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Ayli olorings of loally planar graphsBojan Mohar�Department of MathematisUniversity of Ljubljana1000 Ljubljana, Sloveniabojan.mohar�uni-lj.siAbstratIt is proved that graphs embedded in a surfae with large nonsepa-rating edge-width an be aylially 8-olored. The ondition on largenonseparating edge-width is expressed in terms of non-null-homologousiruits and is a weaker requirement than asking for large edge-width(whih is based on homotopy).1 IntrodutionAll graphs in this paper are simple. We follow standard terminology. Forterms related to graphs embedded in surfaes we refer to [11℄. All em-beddings of graphs in surfaes are assumed to be 2-ell embeddings. Asurfae is assumed to be losed (i.e., ompat and without boundary) unlessstated otherwise. The Euler genus of a surfae S is the nonnegative integerg = 2� �(S), where �(S) is the Euler harateristi of S.Let  be a oloring of verties of G. If C is a yle in G on whih onlytwo olors a and b appear, then we say that C is bi-olored or (a; b)-oloredif we need a spei� referene to its olors. A oloring of a graph G is ayliif there are no bi-olored yles. The ayli hromati number �a(G) of Gis the minimum integer k suh that G admits an ayli k-oloring.Gr�unbaum [6℄ proved that every planar graph has an ayli 9-oloringand onjetured that all planar graphs have ayli 5-olorings, mentioningthat this would imply several known results in point-arboriity. This resultwas improved, little by little, in a series of papers (Mithem [10℄, Albertson�Supported in part by the Ministry of Eduation, Siene, and Sport of Slovenia,Researh Program P0{0507{0101. 1



and Berman [1℄, Kostohka [8℄, Borodin [3℄), ulminating with the followingultimate result:Theorem 1.1 (Borodin) Every planar graph has an ayli 5-oloring.This result is best possible sine double wheels with at least six verties(the simplest of whih is the otahedron) require 5 olors in any aylioloring, as observed already in [6℄. Wegner [13℄ onstruted a planar graphin whih for every 4-oloring, the union of any two olor lasses indues asubgraph with a yle. Kostohka and Melnikov [9℄ onstruted a planargraph G that is triangle-free (and hene �(G) � 3) suh that �a(G) = 5.For surfaes other than the plane, Borodin (see [7℄) onjetured thatthe maximum ayli hromati number equals the maximum hromatinumber of graphs on that surfae. Alon, Mohar, and Sanders [2℄ provedthat the ayli hromati number of an arbitrary surfae with Euler genusg is at most O(g4=7). They also proved that this is nearly tight; for every gthere are graphs with Euler genus g whose ayli hromati number is atleast 
(g4=7=(log g)1=7). Therefore, the onjeture of Borodin is false for allsurfaes with large Euler genus (and may very well be false for all surfaes).The nonseparating edge-width, new(G), is the length of a shortest surfaenonseparating yle in an embedded graph G. This notion is introdued anddisussed in more details in Setion 2. The main result of this paper is:Theorem 1.2 For every surfae S there is a onstant w suh that everygraph G embedded in S with new(G) � w is aylially 8-olorable.The proof is given in Setion 4. The onstant w, depending on the Eulergenus g of the surfae, is shown to be of order O(g32g). This is not bestpossible but our main priority is to keep the proofs as short and elementaryas possible. On the other hand, there are graphs with arbitrarily large girthand arbitrarily large hromati number. Sine the nonseparating edge-width(in any embedding) annot be smaller than the girth, the number w inTheorem 1.2 must depend on the genus of S.It is likely that the 8-oloring bound of Theorem 1.2 is not best possible.We believe that the best bound may be 6 or even 5, possibly with a di�erentanswer for nonorientable and orientable surfaes. We have no lue whihone of these possibilities would be the right one to onjeture.
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2 Loally planar graphsThere are two widely reognized notions of \loal planarity" { that of largeedge-width and that of large fae-width, see [11℄. For oloring problems,the natural one is the large edge-width ondition, meaning that all non-ontratible yles of an embedded graph are large. It is known (see, forexample, [11℄ and [4℄) that graphs embedded in a �xed surfae with suÆ-iently large edge-width have similar hromati properties as planar graphs.For example, Thomassen [12℄ proved that graphs on a �xed surfae, embed-ded with suÆiently large edge-width are 5-olorable.In this paper we show that loally planar graphs have bounded aylihromati number. We introdue a weaker loal planarity ondition whihis based on homology instead of homotopy. It turns out that this notionis the right one in relation to graph oloring problems. It has been usedpreviously only in the paper by Fisk and Mohar [5℄.Let G be a graph that is �-embedded in some surfae S. An Eule-rian subgraph C of G (possibly disonneted) is surfae separating (or null-homologous) if there is a set F of �-faes suh that the edges of C arepreisely those edges of the graph whih our preisely one on the bound-aries of faes in the set F . The set of verties, edges and faes in F forma graph embedded in a bordered surfae (where boundary omponents areallowed to touh) whose boundary is C. We denote this surfae by Int(C)and all it the interior of C. The submap onsisting of faes (and their ini-dent verties and edges) that are not in F is also a bordered surfae whoseboundary is C. It is denoted by Ext(C) and alled the exterior of C. Whenspeaking of interiors and exteriors, we will usually have a vertex x =2 V (C),and then the interior will always be seleted so that x 2 Int(C).If C and D are subgraphs of G, then their sum C +D is the subgraphwhose edge-set is the symmetri di�erene of E(C) and E(D). If C and Dare surfae separating Eulerian subgraphs, then also their sum is a surfaeseparating Eulerian subgraph. We will refer to this fat as the 3P-property ,the name oming from its relation to the 3-path-property (see [11℄). The3P-property implies that every surfae separating Eulerian subgraph of Gwith the minimum number of edges is an indued yle of G.The nonseparating edge-width of a �-embedded graph G, denoted bynew(G;�) (or just new(G) if the embedding � is lear from the ontext), isthe length of a shortest surfae nonseparating yle in G. If there are nosurfae nonseparating yles, then we set new(G;�) = 1; this happens ifand only if the embedding has genus 0. Clearly, new(G;�) is always greateror equal to the edge-width of the embedding.3



Next, we prove that graphs with large nonseparating edge-width havesome properties that are known for graphs with large edge-width.Lemma 2.1 Suppose that G is a triangulation of a surfae of Euler genusg � 1, x is a vertex of G, and q � 12new(G)� 1 is a positive integer.(a) If C is an Eulerian graph in G whose verties are all at distane atmost q form x, then C is surfae separating.(b) There is a uniquely determined olletion of edge-disjoint surfae sepa-rating yles B1; : : : ; Bp (1 � p � g) whose verties are all at distaneq from x suh that x 2 Int(Bi), and suh that Ext(Bi) is not a disk,for i = 1; : : : ; p. Any two of these yles have at most one vertex inommon, and Ext(Bi) \ Ext(Bj) = Bi \Bj for 1 � i < j � p. More-over, the indued embedding of \pi=1Int(Bi) has genus 0. Under thisembedding all yles B1; : : : ; Bp are faial.Proof. (a) For every vertex v 2 V (C), let Pv be a shortest path in Gfrom v to x. If e = uv 2 E(C), let We be the losed walk in G onsistingof e, Pu, and Pv. Clearly, the length of We is at most 2q + 1 < new(G),hene the Eulerian graph Ce orresponding to We is surfae separating. Byonseutively applying the 3P-property, we onlude that the sum of all Ce(e 2 E(C)) is also surfae separating. Sine C is Eulerian, this sum is easilyseen to be equal to C. This ompletes the proof.(b) Let F be the olletion of all faes of G that ontain at least onevertex whose distane from x is less than q. Sine G is a triangulation, theboundary B of F onsists only of edges whose endverties are at distane qfrom x. Clearly, B is an Eulerian graph. Let C be a yle in B. By (a), Cis surfae separating. We de�ne its interior so that x 2 Int(C). If Ext(C)is a disk, add all faes in Ext(C) into F and repeat the argument with thenew set F . Let us observe that after suh a hange, preisely the edges ofC disappear from the boundary of F . By the 3P-property, every yle inthe extended set F is still surfae separating. Therefore, the boundary ofF annot vanish (otherwise, all yles in G would be surfae separating andthis would ontradit the assumption that g � 1).We end up with a set F whose nonempty boundary B has the propertythat every one of its yles has a nondisk exterior. It is easy to see thatif C is a yle in B, then its exterior annot ontain a fae that is in F .This implies that B has a unique deomposition into edge-disjoint ylesB1; : : : ; Bp whose exteriors are pairwise disjoint, exept possibly for one4



vertex that a pair of yles may have in ommon. By the additivity of theEuler genus, we onlude that p � g.We further transform the yles B1; : : : ; Bp in Lemma 2.1(b). Supposethat Bi (1 � i � p) has a hord e. Let D1;D2 be the two yles in Bi + edistint from Bi. By Lemma 2.1(a), these yles are surfae separating. Ifone of their exteriors, say Ext(D2), is a disk, then we replae Bi with theother yle D1 and ontinue the redution with the new yle until everyremaining hord gives rise only to nondisk exteriors. It is easy to see that theresulting olletion of yles, Q1; : : : ; Qp is uniquely determined (the ylesdo not depend on the order used when proessing the hords). They arealled the q-anonial yles for x in G, and it is lear that they have thesame properties as stated in Lemma 2.1(b) for the yles B1; : : : ; Bp. Let usremark that this generalizes the de�nition of the q-anonial yle in [12℄.Every (q + 1)-anonial yle Q0 is in the exterior of some q-anonialyle Q. We say that Q0 is a suessor of Q. A q-anonial yle is leanif it has preisely one suessor. In partiular, a lean anonial yle is anindued yle.Suppose that Q is a lean q-anonial yle for x and let Q0 be its su-essor. Sine Q0 is (q + 1)-anonial, every vertex v0 of Q0 has at least oneinident edge whose other endvertex is in Q. Let K = Ext(Q) \ Int(Q0) bethe ylinder bounded by Q and Q0. If K has no separating triangles, thenthe above mentioned property of verties of Q0 implies that K � V (Q0) is2-onneted. The boundary of the fae obtained after deleting Q0 is there-fore bounded by a yle Q00, whih we all the repaired q-anonial yleorresponding to Q. We will make use of suh yles mainly beause of thefollowing property:Lemma 2.2 Suppose that Q is a lean q-anonial yle for x in a triangu-lation G. Let Q0 be the suessor of Q. Suppose that there are no separatingtriangles in the ylinder K = Ext(Q) \ Int(Q0). Then there exists the re-paired q-anonial yle Q00 � K �Q0, and in the ylinder between Q00 andQ0 there are only edges joining Q00 and Q0.A k-ylinder (or a generalized ylinder) is a onneted graph D embed-ded in the plane with k distinguished faial walks D1; : : : ;Dk, alled theboundary parts of D, suh that all faes of D distint from the boundaryparts are triangles. If every two distint boundary parts are at distane atleast w in D, then D is said to be w-wide.5



Lemma 2.1 shows that after utting the surfae along the q-anonialyles Q1; : : : ; Qp (and removing their exteriors), a generalized p-ylinder isobtained. We need slightly more.Lemma 2.3 Let G be a triangulation of Euler genus g � 1 and let x 2V (G). Let w � 1 and a � 0 be integers, and let k = d12we+1. Suppose thatnew(G) � 2kg+2a+4. Then there is an integer q, k+a � q � kg+a, suhthat the q-anonial yles for x are all lean and at distane at least w fromeah other. In partiular, the intersetion of the interiors of the q-anonialyles is a w-wide generalized ylinder ontaining x.Proof. By Lemma 2.1, the q-anonial yles exist for every q � kg+a+1,and let us denote their number by p(q). By Lemma 2.1(b), p(q) � g. Clearly,every (q� 1)-anonial yle has at least one suessor, hene p(1) � p(2) �� � � � p(kg + a + 1). If two of the q-anonial yles are at distane lessthan w, then they are suessors of a ommon (q � k + 1)-anonial yle(if q � k; and are suessors of a ommon 1-anonial yle if q < k), henep(q) � p(q � k + 1) + 1. Similarly, if some q-anonial yle is not lean,then p(q + 1) � p(q) + 1 � p(q � k + 1) + 1. If the onlusion of the lemmawould not hold, then this would imply that2 � p(k + a+ 1) � p(2k + a+ 1)� 1 � � � � � p(gk + a+ 1)� (g � 1):However, this would show that p(kg + a+ 1) > g, whih is a ontradition.If C1; : : : ; Ck is a olletion of pairwise disjoint yles in an embeddedgraph G, then we say that these yles form a planarizing olletion of ylesif utting along all of C1; : : : ; Ck results in a onneted graph G0 embeddedin the sphere. Sine utting along a surfae nonseparating yle Ci reduesthe Euler genus by 1 (if Ci is 1-sided) or 2 (if Ci is 2-sided), it is lear that12g � k � g, where g is the Euler genus of the embedding of G.Let G0 be the embedded graph obtained after utting the surfae alongdisjoint yles C1; : : : ; Ck. Every twosided yle Ci gives rise to two faialyles C 0i; C 00i in G0, alled opies of Ci. Similarly, a onesided yle Ci givesrise to a single faial yle C 0i inG0 whih doubly overs Ci and is also referredto as the opy of Ci. We say that C1; : : : ; Ck are d-apart if the distane in G0between opies of yles C1; : : : ; Ck is at least d. Thomassen [12℄ proved thatevery triangulation with large edge-width ontains a planarizing olletionof yles that are far apart. We prove an extension of this result to graphswith large nonseparating edge-width.6



Theorem 2.4 If d � 1 and g � 1 are integers and G is a triangulation ofa surfae with Euler genus g and with new(G) � (2d + 3)(2g+3 + g), thenG ontains a planarizing olletion of indued surfae nonseparating ylesC1; : : : ; Ck that are d-apart.Proof. The proof is by indution on g. Let C be a shortest nonontratibleyle in G. If jCj � (d + 1)2g+3, then the edge-width of G is at least(d+1)2g+3, and the required planarizing yles exist as shown by Thomassen[12℄. (Thomassen's proof, see also [11, Theorem 5.11.1℄, is given only fororientable surfaes, but it an be extended to nonorientable ones.) Hene,we may assume that jCj < (d+ 1)2g+3, so that C is surfae separating andhene g � 2. For i = 1; 2, let Si be the two surfaes obtained after uttingG along C, let Gi be the orresponding graphs and Di be the opy of C inGi. Sine C is nonontratible, the Euler genus gi of Si is smaller than g.We add a new vertex xi to Gi and join it to all verties on Di, so that weget a new triangulation G0i of Si.Let R be a shortest surfae nonseparating yle in G0i. If xi =2 V (R), letR0 = R; otherwise, let R0 be the losed walk obtained from R by replaingthe two edges inident with xi by the shorter of the two segments on Dijoining the ends of those edges on Di. By the 3P-property, R is an induedyle. Therefore, R0 is also a yle in G. By the 3P-property, R0 is surfaenonseparating in Gi and hene also in G. Therefore,new(G0i) = jRj � jR0j � 12 jCj+ 2 � new(G)� 12(d+ 1)2g+3 + 2: (1)Next, we apply Lemma 2.3 (with w = d and a = 0). Sine new(G0i) �(d + 3)gi + 4 (whih follows from (1)), there is a q, k � q � kg, wherek = d12de + 1, suh that the q-anonial yles B1; : : : ; Bp for xi are leanand at least d-apart. For j = 1; : : : ; p, let Mj = Ext(Bj), and let M 0j bethe triangulation obtained from Mj by adding a new vertex yj joined to allverties of Bj.Let R be a shortest surfae nonseparating yle in M 0j . If yj =2 V (R),let R0 = R; otherwise, onsider a losed walk that is obtained from R byreplaing the two edges inident with yj by paths in G0i of length q to xi. Bythe 3P-property, this walk ontains a surfae nonseparating yle R0. Using(1), we estimate:new(M 0j) = jRj � jR0j � 2q + 2 � new(G0i)� 2kg + 2� (2d+ 3)(2g+3 + g) � (d+ 1)2g+2 � (d+ 3)g + 4 (2)� (2(d + 1) + 3)(2g+2 + g � 1):7



By the indution hypothesis, M 0j has a set of indued planarizing ylesthat are (d + 1)-apart. If one of these yles ontains yj, then we replaeits edges inident with yj by a segment of Bj and obtain another olletionof planarizing yles that are d-apart. If the new yle C has a hord e, itan be replaed by one of the other two yles of C + e. This follows fromthe 3P-property of surfae nonseparating yles in the surfae obtained afterutting along all yles in the planarizing olletion distint from C. Thus,we an ahieve that the planarizing yles are indued.It is easy to see that the union of the planarizing olletions of yles forG1 and for G2 is a planarizing olletion for G and, learly, its members ared-apart.It is worth mentioning that the above proof is essentially self-ontainedsine the appliation of [12℄ at its beginning an be replaed by nearly thesame arguments, as used when C was surfae separating, also in the asewhen it was not.A generalized M�obius band is a onneted graph D embedded in theprojetive plane with p � 1 distinguished faial walks C1; : : : ; Cp, alled theboundary parts of D, suh that all faes in D distint from C1; : : : ; Cp aretriangles. If the distane between any two boundary parts of D is at leastw, then D is said to be w-wide. If D has a 1-sided yle whose distanefrom C1; : : : ; Cp is at least d, then D is said to be d-deep.Corollary 2.5 Let w and g be positive integers and let G be a triangulationof Euler genus g suh that new(G) � 4(w+3)g(2g+3+g) and suh that everyontratible 3-yle of G is a faial triangle. Then the vertex set of G an bepartitioned into sets U1; : : : ; Ur and V1; : : : ; Vh suh that the following holds:(a) For every j = 1; : : : ; r, the subgraph D0j indued on Uj is a w-widegeneralized ylinder with at most g boundary parts.(b) For every i = 1; : : : ; h, the indued subgraph Di on verties Vi is eithera w-wide generalized ylinder with at most 2g � 2 boundary parts,or a w-wide and w-deep generalized M�obius band with at most g � 1boundary parts.() Every edge that is not in one of D01; : : : ;D0r and not in D1; : : : ;Dhonnets a boundary part of some D0j with a boundary part of someDi. For every boundary part Q0 of D0j, there is a unique boundary partQ of some Di that is adjaent to Q0, and Q[Q0 together with the edgesjoining Q and Q0 form a 2-ylinder with boundary parts Q and Q0.8



Proof. The ase when g = 1 has to be done separately and is left to thereader. So we assume that g � 2. By Theorem 2.4, G has a olletion ofplanarizing yles C1; : : : ; Ch that are d-apart, where d = 2(w + 3)g � 2 =2(w+3)(g� 1)+2w+1. Let us ut the surfae along the planarizing ylesto obtain a d-wide g-ylinder. If we triangulate one of its boundary partsby adding a new vertex x and paste a very wide M�obius bands in all otherboundary parts, we obtain a triangulation H of Euler genus g � 1 whosenonseparating edge-width is as large as we want. By Lemma 2.3, there isan integer q, k+ l � q � k(g� 1)+ l, where k = d12we+1 and l = b12w� 1,suh that the q-anonial yles for x are lean and w-apart. By Lemma 2.2,there exist the repaired q-anonial yles. Let us onsider the generalizedylinder ontaining x whose boundary parts are the repaired q-anonialyles for x.If Ci is 2-sided, let D(Ci) be the union of suh generalized ylinders forboth opies of Ci. Clearly, Di is a w-wide generalized ylinder in G. If Ci is1-sided, the generalized ylinder for its opy determines a w-wide and w-deepgeneralized M�obius band D(Ci) in G (sine q � k+ l = w). Finally, onsiderthe (q+1)-anonial yles for x, and let Q0 be the family of all suh ylestaken for all opies of the yles Ci, i = 1; : : : ; h. (Of ourse, di�erent opiesof the yles Ci may have di�erent values of Q.) Sine Ci � D(Ci) andC1; : : : ; Ch are planarizing, Q is the boundary of one or more generalizedylinders D01; : : : ;D0r that are disjoint from D(C1); : : : ;D(Ch) and satisfy(). Sine 2(q + 1) + w � d, every D0j is w-wide.By Lemma 2.1(b), the number of q-anonial yles for x in H is at mostthe Euler genus of H whih is equal to g � 1. This implies that D(Ci) hasat most g � 1 boundary parts if Ci is 1-sided, and has at most 2(g � 1)boundary parts if it is 2-sided. Every D0j and every generalized ylinder inH orresponding to a opy of Ci have at most one adjaent pair of boundaryparts. Sine the number of opies of yles C1; : : : ; Ch is equal to g, D0j hasat most g boundary parts. This ompletes the proof.3 Permuting olors in a generalized ylinderLet En = f1; : : : ; ng. Let Vk;n be the set of all pairs (A; a) where A is ak-subset of En and a 2 En n A. Let �k;n be the graph whose vertex set isVk;n and two verties (A; a) and (B; b) are adjaent if a =2 B and b =2 A.Lemma 3.1 Let (A; a) and (B; b) be verties of �4;8. Then their distanein �4;8 is at most 3, and is equal to 3 if and only if A\B = ;. There is a walk9



from (A; a) to (B; b) of length 3, (A; a) = (A0; a0); (A1; a1); (A2; a2); (A3; a3) =(B; b), suh that for every  2 E8, there exists an i 2 f0; 1; 2; 3g for whih =2 Ai [ faig.Proof. We may assume that (A; a) = (1234; 5) (where we use the shortnotation 1234 for the set f1; 2; 3; 4g). Let r = jB n (A [ fag)j. We willexhibit the olor pairs (Ai; ai) depending on the value of r; in eah ase, onlynonisomorphi ases will be treated. The laim that the distane between(A; a) and (B; b) is 3 if and only if A \B = ; is left as an exerise.(r = 0): In this ase we may assume that (B; b) = (123x; y), wherexy 2 f45; 46; 54; 56g. Let z be the element in f4; 5; 6g n fx; yg. The requiredwalk is: (1234; 5) � (1267; 8) � (37xz; 8) � (123x; y):(r = 1): In this ase we may assume that (B; b) = (126x; y), wherexy 2 f34; 35; 37; 53; 57g. Let z; w be the elements of f3; 4; 5; 7g n fx; yg. Therequired walk is:(1234; 5) � (1267; 8) � (6xzw; 8) � (126x; y):(r = 2): In this ase we may assume that (B; b) = (167x; y), wherexy 2 f23; 25; 28; 52; 58g. Let z be an element of the set f2; 5; 8g that isdistint from x and y. The required walk is:(1234; 5) � (3467; 8) � (167x; z) � (167x; y):(r = 3): In this ase we may assume that (B; b) = (567x; y), wherexy 2 f12; 15; 51g. The required walk is:(1234; 5) � (3678; 5) � (3678; 2) � (678x; y):Let (A; a) and (B; b) be adjaent olor pairs in �4;8 and let t = jA\Bj.Let us enumerate the elements of A and B, respetively, as a1; : : : ; a4 andb1; : : : ; b4 suh that ai = bi for i = 1; : : : ; t. Let � be the permutation of E8whih interhanges aj with bj for j = t+ 1; : : : ; 4, interhanges a and b andleaves all other olors �xed. Every suh permutation is said to be ompatiblewith the (direted) edge (A; a)(B; b) of �4;8.Lemma 3.2 Suppose that  is an ayli 8-oloring of a graph D. Let(A; a) and (B; b) be adjaent olor pairs of �4;8 and let � be a ompatible10



permutation. Let U � V (D) be a set of verties of D suh that their olorsand the olors of all verties at distane at most two from U are all in A[fag.Let 0 : V (D) ! E8 be de�ned by 0(v) = (v) if v =2 U and 0(v) = �((v))if v 2 U . Then 0 is an ayli 8-oloring of D.Proof. Let us �rst verify that 0 is a oloring. If not, then 0(u) = 0(v) forsome adjaent pair u; v of verties. Without loss of generality, u 2 U andv =2 U . Sine v is a neighbor of U , 0(v) = (v) 2 A[fag. Sine 0(u) 6= (u),the hanged olor 0(u) is not in A [ fag. This ontradits the assumptionthat 0(u) = 0(v).To prove that 0 is ayli, suppose that C is a bi-olored yle under0. Then C ontains a vertex u suh that 0(u) 6= (u), hene u 2 U and0(u) =2 A[fag. This shows that verties at distane two from u whose oloris equal to 0(u) are also in U . Consequently, every seond vertex on C is inU , and hene C is also bi-olored under , a ontradition.Let D be a generalized ylinder (or a generalized M�obius band) withk boundary parts D1; : : : ; Dk. The extended k-ylinder (or the extendedM�obius band ~D is the triangulation that is obtained from D by adding anew vertex yi and joining it to all verties of Di, for every i = 1; : : : ; k. Aoloring  of ~D is ompatible with olor pairs (Ai; ai) 2 V4;8 (i = 1; : : : ; k) if(yi) = ai and all olors used on Di and on verties at distane at most 3from Di are in Ai [ faig, i = 1; : : : ; k.Lemma 3.3 Suppose that (Ai; ai) 2 V4;8 are olor pairs for i = 1; : : : ; k. IfD is a 17-wide k-ylinder, then the extended ylinder ~D admits an ayli 8-oloring that is ompatible with the olor pairs (Ai; ai), i = 1; : : : ; k. Underthis oloring, no bi-olored path is joining distint boundary parts of D.Proof. By Theorem 1.1, there is an ayli 5-oloring 0 of ~D using olors1{5. Let U0 be the set of verties of D whose distane from the boundaryparts is at least 8. For i = 1; : : : ; k and j = 1; 2; 3, let Ui;j be the set of allverties of D whose distane from U0 is at least 2j � 1 and whose distanefrom the ith boundary part Di is at most 7. Sine D is 17-wide, the sets U0and Ui;j partition V (D).Let us �x an i 2 f1; : : : ; kg. By Lemma 3.1, there is a walk of length 3from (f1; 2; 3; 4; 5gnf0(yi)g; 0(yi)) to (Ai; ai) in �4;8. For j = 1; 2; 3, let �jbe a permutation of E8 that is ompatible with the jth edge on this walk.Finally, for j = 1; 2; 3, let the oloring j be obtained from j�1 by settingj(v) = j�1(v) if v =2 Ui;j, and j(v) = �j(j�1(v)) if v 2 Ui;j. By Lemma11



3.2, 1; 2, and 3 are ayli 8-olorings of D. Using the fat that Di andall verties at distane at most 3 from Di are in Ui;3, it is easy to see that3 is ompatible with (Ai; ai) at the boundary part Di.After onseutively repeating suh a hange for every i = 1; : : : ; k, weobtain an ayli 8-oloring of D that is ompatible with all olor pairs(Ai; ai), i = 1; : : : ; k.By Lemma 3.1 we may assume that no olor ours in all olor pairs onthe seleted walk from (f1; 2; 3; 4; 5gnf0(yi)g; 0(yi)) to (Ai; ai). Therefore,there is no path from Di to U0 whose every seond vertex would have thesame olor as its vertex in U0. SineD is 17-wide, every path joining distintboundary parts must go through U0, and hene ontains at least three olors.A similar result holds for every n � 6: If D is suÆiently wide and(Ai; ai) 2 V4;n (i = 1; : : : ; k) are olor pairs assigned to boundary parts ofD, then ~D has an ayli n-oloring that is ompatible with the given olorpairs (Ai; ai) suh that no bi-olored path is joining distint boundary partsof D.Further, we shall need a simple lemma.Lemma 3.4 Let G be graph. If G an be written as G = G1 [ G2, whereG1 \G2 is a omplete graph, then �a(G) = maxf�a(G1); �a(G2)g.Proof. Let k = maxf�a(G1); �a(G2g. Sine G1 and G2 are subgraphs ofG, we have �a(G) � k. On the other hand, having ayli k-olorings of G1and G2, we may assume that they oinide on G1\G2 sine any two vertiesin the intersetion are adjaent and hene have distint olors under eitheroloring. The same argument also shows that the ombined k-oloring of Gis ayli, so �a(G) � k.Now, we an prove an extension of Lemma 3.3 for M�obius bands.Lemma 3.5 Let D be a generalized M�obius band with k boundary parts andwith new(D) � 6. Let (Ai; ai) 2 V4;8 be olor pairs for i = 1; : : : ; k. Supposethat D is 17-wide, and (3k + 11)-deep. Then the extended M�obius band ~Dadmits an ayli 8-oloring that is ompatible with the olor pairs (Ai; ai),i = 1; : : : ; k. Under this oloring, every path joining distint boundary partsof D has at least three distint olors.Proof. By Lemma 3.4 we may assume that every 3-yle in D whose diskinterior ontains no boundary part of D is a faial triangle. Let C0 be a12



1-sided yle in D whose distane from the boundary parts D1; : : : ;Dk ofD is at least 3k + 11. Let us ut the surfae along C0 and triangulate theresulting fae by inserting a new vertex x. Additionally, we add a M�obiusband triangulation to every boundary part of D. This an be done in suha way that the nonseparating edge-width of the resulting triangulation D0of Euler genus k is larger than 6k + 6. By Lemma 2.3 (applied with g = k,w = 3, and a = 1), there is a q, 4 � q � 3k + 1, suh that the q-anonialyles Q1; : : : ; Qp for x are lean and are 3-apart. Let Q0i be the (q + 1)-anonial yle that is the suessor of Qi, and let Q00i be the repaired q-anonial yle (see Lemma 2.2). The generalized ylinder around x withboundary parts Q001; : : : ; Q00p orresponds to a 3-wide generalized M�obius bandD0 � D that ontains C0 in its interior, and C0 is at distane q � 1 � 3from Q001; : : : ; Q00p. Moreover, the boundary parts of D0 have distane at least10 from the boundary parts of D. In the sequel, we shall onsider exteriorsand interiors of yles in D and D0. To be onsistent with our hoies ofinteriors made in D0, we will always assume that the interior ontains C0(and this will always be possible).Let C be a shortest 1-sided yle in D0. Then C is at distane at least10 from the boundary parts of D. Now, we onsider the graph H whih isobtained fromD by ontrating C to a single vertex x (and removing paralleledges). The graph is planar. By triangulating possible nontriangular faesaround x, we obtain a 17-wide k-ylinder H whose boundary parts oinidewith those of D. By Lemma 3.3, ~H has an ayli 8-oloring  whih isompatible with the given olor pairs (Ai; ai), i = 1; : : : ; k. Moreover, theproof of Lemma 3.3 shows that x and all verties at distane at most 2 fromx are in the set U0 used in that proof and hene olored only with olors 1{5.We may assume that (x) = 5. To omplete the proof, it suÆes to see that an be extended to an ayli 8-oloring of D. Note that D � V (C) � H,so we have to show how to olor C.First, we olor the verties of C with olors 5,6,7,8 so that any twoverties that are at distane 2 on C reeive di�erent olors. This is possiblesine jCj � new(D) � 6. Moreover, suh a oloring exists in whih olor 8is used preisely twie, and the two verties of olor 8 are at distane threeon C. On the projetive plane, any two nonontratible yles interset.So, C and C0 have a vertex y in ommon. Then we may assume that theverties of olor 8 are at distane 1 and 2 from y. Sine C is indued andsine all neighbors of C are adjaent to x in H and therefore use only olors1{4, this gives rise to an 8-oloring 1 of D. However, it may happen thatthis oloring is not ayli. In the remaining part of the proof we will showthat 1 an be hanged (only on verties adjaent to C) so that an ayli13



8-oloring is obtained.A 2-shortut is a path uvw of length 2 in D, where u and w are vertieson C and 1(u) = 1(w). This implies that the distane from u to w onC is more than 2. Sine C is a shortest nonontratible yle in D0 andsine the nonontratible yles satisfy the 3P-property, the vertex v is notin D0. Therefore, u and w are both on the same yle Q00i and by Lemma2.2, v 2 V (Q0i). Moreover, u and w are at distane q � 1 � 3 from C0. Inpartiular, 1(u) 6= 8.Suppose that R is a bi-olored yle. Then R is omposed of 2-shortutsat the same boundary part Q00i . (This is obvious when R is (a; b)-olored anda 6= 5 and b 6= 5. If a = 5, this follows from the fat that inD�V (C) � H�x,there is no (a; b)-olored path joining two verties that are adjaent to Cin D sine suh a path would determine a bi-olored yle in H.) Sine Ris omposed of 2-shortuts, Lemma 2.2 implies that the only possibility forR is that it winds one around Q00i . Thus, if we hange the olor of one ofits verties v on Q0i to olor 8, R is no longer 2-olored. At distane 2 fromv there is at most one vertex olored 8 (the one whose distane from y is2), so this hange does not give rise to new bi-olored yles. Moreover,no bi-olored yles at Q00i are left. By repeating the same proedure for bi-olored yles at other boundary parts Q00j , an ayli 8-oloring with desiredproperties is obtained.Lemma 3.5 an be proved without the restrition that new(G) � 6. Theonly di�erene ours when the yle C in the proof has length 5. In thatase the proof is easier, but alternative arguments (similar to those used in[2℄) are needed.4 Ayli oloringsIn this setion we give the proof of our main result, Theorem 1.2.Theorem 4.1 Let G be a triangulation of a surfae of Euler genus g suhthat new(G) � 6. Suppose that the vertex set of G an be partitioned intosets U1; : : : ; Ur and V1; : : : ; Vh suh that the following holds:(a) For every j = 1; : : : ; r, the subgraph D0j indued on Uj is a 3-widegeneralized ylinder.(b) For every i = 1; : : : ; h, the indued subgraph Di on verties Vi is eithera 17-wide generalized ylinder or a 17-wide and d-deep generalized14



M�obius band, where d � 3k + 11 if k is the number of its boundaryparts.() Every edge that is not in one of D01; : : : ;D0r and D1; : : : ;Dh onnets aboundary part of some D0j with a boundary part of some Di. For everyboundary part Q0 of D0j there is a unique boundary part Q of some Dithat is adjaent to Q0, and Q [ Q0 together with the edges joining Qand Q0 form a 2-ylinder with boundary parts Q and Q0.Then �a(G) � 8.Proof. First, we form the extended generalized ylinders and M�obius bands~D01; : : : ; ~D0r and ~D1; : : : ; ~Dh. For a boundary part Q, we will denote by y(Q)the vertex used to triangulate the fae bounded by Q. By Theorem 1.1,every ~D0j has an ayli 5-oloring with olors 1{5. Let 0 be the union ofthese olorings for j = 1; : : : ; r.For every i, 1 � i � h, and every boundary part Q of Di, we selet aolor pair (A; a) 2 V4;8 as follows. Let Q0 be the boundary part of D0j whihis adjaent to Q in G. If 0(y(Q0)) = t, then we set A = ft; 6; 7; 8g anda = t+ 1 if t 6= 5 and a = 1 if t = 5.By Lemma 3.3 and Lemma 3.5, every ~Di (1 � i � h) has an ayli8-oloring i that is ompatible with the olor pairs that were hosen forits boundary parts. The ombination of these olorings together with 0 islearly an 8-oloring of G. However, it may not be ayli.Suppose that there is a bi-olored yle R. Sine every oloring i isayli, R must pass from some boundary part Q0 of D0j to the neighboringboundary part Q of some Di, where 1 � i � h. Let (A; a) be the orre-sponding olor pair. Sine every path in Di joining distint boundary partsuses at least 3 olors, R must return bak to D0j through Q. Let � and �0be the olors that appear on R, where � appears on Q and �0 appears onQ0. If R uses an edge in Di, then � = a. However, in suh a ase, thebi-olored segment of R in Di joining two verties of Q would give rise toan (�; �0)-olored yle in ~Di. Similarly we see that R annot have an edgein D0.Consequently, R is a yle that alternates between Q and Q0. We mayassume that t = 5 and a = 1 (as introdued above), so that the olor pairat Q is (5678; 1). We may assume that � 6= 8 and �0 6= 2. Let us onsideronseutive verties of R on Q. There is at least one pair of them whih isnot onneted by an (�; 8)-olored path in Di. Otherwise, the sum of allsuh paths would ontain an (�; 8)-olored yle in Di. Let u and w be suhpair of verties, and let v be their ommon neighbor on R. Now we hange15



the olor of v to 8, and hange the olor 8 to 2 on all verties on Q and thosethat are adjaent to Q. Clearly, this de�nes a new 8-oloring of G, and welaim that there are no bi-olored yles at Q and Q0.If there was suh a yle R0, it would use one of the verties whoseolor has been hanged. This vertex annot be v, sine olor 8 is not usedat distane 2 from v. Hene, this would be a vertex on Q or one of itsneighbors that was reolored from 8 to 2. Also, R0 annot be ontainedin Di sine it would be bi-olored also before. (Note that the new vertiesolored 2 annot be at distane 2 from a vertex in Di whose olor was 2already before sine i is ompatible with (5678,1) at Q and hene the olor2 does not appear at distane at most 3 from Q.) Hene the olors on R0are either 2 and � or 2 and �0. If the olors are 2 and �, then the olor �must appear in D0j , so � = 5. If the olors are 2 and �0, then �0 must appearin Di adjaent to Q, so �0 is either 1 or 5. It is easy to see that this leadsto a ontradition sine the segment of R0 in Di (if the olors on R0 are 2and 1) or its segment in D0j (if the olors are 2 and 5) would give rise to abi-olored yle in ~Di or in ~D0j , respetively. This shows that R0 does notexist.If there are other bi-olored yles, they are loated at other boundaryparts. We repeat the same proedure with them, and after a �nite numberof steps we end up with an ayli 8-oloring of G.Finally, we an onlude with the proof of the main result.Proof. (Of Theorem 1.2). Let g be the Euler genus of S and w = 4(3g +14)g(2g+3 + g). We may assume that G is a triangulation sine every graphH embedded in S is ontained (as a subgraph) in a triangulation whosenonseparating edge-width is the same as that of H. The ayli hromatinumber of graphs in the projetive plane is at most 7 [2℄, so we may assumethat g � 2. By Lemma 3.4, we may assume that every ontratible 3-ylein G is a faial triangle. By Corollary 2.5, G has a deomposition as used asthe assumption in Theorem 4.1, where the width and depth of all generalizedylinders and M�obius bands is at least 3g + 11. Under this deomposition,every generalized M�obius band has at most k = g� 1 boundary parts, so itsdepth is at least 3k+11. The width of the generalized ylinders and M�obiusbands is also at least 3g+11 � 17. Therefore, we an apply Theorem 4.1 toonlude that �a(G) � 8.
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