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Abstract

We show that for each ¢ > 0, there exists a number g such that the
circular chromatic index of every cubic bridgeless graph of girth at least
g is at most 3 + £. This contrasts to the fact (which disproved the Girth
Conjecture) that there are snarks of arbitrary large girth. In particular, we
show that every cubic bridgeless graph of girth at least 14 has the circular
chromatic index at most 7/2.

1 Introduction

We study edge-colorings of cubic graphs. A proper edge-coloring of a graph G
is a coloring of all edges of G such that every two incident edges receive distinct
colors. The smallest number of colors for which there is a proper edge-coloring
is called the chromatic index and denoted by x'(G). The chromatic index of a
cubic graph is either 3 or 4 by a theorem of Vizing [20]. In this paper, we study
circular edge-colorings of simple cubic graphs.

The circular coloring of graphs was introduced by Vince [19] under the name
of “star coloring”. A proper circular p/q-edge-coloring is a coloring of edges of G
by colors 0, ...,p — 1 such that the difference modulo p of colors assigned to two
incident edges is not among —(¢ — 1), —(¢ — 2),...,q¢ — 1. A circular p/qg-edge-
coloring can also be viewed as a coloring by points on a circle of circumference p
in such a way that a pair of incident edges receive colors which are at distance at
least ¢ on the cycle. The smallest ratio p/q for which there is a proper circular p/q-
edge-coloring is called the circular chromatic index of G and denoted by x.(G)
(the minimum is always attained [5, 19]). It can be shown that x'(G) — 1 <
XL(G) < X'(G). It is also true that for each p and ¢ with x.(G) < p/q, there
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is a proper circular p/g-edge-coloring of G. For further results on the circular
coloring, the reader is referred to a recent survey on the subject by Zhu [22].

It can be easily deduced that 3 < x’(G) < 4 for each cubic bridgeless graph G
and that x.(G) = 3 iff \'(G) = 3. Cubic bridgeless graphs whose chromatic index
is equal to 4 are known as snarks [6, 21] (sometimes an additional connectivity
requirement is imposed). Zhu [22, Question 8.4] asked whether there is a cubic
bridgeless graph whose circular chromatic index is equal to 4. Afshani, Hatami
and Tusserkani [1] have recently proved that the circular chromatic index of each
cubic bridgeless graph is at most 11/3. This cannot be further improved, as
witnessed by the Petersen graph whose circular chromatic index is 11/3. The
condition that the graph is bridgeless cannot be removed because there are cubic
graphs whose circular chromatic index is equal to 4. There are also bridgeless
graphs of maximum degree 3 whose circular chromatic index is equal to 4.

A conjecture of Jaeger and Swart [12] asserts the existence of a number g such
that each snark has girth at most g (actually, they conjectured that g = 6 suffices)
where the girth of a graph is the length of its shortest cycle. This conjecture has
become known as the Girth Conjecture and it was disproved by Kochol [13] who
constructed cyclically 5-edge-connected snarks with arbitrary large girths. In
the present paper, we prove that the Girth Conjecture “holds” for the circular
edge-coloring. In particular, our main result is the following: For each ¢ > 0,
there is a number g such that every cubic bridgeless graph of girth at least g has
circular chromatic index at most 3 4+ ¢ (Corollary 1). This result is best possible
in the following sense: For each g, there is a cubic bridgeless graph of girth ¢
with circular chromatic index greater than 3 (just consider a snark of girth g).

We remark that large girth itself does not imply that the circular chromatic
number is smaller than the chromatic number. For each integers £ > 1 and g > 3,
there is a graph G of girth at least g with x(G) = x.(G) = k as shown by Steffen
and Zhu [18]. However, Galluccio, Goddyn and Hell proved the following for
graphs avoiding a fixed graph H as a minor [10]: For every graph H and every
e > 0, there is g such that the circular chromatic number of each graph of girth
at least g which does not contain H as a minor is at most 2 + €.

Standard graph theory notation, which can be found e.g. in [7], is used
throughout this paper. For X C V(G), G[X] denotes the subgraph of G induced
by vertices of the set X. The order of a graph is the number of its vertices. All
the colorings we construct in this paper are circular (3p+1)/p-colorings. If p is an
even integer, the colors are denoted by the numbers —3p/2, —3p/2 + 1, ..., —1,
0,1,...,3p/2—1, 3p/2. The numbers can be viewed as points evenly distributed
along the circle whose circumference is 3p 4+ 1. Thus, two incident edges can be
assigned numbers z and y only if p < |z — y| < 2p + 1.

Proofs of our results are based on a concept of systems of independent seg-
ments in cubic graphs which is a modification of a concept of independent systems
of representatives. Both these concepts are introduced in Section 2. Our main
result is stated and proved in Section 3. A more careful analysis allows us to
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show that the circular chromatic index of each cubic bridgeless graph of girth at
least 14 is at most 7/2 (Theorem 4). We conclude the paper by posing several
open problems in Section 5.

2 Systems of Independent Segments

In this section, a concept of systems of independent segments is introduced. This
concept is closely related to the concept of independent systems of representatives
introduced by Fellows [9]. We recall this concept and state some results related
to it. These results are then used to derive several lemmas which are essential
for our work.

Fix an integer k£ > 1 and consider a graph G whose vertex set is partitioned

into sets Vi,...,V,. Vertices vy, ..., v, form an independent system of represen-
tatives (ISR) of G with respect to the partition Vi,...,V, if vy,..., v, form an
independent set and v; € V; for each ¢ = 1,...,k. An argument based on the

topological connectivity of certain simplicial complexes was used to derive a suf-
ficient condition on the existence of an ISR in [4]. A more general form of this
argument is stated in [14]. Here, we formulate one of its corollaries.

A subset W of the vertex set of a graph G is called total dominating if the
following holds: For each vertex v € V(G), there is a vertex w € W such that vw
is an edge of G. Note that we require each vertex v to be adjacent to a vertex of
W no matter whether v is in W or not. The smallest size of a total dominating
set in G is called the total domination number of G and denoted by v(G).

In this paper, we use the following sufficient condition due to Haxell [11] on
the existence of an ISR:

Theorem 1 Let G be a graph whose vertex set is partitioned into sets Vi, ..., V.
Then, G has an independent system of representatives with respect to Vi,..., Vi
if the following holds for each non-empty set I C {1,... k}:

(et = 2,

iel
where G|U;er Vi) is the graph induced by the vertices of the union U;cr V;.

An interested reader can find other conditions on the existence of ISR’s and some
generalizations of the concept in [2, 3, 15].

Instead of independent systems of representatives, we consider systems of
independent segments in cubic graphs. Fix a cubic bridgeless graph G of girth g
and a 1-factor F' of G. We define a graph Gy, for 1 < k < g as follows: Vertices
of Gry are k-tuples (vy,...,v;) of vertices of G for which there is a cycle C in
G \ F such that the vertices vy, ..., v, are consecutive in the cycle C' (they form
a path in C). Since k < g, the graphs G and Gy, have the same order. Vertices



of Gy, are called segments, or k-segments if we want to emphasize the number of
vertices in each segment. Two segments (vy,...,v;) and (wy, ..., wy) are joined
by an edge in Gry, if there exist v; and w; with v;w; € F, i.e., a vertex of one of
the segments is adjacent to a vertex of the other one. Notice that the maximum
degree of Gy is at most k% (but it need not be a k*-regular graph unless g is
sufficiently large).

Let ¢ be the number of the cycles of G \ F and let Cj, ..., C; be these cycles.
Vertices of Gry, are partitioned into t sets Vi,...,V;, where each set V; consists
precisely of segments of the cycle C;, e = 1,...,t. Hence, the size of V; is equal to
the length of the cycle C; and the minimum size of a set V; is at least g. Segments
S1,..., 8 form a system of r-independent segments if s; € V; foreach ¢ =1,... ¢
and the distance between each pair of vertices s; and s; with ¢ # j in Ggy, is
at least r + 1. Note that a system of l-independent segments is just a system
of independent representatives in the graph Grj with respect to V3,...,V;. In
general, a system of r-independent segments is a system of independent repre-
sentatives in G, where G, is the r-th power of the graph Grj. Recall that the
r-th power of a graph is the graph on the same vertex set in which two vertices
are joined by an edge if their distance in the original graph is at most r.

We now formulate a sufficient condition on the existence of a system of r-
independent segments which is based on Theorem 1:

Lemma 1 Let r and k be positive integers and let G be a cubic bridgeless graph
of girth at least 2k* . For each 1-factor F of G, the graph Gy, contains a system
of r-independent segments.

Proof: We need to show that the graph G7 ) contains an independent system
of representatives with respect to the sets Vi,...,V; corresponding to the factor
F in the way described before the statement of this lemma. Note that each V;
has size at least 2k* by the assumption on the girth of G. Since the maximum
degree of the graph Gpy, is at most k2, the maximum degree of the graph Gr,
cannot exceed k*(k* — 1)"! < k*. Now, let I be a non-empty subset of the
set {1,...,s}. Since the order of the graph G7% ,[Uicr Vi] is at least 2> - |I|
and its maximum degree is at most k", its total domination number is at least
% = 2[I|. Then, by Theorem 1, G%, contains an independent system of
representatives with respect to the sets Vi,..., V.

]

3 Circular (3 + ¢)-Edge-Colorings

Theorem 2 Let G be a bridgeless cubic graph of girth at least 2(2p)?P where
p > 2 is an even integer. Then, the circular chromatic index of G is at most
3+1/p.



Proof: Fix an even integer p > 2 and a 1-factor F' of G. Note that G must
have a 1-factor by Petersen’s theorem [16] since it is a bridgeless cubic graph.
In what follows, we construct a circular (3p + 1)/p-edge-coloring of G using the
colors —3p/2,-3p/2+1,...,-1,0,1,...,3p/2 — 1,3p/2.

First, certain vertex-disjoint subgraphs called octopuses are found in G. An
octopus has the following structure: Let C' be a cycle of G \ F. An octopus
contains (among others) 2p consecutive vertices vy, ..., vy, of C together with all
edges incident with them. The cycle C' is called the head cycle of the octopus and
the vertices of the octopus contained in C' form the head of the octopus. Next, let
v;0 be a neighbor of v; in F' for i =1,...,2p and let v; _,192,% pi3,..., Vig,- -,
Vip—3, Vip—2 be 2p — 3 consecutive vertices of the unique cycle of G\ F' which
contains the vertex v;o. Next, let v; ;o be a neighbor of v; ; in F fort=1,...,2p
andj = —p+2, Ce ,p—2 and let Vi, —p+4, Vi,—p+5y - - -y Ui ,05 - - -, Vip—5, Vip—4 be 2p—7
consecutive vertices of the cycle of G\ F' which contains the vertex v; jo. In this
manner, we construct p/2 + 1 levels of vertices (the first level contains vertices
of the cycle C, the second level vertices v; j, the third level vertices v; j, etc.).
Hence, the i-th level of vertices, 2 < i < p/2 + 1, is composed of a number of
blocks of 2p + 5 — 4i vertices consecutive in the cycles of G \ F such that the
middle vertex of each block is adjacent to a vertex of the preceding level. Note
that blocks of the last level are formed by single vertices.

The octopus itself is formed by the vertices of all levels and all edges incident
with at least one such vertex. Examples of octopuses for p = 2 and p = 4 can be
found in Figure 1 (edges of the 1-factor are solid while other edges are dotted,;
the heads are in the bottom). The edges of cycles of G \ F' which are incident
with two vertices of the octopus are called inner edges, while those incident with
exactly one vertex of the octopus are called contact edges. Both the inner and
the contact edges are considered to be parts of the octopus. Since the girth of G
is greater than 2p? + 2p, the subgraph induced by an octopus in the graph G is
acyclic. Indeed, if the induced subgraph contained a cycle, then its length would
be at most 2 - (p/2 + 1) - 2p = 2p* + 2p (observe that if the subgraph induced by
the octopus is not acyclic, then its shortest cycle intersect at most two blocks of
each level of the potential octopus).

The crucial property of octopuses is the following:

Claim 1 Consider a precoloring of all contact edges with the colors —p/2 and
p/2 such that each pair of the contact edges incident with the same block (with the
head, respectively) receive opposite colors. Then, this precoloring can be extended
to a circular (3p + 1)/p-edge-coloring of the whole octopus.

We postpone the proof of Claim 1 and we begin by showing how it can be used
to derive the statement of the theorem.

By Lemma 1, the graph Gz, contains a system of p-independent segments.
Let S be such a system. For each segment s of S, there is an octopus in G
whose head is s. Let now O be the set of all octopuses o such that the head of
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Figure 1: Examples of octopuses for p = 2 and p = 4.

o belongs to S and the head cycle of o has odd length. All the octopuses of O
are vertex-disjoint. Indeed, if two of them are not disjoint, then the segments
corresponding to their heads have distance in G, at most 2 - p/2 = p which is
impossible because S is a system of p-independent segments. In particular, two
different octopuses of O can only share an edge which is a contact edge of each
of them.

We now construct a circular (3p + 1)/p-edge-coloring of G. Remove from G
the edges of the 1-factor F' and remove all inner edges of the head of each octopus
in O. The remaining graph consists of cycles of even lengths (which are not head
cycles) and paths of even length (each odd cycle of G \ F' is a head cycle of a
single octopus of O). Let us color edges of the remaining graph with the colors
—p/2 and p/2 alternately. Observe that the contact edges of each octopus head
receive opposite colors. Remove now the colors from all inner edges of octopuses
of O. We have just obtained a precoloring of the edges of G \ F except for the
inner edges of octopuses of O.

Since a block of each octopus consists of an odd number of vertices, it contains
an even number of inner edges and the colors of the two contact edges incident
with each block are opposite. Hence, the precoloring can be extended to the
interiors of all octopuses by Claim 1. The only uncolored edges of G are now
the edges of F' contained in no octopus of O. Since such edges are incident
only with edges of G \ F' colored with the colors —p/2 and p/2, they can be
arbitrarily colored with the colors —3p/2 and 3p/2. In this way, we obtain a
circular (3p + 1)/p-edge-coloring of the graph G.

Proof of Claim 1: As we said above, we first extend the precoloring to the
head, then to the blocks of the second level, then to the blocks of the third level,
etc. It will hold that edges of the 1-factor joining the vertices of the i-th and
(i +1)-th levels of the octopus (recall that the first level is its head) will have one
of the following p 4+ 2 — 27 colors:

-p—i,...,—3p/2+1,-3p/2 and p+i,...,3p/2—1,3p/2.

We first extend the coloring to the head of the octopus. By symmetry, we may

6



—3p/2 —3p/2+1 3p/2+ 1 3p/2

—3p/2 1 —3p/2+1 1 —3p/2+2 3p/2+2 l 3p/2+1 1 3p/2
I N
p/2+1 p/2+2 —-p/2 -2 -p/2-1

............. 0 ol ol il L G G

-3 44 -2 45 -1 +6 0 -6 +1 -5 +2 -4 43

Figure 2: Extending a precoloring to the head of the octopus for p = 2, p = 4,
p =6 and a general p (listed from bottom to top).

assume that the first contact edge is precolored with —p/2 and the last one with
p/2. Then, the coloring of the 2p — 1 inner edges of the head can be as follows:

Each of the 2p edges of F' incident with the head can be colored with one of the
colors p+1,...,3p/2 and —p —1,...,—3p/2. Extensions of a precoloring to the
head for p = 2, p = 4 and p = 6 are depicted in Figure 2. In the figure, the edges
of the 1-factor are solid while the other edges are dotted.

Recall that the octopus is formed by several levels of vertices such that the
i-th level, 7 > 2, of the octopus consists of several blocks of 2p+5 — 47 consecutive
vertices. From each block, there is a single edge of F' joining its middle vertex
to the previous level and all other vertices are joined by edges of F' to the next
level. We call the edge leading to the previous level an input edge of a considered
block, while the other edges are output edges of it. We establish the following
claim:

Claim 2 Consider a block of the octopus which consists of at least 4k+1 vertices,
0 <k < p/2—1, and whose input edge is colored with the color —3p/2 + k or
3p/2 —k. Then, any precoloring, which colors one of the two contact edges by the
color —p/2 and the other by the color p/2, can be extended to the whole block in
such a way that the output edges avoid the colors —3p/2 + k,...,3p/2 — k.

If £ = 0, then color the inner edges by the colors —p/2 and p/2 alternately and
the output edges arbitrarily by the colors —3p/2 and 3p/2. Assume in the rest
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Figure 3: Examples of extensions of a precoloring of contact and output edges to
whole blocks for p =2, p =4 and p =6 and for £k =1 and k = 2.

that £ > 1. We may also assume that the size of the block is exactly 4k + 1:
If the block is larger, simply color the remaining inner edges by the colors —p/2
and p/2 and the output edges by the colors —3p/2 and 3p/2. By the symmetry,
assume that the first contact edge is colored with the color —p/2, the last one
with p/2 and the input edge with the color —3p/2 + k. The 4k inner edges of the
block which are colored with the following colors (each of the following two lines
contains 2k colors):

p/2+1,—-p/2+1,p/24+2,—p/24+2,...,p/2+k, —p/2 + k,

p/2+k,—p/2+ (k—1),p/2+ (k—-1),-p/24+(k—2),...,p/2+1,—p/2 .
It is easy to check that the coloring can now be extended using only the colors
—3p/2+(k—1),...,—3p/2 to the output edges. This finishes the proof of Claim 2.
Examples of extending precolorings of contact edges to whole blocks for p = 2,
p =4 and p = 6 can be found in Figure 3.

We now use Claim 2 to complete the coloring of the octopus, and hence to
complete the proof of Claim 1. The colors of the edges of F' leaving the head are
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among p+1,...,3p/2 and —p — 1,...,—3p/2. Since the number of vertices in
each block of the second level is 2p —3 = 4(p/2 — 1) + 1, Claim 2 implies that the
coloring can be extended to each of these blocks in such a way that output edges
are colored only with the colors p+2,...,3p/2 and —p—2,...,—3p/2. Now, since
the number of vertices in each block of the third level is 2p — 7 =1+ 4(p/2 — 2),
Claim 2 again implies that the coloring can be extended to these blocks in such
a way that output edges are colored only with the colors p + 3,...,3p/3 and
—p —3,...,—3p/2. In this way, we extend the coloring to all blocks of the
octopus. Note that each block of the last level has a single input edge and
this edge gets the color —3p/2 or 3p/2 which is consistent with precoloring the
two contact edges by the colors —p/2 and p/2. Hence, the proof of Claim 1 is
completed, and so is the proof of the whole theorem.

[ |

If p is an odd integer, it is possible to use a similar argument, based on
octopuses with [p/2] + 1 levels, to prove the following result:

Theorem 3 Let G be a bridgeless cubic graph of girth at least 2(2p)**! where
p > 3 is an odd integer. Then, the circular chromatic index of G is at most
3+1/p.

The main result of our paper is the following corollary of Theorem 2:

Corollary 1 For each ¢ > 0, there exists an integer g such that each cubic
bridgeless graph of girth at least g has circular chromatic index at most 3 + <.

4 Circular 7/2-Edge-Colorings

In this section, we refine our arguments from Section 3 to show that the circular
chromatic index of each cubic bridgeless graph of girth 14 or more is at most 7/2.
Note that Theorem 2 implies this statement for graphs of girth at least 32. We
first prove an auxiliary lemma:

Lemma 2 Let G be a cubic graph of girth at least 14 and let F' be a 1-factor
of G. Then, it is possible to assign each edge of F' the sign + or — in such a
way that the following holds: Each odd cycle of G\ F contains four consecutive
vertices vy, Vs, v3 and vy4 such that v; and vy are incident with edges assigned the
sign +, while vs and vy are incident with edges assigned the sign —.

Proof: First, an auxiliary graph G4 is constructed. For each 4-segment
(a, 8,7,0) of a cycle C of G\ F, the graph G, contains two vertices vcﬂ;ﬂmé
and Uiﬁmﬁ' The first one, viﬁmg, represents the requirement that the edges of
F incident with o and [ are assigned the sign + and the edges incident with



and § are assigned the sign —. Similarly, the other vertex U;Fﬁma, represents the
requirement that the edges of F' incident with a and 3 are assigned — and the
edges incident with v and 4 are assigned +. Two vertices of G4 are joined by an
edge if the corresponding requirements contradict each other. For example, if o/
is the neighbor of a in F' and ', 7' and ¢’ are three consecutive vertices following
o' in a cycle of G\ F, then the vertices v, 5. s and v 4 . 5 are joined by an
edge, but the vertices vcﬂ;ﬁ,vé and vojf,’ﬁ,ﬁ,ﬁ, are not. Formally, G+ contains an
egge between the vertices v, 5. 5 and vy g ./ 5 if F' contains one of the following
edges:

avﬁa’%

ay',ad’, By, Bo', va',vf', 6o’ or 64" .
The same condition holds for the presence of an edge between the vertices v 5 . s

and vj, g v 5 in Gp+. Finally, there is an edge between the vertices vcﬂ;ﬂmé and
Uh g5 i Gry if F' contains at least one of the following edges:

aa', 045,7 Ba,, 551, 7717 7517 571 or 60" .

Note that the order of G+ is twice the order of G and the graph G4 is 16-
regular.

Let r be the number of all odd cycles Cy,...,C, of G\ F and let V; be the
vertices of Gp . corresponding to segments of the cycle C;, 1 < ¢ < r. Thus,
the length of each Cj is at least 15. The size of each V; is at least 2 - 15 = 30
by the assumption on the girth of G. We want to find a system of independent
representatives for G[U,—,, , Vi] with respect to Vi,...,V;. Indeed, such a system
of independent representatives yields an assignment of signs to some edges of F'
(there is no conflict when assigning signs to edges of F since the vertices of the
system represent non-contradictory requirements). This assignment already has
the property from the statement of the lemma, and thus an arbitrary extension
of it to all edges of F' has the claimed property.

We now show that G[U;—;,. ,Vi] has a system of independent representa-
tives with respect to Vi,...,V,. By Theorem 1, it is enough to verify that for
each non-empty set I C {1,...,r}, the total domination number of the graph
G|Uicr Vi] is at least 2|I|. For the sake of contradiction, assume the opposite and
let Iy C {1,...,r} be a non-empty set such that the total domination number of
GUicr, Vi) is at most 2|Ip| — 1. Let W be a total dominating set of size 2|y — 1.
We show that G[U;cy, Vi) contains a vertex which is not total dominated by W.

The dominance of vertices contained in W can be represented in G as follows:
Consider a vertex v;ﬂ,'y,é contained in W. Let o/, §', v and §' be the neighbors
of a, B, v and 4, respectively, in the 1-factor F'. Assign now the sign + to the
vertices o' and ' and the sign — to the vertices 4’ and §'. In case that the vertex
Uiﬁma is contained in W, the signs assigned to the vertices o/, 5, 7' and ¢’ are
opposite compared to the previous case. Perform this for each vertex contained
in W. Note that some vertices of G may be assigned both signs + and —. Now,
a vertex v 4 1s dominated by W if one of a and b is assigned — or one of ¢

a,b,c,
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and d is assigned +. A similar statement is true for the vertex v} ;. ;. By our
assumption, both vertices corresponding to each 4-segment of a cycle C; for i € I
are dominated.

Since each vertex of W causes the assignment of signs to four vertices of G, it
follows that at most 4|WW| < 8|[y| — 4 signs are assigned altogether. Thus, there
is a cycle Cy, k € Iy, whose vertices have been assigned a total of at most 7 signs
(if a vertex is assigned both signs + and —, then these two signs are counted as
two). Let s be the number of the signs assigned to the vertices of C}, and let ¢ be
the number of vertices which have been assigned both signs. The length of Cj,
is at least 15 because G has girth at least 14 and C} is an odd cycle. Hence, C}
contains at least 15 — (7 — t) = 8 + ¢ vertices which have not been assigned any
sign. Let us call such vertices unsigned. The remaining vertices of C} are called
signed.

In what follows, it will be shown by a simple discharging argument that the
set V4 in Gp 4 contains a vertex which is not dominated by W. Only the signed
vertices will have non-zero initial charge. Each vertex which has been assigned
both signs + and — has 3 units of initial charge. Each of the other signed vertices
has 1 unit of initial charge. Hence, the total initial charge distributed to all signed
vertices together is equal to s +¢. Note that this is at most 7 4+ ¢ by the choice
of C%. Unsigned vertices induce in C}, a subgraph consisting of several paths.
Let U be the set of these paths. Observe that each path in U consists of at
most three vertices because the vertex of V}, corresponding to four consecutive
unsigned vertices would not be dominated by W.

The initial charge is distributed from each signed vertex to the paths of un-
signed vertices by the following simple rule: FEach signed vertex splits its charge
to two halves. One half of its charge is sent to the clockwise nearest path of U in
Cy and the other half 1s sent to the anti-clockwise nearest path of U.

We now establish the following claim:

Claim 3 The charge received by each path of unsigned vertices receives is at least
the number of vertices it contains.

We distinguish three cases according to the number of unsigned vertices compris-
ing the path. Recall that this number is either 1, 2 or 3.

e If the path consists of a single vertex, then it receives at least a half unit of
charge from each of the two signed vertices adjacent to it in C%. Hence, it
receives at least one unit of charge in total.

e Consider now a path comprised of two unsigned vertices. Let u and v be
the two signed vertices adjacent to this path in Cj. If w is not assigned
both signs, then the neighbor u' of v in Cj not contained in the path must
be signed (otherwise, the vertices u', v and the two vertices of the path
correspond to a non-dominated vertex of W). Hence, either the group
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receives 3/2 units from the vertex u alone (this is the case that u has been
assigned both signs) or 1 unit from the vertices u and u’ together. Similarly,
the path receives at least 1 unit from the signed vertices adjacent to it on
its other side. Hence, it receives a total of at least 2 units of charge.

e If the path consists of three vertices, then each of the two vertices adjacent
in C} to this path must have been assigned both signs 4+ and —. Otherwise,
this vertex and the three unsigned vertices of the path correspond to a non-
dominated vertex of Vj. Hence, such a path of vertices receives 3/2 units
from each signed vertex adjacent to it. Hence, 3 units of charge are sent to
it in total.

This finishes the proof of Claim 3. Since the total initial charge is at most 7 + ¢,
there can be at most 7 + t unsigned vertices but there are at least 8 + ¢ such
vertices — a contradiction. We conclude that the total domination number of
G(Uicr, Vi) is at least 2|Iy| as desired. Hence, G[U,—;,., Vi] contains a system of
independent representatives with respect to Vi,...,V,. This completes the proof
of the lemma.

]

Theorem 4 FEvery cubic bridgeless graph G of girth at least 14 has circular chro-
matic index at most 7/2.

Proof: Let F' be a 1-factor of G. It exists because G is cubic and bridgeless [16].
We construct a circular 7/2-edge-coloring of G which uses the colors —3, —2, —1,
0, 1, 2 and 3. Consider an assignment o : F' — {4, —} of the signs + and — to
edges of F' with the property described in the statement of Lemma 2.

An edge e of F is colored with the color +3 if o(e) = + and it is colored with
the color —3, otherwise. Edges of each even cycle of G\ F are colored with the
colors —1 and +1 alternately. Consider now an odd cycle C' of G \ F and let vy,
vy, v3 and vy be consecutive vertices of C' such that the edges of F' incident with
vy and vs have been assigned + and the edges incident with v3 and v4 have been
assigned —. Let us color the edge v;vs with the color —2, the edge vsvs with the
color 0 and the edge vsv, with the color +2. Finally, color the remaining edges
of C' with —1 and +1 alternately such that the edge incident with v; is colored
with +1. It is easy to verify that the circular 7/2-edge-coloring obtained in this
way is proper.

]

5 Open Problems

Several new questions related to our results arise. Theorem 4 shows that every
cubic bridgeless graph G of girth at least 14 has circular chromatic index at
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most 7/2. However, it is not clear that the assumption on the girth cannot be
further improved. So far we know only that the largest girth of a cubic bridgeless
graph with the circular chromatic index strictly larger than 7/2 is between 5 and
13 (recall that the circular chromatic index of the Petersen graph is 11/3). It
is known [8, 17] that the so-called fractional chromatic index of every k-edge-
connected k-regular graph of even order is equal to k. It is also well-known
that the circular chromatic index is sandwiched between the fractional chromatic
index and the (usual) chromatic index [22]. Every bridgeless 2-regular graph
with at least four vertices has circular chromatic index at most 5/2. And, every
bridgeless 3-regular graph has circular chromatic index at most 11/3. We pose
the following problem:

Problem 1 Is it true that the circular chromatic index of every k-edge-connected
k-regular graph G of even order is smaller than k + 17 Is it always at most
k+1—1/k?

Possibly, the assumption that G is k-edge-connected can be replaced by the
weaker assumption that G is bridgeless. It also seems that the assumption that
the order of G is even can be omitted for some values of k.

Finally, it seems natural to ask whether Theorems 2 and 3 with Corollary 1
can be generalized to the realm of all regular graphs:

Problem 2 Is it true that for each k and each € > 0, there exists an integer g
such that every bridgeless k-regular graph of girth at least g has circular chromatic
index at most k 4+ ¢?

It is easy to show that the answer is positive if & = 2. Theorem 2 implies a
positive answer for the case k = 3, too. Hence, the first open case is k = 4.
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