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A
y
li
 
olorings of lo
ally planar graphsBojan Mohar�Department of Mathemati
sUniversity of Ljubljana1000 Ljubljana, Sloveniabojan.mohar�uni-lj.siAbstra
tIt is proved that graphs embedded in a surfa
e with large nonsepa-rating edge-width 
an be a
y
li
ally 8-
olored. The 
ondition on largenonseparating edge-width is expressed in terms of non-null-homologous
ir
uits and is a weaker requirement than asking for large edge-width(whi
h is based on homotopy).1 Introdu
tionAll graphs in this paper are simple. We follow standard terminology. Forterms related to graphs embedded in surfa
es we refer to [11℄. All em-beddings of graphs in surfa
es are assumed to be 2-
ell embeddings. Asurfa
e is assumed to be 
losed (i.e., 
ompa
t and without boundary) unlessstated otherwise. The Euler genus of a surfa
e S is the nonnegative integerg = 2� �(S), where �(S) is the Euler 
hara
teristi
 of S.Let 
 be a 
oloring of verti
es of G. If C is a 
y
le in G on whi
h onlytwo 
olors a and b appear, then we say that C is bi-
olored or (a; b)-
oloredif we need a spe
i�
 referen
e to its 
olors. A 
oloring of a graph G is a
y
li
if there are no bi-
olored 
y
les. The a
y
li
 
hromati
 number �a
(G) of Gis the minimum integer k su
h that G admits an a
y
li
 k-
oloring.Gr�unbaum [6℄ proved that every planar graph has an a
y
li
 9-
oloringand 
onje
tured that all planar graphs have a
y
li
 5-
olorings, mentioningthat this would imply several known results in point-arbori
ity. This resultwas improved, little by little, in a series of papers (Mit
hem [10℄, Albertson�Supported in part by the Ministry of Edu
ation, S
ien
e, and Sport of Slovenia,Resear
h Program P0{0507{0101. 1



and Berman [1℄, Kosto
hka [8℄, Borodin [3℄), 
ulminating with the followingultimate result:Theorem 1.1 (Borodin) Every planar graph has an a
y
li
 5-
oloring.This result is best possible sin
e double wheels with at least six verti
es(the simplest of whi
h is the o
tahedron) require 5 
olors in any a
y
li

oloring, as observed already in [6℄. Wegner [13℄ 
onstru
ted a planar graphin whi
h for every 4-
oloring, the union of any two 
olor 
lasses indu
es asubgraph with a 
y
le. Kosto
hka and Melnikov [9℄ 
onstru
ted a planargraph G that is triangle-free (and hen
e �(G) � 3) su
h that �a
(G) = 5.For surfa
es other than the plane, Borodin (see [7℄) 
onje
tured thatthe maximum a
y
li
 
hromati
 number equals the maximum 
hromati
number of graphs on that surfa
e. Alon, Mohar, and Sanders [2℄ provedthat the a
y
li
 
hromati
 number of an arbitrary surfa
e with Euler genusg is at most O(g4=7). They also proved that this is nearly tight; for every gthere are graphs with Euler genus g whose a
y
li
 
hromati
 number is atleast 
(g4=7=(log g)1=7). Therefore, the 
onje
ture of Borodin is false for allsurfa
es with large Euler genus (and may very well be false for all surfa
es).The nonseparating edge-width, new(G), is the length of a shortest surfa
enonseparating 
y
le in an embedded graph G. This notion is introdu
ed anddis
ussed in more details in Se
tion 2. The main result of this paper is:Theorem 1.2 For every surfa
e S there is a 
onstant w su
h that everygraph G embedded in S with new(G) � w is a
y
li
ally 8-
olorable.The proof is given in Se
tion 4. The 
onstant w, depending on the Eulergenus g of the surfa
e, is shown to be of order O(g32g). This is not bestpossible but our main priority is to keep the proofs as short and elementaryas possible. On the other hand, there are graphs with arbitrarily large girthand arbitrarily large 
hromati
 number. Sin
e the nonseparating edge-width(in any embedding) 
annot be smaller than the girth, the number w inTheorem 1.2 must depend on the genus of S.It is likely that the 8-
oloring bound of Theorem 1.2 is not best possible.We believe that the best bound may be 6 or even 5, possibly with a di�erentanswer for nonorientable and orientable surfa
es. We have no 
lue whi
hone of these possibilities would be the right one to 
onje
ture.
2



2 Lo
ally planar graphsThere are two widely re
ognized notions of \lo
al planarity" { that of largeedge-width and that of large fa
e-width, see [11℄. For 
oloring problems,the natural one is the large edge-width 
ondition, meaning that all non-
ontra
tible 
y
les of an embedded graph are large. It is known (see, forexample, [11℄ and [4℄) that graphs embedded in a �xed surfa
e with suÆ-
iently large edge-width have similar 
hromati
 properties as planar graphs.For example, Thomassen [12℄ proved that graphs on a �xed surfa
e, embed-ded with suÆ
iently large edge-width are 5-
olorable.In this paper we show that lo
ally planar graphs have bounded a
y
li

hromati
 number. We introdu
e a weaker lo
al planarity 
ondition whi
his based on homology instead of homotopy. It turns out that this notionis the right one in relation to graph 
oloring problems. It has been usedpreviously only in the paper by Fisk and Mohar [5℄.Let G be a graph that is �-embedded in some surfa
e S. An Eule-rian subgraph C of G (possibly dis
onne
ted) is surfa
e separating (or null-homologous) if there is a set F of �-fa
es su
h that the edges of C arepre
isely those edges of the graph whi
h o

ur pre
isely on
e on the bound-aries of fa
es in the set F . The set of verti
es, edges and fa
es in F forma graph embedded in a bordered surfa
e (where boundary 
omponents areallowed to tou
h) whose boundary is C. We denote this surfa
e by Int(C)and 
all it the interior of C. The submap 
onsisting of fa
es (and their in
i-dent verti
es and edges) that are not in F is also a bordered surfa
e whoseboundary is C. It is denoted by Ext(C) and 
alled the exterior of C. Whenspeaking of interiors and exteriors, we will usually have a vertex x =2 V (C),and then the interior will always be sele
ted so that x 2 Int(C).If C and D are subgraphs of G, then their sum C +D is the subgraphwhose edge-set is the symmetri
 di�eren
e of E(C) and E(D). If C and Dare surfa
e separating Eulerian subgraphs, then also their sum is a surfa
eseparating Eulerian subgraph. We will refer to this fa
t as the 3P-property ,the name 
oming from its relation to the 3-path-property (see [11℄). The3P-property implies that every surfa
e separating Eulerian subgraph of Gwith the minimum number of edges is an indu
ed 
y
le of G.The nonseparating edge-width of a �-embedded graph G, denoted bynew(G;�) (or just new(G) if the embedding � is 
lear from the 
ontext), isthe length of a shortest surfa
e nonseparating 
y
le in G. If there are nosurfa
e nonseparating 
y
les, then we set new(G;�) = 1; this happens ifand only if the embedding has genus 0. Clearly, new(G;�) is always greateror equal to the edge-width of the embedding.3



Next, we prove that graphs with large nonseparating edge-width havesome properties that are known for graphs with large edge-width.Lemma 2.1 Suppose that G is a triangulation of a surfa
e of Euler genusg � 1, x is a vertex of G, and q � 12new(G)� 1 is a positive integer.(a) If C is an Eulerian graph in G whose verti
es are all at distan
e atmost q form x, then C is surfa
e separating.(b) There is a uniquely determined 
olle
tion of edge-disjoint surfa
e sepa-rating 
y
les B1; : : : ; Bp (1 � p � g) whose verti
es are all at distan
eq from x su
h that x 2 Int(Bi), and su
h that Ext(Bi) is not a disk,for i = 1; : : : ; p. Any two of these 
y
les have at most one vertex in
ommon, and Ext(Bi) \ Ext(Bj) = Bi \Bj for 1 � i < j � p. More-over, the indu
ed embedding of \pi=1Int(Bi) has genus 0. Under thisembedding all 
y
les B1; : : : ; Bp are fa
ial.Proof. (a) For every vertex v 2 V (C), let Pv be a shortest path in Gfrom v to x. If e = uv 2 E(C), let We be the 
losed walk in G 
onsistingof e, Pu, and Pv. Clearly, the length of We is at most 2q + 1 < new(G),hen
e the Eulerian graph Ce 
orresponding to We is surfa
e separating. By
onse
utively applying the 3P-property, we 
on
lude that the sum of all Ce(e 2 E(C)) is also surfa
e separating. Sin
e C is Eulerian, this sum is easilyseen to be equal to C. This 
ompletes the proof.(b) Let F be the 
olle
tion of all fa
es of G that 
ontain at least onevertex whose distan
e from x is less than q. Sin
e G is a triangulation, theboundary B of F 
onsists only of edges whose endverti
es are at distan
e qfrom x. Clearly, B is an Eulerian graph. Let C be a 
y
le in B. By (a), Cis surfa
e separating. We de�ne its interior so that x 2 Int(C). If Ext(C)is a disk, add all fa
es in Ext(C) into F and repeat the argument with thenew set F . Let us observe that after su
h a 
hange, pre
isely the edges ofC disappear from the boundary of F . By the 3P-property, every 
y
le inthe extended set F is still surfa
e separating. Therefore, the boundary ofF 
annot vanish (otherwise, all 
y
les in G would be surfa
e separating andthis would 
ontradi
t the assumption that g � 1).We end up with a set F whose nonempty boundary B has the propertythat every one of its 
y
les has a nondisk exterior. It is easy to see thatif C is a 
y
le in B, then its exterior 
annot 
ontain a fa
e that is in F .This implies that B has a unique de
omposition into edge-disjoint 
y
lesB1; : : : ; Bp whose exteriors are pairwise disjoint, ex
ept possibly for one4



vertex that a pair of 
y
les may have in 
ommon. By the additivity of theEuler genus, we 
on
lude that p � g.We further transform the 
y
les B1; : : : ; Bp in Lemma 2.1(b). Supposethat Bi (1 � i � p) has a 
hord e. Let D1;D2 be the two 
y
les in Bi + edistin
t from Bi. By Lemma 2.1(a), these 
y
les are surfa
e separating. Ifone of their exteriors, say Ext(D2), is a disk, then we repla
e Bi with theother 
y
le D1 and 
ontinue the redu
tion with the new 
y
le until everyremaining 
hord gives rise only to nondisk exteriors. It is easy to see that theresulting 
olle
tion of 
y
les, Q1; : : : ; Qp is uniquely determined (the 
y
lesdo not depend on the order used when pro
essing the 
hords). They are
alled the q-
anoni
al 
y
les for x in G, and it is 
lear that they have thesame properties as stated in Lemma 2.1(b) for the 
y
les B1; : : : ; Bp. Let usremark that this generalizes the de�nition of the q-
anoni
al 
y
le in [12℄.Every (q + 1)-
anoni
al 
y
le Q0 is in the exterior of some q-
anoni
al
y
le Q. We say that Q0 is a su

essor of Q. A q-
anoni
al 
y
le is 
leanif it has pre
isely one su

essor. In parti
ular, a 
lean 
anoni
al 
y
le is anindu
ed 
y
le.Suppose that Q is a 
lean q-
anoni
al 
y
le for x and let Q0 be its su
-
essor. Sin
e Q0 is (q + 1)-
anoni
al, every vertex v0 of Q0 has at least onein
ident edge whose other endvertex is in Q. Let K = Ext(Q) \ Int(Q0) bethe 
ylinder bounded by Q and Q0. If K has no separating triangles, thenthe above mentioned property of verti
es of Q0 implies that K � V (Q0) is2-
onne
ted. The boundary of the fa
e obtained after deleting Q0 is there-fore bounded by a 
y
le Q00, whi
h we 
all the repaired q-
anoni
al 
y
le
orresponding to Q. We will make use of su
h 
y
les mainly be
ause of thefollowing property:Lemma 2.2 Suppose that Q is a 
lean q-
anoni
al 
y
le for x in a triangu-lation G. Let Q0 be the su

essor of Q. Suppose that there are no separatingtriangles in the 
ylinder K = Ext(Q) \ Int(Q0). Then there exists the re-paired q-
anoni
al 
y
le Q00 � K �Q0, and in the 
ylinder between Q00 andQ0 there are only edges joining Q00 and Q0.A k-
ylinder (or a generalized 
ylinder) is a 
onne
ted graph D embed-ded in the plane with k distinguished fa
ial walks D1; : : : ;Dk, 
alled theboundary parts of D, su
h that all fa
es of D distin
t from the boundaryparts are triangles. If every two distin
t boundary parts are at distan
e atleast w in D, then D is said to be w-wide.5



Lemma 2.1 shows that after 
utting the surfa
e along the q-
anoni
al
y
les Q1; : : : ; Qp (and removing their exteriors), a generalized p-
ylinder isobtained. We need slightly more.Lemma 2.3 Let G be a triangulation of Euler genus g � 1 and let x 2V (G). Let w � 1 and a � 0 be integers, and let k = d12we+1. Suppose thatnew(G) � 2kg+2a+4. Then there is an integer q, k+a � q � kg+a, su
hthat the q-
anoni
al 
y
les for x are all 
lean and at distan
e at least w fromea
h other. In parti
ular, the interse
tion of the interiors of the q-
anoni
al
y
les is a w-wide generalized 
ylinder 
ontaining x.Proof. By Lemma 2.1, the q-
anoni
al 
y
les exist for every q � kg+a+1,and let us denote their number by p(q). By Lemma 2.1(b), p(q) � g. Clearly,every (q� 1)-
anoni
al 
y
le has at least one su

essor, hen
e p(1) � p(2) �� � � � p(kg + a + 1). If two of the q-
anoni
al 
y
les are at distan
e lessthan w, then they are su

essors of a 
ommon (q � k + 1)-
anoni
al 
y
le(if q � k; and are su

essors of a 
ommon 1-
anoni
al 
y
le if q < k), hen
ep(q) � p(q � k + 1) + 1. Similarly, if some q-
anoni
al 
y
le is not 
lean,then p(q + 1) � p(q) + 1 � p(q � k + 1) + 1. If the 
on
lusion of the lemmawould not hold, then this would imply that2 � p(k + a+ 1) � p(2k + a+ 1)� 1 � � � � � p(gk + a+ 1)� (g � 1):However, this would show that p(kg + a+ 1) > g, whi
h is a 
ontradi
tion.If C1; : : : ; Ck is a 
olle
tion of pairwise disjoint 
y
les in an embeddedgraph G, then we say that these 
y
les form a planarizing 
olle
tion of 
y
lesif 
utting along all of C1; : : : ; Ck results in a 
onne
ted graph G0 embeddedin the sphere. Sin
e 
utting along a surfa
e nonseparating 
y
le Ci redu
esthe Euler genus by 1 (if Ci is 1-sided) or 2 (if Ci is 2-sided), it is 
lear that12g � k � g, where g is the Euler genus of the embedding of G.Let G0 be the embedded graph obtained after 
utting the surfa
e alongdisjoint 
y
les C1; : : : ; Ck. Every twosided 
y
le Ci gives rise to two fa
ial
y
les C 0i; C 00i in G0, 
alled 
opies of Ci. Similarly, a onesided 
y
le Ci givesrise to a single fa
ial 
y
le C 0i inG0 whi
h doubly 
overs Ci and is also referredto as the 
opy of Ci. We say that C1; : : : ; Ck are d-apart if the distan
e in G0between 
opies of 
y
les C1; : : : ; Ck is at least d. Thomassen [12℄ proved thatevery triangulation with large edge-width 
ontains a planarizing 
olle
tionof 
y
les that are far apart. We prove an extension of this result to graphswith large nonseparating edge-width.6



Theorem 2.4 If d � 1 and g � 1 are integers and G is a triangulation ofa surfa
e with Euler genus g and with new(G) � (2d + 3)(2g+3 + g), thenG 
ontains a planarizing 
olle
tion of indu
ed surfa
e nonseparating 
y
lesC1; : : : ; Ck that are d-apart.Proof. The proof is by indu
tion on g. Let C be a shortest non
ontra
tible
y
le in G. If jCj � (d + 1)2g+3, then the edge-width of G is at least(d+1)2g+3, and the required planarizing 
y
les exist as shown by Thomassen[12℄. (Thomassen's proof, see also [11, Theorem 5.11.1℄, is given only fororientable surfa
es, but it 
an be extended to nonorientable ones.) Hen
e,we may assume that jCj < (d+ 1)2g+3, so that C is surfa
e separating andhen
e g � 2. For i = 1; 2, let Si be the two surfa
es obtained after 
uttingG along C, let Gi be the 
orresponding graphs and Di be the 
opy of C inGi. Sin
e C is non
ontra
tible, the Euler genus gi of Si is smaller than g.We add a new vertex xi to Gi and join it to all verti
es on Di, so that weget a new triangulation G0i of Si.Let R be a shortest surfa
e nonseparating 
y
le in G0i. If xi =2 V (R), letR0 = R; otherwise, let R0 be the 
losed walk obtained from R by repla
ingthe two edges in
ident with xi by the shorter of the two segments on Dijoining the ends of those edges on Di. By the 3P-property, R is an indu
ed
y
le. Therefore, R0 is also a 
y
le in G. By the 3P-property, R0 is surfa
enonseparating in Gi and hen
e also in G. Therefore,new(G0i) = jRj � jR0j � 12 jCj+ 2 � new(G)� 12(d+ 1)2g+3 + 2: (1)Next, we apply Lemma 2.3 (with w = d and a = 0). Sin
e new(G0i) �(d + 3)gi + 4 (whi
h follows from (1)), there is a q, k � q � kg, wherek = d12de + 1, su
h that the q-
anoni
al 
y
les B1; : : : ; Bp for xi are 
leanand at least d-apart. For j = 1; : : : ; p, let Mj = Ext(Bj), and let M 0j bethe triangulation obtained from Mj by adding a new vertex yj joined to allverti
es of Bj.Let R be a shortest surfa
e nonseparating 
y
le in M 0j . If yj =2 V (R),let R0 = R; otherwise, 
onsider a 
losed walk that is obtained from R byrepla
ing the two edges in
ident with yj by paths in G0i of length q to xi. Bythe 3P-property, this walk 
ontains a surfa
e nonseparating 
y
le R0. Using(1), we estimate:new(M 0j) = jRj � jR0j � 2q + 2 � new(G0i)� 2kg + 2� (2d+ 3)(2g+3 + g) � (d+ 1)2g+2 � (d+ 3)g + 4 (2)� (2(d + 1) + 3)(2g+2 + g � 1):7



By the indu
tion hypothesis, M 0j has a set of indu
ed planarizing 
y
lesthat are (d + 1)-apart. If one of these 
y
les 
ontains yj, then we repla
eits edges in
ident with yj by a segment of Bj and obtain another 
olle
tionof planarizing 
y
les that are d-apart. If the new 
y
le C has a 
hord e, it
an be repla
ed by one of the other two 
y
les of C + e. This follows fromthe 3P-property of surfa
e nonseparating 
y
les in the surfa
e obtained after
utting along all 
y
les in the planarizing 
olle
tion distin
t from C. Thus,we 
an a
hieve that the planarizing 
y
les are indu
ed.It is easy to see that the union of the planarizing 
olle
tions of 
y
les forG1 and for G2 is a planarizing 
olle
tion for G and, 
learly, its members ared-apart.It is worth mentioning that the above proof is essentially self-
ontainedsin
e the appli
ation of [12℄ at its beginning 
an be repla
ed by nearly thesame arguments, as used when C was surfa
e separating, also in the 
asewhen it was not.A generalized M�obius band is a 
onne
ted graph D embedded in theproje
tive plane with p � 1 distinguished fa
ial walks C1; : : : ; Cp, 
alled theboundary parts of D, su
h that all fa
es in D distin
t from C1; : : : ; Cp aretriangles. If the distan
e between any two boundary parts of D is at leastw, then D is said to be w-wide. If D has a 1-sided 
y
le whose distan
efrom C1; : : : ; Cp is at least d, then D is said to be d-deep.Corollary 2.5 Let w and g be positive integers and let G be a triangulationof Euler genus g su
h that new(G) � 4(w+3)g(2g+3+g) and su
h that every
ontra
tible 3-
y
le of G is a fa
ial triangle. Then the vertex set of G 
an bepartitioned into sets U1; : : : ; Ur and V1; : : : ; Vh su
h that the following holds:(a) For every j = 1; : : : ; r, the subgraph D0j indu
ed on Uj is a w-widegeneralized 
ylinder with at most g boundary parts.(b) For every i = 1; : : : ; h, the indu
ed subgraph Di on verti
es Vi is eithera w-wide generalized 
ylinder with at most 2g � 2 boundary parts,or a w-wide and w-deep generalized M�obius band with at most g � 1boundary parts.(
) Every edge that is not in one of D01; : : : ;D0r and not in D1; : : : ;Dh
onne
ts a boundary part of some D0j with a boundary part of someDi. For every boundary part Q0 of D0j, there is a unique boundary partQ of some Di that is adja
ent to Q0, and Q[Q0 together with the edgesjoining Q and Q0 form a 2-
ylinder with boundary parts Q and Q0.8



Proof. The 
ase when g = 1 has to be done separately and is left to thereader. So we assume that g � 2. By Theorem 2.4, G has a 
olle
tion ofplanarizing 
y
les C1; : : : ; Ch that are d-apart, where d = 2(w + 3)g � 2 =2(w+3)(g� 1)+2w+1. Let us 
ut the surfa
e along the planarizing 
y
lesto obtain a d-wide g-
ylinder. If we triangulate one of its boundary partsby adding a new vertex x and paste a very wide M�obius bands in all otherboundary parts, we obtain a triangulation H of Euler genus g � 1 whosenonseparating edge-width is as large as we want. By Lemma 2.3, there isan integer q, k+ l � q � k(g� 1)+ l, where k = d12we+1 and l = b12w
� 1,su
h that the q-
anoni
al 
y
les for x are 
lean and w-apart. By Lemma 2.2,there exist the repaired q-
anoni
al 
y
les. Let us 
onsider the generalized
ylinder 
ontaining x whose boundary parts are the repaired q-
anoni
al
y
les for x.If Ci is 2-sided, let D(Ci) be the union of su
h generalized 
ylinders forboth 
opies of Ci. Clearly, Di is a w-wide generalized 
ylinder in G. If Ci is1-sided, the generalized 
ylinder for its 
opy determines a w-wide and w-deepgeneralized M�obius band D(Ci) in G (sin
e q � k+ l = w). Finally, 
onsiderthe (q+1)-
anoni
al 
y
les for x, and let Q0 be the family of all su
h 
y
lestaken for all 
opies of the 
y
les Ci, i = 1; : : : ; h. (Of 
ourse, di�erent 
opiesof the 
y
les Ci may have di�erent values of Q.) Sin
e Ci � D(Ci) andC1; : : : ; Ch are planarizing, Q is the boundary of one or more generalized
ylinders D01; : : : ;D0r that are disjoint from D(C1); : : : ;D(Ch) and satisfy(
). Sin
e 2(q + 1) + w � d, every D0j is w-wide.By Lemma 2.1(b), the number of q-
anoni
al 
y
les for x in H is at mostthe Euler genus of H whi
h is equal to g � 1. This implies that D(Ci) hasat most g � 1 boundary parts if Ci is 1-sided, and has at most 2(g � 1)boundary parts if it is 2-sided. Every D0j and every generalized 
ylinder inH 
orresponding to a 
opy of Ci have at most one adja
ent pair of boundaryparts. Sin
e the number of 
opies of 
y
les C1; : : : ; Ch is equal to g, D0j hasat most g boundary parts. This 
ompletes the proof.3 Permuting 
olors in a generalized 
ylinderLet En = f1; : : : ; ng. Let Vk;n be the set of all pairs (A; a) where A is ak-subset of En and a 2 En n A. Let �k;n be the graph whose vertex set isVk;n and two verti
es (A; a) and (B; b) are adja
ent if a =2 B and b =2 A.Lemma 3.1 Let (A; a) and (B; b) be verti
es of �4;8. Then their distan
ein �4;8 is at most 3, and is equal to 3 if and only if A\B = ;. There is a walk9



from (A; a) to (B; b) of length 3, (A; a) = (A0; a0); (A1; a1); (A2; a2); (A3; a3) =(B; b), su
h that for every 
 2 E8, there exists an i 2 f0; 1; 2; 3g for whi
h
 =2 Ai [ faig.Proof. We may assume that (A; a) = (1234; 5) (where we use the shortnotation 1234 for the set f1; 2; 3; 4g). Let r = jB n (A [ fag)j. We willexhibit the 
olor pairs (Ai; ai) depending on the value of r; in ea
h 
ase, onlynonisomorphi
 
ases will be treated. The 
laim that the distan
e between(A; a) and (B; b) is 3 if and only if A \B = ; is left as an exer
ise.(r = 0): In this 
ase we may assume that (B; b) = (123x; y), wherexy 2 f45; 46; 54; 56g. Let z be the element in f4; 5; 6g n fx; yg. The requiredwalk is: (1234; 5) � (1267; 8) � (37xz; 8) � (123x; y):(r = 1): In this 
ase we may assume that (B; b) = (126x; y), wherexy 2 f34; 35; 37; 53; 57g. Let z; w be the elements of f3; 4; 5; 7g n fx; yg. Therequired walk is:(1234; 5) � (1267; 8) � (6xzw; 8) � (126x; y):(r = 2): In this 
ase we may assume that (B; b) = (167x; y), wherexy 2 f23; 25; 28; 52; 58g. Let z be an element of the set f2; 5; 8g that isdistin
t from x and y. The required walk is:(1234; 5) � (3467; 8) � (167x; z) � (167x; y):(r = 3): In this 
ase we may assume that (B; b) = (567x; y), wherexy 2 f12; 15; 51g. The required walk is:(1234; 5) � (3678; 5) � (3678; 2) � (678x; y):Let (A; a) and (B; b) be adja
ent 
olor pairs in �4;8 and let t = jA\Bj.Let us enumerate the elements of A and B, respe
tively, as a1; : : : ; a4 andb1; : : : ; b4 su
h that ai = bi for i = 1; : : : ; t. Let � be the permutation of E8whi
h inter
hanges aj with bj for j = t+ 1; : : : ; 4, inter
hanges a and b andleaves all other 
olors �xed. Every su
h permutation is said to be 
ompatiblewith the (dire
ted) edge (A; a)(B; b) of �4;8.Lemma 3.2 Suppose that 
 is an a
y
li
 8-
oloring of a graph D. Let(A; a) and (B; b) be adja
ent 
olor pairs of �4;8 and let � be a 
ompatible10



permutation. Let U � V (D) be a set of verti
es of D su
h that their 
olorsand the 
olors of all verti
es at distan
e at most two from U are all in A[fag.Let 
0 : V (D) ! E8 be de�ned by 
0(v) = 
(v) if v =2 U and 
0(v) = �(
(v))if v 2 U . Then 
0 is an a
y
li
 8-
oloring of D.Proof. Let us �rst verify that 
0 is a 
oloring. If not, then 
0(u) = 
0(v) forsome adja
ent pair u; v of verti
es. Without loss of generality, u 2 U andv =2 U . Sin
e v is a neighbor of U , 
0(v) = 
(v) 2 A[fag. Sin
e 
0(u) 6= 
(u),the 
hanged 
olor 
0(u) is not in A [ fag. This 
ontradi
ts the assumptionthat 
0(u) = 
0(v).To prove that 
0 is a
y
li
, suppose that C is a bi-
olored 
y
le under
0. Then C 
ontains a vertex u su
h that 
0(u) 6= 
(u), hen
e u 2 U and
0(u) =2 A[fag. This shows that verti
es at distan
e two from u whose 
oloris equal to 
0(u) are also in U . Consequently, every se
ond vertex on C is inU , and hen
e C is also bi-
olored under 
, a 
ontradi
tion.Let D be a generalized 
ylinder (or a generalized M�obius band) withk boundary parts D1; : : : ; Dk. The extended k-
ylinder (or the extendedM�obius band ~D is the triangulation that is obtained from D by adding anew vertex yi and joining it to all verti
es of Di, for every i = 1; : : : ; k. A
oloring 
 of ~D is 
ompatible with 
olor pairs (Ai; ai) 2 V4;8 (i = 1; : : : ; k) if
(yi) = ai and all 
olors used on Di and on verti
es at distan
e at most 3from Di are in Ai [ faig, i = 1; : : : ; k.Lemma 3.3 Suppose that (Ai; ai) 2 V4;8 are 
olor pairs for i = 1; : : : ; k. IfD is a 17-wide k-
ylinder, then the extended 
ylinder ~D admits an a
y
li
 8-
oloring that is 
ompatible with the 
olor pairs (Ai; ai), i = 1; : : : ; k. Underthis 
oloring, no bi-
olored path is joining distin
t boundary parts of D.Proof. By Theorem 1.1, there is an a
y
li
 5-
oloring 
0 of ~D using 
olors1{5. Let U0 be the set of verti
es of D whose distan
e from the boundaryparts is at least 8. For i = 1; : : : ; k and j = 1; 2; 3, let Ui;j be the set of allverti
es of D whose distan
e from U0 is at least 2j � 1 and whose distan
efrom the ith boundary part Di is at most 7. Sin
e D is 17-wide, the sets U0and Ui;j partition V (D).Let us �x an i 2 f1; : : : ; kg. By Lemma 3.1, there is a walk of length 3from (f1; 2; 3; 4; 5gnf
0(yi)g; 
0(yi)) to (Ai; ai) in �4;8. For j = 1; 2; 3, let �jbe a permutation of E8 that is 
ompatible with the jth edge on this walk.Finally, for j = 1; 2; 3, let the 
oloring 
j be obtained from 
j�1 by setting
j(v) = 
j�1(v) if v =2 Ui;j, and 
j(v) = �j(
j�1(v)) if v 2 Ui;j. By Lemma11



3.2, 
1; 
2, and 
3 are a
y
li
 8-
olorings of D. Using the fa
t that Di andall verti
es at distan
e at most 3 from Di are in Ui;3, it is easy to see that
3 is 
ompatible with (Ai; ai) at the boundary part Di.After 
onse
utively repeating su
h a 
hange for every i = 1; : : : ; k, weobtain an a
y
li
 8-
oloring of D that is 
ompatible with all 
olor pairs(Ai; ai), i = 1; : : : ; k.By Lemma 3.1 we may assume that no 
olor o

urs in all 
olor pairs onthe sele
ted walk from (f1; 2; 3; 4; 5gnf
0(yi)g; 
0(yi)) to (Ai; ai). Therefore,there is no path from Di to U0 whose every se
ond vertex would have thesame 
olor as its vertex in U0. Sin
eD is 17-wide, every path joining distin
tboundary parts must go through U0, and hen
e 
ontains at least three 
olors.A similar result holds for every n � 6: If D is suÆ
iently wide and(Ai; ai) 2 V4;n (i = 1; : : : ; k) are 
olor pairs assigned to boundary parts ofD, then ~D has an a
y
li
 n-
oloring that is 
ompatible with the given 
olorpairs (Ai; ai) su
h that no bi-
olored path is joining distin
t boundary partsof D.Further, we shall need a simple lemma.Lemma 3.4 Let G be graph. If G 
an be written as G = G1 [ G2, whereG1 \G2 is a 
omplete graph, then �a
(G) = maxf�a
(G1); �a
(G2)g.Proof. Let k = maxf�a
(G1); �a
(G2g. Sin
e G1 and G2 are subgraphs ofG, we have �a
(G) � k. On the other hand, having a
y
li
 k-
olorings of G1and G2, we may assume that they 
oin
ide on G1\G2 sin
e any two verti
esin the interse
tion are adja
ent and hen
e have distin
t 
olors under either
oloring. The same argument also shows that the 
ombined k-
oloring of Gis a
y
li
, so �a
(G) � k.Now, we 
an prove an extension of Lemma 3.3 for M�obius bands.Lemma 3.5 Let D be a generalized M�obius band with k boundary parts andwith new(D) � 6. Let (Ai; ai) 2 V4;8 be 
olor pairs for i = 1; : : : ; k. Supposethat D is 17-wide, and (3k + 11)-deep. Then the extended M�obius band ~Dadmits an a
y
li
 8-
oloring that is 
ompatible with the 
olor pairs (Ai; ai),i = 1; : : : ; k. Under this 
oloring, every path joining distin
t boundary partsof D has at least three distin
t 
olors.Proof. By Lemma 3.4 we may assume that every 3-
y
le in D whose diskinterior 
ontains no boundary part of D is a fa
ial triangle. Let C0 be a12



1-sided 
y
le in D whose distan
e from the boundary parts D1; : : : ;Dk ofD is at least 3k + 11. Let us 
ut the surfa
e along C0 and triangulate theresulting fa
e by inserting a new vertex x. Additionally, we add a M�obiusband triangulation to every boundary part of D. This 
an be done in su
ha way that the nonseparating edge-width of the resulting triangulation D0of Euler genus k is larger than 6k + 6. By Lemma 2.3 (applied with g = k,w = 3, and a = 1), there is a q, 4 � q � 3k + 1, su
h that the q-
anoni
al
y
les Q1; : : : ; Qp for x are 
lean and are 3-apart. Let Q0i be the (q + 1)-
anoni
al 
y
le that is the su

essor of Qi, and let Q00i be the repaired q-
anoni
al 
y
le (see Lemma 2.2). The generalized 
ylinder around x withboundary parts Q001; : : : ; Q00p 
orresponds to a 3-wide generalized M�obius bandD0 � D that 
ontains C0 in its interior, and C0 is at distan
e q � 1 � 3from Q001; : : : ; Q00p. Moreover, the boundary parts of D0 have distan
e at least10 from the boundary parts of D. In the sequel, we shall 
onsider exteriorsand interiors of 
y
les in D and D0. To be 
onsistent with our 
hoi
es ofinteriors made in D0, we will always assume that the interior 
ontains C0(and this will always be possible).Let C be a shortest 1-sided 
y
le in D0. Then C is at distan
e at least10 from the boundary parts of D. Now, we 
onsider the graph H whi
h isobtained fromD by 
ontra
ting C to a single vertex x (and removing paralleledges). The graph is planar. By triangulating possible nontriangular fa
esaround x, we obtain a 17-wide k-
ylinder H whose boundary parts 
oin
idewith those of D. By Lemma 3.3, ~H has an a
y
li
 8-
oloring 
 whi
h is
ompatible with the given 
olor pairs (Ai; ai), i = 1; : : : ; k. Moreover, theproof of Lemma 3.3 shows that x and all verti
es at distan
e at most 2 fromx are in the set U0 used in that proof and hen
e 
olored only with 
olors 1{5.We may assume that 
(x) = 5. To 
omplete the proof, it suÆ
es to see that
 
an be extended to an a
y
li
 8-
oloring of D. Note that D � V (C) � H,so we have to show how to 
olor C.First, we 
olor the verti
es of C with 
olors 5,6,7,8 so that any twoverti
es that are at distan
e 2 on C re
eive di�erent 
olors. This is possiblesin
e jCj � new(D) � 6. Moreover, su
h a 
oloring exists in whi
h 
olor 8is used pre
isely twi
e, and the two verti
es of 
olor 8 are at distan
e threeon C. On the proje
tive plane, any two non
ontra
tible 
y
les interse
t.So, C and C0 have a vertex y in 
ommon. Then we may assume that theverti
es of 
olor 8 are at distan
e 1 and 2 from y. Sin
e C is indu
ed andsin
e all neighbors of C are adja
ent to x in H and therefore use only 
olors1{4, this gives rise to an 8-
oloring 
1 of D. However, it may happen thatthis 
oloring is not a
y
li
. In the remaining part of the proof we will showthat 
1 
an be 
hanged (only on verti
es adja
ent to C) so that an a
y
li
13



8-
oloring is obtained.A 2-short
ut is a path uvw of length 2 in D, where u and w are verti
eson C and 
1(u) = 
1(w). This implies that the distan
e from u to w onC is more than 2. Sin
e C is a shortest non
ontra
tible 
y
le in D0 andsin
e the non
ontra
tible 
y
les satisfy the 3P-property, the vertex v is notin D0. Therefore, u and w are both on the same 
y
le Q00i and by Lemma2.2, v 2 V (Q0i). Moreover, u and w are at distan
e q � 1 � 3 from C0. Inparti
ular, 
1(u) 6= 8.Suppose that R is a bi-
olored 
y
le. Then R is 
omposed of 2-short
utsat the same boundary part Q00i . (This is obvious when R is (a; b)-
olored anda 6= 5 and b 6= 5. If a = 5, this follows from the fa
t that inD�V (C) � H�x,there is no (a; b)-
olored path joining two verti
es that are adja
ent to Cin D sin
e su
h a path would determine a bi-
olored 
y
le in H.) Sin
e Ris 
omposed of 2-short
uts, Lemma 2.2 implies that the only possibility forR is that it winds on
e around Q00i . Thus, if we 
hange the 
olor of one ofits verti
es v on Q0i to 
olor 8, R is no longer 2-
olored. At distan
e 2 fromv there is at most one vertex 
olored 8 (the one whose distan
e from y is2), so this 
hange does not give rise to new bi-
olored 
y
les. Moreover,no bi-
olored 
y
les at Q00i are left. By repeating the same pro
edure for bi-
olored 
y
les at other boundary parts Q00j , an a
y
li
 8-
oloring with desiredproperties is obtained.Lemma 3.5 
an be proved without the restri
tion that new(G) � 6. Theonly di�eren
e o

urs when the 
y
le C in the proof has length 5. In that
ase the proof is easier, but alternative arguments (similar to those used in[2℄) are needed.4 A
y
li
 
oloringsIn this se
tion we give the proof of our main result, Theorem 1.2.Theorem 4.1 Let G be a triangulation of a surfa
e of Euler genus g su
hthat new(G) � 6. Suppose that the vertex set of G 
an be partitioned intosets U1; : : : ; Ur and V1; : : : ; Vh su
h that the following holds:(a) For every j = 1; : : : ; r, the subgraph D0j indu
ed on Uj is a 3-widegeneralized 
ylinder.(b) For every i = 1; : : : ; h, the indu
ed subgraph Di on verti
es Vi is eithera 17-wide generalized 
ylinder or a 17-wide and d-deep generalized14



M�obius band, where d � 3k + 11 if k is the number of its boundaryparts.(
) Every edge that is not in one of D01; : : : ;D0r and D1; : : : ;Dh 
onne
ts aboundary part of some D0j with a boundary part of some Di. For everyboundary part Q0 of D0j there is a unique boundary part Q of some Dithat is adja
ent to Q0, and Q [ Q0 together with the edges joining Qand Q0 form a 2-
ylinder with boundary parts Q and Q0.Then �a
(G) � 8.Proof. First, we form the extended generalized 
ylinders and M�obius bands~D01; : : : ; ~D0r and ~D1; : : : ; ~Dh. For a boundary part Q, we will denote by y(Q)the vertex used to triangulate the fa
e bounded by Q. By Theorem 1.1,every ~D0j has an a
y
li
 5-
oloring with 
olors 1{5. Let 
0 be the union ofthese 
olorings for j = 1; : : : ; r.For every i, 1 � i � h, and every boundary part Q of Di, we sele
t a
olor pair (A; a) 2 V4;8 as follows. Let Q0 be the boundary part of D0j whi
his adja
ent to Q in G. If 
0(y(Q0)) = t, then we set A = ft; 6; 7; 8g anda = t+ 1 if t 6= 5 and a = 1 if t = 5.By Lemma 3.3 and Lemma 3.5, every ~Di (1 � i � h) has an a
y
li
8-
oloring 
i that is 
ompatible with the 
olor pairs that were 
hosen forits boundary parts. The 
ombination of these 
olorings together with 
0 is
learly an 8-
oloring of G. However, it may not be a
y
li
.Suppose that there is a bi-
olored 
y
le R. Sin
e every 
oloring 
i isa
y
li
, R must pass from some boundary part Q0 of D0j to the neighboringboundary part Q of some Di, where 1 � i � h. Let (A; a) be the 
orre-sponding 
olor pair. Sin
e every path in Di joining distin
t boundary partsuses at least 3 
olors, R must return ba
k to D0j through Q. Let � and �0be the 
olors that appear on R, where � appears on Q and �0 appears onQ0. If R uses an edge in Di, then � = a. However, in su
h a 
ase, thebi-
olored segment of R in Di joining two verti
es of Q would give rise toan (�; �0)-
olored 
y
le in ~Di. Similarly we see that R 
annot have an edgein D0.Consequently, R is a 
y
le that alternates between Q and Q0. We mayassume that t = 5 and a = 1 (as introdu
ed above), so that the 
olor pairat Q is (5678; 1). We may assume that � 6= 8 and �0 6= 2. Let us 
onsider
onse
utive verti
es of R on Q. There is at least one pair of them whi
h isnot 
onne
ted by an (�; 8)-
olored path in Di. Otherwise, the sum of allsu
h paths would 
ontain an (�; 8)-
olored 
y
le in Di. Let u and w be su
hpair of verti
es, and let v be their 
ommon neighbor on R. Now we 
hange15



the 
olor of v to 8, and 
hange the 
olor 8 to 2 on all verti
es on Q and thosethat are adja
ent to Q. Clearly, this de�nes a new 8-
oloring of G, and we
laim that there are no bi-
olored 
y
les at Q and Q0.If there was su
h a 
y
le R0, it would use one of the verti
es whose
olor has been 
hanged. This vertex 
annot be v, sin
e 
olor 8 is not usedat distan
e 2 from v. Hen
e, this would be a vertex on Q or one of itsneighbors that was re
olored from 8 to 2. Also, R0 
annot be 
ontainedin Di sin
e it would be bi-
olored also before. (Note that the new verti
es
olored 2 
annot be at distan
e 2 from a vertex in Di whose 
olor was 2already before sin
e 
i is 
ompatible with (5678,1) at Q and hen
e the 
olor2 does not appear at distan
e at most 3 from Q.) Hen
e the 
olors on R0are either 2 and � or 2 and �0. If the 
olors are 2 and �, then the 
olor �must appear in D0j , so � = 5. If the 
olors are 2 and �0, then �0 must appearin Di adja
ent to Q, so �0 is either 1 or 5. It is easy to see that this leadsto a 
ontradi
tion sin
e the segment of R0 in Di (if the 
olors on R0 are 2and 1) or its segment in D0j (if the 
olors are 2 and 5) would give rise to abi-
olored 
y
le in ~Di or in ~D0j , respe
tively. This shows that R0 does notexist.If there are other bi-
olored 
y
les, they are lo
ated at other boundaryparts. We repeat the same pro
edure with them, and after a �nite numberof steps we end up with an a
y
li
 8-
oloring of G.Finally, we 
an 
on
lude with the proof of the main result.Proof. (Of Theorem 1.2). Let g be the Euler genus of S and w = 4(3g +14)g(2g+3 + g). We may assume that G is a triangulation sin
e every graphH embedded in S is 
ontained (as a subgraph) in a triangulation whosenonseparating edge-width is the same as that of H. The a
y
li
 
hromati
number of graphs in the proje
tive plane is at most 7 [2℄, so we may assumethat g � 2. By Lemma 3.4, we may assume that every 
ontra
tible 3-
y
lein G is a fa
ial triangle. By Corollary 2.5, G has a de
omposition as used asthe assumption in Theorem 4.1, where the width and depth of all generalized
ylinders and M�obius bands is at least 3g + 11. Under this de
omposition,every generalized M�obius band has at most k = g� 1 boundary parts, so itsdepth is at least 3k+11. The width of the generalized 
ylinders and M�obiusbands is also at least 3g+11 � 17. Therefore, we 
an apply Theorem 4.1 to
on
lude that �a
(G) � 8.
16
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