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A Revival of the Girth ConjetureTom�a�s Kaiser 1;4 Daniel Kr�al' 2;4 Riste �Skrekovski3;4AbstratWe show that for eah " > 0, there exists a number g suh that theirular hromati index of every ubi bridgeless graph of girth at leastg is at most 3 + ". This ontrasts to the fat (whih disproved the GirthConjeture) that there are snarks of arbitrary large girth. In partiular, weshow that every ubi bridgeless graph of girth at least 14 has the irularhromati index at most 7=2.1 IntrodutionWe study edge-olorings of ubi graphs. A proper edge-oloring of a graph Gis a oloring of all edges of G suh that every two inident edges reeive distintolors. The smallest number of olors for whih there is a proper edge-oloringis alled the hromati index and denoted by �0(G). The hromati index of aubi graph is either 3 or 4 by a theorem of Vizing [20℄. In this paper, we studyirular edge-olorings of simple ubi graphs.The irular oloring of graphs was introdued by Vine [19℄ under the nameof \star oloring". A proper irular p=q-edge-oloring is a oloring of edges of Gby olors 0; : : : ; p� 1 suh that the di�erene modulo p of olors assigned to twoinident edges is not among �(q � 1);�(q � 2); : : : ; q � 1. A irular p=q-edge-oloring an also be viewed as a oloring by points on a irle of irumferene pin suh a way that a pair of inident edges reeive olors whih are at distane atleast q on the yle. The smallest ratio p=q for whih there is a proper irular p=q-edge-oloring is alled the irular hromati index of G and denoted by �0(G)(the minimum is always attained [5, 19℄). It an be shown that �0(G) � 1 <�0(G) � �0(G). It is also true that for eah p and q with �0(G) � p=q, there1Department of Mathematis, University of West Bohemia, Univerzitn�� 8, 306 14 Plze�n,Czeh Republi. E-mail: kaisert�kma.zu.z.2Department of Applied Mathematis, Charles University, Malostransk�e n�am. 25, 118 00Praha 1, Czeh Republi. E-mail: kral�kam.mff.uni.z.3Department of Mathematis, University of Ljubljana, Jadranska 19, 1111 Ljubljana, Slove-nia. E-mail: skreko�kam.mff.uni.z.4Institute for Theoretial Computer Siene (ITI), Charles University, Praha, Czeh Repub-li. Supported as projet LN00A056 by the Ministry of Eduation of the Czeh Republi.1



is a proper irular p=q-edge-oloring of G. For further results on the irularoloring, the reader is referred to a reent survey on the subjet by Zhu [22℄.It an be easily dedued that 3 � �0(G) � 4 for eah ubi bridgeless graph Gand that �0(G) = 3 i� �0(G) = 3. Cubi bridgeless graphs whose hromati indexis equal to 4 are known as snarks [6, 21℄ (sometimes an additional onnetivityrequirement is imposed). Zhu [22, Question 8.4℄ asked whether there is a ubibridgeless graph whose irular hromati index is equal to 4. Afshani, Hatamiand Tusserkani [1℄ have reently proved that the irular hromati index of eahubi bridgeless graph is at most 11=3. This annot be further improved, aswitnessed by the Petersen graph whose irular hromati index is 11=3. Theondition that the graph is bridgeless annot be removed beause there are ubigraphs whose irular hromati index is equal to 4. There are also bridgelessgraphs of maximum degree 3 whose irular hromati index is equal to 4.A onjeture of Jaeger and Swart [12℄ asserts the existene of a number g suhthat eah snark has girth at most g (atually, they onjetured that g = 6 suÆes)where the girth of a graph is the length of its shortest yle. This onjeture hasbeome known as the Girth Conjeture and it was disproved by Kohol [13℄ whoonstruted ylially 5-edge-onneted snarks with arbitrary large girths. Inthe present paper, we prove that the Girth Conjeture \holds" for the irularedge-oloring. In partiular, our main result is the following: For eah " > 0,there is a number g suh that every ubi bridgeless graph of girth at least g hasirular hromati index at most 3 + " (Corollary 1). This result is best possiblein the following sense: For eah g, there is a ubi bridgeless graph of girth gwith irular hromati index greater than 3 (just onsider a snark of girth g).We remark that large girth itself does not imply that the irular hromatinumber is smaller than the hromati number. For eah integers k � 1 and g � 3,there is a graph G of girth at least g with �(G) = �(G) = k as shown by Ste�enand Zhu [18℄. However, Galluio, Goddyn and Hell proved the following forgraphs avoiding a �xed graph H as a minor [10℄: For every graph H and every" > 0, there is g suh that the irular hromati number of eah graph of girthat least g whih does not ontain H as a minor is at most 2 + ".Standard graph theory notation, whih an be found e.g. in [7℄, is usedthroughout this paper. For X � V (G), G[X℄ denotes the subgraph of G induedby verties of the set X. The order of a graph is the number of its verties. Allthe olorings we onstrut in this paper are irular (3p+1)=p-olorings. If p is aneven integer, the olors are denoted by the numbers �3p=2, �3p=2 + 1, : : :, �1,0, 1, : : :, 3p=2�1, 3p=2. The numbers an be viewed as points evenly distributedalong the irle whose irumferene is 3p + 1. Thus, two inident edges an beassigned numbers x and y only if p � jx� yj � 2p+ 1.Proofs of our results are based on a onept of systems of independent seg-ments in ubi graphs whih is a modi�ation of a onept of independent systemsof representatives. Both these onepts are introdued in Setion 2. Our mainresult is stated and proved in Setion 3. A more areful analysis allows us to2



show that the irular hromati index of eah ubi bridgeless graph of girth atleast 14 is at most 7=2 (Theorem 4). We onlude the paper by posing severalopen problems in Setion 5.2 Systems of Independent SegmentsIn this setion, a onept of systems of independent segments is introdued. Thisonept is losely related to the onept of independent systems of representativesintrodued by Fellows [9℄. We reall this onept and state some results relatedto it. These results are then used to derive several lemmas whih are essentialfor our work.Fix an integer k � 1 and onsider a graph G whose vertex set is partitionedinto sets V1; : : : ; Vk. Verties v1; : : : ; vk form an independent system of represen-tatives (ISR) of G with respet to the partition V1; : : : ; Vk if v1; : : : ; vk form anindependent set and vi 2 Vi for eah i = 1; : : : ; k. An argument based on thetopologial onnetivity of ertain simpliial omplexes was used to derive a suf-�ient ondition on the existene of an ISR in [4℄. A more general form of thisargument is stated in [14℄. Here, we formulate one of its orollaries.A subset W of the vertex set of a graph G is alled total dominating if thefollowing holds: For eah vertex v 2 V (G), there is a vertex w 2 W suh that vwis an edge of G. Note that we require eah vertex v to be adjaent to a vertex ofW no matter whether v is in W or not. The smallest size of a total dominatingset in G is alled the total domination number of G and denoted by (G).In this paper, we use the following suÆient ondition due to Haxell [11℄ onthe existene of an ISR:Theorem 1 Let G be a graph whose vertex set is partitioned into sets V1; : : : ; Vk.Then, G has an independent system of representatives with respet to V1; : : : ; Vkif the following holds for eah non-empty set I � f1; : : : ; kg:  G[[i2I Vi℄! � 2jIj ;where G[Si2I Vi℄ is the graph indued by the verties of the union Si2I Vi.An interested reader an �nd other onditions on the existene of ISR's and somegeneralizations of the onept in [2, 3, 15℄.Instead of independent systems of representatives, we onsider systems ofindependent segments in ubi graphs. Fix a ubi bridgeless graph G of girth gand a 1-fator F of G. We de�ne a graph GF;k for 1 � k � g as follows: Vertiesof GF;k are k-tuples (v1; : : : ; vk) of verties of G for whih there is a yle C inG n F suh that the verties v1; : : : ; vk are onseutive in the yle C (they forma path in C). Sine k � g, the graphs G and GF;k have the same order. Verties3



of GF;k are alled segments, or k-segments if we want to emphasize the number ofverties in eah segment. Two segments (v1; : : : ; vk) and (w1; : : : ; wk) are joinedby an edge in GF;k if there exist vi and wj with viwj 2 F , i.e., a vertex of one ofthe segments is adjaent to a vertex of the other one. Notie that the maximumdegree of GF;k is at most k2 (but it need not be a k2-regular graph unless g issuÆiently large).Let t be the number of the yles of G n F and let C1; : : : ; Ct be these yles.Verties of GF;k are partitioned into t sets V1; : : : ; Vt, where eah set Vi onsistspreisely of segments of the yle Ci, i = 1; : : : ; t. Hene, the size of Vi is equal tothe length of the yle Ci and the minimum size of a set Vi is at least g. Segmentss1; : : : ; st form a system of r-independent segments if si 2 Vi for eah i = 1; : : : ; tand the distane between eah pair of verties si and sj with i 6= j in GF;k isat least r + 1. Note that a system of 1-independent segments is just a systemof independent representatives in the graph GF;k with respet to V1; : : : ; Vt. Ingeneral, a system of r-independent segments is a system of independent repre-sentatives in GrF;k where GrF;k is the r-th power of the graph GF;k. Reall that ther-th power of a graph is the graph on the same vertex set in whih two vertiesare joined by an edge if their distane in the original graph is at most r.We now formulate a suÆient ondition on the existene of a system of r-independent segments whih is based on Theorem 1:Lemma 1 Let r and k be positive integers and let G be a ubi bridgeless graphof girth at least 2k2r. For eah 1-fator F of G, the graph GF;k ontains a systemof r-independent segments.Proof: We need to show that the graph GrF;k ontains an independent systemof representatives with respet to the sets V1; : : : ; Vs orresponding to the fatorF in the way desribed before the statement of this lemma. Note that eah Vihas size at least 2k2r by the assumption on the girth of G. Sine the maximumdegree of the graph GF;k is at most k2, the maximum degree of the graph GrF;kannot exeed k2(k2 � 1)r�1 � k2r. Now, let I be a non-empty subset of theset f1; : : : ; sg. Sine the order of the graph GrF;k[Si2I Vi℄ is at least 2k2r � jIjand its maximum degree is at most k2r, its total domination number is at least2k2r�jIjk2r = 2jIj. Then, by Theorem 1, GrF;k ontains an independent system ofrepresentatives with respet to the sets V1; : : : ; Vs.
3 Cirular (3 + ")-Edge-ColoringsTheorem 2 Let G be a bridgeless ubi graph of girth at least 2(2p)2p wherep � 2 is an even integer. Then, the irular hromati index of G is at most3 + 1=p. 4



Proof: Fix an even integer p � 2 and a 1-fator F of G. Note that G musthave a 1-fator by Petersen's theorem [16℄ sine it is a bridgeless ubi graph.In what follows, we onstrut a irular (3p + 1)=p-edge-oloring of G using theolors �3p=2;�3p=2 + 1; : : : ;�1; 0; 1; : : : ; 3p=2� 1; 3p=2.First, ertain vertex-disjoint subgraphs alled otopuses are found in G. Anotopus has the following struture: Let C be a yle of G n F . An otopusontains (among others) 2p onseutive verties v1; : : : ; v2p of C together with alledges inident with them. The yle C is alled the head yle of the otopus andthe verties of the otopus ontained in C form the head of the otopus. Next, letvi;0 be a neighbor of vi in F for i = 1; : : : ; 2p and let vi;�p+2; vi;�p+3; : : :, vi;0; : : :,vi;p�3; vi;p�2 be 2p � 3 onseutive verties of the unique yle of G n F whihontains the vertex vi;0. Next, let vi;j;0 be a neighbor of vi;j in F for i = 1; : : : ; 2pand j = �p+2; : : : ; p�2 and let vi;�p+4; vi;�p+5; : : : ; vi;0; : : : ; vi;p�5; vi;p�4 be 2p�7onseutive verties of the yle of G n F whih ontains the vertex vi;j;0. In thismanner, we onstrut p=2 + 1 levels of verties (the �rst level ontains vertiesof the yle C, the seond level verties vi;j, the third level verties vi;j;k, et.).Hene, the i-th level of verties, 2 � i � p=2 + 1, is omposed of a number ofbloks of 2p + 5 � 4i verties onseutive in the yles of G n F suh that themiddle vertex of eah blok is adjaent to a vertex of the preeding level. Notethat bloks of the last level are formed by single verties.The otopus itself is formed by the verties of all levels and all edges inidentwith at least one suh vertex. Examples of otopuses for p = 2 and p = 4 an befound in Figure 1 (edges of the 1-fator are solid while other edges are dotted;the heads are in the bottom). The edges of yles of G n F whih are inidentwith two verties of the otopus are alled inner edges, while those inident withexatly one vertex of the otopus are alled ontat edges. Both the inner andthe ontat edges are onsidered to be parts of the otopus. Sine the girth of Gis greater than 2p2 + 2p, the subgraph indued by an otopus in the graph G isayli. Indeed, if the indued subgraph ontained a yle, then its length wouldbe at most 2 � (p=2 + 1) � 2p = 2p2 + 2p (observe that if the subgraph indued bythe otopus is not ayli, then its shortest yle interset at most two bloks ofeah level of the potential otopus).The ruial property of otopuses is the following:Claim 1 Consider a preoloring of all ontat edges with the olors �p=2 andp=2 suh that eah pair of the ontat edges inident with the same blok (with thehead, respetively) reeive opposite olors. Then, this preoloring an be extendedto a irular (3p+ 1)=p-edge-oloring of the whole otopus.We postpone the proof of Claim 1 and we begin by showing how it an be usedto derive the statement of the theorem.By Lemma 1, the graph GF;2p ontains a system of p-independent segments.Let S be suh a system. For eah segment s of S, there is an otopus in Gwhose head is s. Let now O be the set of all otopuses o suh that the head of5



Figure 1: Examples of otopuses for p = 2 and p = 4.o belongs to S and the head yle of o has odd length. All the otopuses of Oare vertex-disjoint. Indeed, if two of them are not disjoint, then the segmentsorresponding to their heads have distane in GF;2p at most 2 � p=2 = p whih isimpossible beause S is a system of p-independent segments. In partiular, twodi�erent otopuses of O an only share an edge whih is a ontat edge of eahof them.We now onstrut a irular (3p + 1)=p-edge-oloring of G. Remove from Gthe edges of the 1-fator F and remove all inner edges of the head of eah otopusin O. The remaining graph onsists of yles of even lengths (whih are not headyles) and paths of even length (eah odd yle of G n F is a head yle of asingle otopus of O). Let us olor edges of the remaining graph with the olors�p=2 and p=2 alternately. Observe that the ontat edges of eah otopus headreeive opposite olors. Remove now the olors from all inner edges of otopusesof O. We have just obtained a preoloring of the edges of G n F exept for theinner edges of otopuses of O.Sine a blok of eah otopus onsists of an odd number of verties, it ontainsan even number of inner edges and the olors of the two ontat edges inidentwith eah blok are opposite. Hene, the preoloring an be extended to theinteriors of all otopuses by Claim 1. The only unolored edges of G are nowthe edges of F ontained in no otopus of O. Sine suh edges are inidentonly with edges of G n F olored with the olors �p=2 and p=2, they an bearbitrarily olored with the olors �3p=2 and 3p=2. In this way, we obtain airular (3p+ 1)=p-edge-oloring of the graph G.Proof of Claim 1: As we said above, we �rst extend the preoloring to thehead, then to the bloks of the seond level, then to the bloks of the third level,et. It will hold that edges of the 1-fator joining the verties of the i-th and(i+1)-th levels of the otopus (reall that the �rst level is its head) will have oneof the following p+ 2� 2i olors:�p� i; : : : ;�3p=2 + 1;�3p=2 and p+ i; : : : ; 3p=2� 1; 3p=2 :We �rst extend the oloring to the head of the otopus. By symmetry, we may6



�1 +2 0 �2 +1�3 �3 +3 +3�2 +3 �1 +4 0 �4 +1 �3 +2�6 �6 �5 �5 +5 +5 +6 +6�3 +4 �2 +5 �1 +6 0 �6 +1 �5 +2 �4 +3�9 �9 �8 �8 �7 �7 +7 +7 +8 +8 +9 +9�p=2 p=2 + 1�p=2 + 1p=2 + 2�p=2 + 2 p=2� 2�p=2� 2p=2 + 1�p=2� 1 p=2�3p=2 �3p=2�3p=2 + 1�3p=2 + 1�3p=2 + 2 3p=2 + 23p=2 + 13p=2 + 1 3p=2 3p=2

Figure 2: Extending a preoloring to the head of the otopus for p = 2, p = 4,p = 6 and a general p (listed from bottom to top).assume that the �rst ontat edge is preolored with �p=2 and the last one withp=2. Then, the oloring of the 2p� 1 inner edges of the head an be as follows:p=2 + 1;�p=2 + 1; p=2 + 2;�p=2 + 2; : : : ; p; 0;�p; : : : ; p=2� 1;�p=2� 1 :Eah of the 2p edges of F inident with the head an be olored with one of theolors p+ 1; : : : ; 3p=2 and �p� 1; : : : ;�3p=2. Extensions of a preoloring to thehead for p = 2, p = 4 and p = 6 are depited in Figure 2. In the �gure, the edgesof the 1-fator are solid while the other edges are dotted.Reall that the otopus is formed by several levels of verties suh that thei-th level, i � 2, of the otopus onsists of several bloks of 2p+5�4i onseutiveverties. From eah blok, there is a single edge of F joining its middle vertexto the previous level and all other verties are joined by edges of F to the nextlevel. We all the edge leading to the previous level an input edge of a onsideredblok, while the other edges are output edges of it. We establish the followinglaim:Claim 2 Consider a blok of the otopus whih onsists of at least 4k+1 verties,0 � k � p=2 � 1, and whose input edge is olored with the olor �3p=2 + k or3p=2�k. Then, any preoloring, whih olors one of the two ontat edges by theolor �p=2 and the other by the olor p=2, an be extended to the whole blok insuh a way that the output edges avoid the olors �3p=2 + k; : : : ; 3p=2� k.If k = 0, then olor the inner edges by the olors �p=2 and p=2 alternately andthe output edges arbitrarily by the olors �3p=2 and 3p=2. Assume in the rest7



p = 2k = 0 �1 +1�3 �1 +1 �1 +1 +1 +1�3 �3 �3 �3 �3
p = 4k = 1 �2 +2�5 �2 +3 �1 +3 �2 +2�6 �6 �5 �6 �6
p = 6k = 1 �3 +3�8 �3 +4 �2 +4 �3 +3�9 �9 �8 �9 �9
p = 6k = 2 �3 +3�7�3 +4 �2 +5 �1 +5 �2 +4 �3 +3�9 �9 �8 �8 �7 �8 �8 �9 �9

Figure 3: Examples of extensions of a preoloring of ontat and output edges towhole bloks for p = 2, p = 4 and p = 6 and for k = 1 and k = 2.that k � 1. We may also assume that the size of the blok is exatly 4k + 1:If the blok is larger, simply olor the remaining inner edges by the olors �p=2and p=2 and the output edges by the olors �3p=2 and 3p=2. By the symmetry,assume that the �rst ontat edge is olored with the olor �p=2, the last onewith p=2 and the input edge with the olor �3p=2+ k. The 4k inner edges of theblok whih are olored with the following olors (eah of the following two linesontains 2k olors):p=2 + 1;�p=2 + 1; p=2 + 2;�p=2 + 2; : : : ; p=2 + k;�p=2 + k;p=2 + k;�p=2 + (k � 1); p=2 + (k � 1);�p=2 + (k � 2); : : : ; p=2 + 1;�p=2 :It is easy to hek that the oloring an now be extended using only the olors�3p=2+(k�1); : : : ;�3p=2 to the output edges. This �nishes the proof of Claim 2.Examples of extending preolorings of ontat edges to whole bloks for p = 2,p = 4 and p = 6 an be found in Figure 3.We now use Claim 2 to omplete the oloring of the otopus, and hene toomplete the proof of Claim 1. The olors of the edges of F leaving the head are8



among p + 1; : : : ; 3p=2 and �p � 1; : : : ;�3p=2. Sine the number of verties ineah blok of the seond level is 2p� 3 = 4(p=2� 1)+1, Claim 2 implies that theoloring an be extended to eah of these bloks in suh a way that output edgesare olored only with the olors p+2; : : : ; 3p=2 and �p�2; : : : ;�3p=2. Now, sinethe number of verties in eah blok of the third level is 2p� 7 = 1+ 4(p=2� 2),Claim 2 again implies that the oloring an be extended to these bloks in suha way that output edges are olored only with the olors p + 3; : : : ; 3p=3 and�p � 3; : : : ;�3p=2. In this way, we extend the oloring to all bloks of theotopus. Note that eah blok of the last level has a single input edge andthis edge gets the olor �3p=2 or 3p=2 whih is onsistent with preoloring thetwo ontat edges by the olors �p=2 and p=2. Hene, the proof of Claim 1 isompleted, and so is the proof of the whole theorem.If p is an odd integer, it is possible to use a similar argument, based onotopuses with dp=2e+ 1 levels, to prove the following result:Theorem 3 Let G be a bridgeless ubi graph of girth at least 2(2p)2p+1 wherep � 3 is an odd integer. Then, the irular hromati index of G is at most3 + 1=p.The main result of our paper is the following orollary of Theorem 2:Corollary 1 For eah " > 0, there exists an integer g suh that eah ubibridgeless graph of girth at least g has irular hromati index at most 3 + ".4 Cirular 7=2-Edge-ColoringsIn this setion, we re�ne our arguments from Setion 3 to show that the irularhromati index of eah ubi bridgeless graph of girth 14 or more is at most 7=2.Note that Theorem 2 implies this statement for graphs of girth at least 32. We�rst prove an auxiliary lemma:Lemma 2 Let G be a ubi graph of girth at least 14 and let F be a 1-fatorof G. Then, it is possible to assign eah edge of F the sign + or � in suh away that the following holds: Eah odd yle of G n F ontains four onseutiveverties v1, v2, v3 and v4 suh that v1 and v2 are inident with edges assigned thesign +, while v3 and v4 are inident with edges assigned the sign �.Proof: First, an auxiliary graph GF;� is onstruted. For eah 4-segment(�; �; ; Æ) of a yle C of G n F , the graph GF;� ontains two verties v��;�;;Æand v��;�;;Æ. The �rst one, v��;�;;Æ, represents the requirement that the edges ofF inident with � and � are assigned the sign + and the edges inident with 9



and Æ are assigned the sign �. Similarly, the other vertex v��;�;;Æ, represents therequirement that the edges of F inident with � and � are assigned � and theedges inident with  and Æ are assigned +. Two verties of GF;� are joined by anedge if the orresponding requirements ontradit eah other. For example, if �0is the neighbor of � in F and � 0, 0 and Æ0 are three onseutive verties following�0 in a yle of G n F , then the verties v��;�;;Æ and v��0;�0;0;Æ0 are joined by anedge, but the verties v��;�;;Æ and v��0;�0;0;Æ0 are not. Formally, GF;� ontains anedge between the verties v��;�;;Æ and v��0;�0;0;Æ0 if F ontains one of the followingedges: �0; �Æ0; �0; �Æ0; �0; � 0; Æ�0 or Æ� 0 :The same ondition holds for the presene of an edge between the verties v��;�;;Æand v��0;�0;0;Æ0 in GF;�. Finally, there is an edge between the verties v��;�;;Æ andv��0;�0;0;Æ0 in GF;� if F ontains at least one of the following edges:��0; �� 0; ��0; �� 0; 0; Æ0; Æ0 or ÆÆ0 :Note that the order of GF;� is twie the order of G and the graph GF;� is 16-regular.Let r be the number of all odd yles C1; : : : ; Cr of G n F and let Vi be theverties of GF;� orresponding to segments of the yle Ci, 1 � i � r. Thus,the length of eah Ci is at least 15. The size of eah Vi is at least 2 � 15 = 30by the assumption on the girth of G. We want to �nd a system of independentrepresentatives for G[Si=1;:::;r Vi℄ with respet to V1; : : : ; Vr. Indeed, suh a systemof independent representatives yields an assignment of signs to some edges of F(there is no onit when assigning signs to edges of F sine the verties of thesystem represent non-ontraditory requirements). This assignment already hasthe property from the statement of the lemma, and thus an arbitrary extensionof it to all edges of F has the laimed property.We now show that G[Si=1;:::;r Vi℄ has a system of independent representa-tives with respet to V1; : : : ; Vr. By Theorem 1, it is enough to verify that foreah non-empty set I � f1; : : : ; rg, the total domination number of the graphG[Si2I Vi℄ is at least 2jIj. For the sake of ontradition, assume the opposite andlet I0 � f1; : : : ; rg be a non-empty set suh that the total domination number ofG[Si2I0 Vi℄ is at most 2jI0j � 1. Let W be a total dominating set of size 2jI0j � 1.We show that G[Si2I0 Vi℄ ontains a vertex whih is not total dominated by W .The dominane of verties ontained inW an be represented in G as follows:Consider a vertex v��;�;;Æ ontained in W . Let �0, � 0, 0 and Æ0 be the neighborsof �, �,  and Æ, respetively, in the 1-fator F . Assign now the sign + to theverties �0 and � 0 and the sign � to the verties 0 and Æ0. In ase that the vertexv��;�;;Æ is ontained in W , the signs assigned to the verties �0, � 0, 0 and Æ0 areopposite ompared to the previous ase. Perform this for eah vertex ontainedin W . Note that some verties of G may be assigned both signs + and �. Now,a vertex v�a;b;;d is dominated by W if one of a and b is assigned � or one of 10



and d is assigned +. A similar statement is true for the vertex v��;�;;Æ. By ourassumption, both verties orresponding to eah 4-segment of a yle Ci for i 2 I0are dominated.Sine eah vertex of W auses the assignment of signs to four verties of G, itfollows that at most 4jW j � 8jI0j � 4 signs are assigned altogether. Thus, thereis a yle Ck, k 2 I0, whose verties have been assigned a total of at most 7 signs(if a vertex is assigned both signs + and �, then these two signs are ounted astwo). Let s be the number of the signs assigned to the verties of Ck and let t bethe number of verties whih have been assigned both signs. The length of Ckis at least 15 beause G has girth at least 14 and Ck is an odd yle. Hene, Ckontains at least 15� (7� t) = 8 + t verties whih have not been assigned anysign. Let us all suh verties unsigned. The remaining verties of Ck are alledsigned.In what follows, it will be shown by a simple disharging argument that theset Vk in GF;� ontains a vertex whih is not dominated by W . Only the signedverties will have non-zero initial harge. Eah vertex whih has been assignedboth signs + and � has 3 units of initial harge. Eah of the other signed vertieshas 1 unit of initial harge. Hene, the total initial harge distributed to all signedverties together is equal to s + t. Note that this is at most 7 + t by the hoieof Ck. Unsigned verties indue in Ck a subgraph onsisting of several paths.Let U be the set of these paths. Observe that eah path in U onsists of atmost three verties beause the vertex of Vk orresponding to four onseutiveunsigned verties would not be dominated by W .The initial harge is distributed from eah signed vertex to the paths of un-signed verties by the following simple rule: Eah signed vertex splits its hargeto two halves. One half of its harge is sent to the lokwise nearest path of U inCk and the other half is sent to the anti-lokwise nearest path of U .We now establish the following laim:Claim 3 The harge reeived by eah path of unsigned verties reeives is at leastthe number of verties it ontains.We distinguish three ases aording to the number of unsigned verties ompris-ing the path. Reall that this number is either 1, 2 or 3.� If the path onsists of a single vertex, then it reeives at least a half unit ofharge from eah of the two signed verties adjaent to it in Ck. Hene, itreeives at least one unit of harge in total.� Consider now a path omprised of two unsigned verties. Let u and v bethe two signed verties adjaent to this path in Ck. If u is not assignedboth signs, then the neighbor u0 of u in Ck not ontained in the path mustbe signed (otherwise, the verties u0, u and the two verties of the pathorrespond to a non-dominated vertex of W ). Hene, either the group11



reeives 3=2 units from the vertex u alone (this is the ase that u has beenassigned both signs) or 1 unit from the verties u and u0 together. Similarly,the path reeives at least 1 unit from the signed verties adjaent to it onits other side. Hene, it reeives a total of at least 2 units of harge.� If the path onsists of three verties, then eah of the two verties adjaentin Ck to this path must have been assigned both signs + and �. Otherwise,this vertex and the three unsigned verties of the path orrespond to a non-dominated vertex of Vk. Hene, suh a path of verties reeives 3=2 unitsfrom eah signed vertex adjaent to it. Hene, 3 units of harge are sent toit in total.This �nishes the proof of Claim 3. Sine the total initial harge is at most 7 + t,there an be at most 7 + t unsigned verties but there are at least 8 + t suhverties | a ontradition. We onlude that the total domination number ofG[Si2I0 Vi℄ is at least 2jI0j as desired. Hene, G[Si=1;:::;r Vi℄ ontains a system ofindependent representatives with respet to V1; : : : ; Vr. This ompletes the proofof the lemma.Theorem 4 Every ubi bridgeless graph G of girth at least 14 has irular hro-mati index at most 7=2.Proof: Let F be a 1-fator of G. It exists beause G is ubi and bridgeless [16℄.We onstrut a irular 7=2-edge-oloring of G whih uses the olors �3, �2, �1,0, 1, 2 and 3. Consider an assignment � : F ! f+;�g of the signs + and � toedges of F with the property desribed in the statement of Lemma 2.An edge e of F is olored with the olor +3 if �(e) = + and it is olored withthe olor �3, otherwise. Edges of eah even yle of G n F are olored with theolors �1 and +1 alternately. Consider now an odd yle C of G n F and let v1,v2, v3 and v4 be onseutive verties of C suh that the edges of F inident withv1 and v2 have been assigned + and the edges inident with v3 and v4 have beenassigned �. Let us olor the edge v1v2 with the olor �2, the edge v2v3 with theolor 0 and the edge v3v4 with the olor +2. Finally, olor the remaining edgesof C with �1 and +1 alternately suh that the edge inident with v1 is oloredwith +1. It is easy to verify that the irular 7=2-edge-oloring obtained in thisway is proper.
5 Open ProblemsSeveral new questions related to our results arise. Theorem 4 shows that everyubi bridgeless graph G of girth at least 14 has irular hromati index at12



most 7=2. However, it is not lear that the assumption on the girth annot befurther improved. So far we know only that the largest girth of a ubi bridgelessgraph with the irular hromati index stritly larger than 7=2 is between 5 and13 (reall that the irular hromati index of the Petersen graph is 11=3). Itis known [8, 17℄ that the so-alled frational hromati index of every k-edge-onneted k-regular graph of even order is equal to k. It is also well-knownthat the irular hromati index is sandwihed between the frational hromatiindex and the (usual) hromati index [22℄. Every bridgeless 2-regular graphwith at least four verties has irular hromati index at most 5=2. And, everybridgeless 3-regular graph has irular hromati index at most 11=3. We posethe following problem:Problem 1 Is it true that the irular hromati index of every k-edge-onnetedk-regular graph G of even order is smaller than k + 1? Is it always at mostk + 1� 1=k?Possibly, the assumption that G is k-edge-onneted an be replaed by theweaker assumption that G is bridgeless. It also seems that the assumption thatthe order of G is even an be omitted for some values of k.Finally, it seems natural to ask whether Theorems 2 and 3 with Corollary 1an be generalized to the realm of all regular graphs:Problem 2 Is it true that for eah k and eah " > 0, there exists an integer gsuh that every bridgeless k-regular graph of girth at least g has irular hromatiindex at most k + "?It is easy to show that the answer is positive if k = 2. Theorem 2 implies apositive answer for the ase k = 3, too. Hene, the �rst open ase is k = 4.Referenes[1℄ P. Afshani, H. Hatami, R. Tusserkani, Cirular edge hromati number ofubi graphs, manusript (2003).[2℄ R. Aharoni, E. Berger, R. Ziv, Independent systems of representatives inweighted graphs, manusript (2002).[3℄ R. Aharoni, M. Chudnovsky, A. Kotlov, Triangulated spheres and oloredliques, Dis. Comput. Geometry 28 (2002), 223{229.[4℄ R. Aharoni, P. E. Haxell, Hall's theorem for hypergraphs, J. Graph Theory35 (2000), 83{88.[5℄ J. A. Bondy, P. Hell, A note on the star hromati number, J. Graph Theory14 (1990), 479{482. 13
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