex from S; US,. But this contradicts the maximality of M. So, we infer that
M NS # (. In particular, we infer that condition (2) is satisfied. Notice that
condition (3) does not hold in the same time.

Finally suppose that M has a vertex in F3. Then, by Lemma 3.2(c), we infer
that M has all its vertices in S3 U F3 U Fy. Since, we assumed that M is vertex-
disjoint from Fj and since M is not contained in F3, we obtain the condition (3).
This establish the lemma. O



Proof of Theorem 3.1. As we said at the begining of this section, we suppose
that the theorem is false, and G is a counterexample with |V(G)| minimum.
Then, G is a connected graph on at least three vertices. We us the notation for
vertices x1, s and the sets regarding them given in the second paragraph in the
proof of Theorem 2.1 and depicted in Fig 1.

Claim 1. Every vertex of S{ is adjacent to every vertex of S;.

Suppose that the claim is false, and that vertices u; € S7 and uy € S5 are non-
adjacent. Let w be a neighbor of u; in F. If w and uy are adjacent, then vertices

w,uy, 1, Te, Us induce a copy of Cs. Otherwise, these vertices induce a copy of
Ps5. This establish Claim 1.

In order to prove the theorem, we distinguish the following two cases:

Case 1: N(D)NF = 0.

In this case, if D is not an empty set, then each of its elements has no neighbor
in F. Color vertices of A so that each vertex of {1} UBUC U DU S, is colored
by 2, and each vertex of {x5} U AU S; is colored by 1. Denote this coloring by c.
Since each vertex of S with assigned color i € {1, 2} is adjacent to x3_;, it follows
that there is no monochromatic clique of GG, whose all vertices are in A.

Now, we extend ¢ to F. First color every vertex of Fy U Fy o U Fj 43 by color
1. Next, color every vertex of Fy U Fj 3 by 2. Finally, color each v € F3 by color
2if N(v) N S3 C A, and otherwise color v by 1. By Lemma 3.2(d), Fy = ), and
so we have colored all the vertices of G.

Let M be an arbitrary maximal clique of G' which is monochromatic. By
above, M is not contained in A. Since N(D)NF = (), the clique M satisfies
one of conditions (2) and (3) of Lemma 3.3. Consequently, we consider these two
possibilities:

Subcase 1.1: M satisfies condition (2) of Lemma 3.3.

Consider first the case that all the vertices of M are colored by 1. Then, MNF C
F2 U Fl,g U F172’3 and M NS g AU Sl. Since M N F §£ @, it follows that
MNS C AUSY. Let f be a vertex from M N F. Then, there is a vertex s € S;
adjacent to f. Note that s ¢ M. By Lemma 3.2(e), vertex s is adjacent to
all vertices of M N F, and by Claim 1, it is adjacent to all vertices of M N ST.
Moreover, by the definition of A, vertex s is also adjacent to all vertices of A.
We conclude that s is adjacent to all vertices of M. Since s ¢ M, we obtain a
contradiction.

Suppose now that all vertices of M are colored by 2. Then, MNF C Fi1UF; 3
and M NS CBUCUDUS,. Since M has a vertex in f € F} U Fj 3 and since
N(D)NF = 0, we infer that M NS € BUC. By Lemma 3.2(e), there exists
a vertex s € ST adjacent to all vertices of M N (F; U Fy3). By the definition of
the set C, vertex s is adjacent also to all vertices of M N C. Now, if M N B = (),
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we conclude that s is adjacent to all vertices of M, which is a contradiction. So,
assume that there exists a vertex b € M N B which is non-adjacent to s. By
the definition of B, set S contains a vertex b non-adjacent to b. By Claim 1, b
is adjacent to s, and by the definitions of Fy and F} 3, it is non-adjacent to f.
Therefore, vertices s, f, b, x, b induce a copy of Cs in G, a contradiction.

Subcase 1.2: M satisfies condition (3) of Lemma 3.5.

Suppose first that all vertices of M are colored by 2. In this case, M contains a
vertex s € S3 and a vertex f € F3. Since s is colored by 2 and since N(D)NF = (),
it follows that s € B U C'. From other side, as the coloring ¢ is defined, we know
that all neighbors of f from S5 are contained in A. Hence, we obtain that f and
s are non-adjacent vertices of M, a contradiction.

Suppose now that vertices of M are colored by 1. Let f € F3 be a vertex of
M. Since f is colored by 1, it has a neighbor v € B U C' due to the definition of
the coloring ¢. By Lemma 3.2(d), v is adjacent to all vertices from M N F3. By
maximality of M, there exists a vertex a € M N A, which is non-adjacent to v. By
the definitions of B and C, there exists a vertex ¥ € S5, which is non-adjacent to
v. Since a € A, vertex v is adjacent to a. Similarly, by the definition of A, there
exists a vertex a € ST, which is non-adjacent to a. Claim 1 implies that vertices
a and v are adjacent. Since f € Fj, it is neither adjacent to a nor v. Finally,
regarding whether @ and v are adjacent, we encounter a copy of C5 or a copy of
Ps in GG, a contradiction.

This establish the case N(D) N F = ().

Case 2: N(D)NnF # 0.

Let d* € D be a vertex such that the set N(d*) NF is as large as possible. Notice
that N(d*) N F # (. We prove first the following claim:

Claim 2. For every verter u € S which is non-adjacent to d*, it holds
N(u)NnF C N(d*)n F.

Suppose that the claim is not true for the vertex u € S3. So, u and d* are
non-adjacent, and there exists a vertex f € F adjacent to v but non-adjacent
to d*. If u ¢ D, then there exists a vertex @ € S; with ¢ € {1,2} such that
u is non-adjacent to u. Note that d* and u are adjacent. Now, observe that
regarding whether u and f are adjacent, we infer that vertices f,u,x3_;,d*, u
induce a copy of C5 or a copy of P5 in G, respectively. And, if v € D, then
by the maximality of |N(d*) N F|, there exists a vertex f € N(d*) N F, which
is non-adjacent to u. Again, regarding whether f and f are adjacent we obtain
that vertices f,u,z,d*, f induce a copy of C5 or a copy of Ps, respectively. This
proves the claim.

Now, consider the coloring ¢ of G — F{y which assigns color 1 to each neighbor
of d*, and which assigns color 2 to all other remaining vertices of G — Fj. Note
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that ¢(d*) = 2. In order to extend c¢ to the vertices of Fy, we prove first the
following claim:

Claim 3. If there is a vertex f € Fy adjacent to two non-adjacent vertices u and
v of Fy, then c(u) = c(v).

Suppose that the claim is false. We may assume that f € Fj is adjacent to
two vertices u,v € F3, which are non-adjacent and for which ¢(u) # ¢(v). Since
c(u) # c(v), precisely one of vertices u and v is adjacent to d*. Then, vertices
x1,d*, u, f,v induce a copy of Ps in (G, a contradiction.

Now, extend the coloring ¢ to vertices of F{, in the following way: if f € Fj
is adjacent to some vertex from Fj which is colored by 1, then color f by 2,
otherwise color f by 1. By the connectivity of G and by Lemma 3.2(b), each
vertex of Fj has a neighbor in F3. Thus, a vertex of Fj is colored by 1 if and only
if all its neighbors from Fj3 are colored by 2.

In what follows, we will prove that no maximal clique of G is monochromatic.
This will establish the theorem. So, suppose that M is a maximal clique of G,
which is monochromatic regarding c. We consider several possibilities due to
Lemma 3.3.

Subcase 2.1: M satisfies condition (5) of Lemma 3.3.

Then, M contains a vertex f from Fy. If all vertices of M are colored by 1, then it
follows that all neighbors of f in Fj3 are colored by 2, so M is not monochromatic,
a contradiction. Suppose now that all vertices of M are colored by 2. Then, f
has neighbor f* € Fj colored by 1. Note that by Lemma 3.2(b), all vertices of
M N Fy are adjacent to f*. Thus, by the maximality of M, there exists a vertex
f € M N F; which is non-adjacent to f*. Since f and f* are colored differently,
we obtain a contradiction to Claim 3.

Suppose now that M satisfies one of the conditions (1)-(4) of Lemma 3.3. Then,
M N Fy = (. Note that if vertices of M are colored by 1, then all of them are
adjacent to d* but this contradicts the maximality of M. So we may assume that
M is colored by 2.

Subcase 2.2: M satisfies condition (1) of Lemma 3.3.

By the maximality, M contains a vertex a € S; and a vertex b € Sy; otherwise x;
or x5 is adjacent to all vertices of M. Since a and b are colored 2, each of them is
non-adjacent to d*. By the definition of D, vertex d* is adjacent to all vertices of
S} and S;. So, we conclude that a € S} \ S7 and b € Sy \ S5. Note that we have
assumed N (D) N F # (). Hence, d* has a neighbor in f € F. Notice that f is
non-adjacent each of a,b. Thus, f,d*, xs,b,a induce a copy of Ps, a contradiction.

Subcase 2.3: M satisfies condition (2) or (3) of Lemma 3.5.
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In this case, M meets both S and F. Since all vertices of M are colored by 2,
each of them is non-adjacent to d*. Recall that d* is adjacent to all vertices of
ST U S;. This implies that M NS C S3. Thus, M has a vertex s € S5, which is
non-adjacent to d*. By Claim 2, it holds N(s) N F C N(d*) N F. In particular,
each vertex of the non-empty set M N F is adjacent to d*. But then we obtain a
contradiction since each such vertex must be colored by 1.

Subcase 2.4: M satisfies condition (4) of Lemma 3.3.

In this case, M C Fj. Since M is colored by 2, no vertex of M is adjacent to d*.
Suppose for a moment that a neighbor f of d* from F is adjacent to some vertex
m belonging to M. By the maximality of M, there exists a vertex m’ of M which
is non-adjacent to f. In this case, we obtain that vertices m’, m, f,d*, z; induce
a copy of Ps, a contradiction.

We may assume now that every vertex of N(d*) N F has no neighbor in M.
Let m be a vertex of M. Then, it has a neighbor in F3, say the vertex s. By its
maximality, the clique M contains a vertex m’ non-adjacent to s. By Claim 2,
vertices s and d* are adjacent. If s ¢ D, then there exists a vertex s € S} U S5,
which is non-adjacent to s. We may assume that s € S}. Notice that d* is
adjacent to 5. Since m, m’ € F3, vertex § is non-adjacent to each of m, m’. Thus,
we infer that §,d*, s,m,m’' induce a copy of Ps. So, assume now that s € D.
Then, the maximality of N(d*) N F assures us that d* has a neighbor f in F,
which is non-adjacent to s. Note that by the assumption at the beginning of this
paragraph, f is non-adjacent to m and m'. Thus, m', m, s, d*, f induce a copy of
Ps.

We conclude that c is a 2-clique-coloring of GG. This establish Case 2 and also
the theorem. O

Let G be a (Ps, C5)-free graph. By a result from [5], it follows that y(G) <
3@@=-1 If G = K, then x(G) = 1. Otherwise, G # K, let G,G5 be the
subgraphs of G induced by the color classes of the 2-clique-coloring of G' given
by Theorem 3.1. Notice that for each i € {1,2}, it holds w(G;) < w(G). Thus,
by an inductional hypothesis that x(G;) < 2°(@)~1 for each i = {1, 2}, it follows
that

X(G) < X(Gh) + x(Ga) < 2G0T 4 (G271 < 9@,

The above argument proves the following consequence. Perhaps this bound is far
from optimal for large w(G). But for w(G) = 2 and 3 it is tight just conisder
some bipartite graphs or the anti-hole on seven vertices, respectively.

Corollary 3.4 Suppose that G is a (Ps,Cs)-free graph. Then, x(G) < 2=,

We conclude the paper with a discusion of a related concept to the coloring
of the clique hypergraph, which is introduced by Hodng and McDiarmid [7]. A
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graph G is called strongly k-divisible, if every induced connected subgraph of G
with at least one edge is k-clique-colorable. A k-division of a graph G is a k-
coloring so that no clique of maximum size, i.e. of size w(G), is monochromatic.
And, a graph is k-divisible, if every induced subgraph with at least one edge has
a k-division. Obviously, every strongly k-divisible graph is k-divisible. Specially,
of great interest are 2-divisible graphs since the Strong Perfect Graph Conjecture
can be restate as: A graph is perfect if and only if it and its complement are
2-divisible graphs (see [7]).

Since every induced graph of a F-free graph is also F-free graph, Theorem 3.1
implies that that every (Ps, Cj)-free graph is (strongly) 2-divisible. And, Theo-
rem 2.1 implies a result of [7] that every (C5, P3+ Py)-graph is strongly 2-divisible.
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