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A Revival of the Girth Conje
tureTom�a�s Kaiser 1;4 Daniel Kr�al' 2;4 Riste �Skrekovski3;4Abstra
tWe show that for ea
h " > 0, there exists a number g su
h that the
ir
ular 
hromati
 index of every 
ubi
 bridgeless graph of girth at leastg is at most 3 + ". This 
ontrasts to the fa
t (whi
h disproved the GirthConje
ture) that there are snarks of arbitrary large girth. In parti
ular, weshow that every 
ubi
 bridgeless graph of girth at least 14 has the 
ir
ular
hromati
 index at most 7=2.1 Introdu
tionWe study edge-
olorings of 
ubi
 graphs. A proper edge-
oloring of a graph Gis a 
oloring of all edges of G su
h that every two in
ident edges re
eive distin
t
olors. The smallest number of 
olors for whi
h there is a proper edge-
oloringis 
alled the 
hromati
 index and denoted by �0(G). The 
hromati
 index of a
ubi
 graph is either 3 or 4 by a theorem of Vizing [20℄. In this paper, we study
ir
ular edge-
olorings of simple 
ubi
 graphs.The 
ir
ular 
oloring of graphs was introdu
ed by Vin
e [19℄ under the nameof \star 
oloring". A proper 
ir
ular p=q-edge-
oloring is a 
oloring of edges of Gby 
olors 0; : : : ; p� 1 su
h that the di�eren
e modulo p of 
olors assigned to twoin
ident edges is not among �(q � 1);�(q � 2); : : : ; q � 1. A 
ir
ular p=q-edge-
oloring 
an also be viewed as a 
oloring by points on a 
ir
le of 
ir
umferen
e pin su
h a way that a pair of in
ident edges re
eive 
olors whi
h are at distan
e atleast q on the 
y
le. The smallest ratio p=q for whi
h there is a proper 
ir
ular p=q-edge-
oloring is 
alled the 
ir
ular 
hromati
 index of G and denoted by �0
(G)(the minimum is always attained [5, 19℄). It 
an be shown that �0(G) � 1 <�0
(G) � �0(G). It is also true that for ea
h p and q with �0
(G) � p=q, there1Department of Mathemati
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is a proper 
ir
ular p=q-edge-
oloring of G. For further results on the 
ir
ular
oloring, the reader is referred to a re
ent survey on the subje
t by Zhu [22℄.It 
an be easily dedu
ed that 3 � �0
(G) � 4 for ea
h 
ubi
 bridgeless graph Gand that �0
(G) = 3 i� �0(G) = 3. Cubi
 bridgeless graphs whose 
hromati
 indexis equal to 4 are known as snarks [6, 21℄ (sometimes an additional 
onne
tivityrequirement is imposed). Zhu [22, Question 8.4℄ asked whether there is a 
ubi
bridgeless graph whose 
ir
ular 
hromati
 index is equal to 4. Afshani, Hatamiand Tusserkani [1℄ have re
ently proved that the 
ir
ular 
hromati
 index of ea
h
ubi
 bridgeless graph is at most 11=3. This 
annot be further improved, aswitnessed by the Petersen graph whose 
ir
ular 
hromati
 index is 11=3. The
ondition that the graph is bridgeless 
annot be removed be
ause there are 
ubi
graphs whose 
ir
ular 
hromati
 index is equal to 4. There are also bridgelessgraphs of maximum degree 3 whose 
ir
ular 
hromati
 index is equal to 4.A 
onje
ture of Jaeger and Swart [12℄ asserts the existen
e of a number g su
hthat ea
h snark has girth at most g (a
tually, they 
onje
tured that g = 6 suÆ
es)where the girth of a graph is the length of its shortest 
y
le. This 
onje
ture hasbe
ome known as the Girth Conje
ture and it was disproved by Ko
hol [13℄ who
onstru
ted 
y
li
ally 5-edge-
onne
ted snarks with arbitrary large girths. Inthe present paper, we prove that the Girth Conje
ture \holds" for the 
ir
ularedge-
oloring. In parti
ular, our main result is the following: For ea
h " > 0,there is a number g su
h that every 
ubi
 bridgeless graph of girth at least g has
ir
ular 
hromati
 index at most 3 + " (Corollary 1). This result is best possiblein the following sense: For ea
h g, there is a 
ubi
 bridgeless graph of girth gwith 
ir
ular 
hromati
 index greater than 3 (just 
onsider a snark of girth g).We remark that large girth itself does not imply that the 
ir
ular 
hromati
number is smaller than the 
hromati
 number. For ea
h integers k � 1 and g � 3,there is a graph G of girth at least g with �(G) = �
(G) = k as shown by Ste�enand Zhu [18℄. However, Gallu

io, Goddyn and Hell proved the following forgraphs avoiding a �xed graph H as a minor [10℄: For every graph H and every" > 0, there is g su
h that the 
ir
ular 
hromati
 number of ea
h graph of girthat least g whi
h does not 
ontain H as a minor is at most 2 + ".Standard graph theory notation, whi
h 
an be found e.g. in [7℄, is usedthroughout this paper. For X � V (G), G[X℄ denotes the subgraph of G indu
edby verti
es of the set X. The order of a graph is the number of its verti
es. Allthe 
olorings we 
onstru
t in this paper are 
ir
ular (3p+1)=p-
olorings. If p is aneven integer, the 
olors are denoted by the numbers �3p=2, �3p=2 + 1, : : :, �1,0, 1, : : :, 3p=2�1, 3p=2. The numbers 
an be viewed as points evenly distributedalong the 
ir
le whose 
ir
umferen
e is 3p + 1. Thus, two in
ident edges 
an beassigned numbers x and y only if p � jx� yj � 2p+ 1.Proofs of our results are based on a 
on
ept of systems of independent seg-ments in 
ubi
 graphs whi
h is a modi�
ation of a 
on
ept of independent systemsof representatives. Both these 
on
epts are introdu
ed in Se
tion 2. Our mainresult is stated and proved in Se
tion 3. A more 
areful analysis allows us to2



show that the 
ir
ular 
hromati
 index of ea
h 
ubi
 bridgeless graph of girth atleast 14 is at most 7=2 (Theorem 4). We 
on
lude the paper by posing severalopen problems in Se
tion 5.2 Systems of Independent SegmentsIn this se
tion, a 
on
ept of systems of independent segments is introdu
ed. This
on
ept is 
losely related to the 
on
ept of independent systems of representativesintrodu
ed by Fellows [9℄. We re
all this 
on
ept and state some results relatedto it. These results are then used to derive several lemmas whi
h are essentialfor our work.Fix an integer k � 1 and 
onsider a graph G whose vertex set is partitionedinto sets V1; : : : ; Vk. Verti
es v1; : : : ; vk form an independent system of represen-tatives (ISR) of G with respe
t to the partition V1; : : : ; Vk if v1; : : : ; vk form anindependent set and vi 2 Vi for ea
h i = 1; : : : ; k. An argument based on thetopologi
al 
onne
tivity of 
ertain simpli
ial 
omplexes was used to derive a suf-�
ient 
ondition on the existen
e of an ISR in [4℄. A more general form of thisargument is stated in [14℄. Here, we formulate one of its 
orollaries.A subset W of the vertex set of a graph G is 
alled total dominating if thefollowing holds: For ea
h vertex v 2 V (G), there is a vertex w 2 W su
h that vwis an edge of G. Note that we require ea
h vertex v to be adja
ent to a vertex ofW no matter whether v is in W or not. The smallest size of a total dominatingset in G is 
alled the total domination number of G and denoted by 
(G).In this paper, we use the following suÆ
ient 
ondition due to Haxell [11℄ onthe existen
e of an ISR:Theorem 1 Let G be a graph whose vertex set is partitioned into sets V1; : : : ; Vk.Then, G has an independent system of representatives with respe
t to V1; : : : ; Vkif the following holds for ea
h non-empty set I � f1; : : : ; kg:
  G[[i2I Vi℄! � 2jIj ;where G[Si2I Vi℄ is the graph indu
ed by the verti
es of the union Si2I Vi.An interested reader 
an �nd other 
onditions on the existen
e of ISR's and somegeneralizations of the 
on
ept in [2, 3, 15℄.Instead of independent systems of representatives, we 
onsider systems ofindependent segments in 
ubi
 graphs. Fix a 
ubi
 bridgeless graph G of girth gand a 1-fa
tor F of G. We de�ne a graph GF;k for 1 � k � g as follows: Verti
esof GF;k are k-tuples (v1; : : : ; vk) of verti
es of G for whi
h there is a 
y
le C inG n F su
h that the verti
es v1; : : : ; vk are 
onse
utive in the 
y
le C (they forma path in C). Sin
e k � g, the graphs G and GF;k have the same order. Verti
es3



of GF;k are 
alled segments, or k-segments if we want to emphasize the number ofverti
es in ea
h segment. Two segments (v1; : : : ; vk) and (w1; : : : ; wk) are joinedby an edge in GF;k if there exist vi and wj with viwj 2 F , i.e., a vertex of one ofthe segments is adja
ent to a vertex of the other one. Noti
e that the maximumdegree of GF;k is at most k2 (but it need not be a k2-regular graph unless g issuÆ
iently large).Let t be the number of the 
y
les of G n F and let C1; : : : ; Ct be these 
y
les.Verti
es of GF;k are partitioned into t sets V1; : : : ; Vt, where ea
h set Vi 
onsistspre
isely of segments of the 
y
le Ci, i = 1; : : : ; t. Hen
e, the size of Vi is equal tothe length of the 
y
le Ci and the minimum size of a set Vi is at least g. Segmentss1; : : : ; st form a system of r-independent segments if si 2 Vi for ea
h i = 1; : : : ; tand the distan
e between ea
h pair of verti
es si and sj with i 6= j in GF;k isat least r + 1. Note that a system of 1-independent segments is just a systemof independent representatives in the graph GF;k with respe
t to V1; : : : ; Vt. Ingeneral, a system of r-independent segments is a system of independent repre-sentatives in GrF;k where GrF;k is the r-th power of the graph GF;k. Re
all that ther-th power of a graph is the graph on the same vertex set in whi
h two verti
esare joined by an edge if their distan
e in the original graph is at most r.We now formulate a suÆ
ient 
ondition on the existen
e of a system of r-independent segments whi
h is based on Theorem 1:Lemma 1 Let r and k be positive integers and let G be a 
ubi
 bridgeless graphof girth at least 2k2r. For ea
h 1-fa
tor F of G, the graph GF;k 
ontains a systemof r-independent segments.Proof: We need to show that the graph GrF;k 
ontains an independent systemof representatives with respe
t to the sets V1; : : : ; Vs 
orresponding to the fa
torF in the way des
ribed before the statement of this lemma. Note that ea
h Vihas size at least 2k2r by the assumption on the girth of G. Sin
e the maximumdegree of the graph GF;k is at most k2, the maximum degree of the graph GrF;k
annot ex
eed k2(k2 � 1)r�1 � k2r. Now, let I be a non-empty subset of theset f1; : : : ; sg. Sin
e the order of the graph GrF;k[Si2I Vi℄ is at least 2k2r � jIjand its maximum degree is at most k2r, its total domination number is at least2k2r�jIjk2r = 2jIj. Then, by Theorem 1, GrF;k 
ontains an independent system ofrepresentatives with respe
t to the sets V1; : : : ; Vs.
3 Cir
ular (3 + ")-Edge-ColoringsTheorem 2 Let G be a bridgeless 
ubi
 graph of girth at least 2(2p)2p wherep � 2 is an even integer. Then, the 
ir
ular 
hromati
 index of G is at most3 + 1=p. 4



Proof: Fix an even integer p � 2 and a 1-fa
tor F of G. Note that G musthave a 1-fa
tor by Petersen's theorem [16℄ sin
e it is a bridgeless 
ubi
 graph.In what follows, we 
onstru
t a 
ir
ular (3p + 1)=p-edge-
oloring of G using the
olors �3p=2;�3p=2 + 1; : : : ;�1; 0; 1; : : : ; 3p=2� 1; 3p=2.First, 
ertain vertex-disjoint subgraphs 
alled o
topuses are found in G. Ano
topus has the following stru
ture: Let C be a 
y
le of G n F . An o
topus
ontains (among others) 2p 
onse
utive verti
es v1; : : : ; v2p of C together with alledges in
ident with them. The 
y
le C is 
alled the head 
y
le of the o
topus andthe verti
es of the o
topus 
ontained in C form the head of the o
topus. Next, letvi;0 be a neighbor of vi in F for i = 1; : : : ; 2p and let vi;�p+2; vi;�p+3; : : :, vi;0; : : :,vi;p�3; vi;p�2 be 2p � 3 
onse
utive verti
es of the unique 
y
le of G n F whi
h
ontains the vertex vi;0. Next, let vi;j;0 be a neighbor of vi;j in F for i = 1; : : : ; 2pand j = �p+2; : : : ; p�2 and let vi;�p+4; vi;�p+5; : : : ; vi;0; : : : ; vi;p�5; vi;p�4 be 2p�7
onse
utive verti
es of the 
y
le of G n F whi
h 
ontains the vertex vi;j;0. In thismanner, we 
onstru
t p=2 + 1 levels of verti
es (the �rst level 
ontains verti
esof the 
y
le C, the se
ond level verti
es vi;j, the third level verti
es vi;j;k, et
.).Hen
e, the i-th level of verti
es, 2 � i � p=2 + 1, is 
omposed of a number ofblo
ks of 2p + 5 � 4i verti
es 
onse
utive in the 
y
les of G n F su
h that themiddle vertex of ea
h blo
k is adja
ent to a vertex of the pre
eding level. Notethat blo
ks of the last level are formed by single verti
es.The o
topus itself is formed by the verti
es of all levels and all edges in
identwith at least one su
h vertex. Examples of o
topuses for p = 2 and p = 4 
an befound in Figure 1 (edges of the 1-fa
tor are solid while other edges are dotted;the heads are in the bottom). The edges of 
y
les of G n F whi
h are in
identwith two verti
es of the o
topus are 
alled inner edges, while those in
ident withexa
tly one vertex of the o
topus are 
alled 
onta
t edges. Both the inner andthe 
onta
t edges are 
onsidered to be parts of the o
topus. Sin
e the girth of Gis greater than 2p2 + 2p, the subgraph indu
ed by an o
topus in the graph G isa
y
li
. Indeed, if the indu
ed subgraph 
ontained a 
y
le, then its length wouldbe at most 2 � (p=2 + 1) � 2p = 2p2 + 2p (observe that if the subgraph indu
ed bythe o
topus is not a
y
li
, then its shortest 
y
le interse
t at most two blo
ks ofea
h level of the potential o
topus).The 
ru
ial property of o
topuses is the following:Claim 1 Consider a pre
oloring of all 
onta
t edges with the 
olors �p=2 andp=2 su
h that ea
h pair of the 
onta
t edges in
ident with the same blo
k (with thehead, respe
tively) re
eive opposite 
olors. Then, this pre
oloring 
an be extendedto a 
ir
ular (3p+ 1)=p-edge-
oloring of the whole o
topus.We postpone the proof of Claim 1 and we begin by showing how it 
an be usedto derive the statement of the theorem.By Lemma 1, the graph GF;2p 
ontains a system of p-independent segments.Let S be su
h a system. For ea
h segment s of S, there is an o
topus in Gwhose head is s. Let now O be the set of all o
topuses o su
h that the head of5



Figure 1: Examples of o
topuses for p = 2 and p = 4.o belongs to S and the head 
y
le of o has odd length. All the o
topuses of Oare vertex-disjoint. Indeed, if two of them are not disjoint, then the segments
orresponding to their heads have distan
e in GF;2p at most 2 � p=2 = p whi
h isimpossible be
ause S is a system of p-independent segments. In parti
ular, twodi�erent o
topuses of O 
an only share an edge whi
h is a 
onta
t edge of ea
hof them.We now 
onstru
t a 
ir
ular (3p + 1)=p-edge-
oloring of G. Remove from Gthe edges of the 1-fa
tor F and remove all inner edges of the head of ea
h o
topusin O. The remaining graph 
onsists of 
y
les of even lengths (whi
h are not head
y
les) and paths of even length (ea
h odd 
y
le of G n F is a head 
y
le of asingle o
topus of O). Let us 
olor edges of the remaining graph with the 
olors�p=2 and p=2 alternately. Observe that the 
onta
t edges of ea
h o
topus headre
eive opposite 
olors. Remove now the 
olors from all inner edges of o
topusesof O. We have just obtained a pre
oloring of the edges of G n F ex
ept for theinner edges of o
topuses of O.Sin
e a blo
k of ea
h o
topus 
onsists of an odd number of verti
es, it 
ontainsan even number of inner edges and the 
olors of the two 
onta
t edges in
identwith ea
h blo
k are opposite. Hen
e, the pre
oloring 
an be extended to theinteriors of all o
topuses by Claim 1. The only un
olored edges of G are nowthe edges of F 
ontained in no o
topus of O. Sin
e su
h edges are in
identonly with edges of G n F 
olored with the 
olors �p=2 and p=2, they 
an bearbitrarily 
olored with the 
olors �3p=2 and 3p=2. In this way, we obtain a
ir
ular (3p+ 1)=p-edge-
oloring of the graph G.Proof of Claim 1: As we said above, we �rst extend the pre
oloring to thehead, then to the blo
ks of the se
ond level, then to the blo
ks of the third level,et
. It will hold that edges of the 1-fa
tor joining the verti
es of the i-th and(i+1)-th levels of the o
topus (re
all that the �rst level is its head) will have oneof the following p+ 2� 2i 
olors:�p� i; : : : ;�3p=2 + 1;�3p=2 and p+ i; : : : ; 3p=2� 1; 3p=2 :We �rst extend the 
oloring to the head of the o
topus. By symmetry, we may6



�1 +2 0 �2 +1�3 �3 +3 +3�2 +3 �1 +4 0 �4 +1 �3 +2�6 �6 �5 �5 +5 +5 +6 +6�3 +4 �2 +5 �1 +6 0 �6 +1 �5 +2 �4 +3�9 �9 �8 �8 �7 �7 +7 +7 +8 +8 +9 +9�p=2 p=2 + 1�p=2 + 1p=2 + 2�p=2 + 2 p=2� 2�p=2� 2p=2 + 1�p=2� 1 p=2�3p=2 �3p=2�3p=2 + 1�3p=2 + 1�3p=2 + 2 3p=2 + 23p=2 + 13p=2 + 1 3p=2 3p=2

Figure 2: Extending a pre
oloring to the head of the o
topus for p = 2, p = 4,p = 6 and a general p (listed from bottom to top).assume that the �rst 
onta
t edge is pre
olored with �p=2 and the last one withp=2. Then, the 
oloring of the 2p� 1 inner edges of the head 
an be as follows:p=2 + 1;�p=2 + 1; p=2 + 2;�p=2 + 2; : : : ; p; 0;�p; : : : ; p=2� 1;�p=2� 1 :Ea
h of the 2p edges of F in
ident with the head 
an be 
olored with one of the
olors p+ 1; : : : ; 3p=2 and �p� 1; : : : ;�3p=2. Extensions of a pre
oloring to thehead for p = 2, p = 4 and p = 6 are depi
ted in Figure 2. In the �gure, the edgesof the 1-fa
tor are solid while the other edges are dotted.Re
all that the o
topus is formed by several levels of verti
es su
h that thei-th level, i � 2, of the o
topus 
onsists of several blo
ks of 2p+5�4i 
onse
utiveverti
es. From ea
h blo
k, there is a single edge of F joining its middle vertexto the previous level and all other verti
es are joined by edges of F to the nextlevel. We 
all the edge leading to the previous level an input edge of a 
onsideredblo
k, while the other edges are output edges of it. We establish the following
laim:Claim 2 Consider a blo
k of the o
topus whi
h 
onsists of at least 4k+1 verti
es,0 � k � p=2 � 1, and whose input edge is 
olored with the 
olor �3p=2 + k or3p=2�k. Then, any pre
oloring, whi
h 
olors one of the two 
onta
t edges by the
olor �p=2 and the other by the 
olor p=2, 
an be extended to the whole blo
k insu
h a way that the output edges avoid the 
olors �3p=2 + k; : : : ; 3p=2� k.If k = 0, then 
olor the inner edges by the 
olors �p=2 and p=2 alternately andthe output edges arbitrarily by the 
olors �3p=2 and 3p=2. Assume in the rest7



p = 2k = 0 �1 +1�3 �1 +1 �1 +1 +1 +1�3 �3 �3 �3 �3
p = 4k = 1 �2 +2�5 �2 +3 �1 +3 �2 +2�6 �6 �5 �6 �6
p = 6k = 1 �3 +3�8 �3 +4 �2 +4 �3 +3�9 �9 �8 �9 �9
p = 6k = 2 �3 +3�7�3 +4 �2 +5 �1 +5 �2 +4 �3 +3�9 �9 �8 �8 �7 �8 �8 �9 �9

Figure 3: Examples of extensions of a pre
oloring of 
onta
t and output edges towhole blo
ks for p = 2, p = 4 and p = 6 and for k = 1 and k = 2.that k � 1. We may also assume that the size of the blo
k is exa
tly 4k + 1:If the blo
k is larger, simply 
olor the remaining inner edges by the 
olors �p=2and p=2 and the output edges by the 
olors �3p=2 and 3p=2. By the symmetry,assume that the �rst 
onta
t edge is 
olored with the 
olor �p=2, the last onewith p=2 and the input edge with the 
olor �3p=2+ k. The 4k inner edges of theblo
k whi
h are 
olored with the following 
olors (ea
h of the following two lines
ontains 2k 
olors):p=2 + 1;�p=2 + 1; p=2 + 2;�p=2 + 2; : : : ; p=2 + k;�p=2 + k;p=2 + k;�p=2 + (k � 1); p=2 + (k � 1);�p=2 + (k � 2); : : : ; p=2 + 1;�p=2 :It is easy to 
he
k that the 
oloring 
an now be extended using only the 
olors�3p=2+(k�1); : : : ;�3p=2 to the output edges. This �nishes the proof of Claim 2.Examples of extending pre
olorings of 
onta
t edges to whole blo
ks for p = 2,p = 4 and p = 6 
an be found in Figure 3.We now use Claim 2 to 
omplete the 
oloring of the o
topus, and hen
e to
omplete the proof of Claim 1. The 
olors of the edges of F leaving the head are8



among p + 1; : : : ; 3p=2 and �p � 1; : : : ;�3p=2. Sin
e the number of verti
es inea
h blo
k of the se
ond level is 2p� 3 = 4(p=2� 1)+1, Claim 2 implies that the
oloring 
an be extended to ea
h of these blo
ks in su
h a way that output edgesare 
olored only with the 
olors p+2; : : : ; 3p=2 and �p�2; : : : ;�3p=2. Now, sin
ethe number of verti
es in ea
h blo
k of the third level is 2p� 7 = 1+ 4(p=2� 2),Claim 2 again implies that the 
oloring 
an be extended to these blo
ks in su
ha way that output edges are 
olored only with the 
olors p + 3; : : : ; 3p=3 and�p � 3; : : : ;�3p=2. In this way, we extend the 
oloring to all blo
ks of theo
topus. Note that ea
h blo
k of the last level has a single input edge andthis edge gets the 
olor �3p=2 or 3p=2 whi
h is 
onsistent with pre
oloring thetwo 
onta
t edges by the 
olors �p=2 and p=2. Hen
e, the proof of Claim 1 is
ompleted, and so is the proof of the whole theorem.If p is an odd integer, it is possible to use a similar argument, based ono
topuses with dp=2e+ 1 levels, to prove the following result:Theorem 3 Let G be a bridgeless 
ubi
 graph of girth at least 2(2p)2p+1 wherep � 3 is an odd integer. Then, the 
ir
ular 
hromati
 index of G is at most3 + 1=p.The main result of our paper is the following 
orollary of Theorem 2:Corollary 1 For ea
h " > 0, there exists an integer g su
h that ea
h 
ubi
bridgeless graph of girth at least g has 
ir
ular 
hromati
 index at most 3 + ".4 Cir
ular 7=2-Edge-ColoringsIn this se
tion, we re�ne our arguments from Se
tion 3 to show that the 
ir
ular
hromati
 index of ea
h 
ubi
 bridgeless graph of girth 14 or more is at most 7=2.Note that Theorem 2 implies this statement for graphs of girth at least 32. We�rst prove an auxiliary lemma:Lemma 2 Let G be a 
ubi
 graph of girth at least 14 and let F be a 1-fa
torof G. Then, it is possible to assign ea
h edge of F the sign + or � in su
h away that the following holds: Ea
h odd 
y
le of G n F 
ontains four 
onse
utiveverti
es v1, v2, v3 and v4 su
h that v1 and v2 are in
ident with edges assigned thesign +, while v3 and v4 are in
ident with edges assigned the sign �.Proof: First, an auxiliary graph GF;� is 
onstru
ted. For ea
h 4-segment(�; �; 
; Æ) of a 
y
le C of G n F , the graph GF;� 
ontains two verti
es v��;�;
;Æand v��;�;
;Æ. The �rst one, v��;�;
;Æ, represents the requirement that the edges ofF in
ident with � and � are assigned the sign + and the edges in
ident with 
9



and Æ are assigned the sign �. Similarly, the other vertex v��;�;
;Æ, represents therequirement that the edges of F in
ident with � and � are assigned � and theedges in
ident with 
 and Æ are assigned +. Two verti
es of GF;� are joined by anedge if the 
orresponding requirements 
ontradi
t ea
h other. For example, if �0is the neighbor of � in F and � 0, 
0 and Æ0 are three 
onse
utive verti
es following�0 in a 
y
le of G n F , then the verti
es v��;�;
;Æ and v��0;�0;
0;Æ0 are joined by anedge, but the verti
es v��;�;
;Æ and v��0;�0;
0;Æ0 are not. Formally, GF;� 
ontains anedge between the verti
es v��;�;
;Æ and v��0;�0;
0;Æ0 if F 
ontains one of the followingedges: �
0; �Æ0; �
0; �Æ0; 
�0; 
� 0; Æ�0 or Æ� 0 :The same 
ondition holds for the presen
e of an edge between the verti
es v��;�;
;Æand v��0;�0;
0;Æ0 in GF;�. Finally, there is an edge between the verti
es v��;�;
;Æ andv��0;�0;
0;Æ0 in GF;� if F 
ontains at least one of the following edges:��0; �� 0; ��0; �� 0; 

0; 
Æ0; Æ
0 or ÆÆ0 :Note that the order of GF;� is twi
e the order of G and the graph GF;� is 16-regular.Let r be the number of all odd 
y
les C1; : : : ; Cr of G n F and let Vi be theverti
es of GF;� 
orresponding to segments of the 
y
le Ci, 1 � i � r. Thus,the length of ea
h Ci is at least 15. The size of ea
h Vi is at least 2 � 15 = 30by the assumption on the girth of G. We want to �nd a system of independentrepresentatives for G[Si=1;:::;r Vi℄ with respe
t to V1; : : : ; Vr. Indeed, su
h a systemof independent representatives yields an assignment of signs to some edges of F(there is no 
on
i
t when assigning signs to edges of F sin
e the verti
es of thesystem represent non-
ontradi
tory requirements). This assignment already hasthe property from the statement of the lemma, and thus an arbitrary extensionof it to all edges of F has the 
laimed property.We now show that G[Si=1;:::;r Vi℄ has a system of independent representa-tives with respe
t to V1; : : : ; Vr. By Theorem 1, it is enough to verify that forea
h non-empty set I � f1; : : : ; rg, the total domination number of the graphG[Si2I Vi℄ is at least 2jIj. For the sake of 
ontradi
tion, assume the opposite andlet I0 � f1; : : : ; rg be a non-empty set su
h that the total domination number ofG[Si2I0 Vi℄ is at most 2jI0j � 1. Let W be a total dominating set of size 2jI0j � 1.We show that G[Si2I0 Vi℄ 
ontains a vertex whi
h is not total dominated by W .The dominan
e of verti
es 
ontained inW 
an be represented in G as follows:Consider a vertex v��;�;
;Æ 
ontained in W . Let �0, � 0, 
0 and Æ0 be the neighborsof �, �, 
 and Æ, respe
tively, in the 1-fa
tor F . Assign now the sign + to theverti
es �0 and � 0 and the sign � to the verti
es 
0 and Æ0. In 
ase that the vertexv��;�;
;Æ is 
ontained in W , the signs assigned to the verti
es �0, � 0, 
0 and Æ0 areopposite 
ompared to the previous 
ase. Perform this for ea
h vertex 
ontainedin W . Note that some verti
es of G may be assigned both signs + and �. Now,a vertex v�a;b;
;d is dominated by W if one of a and b is assigned � or one of 
10



and d is assigned +. A similar statement is true for the vertex v��;�;
;Æ. By ourassumption, both verti
es 
orresponding to ea
h 4-segment of a 
y
le Ci for i 2 I0are dominated.Sin
e ea
h vertex of W 
auses the assignment of signs to four verti
es of G, itfollows that at most 4jW j � 8jI0j � 4 signs are assigned altogether. Thus, thereis a 
y
le Ck, k 2 I0, whose verti
es have been assigned a total of at most 7 signs(if a vertex is assigned both signs + and �, then these two signs are 
ounted astwo). Let s be the number of the signs assigned to the verti
es of Ck and let t bethe number of verti
es whi
h have been assigned both signs. The length of Ckis at least 15 be
ause G has girth at least 14 and Ck is an odd 
y
le. Hen
e, Ck
ontains at least 15� (7� t) = 8 + t verti
es whi
h have not been assigned anysign. Let us 
all su
h verti
es unsigned. The remaining verti
es of Ck are 
alledsigned.In what follows, it will be shown by a simple dis
harging argument that theset Vk in GF;� 
ontains a vertex whi
h is not dominated by W . Only the signedverti
es will have non-zero initial 
harge. Ea
h vertex whi
h has been assignedboth signs + and � has 3 units of initial 
harge. Ea
h of the other signed verti
eshas 1 unit of initial 
harge. Hen
e, the total initial 
harge distributed to all signedverti
es together is equal to s + t. Note that this is at most 7 + t by the 
hoi
eof Ck. Unsigned verti
es indu
e in Ck a subgraph 
onsisting of several paths.Let U be the set of these paths. Observe that ea
h path in U 
onsists of atmost three verti
es be
ause the vertex of Vk 
orresponding to four 
onse
utiveunsigned verti
es would not be dominated by W .The initial 
harge is distributed from ea
h signed vertex to the paths of un-signed verti
es by the following simple rule: Ea
h signed vertex splits its 
hargeto two halves. One half of its 
harge is sent to the 
lo
kwise nearest path of U inCk and the other half is sent to the anti-
lo
kwise nearest path of U .We now establish the following 
laim:Claim 3 The 
harge re
eived by ea
h path of unsigned verti
es re
eives is at leastthe number of verti
es it 
ontains.We distinguish three 
ases a

ording to the number of unsigned verti
es 
ompris-ing the path. Re
all that this number is either 1, 2 or 3.� If the path 
onsists of a single vertex, then it re
eives at least a half unit of
harge from ea
h of the two signed verti
es adja
ent to it in Ck. Hen
e, itre
eives at least one unit of 
harge in total.� Consider now a path 
omprised of two unsigned verti
es. Let u and v bethe two signed verti
es adja
ent to this path in Ck. If u is not assignedboth signs, then the neighbor u0 of u in Ck not 
ontained in the path mustbe signed (otherwise, the verti
es u0, u and the two verti
es of the path
orrespond to a non-dominated vertex of W ). Hen
e, either the group11



re
eives 3=2 units from the vertex u alone (this is the 
ase that u has beenassigned both signs) or 1 unit from the verti
es u and u0 together. Similarly,the path re
eives at least 1 unit from the signed verti
es adja
ent to it onits other side. Hen
e, it re
eives a total of at least 2 units of 
harge.� If the path 
onsists of three verti
es, then ea
h of the two verti
es adja
entin Ck to this path must have been assigned both signs + and �. Otherwise,this vertex and the three unsigned verti
es of the path 
orrespond to a non-dominated vertex of Vk. Hen
e, su
h a path of verti
es re
eives 3=2 unitsfrom ea
h signed vertex adja
ent to it. Hen
e, 3 units of 
harge are sent toit in total.This �nishes the proof of Claim 3. Sin
e the total initial 
harge is at most 7 + t,there 
an be at most 7 + t unsigned verti
es but there are at least 8 + t su
hverti
es | a 
ontradi
tion. We 
on
lude that the total domination number ofG[Si2I0 Vi℄ is at least 2jI0j as desired. Hen
e, G[Si=1;:::;r Vi℄ 
ontains a system ofindependent representatives with respe
t to V1; : : : ; Vr. This 
ompletes the proofof the lemma.Theorem 4 Every 
ubi
 bridgeless graph G of girth at least 14 has 
ir
ular 
hro-mati
 index at most 7=2.Proof: Let F be a 1-fa
tor of G. It exists be
ause G is 
ubi
 and bridgeless [16℄.We 
onstru
t a 
ir
ular 7=2-edge-
oloring of G whi
h uses the 
olors �3, �2, �1,0, 1, 2 and 3. Consider an assignment � : F ! f+;�g of the signs + and � toedges of F with the property des
ribed in the statement of Lemma 2.An edge e of F is 
olored with the 
olor +3 if �(e) = + and it is 
olored withthe 
olor �3, otherwise. Edges of ea
h even 
y
le of G n F are 
olored with the
olors �1 and +1 alternately. Consider now an odd 
y
le C of G n F and let v1,v2, v3 and v4 be 
onse
utive verti
es of C su
h that the edges of F in
ident withv1 and v2 have been assigned + and the edges in
ident with v3 and v4 have beenassigned �. Let us 
olor the edge v1v2 with the 
olor �2, the edge v2v3 with the
olor 0 and the edge v3v4 with the 
olor +2. Finally, 
olor the remaining edgesof C with �1 and +1 alternately su
h that the edge in
ident with v1 is 
oloredwith +1. It is easy to verify that the 
ir
ular 7=2-edge-
oloring obtained in thisway is proper.
5 Open ProblemsSeveral new questions related to our results arise. Theorem 4 shows that every
ubi
 bridgeless graph G of girth at least 14 has 
ir
ular 
hromati
 index at12



most 7=2. However, it is not 
lear that the assumption on the girth 
annot befurther improved. So far we know only that the largest girth of a 
ubi
 bridgelessgraph with the 
ir
ular 
hromati
 index stri
tly larger than 7=2 is between 5 and13 (re
all that the 
ir
ular 
hromati
 index of the Petersen graph is 11=3). Itis known [8, 17℄ that the so-
alled fra
tional 
hromati
 index of every k-edge-
onne
ted k-regular graph of even order is equal to k. It is also well-knownthat the 
ir
ular 
hromati
 index is sandwi
hed between the fra
tional 
hromati
index and the (usual) 
hromati
 index [22℄. Every bridgeless 2-regular graphwith at least four verti
es has 
ir
ular 
hromati
 index at most 5=2. And, everybridgeless 3-regular graph has 
ir
ular 
hromati
 index at most 11=3. We posethe following problem:Problem 1 Is it true that the 
ir
ular 
hromati
 index of every k-edge-
onne
tedk-regular graph G of even order is smaller than k + 1? Is it always at mostk + 1� 1=k?Possibly, the assumption that G is k-edge-
onne
ted 
an be repla
ed by theweaker assumption that G is bridgeless. It also seems that the assumption thatthe order of G is even 
an be omitted for some values of k.Finally, it seems natural to ask whether Theorems 2 and 3 with Corollary 1
an be generalized to the realm of all regular graphs:Problem 2 Is it true that for ea
h k and ea
h " > 0, there exists an integer gsu
h that every bridgeless k-regular graph of girth at least g has 
ir
ular 
hromati
index at most k + "?It is easy to show that the answer is positive if k = 2. Theorem 2 implies apositive answer for the 
ase k = 3, too. Hen
e, the �rst open 
ase is k = 4.Referen
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