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Abstract

It is proved that graphs embedded in a surface with large nonsepa-
rating edge-width can be acyclically 8-colored. The condition on large
nonseparating edge-width is expressed in terms of non-null-homologous
circuits and is a weaker requirement than asking for large edge-width
(which is based on homotopy).

1 Introduction

All graphs in this paper are simple. We follow standard terminology. For
terms related to graphs embedded in surfaces we refer to [11]. All em-
beddings of graphs in surfaces are assumed to be 2-cell embeddings. A
surface is assumed to be closed (i.e., compact and without boundary) unless
stated otherwise. The Fuler genus of a surface S is the nonnegative integer
g =2 — x(S), where x(S5) is the Euler characteristic of S.

Let ¢ be a coloring of vertices of G. If C is a cycle in G on which only
two colors a and b appear, then we say that C' is bi-colored or (a,b)-colored
if we need a specific reference to its colors. A coloring of a graph G is acyclic
if there are no bi-colored cycles. The acyclic chromatic number x,.(G) of G
is the minimum integer k£ such that G admits an acyclic k-coloring.

Griinbaum [6] proved that every planar graph has an acyclic 9-coloring
and conjectured that all planar graphs have acyclic 5-colorings, mentioning
that this would imply several known results in point-arboricity. This result
was improved, little by little, in a series of papers (Mitchem [10], Albertson
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and Berman [1], Kostochka [8], Borodin [3]), culminating with the following
ultimate result:

Theorem 1.1 (Borodin) Every planar graph has an acyclic 5-coloring.

This result is best possible since double wheels with at least six vertices
(the simplest of which is the octahedron) require 5 colors in any acyclic
coloring, as observed already in [6]. Wegner [13] constructed a planar graph
in which for every 4-coloring, the union of any two color classes induces a
subgraph with a cycle. Kostochka and Melnikov [9] constructed a planar
graph G that is triangle-free (and hence x(G) < 3) such that xac(G) = 5.

For surfaces other than the plane, Borodin (see [7]) conjectured that
the maximum acyclic chromatic number equals the maximum chromatic
number of graphs on that surface. Alon, Mohar, and Sanders [2] proved
that the acyclic chromatic number of an arbitrary surface with Kuler genus
g is at most O(g4/ 7). They also proved that this is nearly tight; for every g
there are graphs with Euler genus g whose acyclic chromatic number is at
least Q(g*/7/(log g)'/7). Therefore, the conjecture of Borodin is false for all
surfaces with large Euler genus (and may very well be false for all surfaces).

The nonseparating edge-width, new(G), is the length of a shortest surface
nonseparating cycle in an embedded graph G. This notion is introduced and
discussed in more details in Section 2. The main result of this paper is:

Theorem 1.2 For every surface S there is a constant w such that every
graph G embedded in S with new(G) > w is acyclically 8-colorable.

The proof is given in Section 4. The constant w, depending on the Euler
genus g of the surface, is shown to be of order O(¢g®29). This is not best
possible but our main priority is to keep the proofs as short and elementary
as possible. On the other hand, there are graphs with arbitrarily large girth
and arbitrarily large chromatic number. Since the nonseparating edge-width
(in any embedding) cannot be smaller than the girth, the number w in
Theorem 1.2 must depend on the genus of S.

It is likely that the 8-coloring bound of Theorem 1.2 is not best possible.
We believe that the best bound may be 6 or even 5, possibly with a different
answer for nonorientable and orientable surfaces. We have no clue which
one of these possibilities would be the right one to conjecture.



2 Locally planar graphs

There are two widely recognized notions of “local planarity” — that of large
edge-width and that of large face-width, see [11]. For coloring problems,
the natural one is the large edge-width condition, meaning that all non-
contractible cycles of an embedded graph are large. It is known (see, for
example, [11] and [4]) that graphs embedded in a fixed surface with suffi-
ciently large edge-width have similar chromatic properties as planar graphs.
For example, Thomassen [12] proved that graphs on a fixed surface, embed-
ded with sufficiently large edge-width are 5-colorable.

In this paper we show that locally planar graphs have bounded acyclic
chromatic number. We introduce a weaker local planarity condition which
is based on homology instead of homotopy. It turns out that this notion
is the right one in relation to graph coloring problems. It has been used
previously only in the paper by Fisk and Mohar [5].

Let G be a graph that is II-embedded in some surface S. An Eule-
rian subgraph C of G (possibly disconnected) is surface separating (or null-
homologous) if there is a set F of II-faces such that the edges of C are
precisely those edges of the graph which occur precisely once on the bound-
aries of faces in the set F. The set of vertices, edges and faces in F form
a graph embedded in a bordered surface (where boundary components are
allowed to touch) whose boundary is C. We denote this surface by Int(C)
and call it the interior of C. The submap consisting of faces (and their inci-
dent vertices and edges) that are not in F is also a bordered surface whose
boundary is C. It is denoted by Ext(C) and called the exterior of C. When
speaking of interiors and exteriors, we will usually have a vertex = ¢ V (C),
and then the interior will always be selected so that z € Int(C').

If C' and D are subgraphs of G, then their sum C + D is the subgraph
whose edge-set is the symmetric difference of E(C) and E(D). If C and D
are surface separating Eulerian subgraphs, then also their sum is a surface
separating Eulerian subgraph. We will refer to this fact as the 3P-property,
the name coming from its relation to the 3-path-property (see [11]). The
3P-property implies that every surface separating FKulerian subgraph of G
with the minimum number of edges is an induced cycle of G.

The nonseparating edge-width of a II-embedded graph G, denoted by
new(G,II) (or just new(@) if the embedding II is clear from the context), is
the length of a shortest surface nonseparating cycle in G. If there are no
surface nonseparating cycles, then we set new(G,II) = oo; this happens if
and only if the embedding has genus 0. Clearly, new(G, II) is always greater
or equal to the edge-width of the embedding.



Next, we prove that graphs with large nonseparating edge-width have
some properties that are known for graphs with large edge-width.

Lemma 2.1 Suppose that G is a triangulation of a surface of Fuler genus
g>1, x is a vertex of G, and q < %new(G) — 1 s a positive integer.

(a) If C is an Eulerian graph in G whose vertices are all at distance at
most q form x, then C is surface separating.

(b) There is a uniquely determined collection of edge-disjoint surface sepa-
rating cycles Bi,...,B, (1 <p < g) whose vertices are all at distance
q from z such that © € Int(B;), and such that Ext(B;) is not a disk,
fori=1,...,p. Any two of these cycles have at most one vertex in
common, and Ext(B;) NExt(B;) = BN B; for 1 <i < j <p. More-
over, the induced embedding of Nt_,Int(B;) has genus 0. Under this
embedding all cycles By, ..., DB, are facial.

Proof. (a) For every vertex v € V(C), let P, be a shortest path in G
from v to z. If e = uv € E(C), let W, be the closed walk in G consisting
of e, P,, and P,. Clearly, the length of W, is at most 2¢ + 1 < new(G),
hence the Eulerian graph C, corresponding to W, is surface separating. By
consecutively applying the 3P-property, we conclude that the sum of all C,
(e € E(C)) is also surface separating. Since C' is Eulerian, this sum is easily
seen to be equal to C. This completes the proof.

(b) Let F be the collection of all faces of G that contain at least one
vertex whose distance from x is less than ¢. Since G is a triangulation, the
boundary B of F consists only of edges whose endvertices are at distance ¢
from z. Clearly, B is an Eulerian graph. Let C be a cycle in B. By (a), C
is surface separating. We define its interior so that =z € Int(C). If Ext(C)
is a disk, add all faces in Ext(C) into F and repeat the argument with the
new set F. Let us observe that after such a change, precisely the edges of
C disappear from the boundary of F. By the 3P-property, every cycle in
the extended set F is still surface separating. Therefore, the boundary of
F cannot vanish (otherwise, all cycles in G would be surface separating and
this would contradict the assumption that g > 1).

We end up with a set F whose nonempty boundary B has the property
that every one of its cycles has a nondisk exterior. It is easy to see that
if C is a cycle in B, then its exterior cannot contain a face that is in F.
This implies that B has a unique decomposition into edge-disjoint cycles
By,...,B, whose exteriors are pairwise disjoint, except possibly for one



vertex that a pair of cycles may have in common. By the additivity of the
Euler genus, we conclude that p < g. O

We further transform the cycles By, ..., B, in Lemma 2.1(b). Suppose
that B; (1 < i < p) has a chord e. Let Dy, Dy be the two cycles in B; + ¢
distinct from B;. By Lemma 2.1(a), these cycles are surface separating. If
one of their exteriors, say Ext(Ds2), is a disk, then we replace B; with the
other cycle D; and continue the reduction with the new cycle until every
remaining chord gives rise only to nondisk exteriors. It is easy to see that the
resulting collection of cycles, @1, ..., Q) is uniquely determined (the cycles
do not depend on the order used when processing the chords). They are
called the g-canonical cycles for x in G, and it is clear that they have the
same properties as stated in Lemma 2.1(b) for the cycles By, ..., By. Let us
remark that this generalizes the definition of the g-canonical cycle in [12].

Every (g + 1)-canonical cycle Q' is in the exterior of some g-canonical
cycle Q. We say that Q' is a successor of ). A g-canonical cycle is clean
if it has precisely one successor. In particular, a clean canonical cycle is an
induced cycle.

Suppose that @ is a clean g-canonical cycle for z and let Q' be its suc-
cessor. Since @' is (¢ + 1)-canonical, every vertex v’ of Q' has at least one
incident edge whose other endvertex is in Q. Let K = Ext(Q) NInt(Q’) be
the cylinder bounded by @ and @'. If K has no separating triangles, then
the above mentioned property of vertices of Q' implies that K — V(Q') is
2-connected. The boundary of the face obtained after deleting @' is there-
fore bounded by a cycle Q”, which we call the repaired q-canonical cycle
corresponding to (). We will make use of such cycles mainly because of the
following property:

Lemma 2.2 Suppose that Q is a clean g-canonical cycle for x in a triangu-
lation G. Let Q' be the successor of Q. Suppose that there are no separating
triangles in the cylinder K = Ext(Q) NInt(Q"). Then there exists the re-
paired q-canonical cycle Q" C K — @', and in the cylinder between Q" and
Q' there are only edges joining Q" and @Q'.

A k-cylinder (or a generalized cylinder) is a connected graph D embed-
ded in the plane with £ distinguished facial walks D, ..., Dy, called the
boundary parts of D, such that all faces of D distinct from the boundary
parts are triangles. If every two distinct boundary parts are at distance at
least w in D, then D is said to be w-w:de.



Lemma 2.1 shows that after cutting the surface along the g-canonical
cycles Q1,...,Qp (and removing their exteriors), a generalized p-cylinder is
obtained. We need slightly more.

Lemma 2.3 Let G be a triangulation of Euler genus g > 1 and let €
V(G). Let w > 1 and a > 0 be integers, and let k = [3w] + 1. Suppose that
new(G) > 2kg+2a+4. Then there is an integer q, k+a < q < kg+a, such
that the q-canonical cycles for x are all clean and at distance at least w from
each other. In particular, the intersection of the interiors of the q-canonical
cycles is a w-wide generalized cylinder containing x.

Proof. By Lemma 2.1, the g-canonical cycles exist for every ¢ < kg+a+1,
and let us denote their number by p(q). By Lemma 2.1(b), p(q) < g. Clearly,
every (¢ — 1)-canonical cycle has at least one successor, hence p(1) < p(2) <

- < p(kg + a + 1). If two of the g-canonical cycles are at distance less
than w, then they are successors of a common (¢ — k + 1)-canonical cycle
(if ¢ > k; and are successors of a common 1-canonical cycle if ¢ < k), hence
p(q) > p(q —k + 1) + 1. Similarly, if some g-canonical cycle is not clean,
then p(q¢+ 1) > p(q) + 1 > p(q¢ — k + 1) + 1. If the conclusion of the lemma
would not hold, then this would imply that

2<plk+a+1)<pRk+a+1)—1<---<plgk+a+1)—(g—1).

However, this would show that p(kg + a + 1) > g, which is a contradiction.
O

If Cy,...,C}k is a collection of pairwise disjoint cycles in an embedded
graph G, then we say that these cycles form a planarizing collection of cycles
if cutting along all of C1, ..., Ck results in a connected graph G' embedded
in the sphere. Since cutting along a surface nonseparating cycle C; reduces
the Euler genus by 1 (if C; is 1-sided) or 2 (if C; is 2-sided), it is clear that
%g < k < g, where g is the Euler genus of the embedding of G.

Let G' be the embedded graph obtained after cutting the surface along
disjoint cycles C1,...,C;. Every twosided cycle C; gives rise to two facial
cycles C/,C!" in G', called copies of C;. Similarly, a onesided cycle C; gives
rise to a single facial cycle C/ in G’ which doubly covers C; and is also referred
to as the copy of C;. We say that C1,...,Cy are d-apart if the distance in G’
between copies of cycles C1,. .., Cy is at least d. Thomassen [12] proved that
every triangulation with large edge-width contains a planarizing collection
of cycles that are far apart. We prove an extension of this result to graphs
with large nonseparating edge-width.



Theorem 2.4 If d > 1 and g > 1 are integers and G is a triangulation of
a surface with Euler genus g and with new(G) > (2d + 3)(29%3 + g), then
G contains a planarizing collection of induced surface nonseparating cycles
Ci,...,C} that are d-apart.

Proof. The proofis by induction on g. Let C be a shortest noncontractible
cycle in G. If |C| > (d + 1)29%3, then the edge-width of G is at least
(d+1)2973, and the required planarizing cycles exist as shown by Thomassen
[12]. (Thomassen’s proof, see also [11, Theorem 5.11.1], is given only for
orientable surfaces, but it can be extended to nonorientable ones.) Hence,
we may assume that |C] < (d + 1)29%3, so that C is surface separating and
hence g > 2. For 1 = 1,2, let S; be the two surfaces obtained after cutting
G along C, let G; be the corresponding graphs and D; be the copy of C in
G;. Since C is noncontractible, the FEuler genus g; of S; is smaller than g.
We add a new vertex z; to GG; and join it to all vertices on D;, so that we
get a new triangulation G} of S;.

Let R be a shortest surface nonseparating cycle in G,. If z; ¢ V(R), let
R’ = R; otherwise, let R’ be the closed walk obtained from R by replacing
the two edges incident with z; by the shorter of the two segments on D;
joining the ends of those edges on D;. By the 3P-property, R is an induced
cycle. Therefore, R’ is also a cycle in G. By the 3P-property, R’ is surface
nonseparating in GG; and hence also in G. Therefore,

new(Gj) = |R| > |R/| — 3|C| + 2 > new(G) — 3(d + 1)297° +2. (1)

Next, we apply Lemma 2.3 (with w = d and @ = 0). Since new(G}) >
(d + 3)g; + 4 (which follows from (1)), there is a ¢, k < ¢ < kg, where
k= [%d] + 1, such that the g-canonical cycles By,..., B, for z; are clean
and at least d-apart. For j = 1,...,p, let M; = Ext(Bj), and let MJ’ be
the triangulation obtained from M; by adding a new vertex y; joined to all
vertices of B;.

Let R be a shortest surface nonseparating cycle in M]’ If y; ¢ V(R),
let ' = R; otherwise, consider a closed walk that is obtained from R by
replacing the two edges incident with y; by paths in G of length ¢ to z;. By
the 3P-property, this walk contains a surface nonseparating cycle R'. Using
(1), we estimate:

new(M;) = |R| > |R'|—2¢+2 > new(G;) —2kg+2

J
(2d+3)(2973 +¢) —(d+1)29"2 —(d+3)g+4 (2

>
> (2(d41)+3)(2972 +g—1).



By the induction hypothesis, M]’ has a set of induced planarizing cycles
that are (d + 1)-apart. If one of these cycles contains y;, then we replace
its edges incident with y; by a segment of B; and obtain another collection
of planarizing cycles that are d-apart. If the new cycle C has a chord e, it
can be replaced by one of the other two cycles of C'+ e. This follows from
the 3P-property of surface nonseparating cycles in the surface obtained after
cutting along all cycles in the planarizing collection distinct from C. Thus,
we can achieve that the planarizing cycles are induced.

It is easy to see that the union of the planarizing collections of cycles for
G1 and for G» is a planarizing collection for G and, clearly, its members are
d-apart. O

It is worth mentioning that the above proof is essentially self-contained
since the application of [12] at its beginning can be replaced by nearly the
same arguments, as used when C' was surface separating, also in the case
when it was not.

A generalized Mobius band is a connected graph D embedded in the
projective plane with p > 1 distinguished facial walks C', ..., C), called the
boundary parts of D, such that all faces in D distinct from Ci,...,C), are
triangles. If the distance between any two boundary parts of D is at least
w, then D is said to be w-wide. If D has a 1-sided cycle whose distance
from C4,...,C) is at least d, then D is said to be d-deep.

Corollary 2.5 Let w and g be positive integers and let G be a triangulation
of Euler genus g such that new(G) > 4(w+3)g(2972 +g) and such that every
contractible 3-cycle of G is a facial triangle. Then the vertex set of G can be
partitioned into sets Uy, ..., U, and Vi,..., V), such that the following holds:

(a) For every j = 1,...,r, the subgraph D;- induced on Uj is a w-wide
generalized cylinder with at most g boundary parts.

(b) For everyi =1,...,h, the induced subgraph D; on vertices V; is either
a w-wide generalized cylinder with at most 2g — 2 boundary parts,
or a w-wide and w-deep generalized Mobius band with at most g — 1
boundary parts.

(c) Every edge that is not in one of D!,...,D) and not in D1,...,Dy,
connects a boundary part of some D' with a boundary part of some
D;. For every boundary part Q' of D;-, there is a unique boundary part
Q of some D; that is adjacent to Q', and QUQ' together with the edges
joining Q and Q' form a 2-cylinder with boundary parts Q and Q'.



Proof. The case when g = 1 has to be done separately and is left to the
reader. So we assume that ¢ > 2. By Theorem 2.4, G has a collection of
planarizing cycles C1,...,C}, that are d-apart, where d = 2(w + 3)g — 2 =
2(w+3)(g—1)+ 2w+ 1. Let us cut the surface along the planarizing cycles
to obtain a d-wide g-cylinder. If we triangulate one of its boundary parts
by adding a new vertex z and paste a very wide Mobius bands in all other
boundary parts, we obtain a triangulation H of Euler genus g — 1 whose
nonseparating edge-width is as large as we want. By Lemma 2.3, there is
an integer ¢, k+1 < ¢ < k(g —1) +1, where k = [fw] + 1 and [ = |fw] —1,
such that the g-canonical cycles for = are clean and w-apart. By Lemma 2.2,
there exist the repaired g-canonical cycles. Let us consider the generalized
cylinder containing z whose boundary parts are the repaired g-canonical
cycles for z.

If C; is 2-sided, let D(C;) be the union of such generalized cylinders for
both copies of C;. Clearly, D; is a w-wide generalized cylinder in G. If C; is
1-sided, the generalized cylinder for its copy determines a w-wide and w-deep
generalized Mébius band D(C;) in G (since ¢ > k41 = w). Finally, consider
the (g + 1)-canonical cycles for z, and let Q' be the family of all such cycles
taken for all copies of the cycles Cj, i = 1,...,h. (Of course, different copies
of the cycles C; may have different values of .) Since C; C D(C;) and
Ci,...,C} are planarizing, () is the boundary of one or more generalized
cylinders D, ..., D that are disjoint from D(Cy),...,D(C)) and satisfy
(c). Since 2(q + 1) +w < d, every Dj is w-wide.

By Lemma 2.1(b), the number of g-canonical cycles for z in H is at most
the Euler genus of H which is equal to g — 1. This implies that D(C;) has
at most ¢ — 1 boundary parts if C; is 1-sided, and has at most 2(g — 1)
boundary parts if it is 2-sided. Every D;- and every generalized cylinder in
H corresponding to a copy of C; have at most one adjacent pair of boundary
parts. Since the number of copies of cycles C,...,C} is equal to g, D;- has
at most g boundary parts. This completes the proof. O

3 Permuting colors in a generalized cylinder

Let £, = {1,...,n}. Let Vj, be the set of all pairs (4,a) where A is a
k-subset of E, and a € E, \ A. Let Il ,, be the graph whose vertex set is
Vi and two vertices (A, a) and (B, b) are adjacent if a ¢ B and b ¢ A.

Lemma 3.1 Let (A,a) and (B,b) be vertices of Ilyg. Then their distance
in Iy g is at most 3, and is equal to 3 if and only if ANB = (). There is a walk



from (A,a) to (B,b) of length 3, (A,a) = (Ao, ap), (A1,a1), (A2,a2), (As,a3) =
(B,b), such that for every c € Eg, there exists an i € {0,1,2,3} for which
c ¢ A; U {al}

Proof. We may assume that (A,a) = (1234,5) (where we use the short
notation 1234 for the set {1,2,3,4}). Let r = |B\ (A U {a})|. We will
exhibit the color pairs (A;, a;) depending on the value of r; in each case, only
nonisomorphic cases will be treated. The claim that the distance between
(A,a) and (B,b) is 3 if and only if AN B = () is left as an exercise.

(r = 0): In this case we may assume that (B,b) = (123z,y), where
xy € {45,46,54,56}. Let z be the element in {4,5,6} \ {z,y}. The required
walk is:

(1234,5) — (1267,8) — (37z2,8) — (1232, 1).

(r = 1): In this case we may assume that (B,b) = (126z,y), where
zy € {34,35,37,53,57}. Let z,w be the elements of {3,4,5,7} \ {z,y}. The
required walk is:

(1234,5) — (1267,8) — (6zzw,8) — (1262, ).

(r = 2): In this case we may assume that (B,b) = (167z,y), where
xy € {23,25,28,52,58}. Let z be an element of the set {2,5,8} that is
distinct from z and y. The required walk is:

(1234,5) — (3467,8) — (167, z) — (167z, ).

(r = 3): In this case we may assume that (B,b) = (567z,y), where
zy € {12,15,51}. The required walk is:

(1234,5) — (3678,5) — (3678,2) — (6781, y).

O

Let (A, a) and (B, b) be adjacent color pairs in II4 g and let ¢ = |[AN B].
Let us enumerate the elements of A and B, respectively, as aq,...,a4 and
bi,...,bq such that a; = b; for i = 1,...,t. Let m be the permutation of Fg
which interchanges a; with b; for j =¢+1,...,4, interchanges a and b and
leaves all other colors fixed. Every such permutation is said to be compatible
with the (directed) edge (A, a)(B,b) of T4g.

Lemma 3.2 Suppose that ¢ is an acyclic 8-coloring of a graph D. Let
(A,a) and (B,b) be adjacent color pairs of Tlug and let ™ be a compatible
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permutation. Let U C V(D) be a set of vertices of D such that their colors
and the colors of all vertices at distance at most two from U are all in AU{a}.
Let ¢ : V(D) — Eg be defined by ¢ (v) = c¢(v) if v ¢ U and ' (v) = n(c(v))
ifve U. Then c is an acyclic 8-coloring of D.

Proof. Let us first verify that ¢’ is a coloring. If not, then ¢'(u) = ¢(v) for
some adjacent pair u,v of vertices. Without loss of generality, v € U and
v ¢ U. Since v is a neighbor of U, ¢'(v) = ¢(v) € AU{a}. Since ¢ (u) # c(u),
the changed color ¢/(u) is not in A U {a}. This contradicts the assumption
that ¢ (u) = ¢/ (v).

To prove that ¢ is acyclic, suppose that C is a bi-colored cycle under
¢. Then C contains a vertex u such that ¢'(u) # c¢(u), hence v € U and
d(u) ¢ AU{a}. This shows that vertices at distance two from u whose color
is equal to ¢/(u) are also in U. Consequently, every second vertex on C is in

U, and hence C' is also bi-colored under ¢, a contradiction. O

Let D be a generalized cylinder (or a generalized M6bius band) with
k boundary parts Dq,...,Dy. The extended k-cylinder (or the extended
Mébius band D is the triangulation that is obtained from D by adding a
new vertex y; and joining it to all vertices of D;, for every ¢ = 1,...,k. A
coloring ¢ of D is compatible with color pairs (4;,a;) € Vig (1 =1,...,k) if
c(y;) = a; and all colors used on D; and on vertices at distance at most 3
from D; are in A; U{a;},i=1,... k.

Lemma 3.3 Suppose that (A;,a;) € Vag are color pairs for i =1,... k. If
D is a 17-wide k-cylinder, then the extended cylinder D admits an acyclic 8-
coloring that is compatible with the color pairs (A;,a;), i =1,...,k. Under
this coloring, no bi-colored path is joining distinct boundary parts of D.

Proof. By Theorem 1.1, there is an acyclic 5-coloring ¢q of D using colors
1-5. Let Up be the set of vertices of D whose distance from the boundary
parts is at least 8. For s = 1,...,k and j = 1,2,3, let U; ; be the set of all
vertices of D whose distance from Uy is at least 25 — 1 and whose distance
from the sth boundary part D; is at most 7. Since D is 17-wide, the sets Uy
and U; ; partition V(D).

Let us fix an ¢ € {1,...,k}. By Lemma 3.1, there is a walk of length 3
from ({1,2,3,4,5} \ {co(vi)},co(yi)) to (A;,a;) inTlug. For j =1,2,3, let 7,
be a permutation of Eg that is compatible with the jth edge on this walk.
Finally, for j = 1,2, 3, let the coloring ¢; be obtained from c;_; by setting
cj(v) = ¢cj_1(v) if v ¢ U; 4, and ¢j(v) = mj(cj—1(v)) if v € U; ;. By Lemma

11



3.2, ¢1,c9, and c3 are acyclic 8-colorings of D. Using the fact that D; and
all vertices at distance at most 3 from D; are in U; 3, it is easy to see that
c3 is compatible with (4;,a;) at the boundary part D;.

After consecutively repeating such a change for every ¢ = 1,...,k, we
obtain an acyclic 8-coloring of D that is compatible with all color pairs
(Ai,a;),i=1,... k.

By Lemma 3.1 we may assume that no color occurs in all color pairs on
the selected walk from ({1,2,3,4,5}\ {co(vi)},co(yi)) to (Ai, a;). Therefore,
there is no path from D; to Uy whose every second vertex would have the
same color as its vertex in Uy. Since D is 17-wide, every path joining distinct
boundary parts must go through Ujp, and hence contains at least three colors.

O

A similar result holds for every n > 6: If D is sufficiently wide and
(Aj,a;) € Vay (i =1,...,k) are color pairs assigned to boundary parts of
D, then D has an acyclic n-coloring that is compatible with the given color
pairs (A;, a;) such that no bi-colored path is joining distinct boundary parts
of D.

Further, we shall need a simple lemma.

Lemma 3.4 Let G be graph. If G can be written as G = G1 U G2, where
G1 N Gq is a complete graph, then xac(G) = max{xac(G1), Xac(G2)}.

Proof. Let k = max{xac(G1), Xac(G2}. Since Gy and G are subgraphs of
G, we have xac(G) > k. On the other hand, having acyclic k-colorings of G
and G2, we may assume that they coincide on G; NG> since any two vertices
in the intersection are adjacent and hence have distinct colors under either
coloring. The same argument also shows that the combined k-coloring of G
is acyclic, 80 xac(G) < k. O

Now, we can prove an extension of Lemma 3.3 for MGbius bands.

Lemma 3.5 Let D be a generalized Mobius band with k boundary parts and
with new(D) > 6. Let (A;,a;) € Vig be color pairs fori=1,... k. Suppose
that D is 17-wide, and (3k + 11)-deep. Then the extended Mobius band D
admits an acyclic 8-coloring that is compatible with the color pairs (A;,a;),
1=1,...,k. Under this coloring, every path joining distinct boundary parts
of D has at least three distinct colors.

Proof. By Lemma 3.4 we may assume that every 3-cycle in D whose disk
interior contains no boundary part of D is a facial triangle. Let Cy be a

12



1-sided cycle in D whose distance from the boundary parts Dq,..., Dy of
D is at least 3k + 11. Let us cut the surface along Cy and triangulate the
resulting face by inserting a new vertex z. Additionally, we add a Mo6bius
band triangulation to every boundary part of D. This can be done in such
a way that the nonseparating edge-width of the resulting triangulation D’
of Euler genus k is larger than 6k 4+ 6. By Lemma 2.3 (applied with g = &,
w =3, and a = 1), there is a ¢, 4 < ¢ < 3k + 1, such that the g-canonical
cycles Q1,...,Qp for = are clean and are 3-apart. Let Q) be the (¢ + 1)-
canonical cycle that is the successor of Q;, and let QY be the repaired g-
canonical cycle (see Lemma 2.2). The generalized cylinder around z with
boundary parts QY ..., Qz corresponds to a 3-wide generalized Mdbius band
Dy C D that contains (Y in its interior, and Cj is at distance ¢ — 1 > 3
from QF, ..., Qp. Moreover, the boundary parts of Dy have distance at least
10 from the boundary parts of D. In the sequel, we shall consider exteriors
and interiors of cycles in D and Dy. To be consistent with our choices of
interiors made in D', we will always assume that the interior contains Cj
(and this will always be possible).

Let C be a shortest 1-sided cycle in Dy. Then C' is at distance at least
10 from the boundary parts of D. Now, we consider the graph H which is
obtained from D by contracting C to a single vertex z (and removing parallel
edges). The graph is planar. By triangulating possible nontriangular faces
around z, we obtain a 17-wide k-cylinder H whose boundary parts coincide
with those of D. By Lemma 3.3, H has an acyclic 8-coloring ¢ which is
compatible with the given color pairs (A;,a;), ¢ = 1,...,k. Moreover, the
proof of Lemma 3.3 shows that x and all vertices at distance at most 2 from
x are in the set Uy used in that proof and hence colored only with colors 1-5.
We may assume that ¢(z) = 5. To complete the proof, it suffices to see that
¢ can be extended to an acyclic 8-coloring of D. Note that D —V(C) C H,
so we have to show how to color C.

First, we color the vertices of C' with colors 5,6,7,8 so that any two
vertices that are at distance 2 on C' receive different colors. This is possible
since |C| > new(D) > 6. Moreover, such a coloring exists in which color 8
is used precisely twice, and the two vertices of color 8 are at distance three
on C. On the projective plane, any two noncontractible cycles intersect.
So, C' and Cj have a vertex y in common. Then we may assume that the
vertices of color 8 are at distance 1 and 2 from y. Since C' is induced and
since all neighbors of C are adjacent to x in H and therefore use only colors
1-4, this gives rise to an 8-coloring c¢; of D. However, it may happen that
this coloring is not acyclic. In the remaining part of the proof we will show
that ¢; can be changed (only on vertices adjacent to C) so that an acyclic
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8-coloring is obtained.

A 2-shortcut is a path uvw of length 2 in D, where v and w are vertices
on C and ¢;(u) = ¢;(w). This implies that the distance from u to w on
C is more than 2. Since C is a shortest noncontractible cycle in Dy and
since the noncontractible cycles satisfy the 3P-property, the vertex v is not
in Dy. Therefore, u and w are both on the same cycle Q! and by Lemma
2.2, v € V(Q)). Moreover, u and w are at distance ¢ — 1 > 3 from Cp. In
particular, ¢1 (u) # 8.

Suppose that R is a bi-colored cycle. Then R is composed of 2-shortcuts
at the same boundary part Q7. (This is obvious when R is (a, b)-colored and
a #5and b # 5. If a = 5, this follows from the fact that in D—V(C) C H—uz,
there is no (a,b)-colored path joining two vertices that are adjacent to C
in D since such a path would determine a bi-colored cycle in H.) Since R
is composed of 2-shortcuts, Lemma 2.2 implies that the only possibility for
R is that it winds once around QY. Thus, if we change the color of one of
its vertices v on @)} to color 8, R is no longer 2-colored. At distance 2 from
v there is at most one vertex colored 8 (the one whose distance from y is
2), so this change does not give rise to new bi-colored cycles. Moreover,
no bi-colored cycles at Q)7 are left. By repeating the same procedure for bi-
colored cycles at other boundary parts ;-’ , an acyclic 8-coloring with desired
properties is obtained. O

Lemma 3.5 can be proved without the restriction that new(G) > 6. The
only difference occurs when the cycle C' in the proof has length 5. In that
case the proof is easier, but alternative arguments (similar to those used in
[2]) are needed.

4 Acyclic colorings

In this section we give the proof of our main result, Theorem 1.2.

Theorem 4.1 Let G be a triangulation of a surface of Euler genus g such
that new(G) > 6. Suppose that the vertex set of G can be partitioned into
sets Uy, ..., U, and Vq,...,Vy such that the following holds:

(a) For every j = 1,...,r, the subgraph D;- induced on Uj is a 3-wide
generalized cylinder.

(b) For everyi =1,...,h, the induced subgraph D; on vertices V; is either
a 17-wide generalized cylinder or a 17-wide and d-deep generalized
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Mobius band, where d > 3k + 11 if k is the number of its boundary
parts.

(c) Every edge that is not in one of D},...,D. and D1,..., Dy connects a
boundary part of some D;- with a boundary part of some D;. For every
boundary part Q' of D;- there is a unique boundary part Q of some D;
that is adjacent to @', and Q U Q' together with the edges joining Q
and Q" form a 2-cylinder with boundary parts Q and Q'.

Then xac(G) < 8.

Proof. First, we form the extended generalized cylinders and Mobius bands

DY,...,D! and Dy,...,Dy. For a boundary part Q, we will denote by y(Q)
the vertex used to triangulate the face bounded by ). By Theorem 1.1,
every 13; has an acyclic 5-coloring with colors 1-5. Let ¢y be the union of
these colorings for 7 =1,...,r.

For every ¢, 1 < ¢ < h, and every boundary part Q@ of D;, we select a
color pair (4,a) € Vi as follows. Let Q" be the boundary part of D’ which
is adjacent to @ in G. If ¢o(y(Q')) = ¢, then we set A = {¢,6,7,8} and
a=t+1ift#banda=1ift =5.

By Lemma 3.3 and Lemma 3.5, every D; (1 < i < h) has an acyclic
8-coloring ¢; that is compatible with the color pairs that were chosen for
its boundary parts. The combination of these colorings together with cg is
clearly an 8-coloring of G. However, it may not be acyclic.

Suppose that there is a bi-colored cycle R. Since every coloring ¢; is
acyclic, R must pass from some boundary part @' of D} to the neighboring
boundary part @ of some D;, where 1 < i < h. Let (A,a) be the corre-
sponding color pair. Since every path in D; joining distinct boundary parts
uses at least 3 colors, 2 must return back to D’ through Q. Let o and o
be the colors that appear on R, where o appears on () and o appears on
Q'. If R uses an edge in D;, then @ = a. However, in such a case, the
bi-colored segment of R in D; joining two vertices of () would give rise to
an (o, @')-colored cycle in D;. Similarly we see that R cannot have an edge
in Do.

Consequently, R is a cycle that alternates between @ and @Q'. We may
assume that ¢ = 5 and ¢ = 1 (as introduced above), so that the color pair
at @ is (5678,1). We may assume that o # 8 and o' # 2. Let us consider
consecutive vertices of R on (). There is at least one pair of them which is
not connected by an (a,8)-colored path in D;. Otherwise, the sum of all
such paths would contain an («, 8)-colored cycle in D;. Let v and w be such
pair of vertices, and let v be their common neighbor on R. Now we change
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the color of v to 8, and change the color 8 to 2 on all vertices on ) and those
that are adjacent to ). Clearly, this defines a new 8-coloring of G, and we
claim that there are no bi-colored cycles at @) and Q.

If there was such a cycle R’, it would use one of the vertices whose
color has been changed. This vertex cannot be v, since color 8 is not used
at distance 2 from v. Hence, this would be a vertex on () or one of its
neighbors that was recolored from 8 to 2. Also, R’ cannot be contained
in D; since it would be bi-colored also before. (Note that the new vertices
colored 2 cannot be at distance 2 from a vertex in D; whose color was 2
already before since ¢; is compatible with (5678,1) at ) and hence the color
2 does not appear at distance at most 3 from @Q.) Hence the colors on R’
are either 2 and « or 2 and «'. If the colors are 2 and «, then the color «
must appear in D}, so @ = 5. If the colors are 2 and o, then o' must appear
in D; adjacent to @, so o is either 1 or 5. It is easy to see that this leads
to a contradiction since the segment of R’ in D; (if the colors on R’ are 2
and 1) or its segment in Dj (if the colors are 2 and 5) would give rise to a

bi-colored cycle in D; or in D;-, respectively. This shows that R’ does not
exist.

If there are other bi-colored cycles, they are located at other boundary
parts. We repeat the same procedure with them, and after a finite number
of steps we end up with an acyclic 8-coloring of G. O

Finally, we can conclude with the proof of the main result.

Proof. (Of Theorem 1.2). Let g be the Euler genus of S and w = 4(3g +
14)g (2913 4 g). We may assume that G is a triangulation since every graph
H embedded in S is contained (as a subgraph) in a triangulation whose
nonseparating edge-width is the same as that of H. The acyclic chromatic
number of graphs in the projective plane is at most 7 [2], so we may assume
that ¢ > 2. By Lemma 3.4, we may assume that every contractible 3-cycle
in G is a facial triangle. By Corollary 2.5, G has a decomposition as used as
the assumption in Theorem 4.1, where the width and depth of all generalized
cylinders and Mobius bands is at least 3g + 11. Under this decomposition,
every generalized Mobius band has at most £ = g — 1 boundary parts, so its
depth is at least 3k +11. The width of the generalized cylinders and Mobius
bands is also at least 3g+ 11 > 17. Therefore, we can apply Theorem 4.1 to
conclude that xac(G) < 8. O
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