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Abstract

Cubic bipartite graphs with girth at least 6 correspond to symmet-
ric combinatorial (v3) configurations. In 1887 V. Martinetti described a
simple construction method which enables one to construct all combina-
torial (v3) configurations from a set of so-called irreducible configurations.
The result has been cited several times since its publication, both in the
sense of configurations and graphs. But after a careful examination, the
list of irreducible configurations given by Martinetti has turned out to
be incomplete. We will give the description of all irreducible configura-
tions and corresponding graphs, including those which are missing in the
Martinetti’s list.

1 Introduction

Let us start with basic definitions. A (combinatorial) configuration (vr, bk) is
an incidence structure of points and lines with the following properties.

1. There are v points and b lines.

2. There are r lines through each point and k points on each line.

3. Two different points are connected by at most one line and two lines
intersect in at most one point.

Note that configurations considered here are purely combinatorial objects and
that there is no geometric significance associated with the terms point and
line. For this reason we will omit the adjective combinatorial and speak only of
configurations. However, we will briefly discuss the geometric representation of
configurations at the end of the last section.

A (vr, bk) configuration is called symmetric if v = b (which is equivalent to
saying that r = k) and is denoted by (vr).

Incidence structures and hence configurations are closely related to graphs.
Let G(C) be a bipartite graph with v black vertices representing points of the
incidence structure C, b white vertices representing lines of C, and with an edge
joining two vertices if and only if the corresponding point and line are incident
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in C. We call G(C) incidence graph or Levi graph or just graph of the incidence
structure C. The following proposition characterizes symmetric configurations
in terms of their graphs.

Proposition 1. An incidence structure is a (vr) configuration if and only if its
graph is r-regular with girth at least 6.

For the proof and more about correlations between configurations and graphs
see [6, 9, 10]. For enumeration results about (v3) configurations the reader is
referred to [2].

With each (vr, bk) configuration C the dual (bk, vr) configuration C∗ may
be associated by reversing the roles of points and lines in C. Both C and C∗

share the same incidence graph, only the black-white coloring of its vertices
is reversed. If C is isomorphic to its dual we say that C is self-dual and a
corresponding isomorphism is called a duality. A duality of order 2 is called a
polarity. Configurations which admit a polarity are called self-polar.

If P = Zv = {0, 2, . . . , v − 1} represents a set of points and

B = {{0, b, c}, {1, b + 1, c + 1}, . . . , {v − 1, b + v − 1, c + v − 1}}, b, c ∈ P,

represents a set of lines of some (v3) configuration C then C is called a cyclic
(v3) configuration with base line {0, b, c}. Of course, the idea can be generalized
to cyclic (vr) configurations for general values of r.

The Fano plane or projective plane of order 2, the smallest (v3) configuration,
is a cyclic (73) configuration with base line {0, 1, 3}. Its incidence graph is
the well-known Heawood graph. The second one in this family, cyclic (83)
configuration with base line {0, 1, 3}, is the only (83) configuration and is called
Möbius-Kantor configuration [6]. Let us mention also that incidence graphs
of cyclic configurations correspond precisely to so-called cyclic Haar graphs of
girth at least 6, see [15].

In 1887 V. Martinetti suggested the following construction method for sym-
metric (v3) configurations [16]. Suppose that in the given (v3) configuration
exist two parallel (non-intersecting) lines {a1, a2, a3} and {b1, b2, b3} such that
points a1 and b1 are not on a common line. By removing these two lines, adding
one new point c and three new lines {c, a2, a3}, {c, b2, b3}, {c, a1, b1} we obtain
a ((v + 1)3) configuration. It is not possible to obtain every (v3) configuration
from some ((v − 1)3) configuration by using this method. We will call (v3)
configurations which can not be constructed in this way from a smaller one
irreducible configurations and the others reducible configurations.

2 Irreducible graphs and configurations

In [16] V. Martinetti gave a list of irreducible configurations. He claimed that,
in addition to some special cases for v ≤ 10, there are two infinite families of
irreducible (v3) configurations. The result has been cited several times since
its publication, both in the sense of configurations and graphs, for example
in [1, 5, 8, 14].

But in [14] the author expressed a certain amount of doubt about the result
when saying: “The proof [of Martinetti’s theorem] is, not surprisingly, involved
and long; I have not checked the details, and I do not know it as a fact that
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anybody has. The statement has been accepted as true for these 112 years, and
it may well be true. On the other hand, Daublebski’s enumeration of the (123)
configurations was also considered true for a comparable length of time. . . ”

And indeed, after a careful examination, the list of irreducible configurations
given by Martinetti has proved to be incomplete. The aim of this paper is to
give the complete list of irreducible configurations and corresponding graphs,
including those which are missing in the Martinetti’s list.

To do this we observe the Martinetti method on graphs of (v3) configurations.
For the sake of simplicity we will use the notion (v3) graph instead of graph of
(v3) configuration, i.e. (v3) graph is a bipartite cubic graph with girth ≥ 6.
We define reducible and irreducible (v3) graphs corresponding to reducible and
irreducible configurations respectively as follows. A (v3) graph G is reducible
if there exists an edge uv ∈ EG such that (G − {u, v}) + x1y1 + x2y2 and
(G−{u, v})+x1y2 +x2y1 are also (v3) graphs, where x1, x2, y1, y2 are neighbors
of u and v as it is shown in Figure 1. Otherwise a (v3) graph is irreducible.

⇒

(a)

or

(b)

Figure 1: Reduction of the edge uv in a (v3) graph.

In the proof of the Martinetti theorem, the following characterization of
irreducible configurations will be useful.

Lemma 2. A (v3) graph G is irreducible if and only if for each edge e of G one
of the following is true:

• edge e and one of its neighboring edges are the intersection of two 6-cycles,
or

• there exists a path efg which is the intersection of two 6-cycles.

Proof. Let G be an irreducible (v3) graph and let e be an arbitrary edge of G.
Then the graph obtained from G by reducing e contains a cycle of length 4. We
obtain this 4-cycle by adding edge x1y1 or x2y2 in the case of type (a) reduction
(see Figure 1) or by adding edge x1y2 or x2y1 in the case of type (b) reduction.
It follows that in G there is a 6-cycle containing the edges x1u, e, vy1 or x2u, e,
vy2 (before type (a) reduction) and a 6-cycle containing the edges x1u, e, vy2

or x2u, e, vy1 (before type (b) reduction). Altogether, there are four ways in
which these two 6-cycles can intersect each other. Let us assume that the two
6-cycles are C1 containing the edges x1u, e, vy2 and C2 containing the edges
x1u, e, vy1. The cycles C1 and C2 can intersect in two or three edges. In the
first case the intersection consists of two adjacent edges x1u and e. In the other
case the intersection consists of the edges e = uv, x1u, zx1, where z is the third
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vertex in C1 ∩C2. These three edges construct a path of length three (counting
the number of edges) where e is not the middle edge.

The converse is also true. Let e = uv and let e and vw form an intersection
of two 6-cycles C1 = uvwx1x2x3u and C2 = uvwy1y2y3u. After the reduction of
e we obtain by type (a) reduction 4-cycle wx1x2x3w and by type (b) reduction
4-cycle wy1y2y3w. It follows that e can not be reduced. Now let e = uv and
let e and the path uvwz of length three form an intersection of two 6-cycles
C1 = uvwzx1x2u and C2 = uvwzy1y2u. Again, after the reduction of e we
obtain either the cycle wzx1x2w or the cycle wzy1y2w. Since both cycles are of
length four e can not be reduced. Therefore, the two conditions of the theorem
imposed on each edge e of the graph G ensure that G is irreducible.

Next, we define several families of (v3) graphs.

Figure 2: Segment GT defining the families T1(n), T2(n) and T3(n).

Let T (n), n ≥ 1, denote a graph on 20n vertices which is a union of n

segments GT shown in Figure 2 where the i-th segment (i ≥ 2) and the (i− 1)-
th segment are joined together by the edges v1

i−1u
1
i , v2

i−1u
2
i , v3

i−1u
3
i . We will

use T (n) in the following definitions. Let T1(n) be the graph which is obtained
from T (n) by adding the edges u1

1v
1
n, u2

1v
2
n, and u3

1v
3
n. Let T2(n) be the graph

obtained from T (n) by adding the edges u3
1v

1
n, u2

1v
2
n, and u1

1v
3
n. And finally, let

T3(n) be the graph obtained from T (n) by adding the edges u1
1v

3
n, u2

1v
1
n, and

u3
1v

2
n. See Figure 3.

(a) (b) (c)

Figure 3: The construction of the graphs T1(n) (a), T2(n) (b), and T3(n) (c)
from T (n) by adding three edges (shown thick) joining the last and the first
segment.

Note that due to the symmetries of the graph GT (see the list (1) in the proof
of the next proposition) it is not important how the vertices v

j
i−1 are connected

to the vertices uk
i . We always obtain the graph T (n).
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Proposition 3. For each fixed n ≥ 1, no two of the graphs T1(n), T2(n), T3(n)
are isomorphic, and every other irreducible graph on 20n vertices, that can be
obtained from T (n) by adding three edges, is isomorphic to one of them.

Proof. Obviously, T1(n), T2(n), T3(n) are cubic and bipartite graphs with girth
6, thus, they are (v3) graphs. It is easy to check, that each edge satisfies the
conditions of Lemma 2 which ensures that the graphs are also irreducible. (It
is sufficient to check the conditions for all edges in the segment and the edges
joining the segments together.)

At each fixed n, the claim of the theorem can be verified by using some
computer program which checks the existence of an isomorphism between two
graphs. To prove the statement that the three graphs are non-isomophic in
general, we show that the numbers of orbits for the action of the automorphism
group on the set of edges are 3, 6, 4 respectively for T1(n), T2(n), T3(n).

The fact about the number of orbits will be easier to see if we first list the
automorphisms of GT . These are: identity,

α2 = (u3
i u2

i )(w
2
i w1

i )(x2
i x1

i )(y
2
i y1

i )(z3
i z2

i )(v3
i v2

i ),

α3 = (u2
i u1

i )(w
3
i w2

i )(x3
i x2

i )(y
3
i y2

i )(z2
i z1

i )(v2
i v1

i ),

α4 = (u2
i u3

i u1
i )(w

3
i w2

i w1
i )(x3

i x2
i x1

i )(y
3
i y2

i y1
i )(z2

i z3
i z1

i )(v2
i v3

i v1
i ),

α5 = (u3
i u2

i u1
i )(w

2
i w3

i w1
i )(x2

i x3
i x1

i )(y
2
i y3

i y1
i )(z3

i z2
i z1

i )(v3
i v2

i v1
i ),

α6 = (u3
i u1

i )(w
3
i w1

i )(x3
i x1

i )(y
3
i y1

i )(z3
i z1

i )(v3
i v1

i ).

(1)

The three edge orbits of the graph T1(n), n ≥ 2, are the sets

O1 = {u1
i w

1
i , u1

i w
2
i , u

2
i w

1
i , u2

i w
3
i , u3

i w
2
i , u3

i w
3
i ,

y1
i z1

i , y1
i z2

i , y2
i z1

i , y2
i z3

i , y3
i z2

i , y3
i z3

i : i = 1, 2, . . . , n},

O2 = {w1
i x

1
i , w

2
i x2

i , w
3
i x3

i , x
1
i y

1
i , x2

i y
2
i , x3

i y
3
i ,

z1
i v1

i , z2
i v2

i , z3
i v3

i , v1
i u1

i+1, v
2
i u2

i+1, v
3
i u3

i+1 : i = 1, 2, . . . , n},

O3 = {t1i x
1
i , t

1
i x

2
i , t

1
i x

3
i , t

2
i v

1
i , t2i v

2
i , t2i v

3
i : i = 1, 2, . . . , n},

see Figure 4(a). The existence of an automorphism which maps an edge from
Oi to another edge from the same set is evident from the definition of T1(n) and
the fact about automorphisms of the graph GT , (1). Since the edges from O1

are contained in three 6-cycles, edges from O2 in two 6-cycles, and edges from
O3 in four 6-cycles, the sets O1, O2, and O3 are indeed three different orbits.

The graph T2(n), n ≥ 2, has 6 edge orbits:

P1 = {u1
i w

1
i , u3

i w
3
i , y1

i z1
i , y3

i z3
i : i = 1, 2, . . . , n},

P2 = {u1
i w

2
i , u2

i w
1
i , u2

i w
3
i , u3

i w
2
i , y1

i z2
i , y2

i z
1
i , y2

i z3
i , y3

i z2
i : i = 1, 2, . . . , n},

P3 = {w1
i x1

i , w
3
i x3

i , x
1
i y

1
i , x

3
i y

3
i , z1

i v1
i , z3

i v3
i , v1

i u1
i+1, v

3
i u3

i+1 : i = 1, 2, . . . , n},

P4 = {w2
i x2

i , x
2
i y

2
i , z2

i v2
i , v2

i u2
i+1 : i = 1, 2, . . . , n},

P5 = {t1i x
1
i , t

1
i x

3
i , t

2
i v

1
i , t2i v

3
i : i = 1, 2, . . . , n},

P6 = {t1i x
2
i , t

2
i v

2
i : i = 1, 2, . . . , n},

see Figure 4(b). (In the set P3 the last two edges, at i = n, should be replaced
by v1

nu3
1 and v3

nu1
1.) Now we must show that P1 6= P2, P3 6= P4, and P4 6= P5.
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(a) (b)

(c)

Figure 4: The edge orbits of the graphs T1(n) (a), T2(n) (b), T3(n) (c) shown
on a segment. Edges depicted with the same line style belong to the same orbit.

Let us, for example, show that there is no automorphism which would map
u1

1w
1
1 to u1

1w
3
1 (i.e. that P1 6= P2). Now, suppose that this automorphism exists.

The first possibility is that it fixes u1
1 and interchanges w1

1 and w2
1 . But the

transposition (w1
1 w2

1) already induces the rest of the mapping. Hence, the only
possibility for this automorphism would be:

(u2
1 u3

1)(w
1
1 w2

1)(x
1
1 x2

1)(y
1
1 y2

1)(z
2
1 z3

1)(v
2
1 v3

1)(u
2
2 u3

2) · · · (v
2
n v3

n).

But this mapping is not an automorphism. Since there exist edges v2
nu2

1 and
v3

nu1
1, the automorphism would have to interchange u1

1 and u2
1. But it does not

do this. The next possibility is an automorphism which would map u1
1 to w2

1

and w1
1 to u1

1. This induces the mapping

(w2
1 u3

1 w3
1 u2

1 w1
1 u1

1)(t
1
1 t2n)(x1

1 v3
n x2

1 v1
n x3

1 v2
n)(y1

1 z3
n y2

1 z1
n y3

1 z2
n)

(z1
1 y2

n z3
1 y1

n z2
1 y3

n)(t21 t1n) · · · ,

which, again, is not an automorphism of T2(n). A contradiction occurs in the
“middle” of the graph. This shows that P1 6= P2. The remaining two inequali-
ties, P3 6= P4 and P4 6= P5, can be justified in a similar way.

The edge orbits of T3(n) are:

Q1 = {u1
i w

1
i , u

2
i w

3
i , u3

i w
2
i , y1

i z
2
i , y2

i z1
i , y3

i z3
i : i = 1, 2, . . . , n},

Q2 = {u1
i w

2
i , u

2
i w

1
i , u3

i w
3
i , y1

i z
1
i , y2

i z3
i , y3

i z2
i : i = 1, 2, . . . , n},

Q3 = {w1
i x1

i , w
2
i x2

i , w
3
i x3

i , x
1
i y

1
i , x2

i y
2
i , x3

i y
3
i , z1

i v1
i , z2

i v2
i , z3

i v3
i ,

v1
i u1

i+1, v
2
i u2

i+1, v
3
i u3

i+1 : i = 1, 2, . . . , n},

Q4 = {t1i x
1
i , t

1
i x

2
i , t

1
i x

3
i , t

2
i v

1
i , t2i v

2
i , t2i v

3
i : i = 1, 2, . . . , n},

see Figure 4(c). (In the set Q3 the last three edges, at i = n, should be replaced
by v1

nu2
1, v2

nu3
1, v3

nu1
1.) This time we must show that Q1 6= Q2. We can prove

this if we try to map u1
1w

1
1 to u1

1w
3
1 . It turns out that this is not possible. The

reason is the same as in the case when we proved that P1 6= P2.
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Finally we prove that the remaining three graphs which can be obtained from
T (n) are isomorphic to T1(n) or T2(n) or T3(n). Let T4(n) be the graph obtained
from T (n) by adding the edges v1

nu3
1, v2

nu1
1, v3

nu2
1, let T5(n) be the graph obtained

from T (n) by adding the edges v1
nu1

1, v2
nu3

1, v3
nu2

1, and let T6(n) be the graph
obtained from T (n) by adding the edges v1

nu2
1, v2

nu1
1, v3

nu3
1. Obviously T4(n) ∼=

T3(n) and T5(n) ∼= T6(n) (the constructions are symmetric). Furthermore T5
∼=

T6(n) ∼= T2(n). The isomorphism between T2(n) and T5(n) is

u1
i 7→ u2

i , u2
i 7→ u1

i , u3
i 7→ u3

i , w1
i 7→ w1

i , w2
i 7→ u3

i , w3
i 7→ w2

i ,

x1
i 7→ x1

i , x2
i 7→ x3

i , x3
i 7→ x2

i , y1
i 7→ y1

i , y2
i 7→ y3

i , y3
i 7→ y2

i , t1i 7→ t1i ,

z1
i 7→ z2

i , z2
i 7→ z1

i , z3
i 7→ z3

i , v1
i 7→ v2

i , v2
i 7→ v1

i , v3
i 7→ v3

i , t2i 7→ t2i ,

i = 1, 2, . . . , n.

Proposition 4. Each of the graphs T1(n), T2(n), T3(n), n ≥ 1, is an incidence
graph of a self-polar irreducible ((10n)3) configuration.

Remark. T1(1) is incidence graph of the Desargues (103) configuration, while
T2(1) and T3(1) determine the configurations (103)2 and (103)6, respectively,
according to the classification found in [4].

Proof. We only need to find an automorphism of order two which interchanges
vertices of the bipartition for each of the graphs T1(n), T2(n), T3(n). For T1(n)
this automorphism is (given in cycle notation)

(u1
1 w1

1)(u
2
1 w2

1)(u
3
1 w3

1)(t
1
1 t2n)(t21 t1n)(x1

1 v1
n)(x2

1 v2
n)(x3

1 v3
n)

(y1
1 z1

n)(y2
1 z2

n)(y3
1 z3

n)(z1
1 y1

n)(z2
1 y2

n)(z3
1 y3

n)

(v1
1 x1

n)(v2
1 x2

n)(v3
1 x3

n)(u1
2 w1

n)(u2
2 w2

n)(u3
2 w3

n)

(w1
2 u1

n−1)(w
2
1 u2

n−1)(w
3
2 u3

n−1)(t
1
2 t2n−1)(t

2
2 t1n−1)(x

1
2 v1

n−1)(x
2
2 v2

n−1)(x
3
2 v3

n−1)

· · ·

Labeling of the vertices is presented on the segment in Figure 2. Automorphism
of T2(n) is similar and for this reason we can give shorter argumentation

(u1
1 w1

1)(u
2
1 w2

1)(u
3
1 w3

1)(t
1
1 t2n)(t21 t1n)(x1

1 v3
n)(x2

1 v2
n)(x3

1 v1
n)

(y1
1 z3

n)(y2
1 z2

n)(y3
1 z1

n)(z1
1 y3

n)(z2
1 y2

n)(z3
1 y1

n)

· · ·

And, finally, automorphism of T3(n) is

(u1
1 w1

1)(u
2
1 w2

1)(u
3
1 w3

1)(t
1
1 t2n)(t21 t1n)(x1

1 v3
n)(x2

1 v2
n)(x3

1 v1
n)

(y1
1 z3

n)(y2
1 z1

n)(y3
1 z2

n)(z1
1 y3

n)(z2
1 y1

n)(z3
1 y2

n)

· · ·

Let C(n), n ≥ 1, be the graph on 6n vertices, which is a union of n segments
(6-cycles) depicted in Figure 5 and the i-th segment is joined with the (i−1)-th
segment, i ≥ 2, by the edges v1

i−1u
1
i , v2

i−1u
4
i , and u3

i−1u
2
i . See the Figure 6.

Finally, let D(n) be the graph defined in the following way.
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Figure 5: Segment from
the definition of the graph
C(n).

Figure 6: Graph D(n) for n ≡ 0 (mod 3), which
is the graph C(m), m = n

3
, (thin edges) with

three edges added (shown thick).

For n ≡ 0 (mod 3) let D(n) be graph C(m), m = n
3
, with three edges u1

1v
1
m,

u4
1v

4
m, u2

1u
3
m added. See Figure 6.

For n ≡ 1 (mod 3) let D(n) be graph C(m), m = n−1

3
, with two vertices

w1
m, w2

m and six edges u1
1w

1
m, u2

1v
2
m, u4

1w
2
m w1

mw2
m, w1

mu3
m, w2

mv1
m added

For n ≡ 2 (mod 3) let D(n) be graph C(m), m = n−2

3
, with four vertices

w1
m, w2

m, w3
m, w4

m and nine edges v1
mw1

m, v2
mw4

m, u3
mw2

m, u1
1w

4
m, u2

1w
1
m, u4

1w
3
m,

w1
mw2

m, w2
mw3

m, w3
mw4

m added.

Proposition 5. For each n ≥ 7 graph D(n) is an irreducible (v3) graph on 2n

vertices. Graph D(n), n ≥ 7, is an incidence graph of the cyclic (n3) configura-
tion with base line {0, 1, 3}. These configurations are self-polar.

Proof. The construction of graphs D(n) and C(n) assures that C(n) is a cubic
bipartite graph. It is also easy to see that girth(C(n)) = 6, so C(n) is a (v3)
graph. It turns out that for every edge e of C(n) there exist edges f and g

such that the path efg is the intersection of two 6-cycles. Then, by Lemma 2,
it follows that C(n) is also irreducible. Isomorphism between the graph of the
cyclic (n3) configuration with base line {0, 1, 3} and graph D(n) is given by the
following rules:

3i − 3 7→ u2
i , 3i − 2 7→ u4

i , 3i − 1 7→ v1
j , i = 1, 2, . . . ,

⌊

n
3

⌋

.

If n ≡ 1 (mod 3) then the additional rule is n − 1 7→ w1
m, m =

⌊

n
3

⌋

, and
if n ≡ 2 (mod 3) then the additional rules are n − 2 7→ w2

m and n − 1 7→
w4

m. An automorphism of order 2 which interchanges points and lines of these
configurations, i.e. white and black points of their incidence graphs, maps point
i to line {−i, 1− i, 3 − i} (arithmetic is modulo n).

3 The Martinetti theorem

The theory we developed up to this point is already enough to state and prove
the main theorem.

Theorem 6. The only connected irreducible (v3) graphs are:

1. graph of the Pappus configuration, see Figure 7,

2. graphs T1(n), T2(n), T3(n) for n ≥ 1,

8



Figure 7: Incidence graph of the Pappus configuration.

Figure 8: Graph G1
0 from the proof of

Theorem 6.
Figure 9: Graph G3 from the proof of
Theorem 6.

3. graphs D(n) for n ≥ 7.

Proof. We distinguish two cases. First, we assume that in the given irreducible
(v3) graph there exist no two 6-cycles which intersect in three edges (this must
be a path of length 3). Then, by Lemma 2, there must exist two 6 cycles
intersecting in a path of length two. Locally, the structure in the neighborhood
of these two cycles must be such as it is shown in Figure 8. We denote this
graph by G1

0. By Lemma 2, the edge e = u7u9 and one of its neighbors must
lie on two 6-cycles. Since the situation is symmetric we may assume that one of
the cycles containing e is u7u9u12u14u11u8u7, i.e. there exist the edge u12u14.
So, let us denote G1

1 = G1
0 + u12u14. Vertex u12 must have another black

neighbor. The only choices in G1
1 are vertices u16 and u3 (since we assume that

in the graph there exist no two 6-cycles intersecting in three edges). Another
possibility is that we choose a vertex which is not a vertex in G1

1. We denote
graphs obtained by choosing the neighbor of u12 in these three ways by G1

2, G2
2,

and G3
2, successively.

First, let us continue with G1
2. It leads to the graph G3 shown in Figure 9.

This is true since vertex u16 must be connected to a new white vertex (denoted
by u19 in G3) and vertex u5 must be connected to u1 and u3 because of the
edge u5u9. Next we focus to the vertices u17, u18, and u19. Each of them should
be connected to two black vertices. Some of these black vertices can be chosen
from the vertices u1, u2, u3 but some of them must be new. In each case it
follows, due to the fact that each of the edges u14u17, u15u18, and u16u19 must
be in the intersection of two 6-cycles (Lemma 2), that u17, u18, and u19 must
have a common new black neighbor, see graph G4 in Figure 10. If vertex u17

(or u18, or u19) has a neighbor in the set U = {u1, u2, u3} then vertices u18 and

9



Figure 10: Graph G4 from the proof of Theorem 6.

u19 must also be connected to the remaining two vertices from U . This is true,
since it would not be possible for the edges from u18 and u19 to new vertices
to be contained in two 6-cycles. Noticing that the graph G4 is actually the
segment in the Figure 2, we recognize that the described case leads to the three
non-isomorphic irreducible (v3) graphs T1(1), T2(1), T3(1) (by Proposition 3).

We are left with the case where we add three new vertices to the graph G4 and
connect them to vertices u17, u18, u19. We obtain the graph G5, see Figure 11.
Now, the new vertices u21, u22, u23 must be connected with new white vertices.

Figure 11: Graph G5 from the proof of Theorem 6.

The only possibility is the graph G6 which is shown in Figure 12. This follows
easily if we consider the requirements of the Lemma 2 on the edges u17u21,

Figure 12: Graph G6 from the proof of Theorem 6.

u18u22, u19u23. In the next step, we observe that each of the vertices u24, u25,
u26 should be connected with one black vertex. We clearly can not use only one
from the set U for these black vertices, but we also can not use two or three
vertices from U since we would obtain 4-cycles. Hence, the only possibility is
to add three new black vertices. Proceeding in this way, we obtain graph G8

which is shown in Figure 13. Here, as at the time we were considering the graph

10



Figure 13: Graph G8 from the proof of Theorem 6.

G4, we obtain, by connecting vertices u38, u39, u40 only to the vertices u1, u2,
u3, graphs T1(2), T2(2), T3(2) or continue with three new vertices. In the latter
case, we continue in the same manner as with graph G5, only that this time the
graph is for a segment larger. Hence, we conclude that the continuation of the
procedure gives precisely families T1(n), T2(n), T3(n).

Now, let us return back to the graph G2
2. By considering all possibilities

and excluding the cases where the situation contradicts Lemma 2 it is possible
to see that G2

2 leads only to the Pappus graph, i.e. to the graph of the Pappus
configuration, see Figure 7. Similarly, it is possible to see that G3

2 leads only
to graphs isomorphic to those obtained from G1

2. Thus we do not get any new
irreducible (v3) graphs.

In the second part of the proof, let us assume that in the given irreducible
graph there exist two 6-cycles intersecting in a path of length three (counting
the number of edges). Locally, the structure of this graph must correspond to
the graph H0 shown in Figure 14. where the two 6-cycles are u1u2u3u4u6u5u1

Figure 14: Graph H0 from the proof
of Theorem 6.

Figure 15: Graph H1(n) from the
proof of Theorem 6.

and u3u4u6u5u7u8u3. Now we imitate considerations we did in the previous
case. We systematically add vertices and edges to H0 and to the subsequent
graphs such that they satisfy Lemma 2. First, Lemma 2 used on edges u9u10

and u6u10 implies that there should exist edge u8u9. Similarly, it follows that
there must exist edges u11u12 and u13u14. (There are other possibilities but
it turns out that they do not give any new graphs.) The current situation is
the graph H1(2) where by H1(n) we denote graph C(n) with vertices w1

n, w2
n

and edges v1
nw1

n, u3
nw2

n, w1
nw2

n added, see Figure 15. From H1(n), n ≥ 2, it is
possible to continue in the following ways.

If we choose not to add any new vertex then, to obtain an irreducible (v3)
graph, we must add three more edges. This can be done in only one way; we
obtain the graph D(3n + 1) which is, by Proposition 5, graph of the cyclic

11



((3n + 1)3) configuration with base line {0, 1, 3}.
Next, we assume that we connect precisely two vertices from the set Un =

{v2
n, w1

n, w2
n} to the free vertices from the first segment of H1(n) and only one

to a new vertex. But we can disregard this case since it would be not possible
to assure the conditions of Lemma 2 for the edge to a new vertex. Next, we
consider the case where we add two new vertices and connect them to two
vertices from Un (and we connect the remaining vertex from Un to a vertex
from the first segment). Using Lemma 2 (on new edges and, in one case, on
w1

nw2
n) we exclude all pairs but v2

n and w2
n. Finally, it is possible to connect

all three vertices from Un to three new vertices. In the last two cases we also
recognize that the new vertices we connect to v2

n and w2
n must be connected.

In general, this leads to the graph H2(n) which is shown in Figure 16. (The
case where w1

n is connected to a new vertex will discussed in the next step.)
Now, the situation is similar to that at the moment we were considering graph

Figure 16: Graph H2(n) from the
proof of Theorem 6.

Figure 17: Graph H3(n) from the proof
of Theorem 6.

H1(n). Vertices from the set Vn = {w1
n, w3

n, w4
n} should be connected either to

the vertices from the first segment (vertices u1
1, u2

1, u4
1) or to new vertices. If we

choose not to add any new vertex we can obtain only graph D(3n + 2), n ≥ 2,
while the other cases lead to the graph H3(n), see Figure 17. The only (v3)
graph we can obtain from H3(n) by adding edges is graph D(3n + 3). The next
step, again analogous to those we did above, leads to graph H1(n + 1).

Hence, we got in this part of the proof exactly graphs D(n), n ≥ 3, which are
by Proposition 5 graphs of cyclic (n3) configurations with base line {0, 1, 3}.

Now we can state the revised form of the Martinetti theorem.

Theorem 7. All connected irreducible (v3) configurations are

1. cyclic configurations with base line {0, 1, 3},

2. configurations with their incidence graphs T1(n), T2(n), T3(n), n ≥ 1,
each of them giving precisely one ((10n)3) configuration, and

3. the Pappus configuration.

Remark. In the theorem stated in the original paper [16] and in its citations
[8, 14] configurations arising from graphs T2(n) and T3(n) are missing for n ≥ 2.

Proof. The theorem follows from Theorem 6, Proposition 4, and Proposition 5.
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An important topic in the study of configurations is the problem of their
realization with points and lines in the plane. Configurations which can be real-
ized in the plane will be called linear. It is a well known fact that, for example,
Fano configuration and Möbius-Kantor configuration are not linear while the
Pappus configuration and the other two (93) configurations are. The problem
of realization has a long history. H. Schröter proved in 1888 the realizability
in the plane of the cyclic configurations with base line {0, 1, 3}. In 1889 he
proved that nine of the ten combinatorial (103) configurations found earlier by
Kantor can be realized geometrically in the real plane, but that the remaining
one cannot be realized in such a way. The most important result is due to
E. Steinitz (1894) which (roughly) says that every connected (v3) configuration
can be drawn in the plane with at most one curved line. More about realizations
and problems can be found in [11, 7, 14]. The geometric view of the configura-
tions is explicit in the work of B. Grünbaum [12, 13, 14]. Recently, this topic
has been investigated in [3] for special types of configurations.

Here, we will only briefly present some known results regarding the irre-
ducible configurations. Geometric representations of the two smallest irreducible
configurations, the Fano configuration and the Möbius-Kantor configuration are
in Figure 18 and Figure 19, respectively. Cyclic (93) and (123) configurations

Figure 18: Fano configuration Figure 19: Möbius-Kantor configu-
ration

with base line {0, 1, 3} are shown in Figures 20 and 21. Realizations of other
cyclic (v3) configurations with base line {0, 1, 3} for v ≡ 0 (mod 3) follow the
same principle of mutually inscribed and circumscribed v

3
-gons which represents

the structure of their automorphisms. More about realizations of this kind can
be found in [3].

Realizations of the Pappus configuration and the Desargues configuration
are in Figures 22 and 23. It is also known that other two irreducible (103)
configurations are linear. Their realizations can be, for example, found in [4].
With methods presented in [4] and use of a computer it is also not difficult to
find realizations for each particular configuration T1(n), T2(n), or T3(n).

But it is more intriguing to give a geometric construction which can be found
in [14] for configurations arising from T1(n). Since the paper does not seem to be
widely available we repeat it here. Configurations determined by T1(n) are built-
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Figure 20: Cyclic (93) configuration
with base line {0, 1, 3}.

Figure 21: Cyclic (123) configura-
tion with base line {0, 1, 3}.

Figure 22: Pappus configuration Figure 23: Desargues configuration

up of segments with their graph shown in Figure 2. If we realize these segments
geometrically in the way it is done in Figure 24 and appropriately choose the
angle between the line {v1

i , v2
i , v3

i } and the line {v1
i−1, v

2
i−1, v

3
i−1} (which comes

from the previous segment) then we can realize configurations from T1(n) by
attaching n of these segments one next to another. This geometric procedure
works for n ≥ 3. Note that we can redraw the segment in such way that the
point t1i which is at infinity in Figure 24 has “Euclidean” coordinates and the
construction still works.

The question and an exercise to the reader would now be to find a similar
construction for configurations arising from T2(n) and T3(n).
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