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Abstract

Polyhedral embeddings of cubic graphs by means of certain oper-
ations are studied. It is proved that some known families of snarks
have no (orientable) polyhedral embeddings. This result supports a
conjecture of Grünbaum that no snark admits an orientable polyhe-
dral embedding. This conjecture is verified for all snarks having up
to 30 vertices using computer. On the other hand, for every non-
orientable surface S, there exists a non 3-edge-colorable graph, which
polyhedrally embeds in S.

Keywords: polyhedral embedding, cubic graph, snark, flower snark,
Goldberg snark.

1 Introduction

In this paper we study embeddings of cubic graphs in closed surfaces. We
refer to [5] for basic terminology and properties of embeddings. Following the
approach of [5], all embeddings are assumed to be 2-cell embeddings. Two
embeddings of a graph are considered to be (combinatorially) equal, if they
have the same set of facial walks. If S is a surface with Euler characteristic
χ(S), then ǫ(S) := 2 − χ(S) is a non-negative integer, which is called the
Euler genus of S.

If an embedding of a graph G in a non-orientable surface is given by a
rotation system and a signature λ : E(G) → {+1,−1} and H is an acyclic
subgraph of G, then we can assume that the edges of H have positive sig-
nature, λ(e) = 1 for all e ∈ E(H). We shall assume this in several instances
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without explicitly mentioning it. Instead of describing an embedding by
specifying rotation system an signature, it suffices to list all facial walks.

An embedding of a graph G is called polyhedral , if all facial walks are
cycles and any two of them are either disjoint or their intersection is a vertex
or an edge. If G is a cubic graph, then any two facial walks are either disjoint
or they intersect in an edge. It is also easy to see (cf. [5]) that every facial
cycle of a polyhedral embedding is induced and non-separating. There is
another way of looking at polyhedral embeddings (cf., e.g. [5], [6]).

Proposition 1.1 An embedding of a graph G is polyhedral if and only if G

is 3-connected and the embedding has face-width at least 3.

If 1967 Grünbaum proposed a far-reaching generalization of the four
color theorem (which had not yet been proved at that time). It is well
known that the four color theorem is equivalent to the statement that every
3-connected planar cubic graph is 3-edge-colorable. This is no longer true for
3-connected cubic graphs on the torus since the Petersen graph P embeds
in this surface. However no embedding of P in the torus is polyhedral. The
lack of orientable polyhedral embeddings of other non 3-edge-colorable cubic
graphs known at that time led Grünbaum to the following

Conjecture 1.2 (Grünbaum [2]) If a cubic graph admits a polyhedral
embedding in an orientable surface, then it is 3-edge-colorable.

This Conjecture has been checked for all cubic graphs having up to 30
vertices (see Section 6). Cubic graphs that do not have 3-edge-colorings are
said to be of class 2 .

By Proposition 1.1 it suffices to check this Conjecture for 3-connected
cubic graphs. It is not difficult to see that we may also restrict our attention
to cyclically 4-edge-connected cubic graphs (cf. Theorem 3.1). Cyclically 4-
edge-connected cubic graphs of class 2 and with girth at least 5 are commonly
known as snarks.

In Section 2 it is proved that short cycles are necessarily facial in poly-
hedral embeddings of cubic graphs. In Section 3 we study reductions of
graphs with nontrivial k-edge-cuts for k ≤ 5. In Section 4 it is proved that
Isaacs graphs [4], except for the smallest one J3 (which is just a one-vertex-
truncation of the Petersen graph and has a polyhedral embedding in the
projective plane), have polyhedral embeddings neither in orientable nor in
non-orientable surfaces. In Section 5 Goldberg graphs are considered. They
have no polyhedral embeddings in orientable surfaces, but all of them have
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polyhedral embeddings in non-orientable surfaces. It is also proved that for
every non-orientable surface S there exists a cubic graph of class 2, which
polyhedrally embeds in S.

2 Short cycles

If a cubic graph with a short cycle C has a polyhedral embedding, then C is
very likely to be a facial cycle. This is established by the following results.

Lemma 2.1 Let G be a cubic graph and C a 3-cycle of G. Then C is a
facial cycle in every polyhedral embedding of G.

Proof. Let C = v0v1v2v0 be a 3-cycle of G. Denote the neighbour of vi

not in C with v′i, i = 0, 1, 2. A facial cycle in a polyhedral embedding of G

cannot contain any of the paths v′ivivi+1vi+2v
′

i+2, i = 0, 1, 2, indices modulo
3, since it must be induced. This implies that we have three facial cycles
at C, which contain v′ivivi+1v

′

i+1, i = 0, 1, 2, indices modulo 3. Then C is a
facial cycle.

Lemma 2.2 Let G be a cubic graph other than K4 and let C be a 4-cycle
of G. Then C is a facial cycle in every polyhedral embedding of G.

Proof. If G has a polyhedral embedding and G is not K4, then every
4-cycle of G is induced, since G is 3-connected by Proposition 1.1.

Let C = v0v1v2v3v0 be a 4-cycle of G and let v′i be the neighbour of vi

not in C, i = 0, 1, 2, 3. Suppose that all facial cycles, which intersect C,
intersect C in one edge only. Then it is easy to see that C is a facial cycle.
Otherwise there is at least one facial cycle C1 6= C that intersects C in more
than one edge. Facial cycles in polyhedral embeddings are induced. Hence
we may assume that C1 contains the path v′0v0v1v2v

′

2. The other facial cycle
C2, which contains the edge v′0v0, must contain the path v′0v0v3v

′

3 in order
not to intersect C1 at v2. The third facial cycle through v0 then contains
edges v0v1, v0v3 and v3v2, which is a contradiction.

Let a graph G be embedded in a surface S, let F be a facial cycle and let
C be a cycle of G. We say that F is k-forwarding at C, if F and C intersect
precisely in k consecutive edges on C.

Lemma 2.3 Let G be a cubic graph and C an induced 5-cycle of G. If G

has a polyhedral embedding in a surface S, then the following holds.
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(a) If S is orientable, then C is a facial cycle.

(b) If S is non-orientable, then either C is a facial cycle or all facial
cycles that intersect C are 2-forwarding at C.

Proof. Let C = v0v1v2v3v4v0 be a 5-cycle of G. Suppose that no facial
cycle (other than possibly C) intersects C in more than one consecutive edge
on C. Then it is easy to see that C is a facial cycle.

Now let F be a facial cycle that intersects C in at least two consecutive
edges on C. Facial cycles in polyhedral embeddings are induced. Therefore
F is either 3-forwarding or 2-forwarding at C.

If F is 3-forwarding, we can assume that the path v′0v0v1v2v3v
′

3 is in F .
Then the facial cycle, which contains the path v0v4v3, intersects twice with
F . This contradiction implies that no facial cycle is 3-forwarding at C.

We may assume that F contains the path v′0v0v1v2v
′

2. The facial cycle,
which contains the path v′1v1v2, must contain the path v′1v1v2v3 so it is 2-
forwarding. If we continue along the cycle C, we see that all facial cycles at
C are 2-forwarding at C.

To complete the proof, we will show that S is not orientable, if all facial
cycles at C are 2-forwarding. Suppose that S is orientable and let Ci be
the facial cycle, which contains the path vivi+1vi+2, i = 0, 1, 2, 3, 4, indices
modulo 5. We can assume that in the orientation of C0, induced by the
orientation of S, vertices v0v1v2 are in clockwise order. Then the vertices
v3v2v1 are in this clockwise order on C1. If we continue along C, we see that
in C4 vertices v4v0v1 are in clockwise order. But then C0 and C4 induce
the same orientation of the edge v0v1, which is a contradiction with the
assumption that S is orientable.

Corollary 2.4 If a cubic graph G contains two induced 5-cycles, whose
intersection is nonempty and is not just a common edge, then G has no
orientable polyhedral embeddings.

Proof. Suppose we have an orientable polyhedral embedding of G. By
Lemma 2.3 both 5-cycles are facial. This is a contradiction with the fact
that their intersection contains more than just one edge.

In the Petersen graph P every edge is contained in four induced 5-cycles.
Lemma 2.3 therefore implies that P has no orientable polyhedral embed-
dings. However, P has a polyhedral embedding in the projective plane (see
Figure 1).
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Figure 1: The Petersen graph embedded in the projective plane.

Lemma 2.3 and its Corollary 2.4 can be applied on many other snarks,
for example the Szekeres snark that is shown in Figure 2.

Theorem 2.5 The Szekeres snark has no polyhedral embeddings.

Proof. Each of the five “parts” of the Szekeres snark (see Figure 2) contains
a path v1v2 . . . v9 on 9 vertices and a vertex v0 that is adjacent with v2,
v5, v8 and further there are edges v1v6 and v4v9. There are four induced
5-cycles C1 = v0v2v1v6v5v0, C2 = v0v2v3v4v5v0, C3 = v0v8v9v4v5v0 and
C4 = v0v8v7v6v5v0. Cycles C1 and C2 intersect at two edges adjacent to v0.
Therefore they are not both facial cycles. If none of C1, C2 is facial, then
the 2-forwarding facial cycles at C1 and C2, which contain their intersection
C1∩C2, are distinct and intersect in two edges. So one of them is facial and
the other is not. Similarly, one of the cycles C3, C4 is facial and the other
one is not.

Suppose the cycle C2 is facial. Then it is 1-forwarding at C4, so C4 is
facial and C1 and C3 are not facial. This implies that there is a facial cycle
that contains the path v1v6v5v4v9 and another facial cycle that contains the
path v1v2v0v8v9, which is a contradiction.

Suppose now that C2 is not facial. Then C1 is facial and is 1-forwarding
at C4. So C4 is a facial cycle and C3 is not. This implies that there is a
facial cycle that contains the path v3v2v0v8v7 and another facial cycle that
contains the path v3v4v5v6v7, which is a contradiction.

Nonexistence of orientable polyhedral embeddings of the Szekeres snark
has been proved earlier by Szekeres [7].
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Figure 2: The Szekeres snark.

3 Small edge-cuts

Let G1 and G2 be cubic graphs and v1 ∈ V (G1), v2 ∈ V (G2). Denote the
three neighbours of v1 in G1 by z0, z1, z2 and the three neighbours of v2 in
G2 by u0, u1, u2. Let G = G1 ∗G2 be the cubic graph obtained from graphs
G1 and G2 by deleting vertices v1 and v2 and connecting vertices ui with
zi for i = 0, 1, 2. We call G the star product of G1 and G2. It is easy to
see that the graph G is 3-edge-colorable if and only if both G1 and G2 are
3-edge-colorable.

Theorem 3.1 The star product G = G1 ∗ G2 has a polyhedral embedding
in an (orientable) surface if and only if both G1 and G2 have polyhedral
embeddings in some (orientable) surfaces.

Proof. Suppose we have polyhedral embeddings of G1 and G2. At vertex
v1 we have three facial cycles Ci = ziv1zi+1Pizi for i = 0, 1, 2, indices modulo
3. At vertex v2 we have three facial cycles Di = uiRiui+1v2ui for i = 0, 1, 2.
Since the embeddings are polyhedral, paths P0, P1, P2 and paths R0, R1, R2

are pairwise disjoint. In the embedding of the star product G = G1 ∗G2 we
keep all facial cycles from embeddings of G1 and G2, which do not contain
vertices v1 and v2, and add three new facial cycles Fi = ziuiRiui+1zi+1Pizi,
i = 0, 1, 2, indices modulo 3. Facial cycles in G, which are facial cycles in
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Figure 3: The star product G of graphs G1 and G2.

G1 or G2, intersect pairwise at most once. A facial cycle F , which is also
a facial cycle in G1 or G2, intersects the facial cycle Fi, i = 0, 1, 2, only on
the path Pi or only on the path Ri. So it intersects Fi at most once. Facial
cycles Fi and Fi+1 intersect only in the edge ui+1zi+1, i = 0, 1, 2, indices
modulo 3, since the paths P0, P1, P2 and R0, R1, R2 are pairwise disjoint. So
the embedding of G is polyhedral. It is easy to see that the embedding of
G is orientable if and only if the embeddings of G1 and G2 are orientable.

Suppose now that G has a polyhedral embedding. The three edges ziui,
i = 0, 1, 2, form a 3-cut in G. Since the embedding is polyhedral, we have
three facial cycles Fi = uiRiui+1zi+1Piziui, such that Fi and Fi+1 intersect
in the edge zi+1ui+1, i = 0, 1, 2, indices modulo 3. We may assume that there
are no negative signatures on edges ziui, i = 0, 1, 2. In the embedding of G1

(and G2) we keep all facial cycles, which do not intersect G2 (respectively
G1), and add vertices v1, v2 with such local rotations that we obtain new
facial cycles Ci = ziv1zi+1Pizi in G1 and Di = uiRiui+1v2ui in G2, i = 0, 1, 2,
induces modulo 3. Since we have no new intersections between facial cycles
(intersections on ziui become intersections on ziv1 and uiv2), the embeddings
of G1 and G2 are polyhedral. It is also clear that both embeddings are in
orientable surfaces if and only if the embedding of G is orientable, since we
did not change local rotation at any vertex or change the signature of any
edge.

7



If the embedding of G = G1 ∗ G2 in a surface S is constructed as in the
proof of Theorem 3.1 from embeddings of G1 and G2 in surfaces S1 and S2

of Euler genus ǫ(S1) = k1 and ǫ(S2) = k2, respectively, then the Euler genus
of S is ǫ(S) = k1 + k2. This is easily proved by using Euler’s formula for G,
G1 and G2.

Let G1 and G2 be cubic graphs. Choose an edge e = xy in G1 and two
nonadjacent edges f1 = u0u1 and f2 = u2u3 in G2. Denote the neighbours
of x in G1 by v0, v1, and the neighbours of y by v2, v3. Let G be the graph
obtained from G1 and G2 by deleting vertices x, y in G1 and edges f1, f2

in G2 and joining pairs viui, i = 0, 1, 2, 3. The graph G = G1 · G2 is called
the dot product of G1 and G2. If both G1 and G2 are snarks, then their dot
product is also a snark.

Theorem 3.2 Let G1 and G2 be cubic graphs. If G1 and G2 have polyhe-
dral embeddings in (orientable) surfaces S1 and S2, such that the geometric
dual of G2 is not a complete graph, then a dot product G = G1 · G2 exists,
which has a polyhedral embedding in an (orientable) surface S. If the Euler
genus of surfaces S1 and S2 are ǫ(S1) = k1 and ǫ(S2) = k2, then the Euler
genus of S is ǫ(S) = k1 + k2.

Proof. Suppose that we have polyhedral embeddings as described. We
claim that G2 contains facial cycles D0, D1, D2, such that D1 intersects D0

and D2 but D0 and D2 do not intersect. To see this, consider the dual graph
R. Since it is not a complete graph, it has two vertices c0 and c2 that are
at distance two in R. If c1 is their common neighbor, then we can take D0,
D1, D2 to be the facial cycles corresponding to c0, c1 and c2, respectively.

Let f1 = u0u1 and f2 = u2u3 be the intersections between D0, D1 and
D1, D2, respectively, and choose an arbitrary edge e = xy in G1. Denote the
neighbours of x and y in G1 so that the facial cycles, which contain x or y, are
C0 = v0xv1P0v0, C1 = v1xyv2P1v1, C2 = v2yv3P2v2, and C3 = v3yxv0P3v3.
Since the embedding of G1 is polyhedral, paths P0, P1, P2, P3 are pairwise
disjoint, except that P0 and P2 may intersect. In G2 we will use the following
notation for facial cycles: D0 = u0R0u1u0, D1 = u0u1R1u2u3R3u0 and
D2 = u2R2u3u2. The paths R0, R1, R2, R3 are pairwise disjoint. In the
embedding of G we keep all local rotations at vertices of G1 and G2, which
are not deleted (with added edges naturally replacing deleted edges), and
all edge signatures. Instead of facial cycles Ci, Di we get a facial cycle
Fi = viuiRiui+1vi+1Pivi, i = 0, 1, 2, 3, indices modulo 4. Since the paths
Pi, Ri are pairwise disjoint, except for the possible intersection between
P0 and P2, all intersections between facial cycles Fi, i = 0, 1, 2, 3, are the
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Figure 4: The dot product G of graphs G1 and G2.

intersections of Fi and Fi+1 in edges vi+1ui+1, i = 0, 1, 2, 3, indices modulo
4, and possibly one more intersection between F0 and F2. It is clear that any
facial cycle F that does not contain any of the vertices vi, ui intersects at
most once with any Fi and that two such facial cycles intersect at most once.
So the embedding of G is polyhedral. It is also clear that if the embeddings
of G1 and G2 are in orientable surfaces, the embedding of G is also in an
orientable surface.

The Euler genus of S is obtained from Euler’s formula and equalities

|V (G)| = |V (G1)| + |V (G2)| − 2

|E(G)| = |E(G1)| + |E(G2)| − 3

|F (G)| = |F (G1)| + |F (G2)| − 3

from which we conclude that ǫ(S) = k1 + k2.

Theorem 3.3 Let G be a cubic graph and S a 4-cut in G. If G admits a
polyhedral embedding (in an orientable surface), then there exist graphs G1

and G2, such that G = G1 · G2 and G1 admits a polyhedral embedding (in
an orientable surface).

Proof. Suppose that the edges uivi, i = 0, 1, 2, 3, form a 4-cut S in G. If
a facial cycle contains more than two edges of S, the embedding of G can
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not be polyhedral. So we have four distinct facial cycles F0, F1, F2, F3 that
contain edges of S. Since S is a cut, every cycle Fi, i = 0, 1, 2, 3, contains
two edges of S.

Since the embedding is polyhedral, each of the Fi intersects two other
Fj , Fk. In the dual a subgraph induced by the vertices corresponding to Fi,
i = 0, 1, 2, 3, is a simple graph on four vertices in which all vertices are of
degree 2. It must be a 4-cycle. Therefore we can assume that faces Fi and
Fi+1 intersect in the edge vi+1ui+1, i = 0, 1, 2, 3, indices modulo 4. Each
facial cycle Fi is then of the form Fi = viuiRiui+1vi+1Pivi. Since F0 and F2

intersect at most once, we can assume they do not intersect at the paths P0

and P2. Let G1 be the component of G− S, which contains paths Pi. If we
set rotations of all vertices in G2 as they are in G (and replace deleted edges
naturally with added edges), we can set rotations around vertices x and y so
that the facial cycles in G1, which do not contain x or y, remain unchanged
and we have four new facial cycles C0 = v0xv1P0v0, C1 = v1xyv2P1v1,
C2 = v2yv3P2v2, and C3 = v3yxv0P3v3. Since we added no new intersections
between facial cycles, which were already in G, and facial cycles Ci, i =
0, 1, 2, 3 intersect pairwise only once, the embedding of G1 is polyhedral. If
the embedding of G is in an orientable surface, it is clear that the embedding
of G1 is in an orientable surface.

Suppose we have polyhedral embeddings of cubic graphs G1 and G2,
at least one of which is in a non-orientable surface. Let us construct the
embedding of the dot product G = G1 · G2 as in the proof of Theorem 3.2.
If the embedding of G is in orientable surface, then we may assume that all
signatures of edges are positive. Now we can construct embeddings of G1

and G2 similarly as the embedding of G1 in the proof of Theorem 3.3, which
are both in orientable surfaces and have the same set of facial cycles as the
embeddings of G1 and G2 with which we started. Since at least one of these
two is an embedding in a non-orientable surface, we have a contradiction.
This shows

Corollary 3.4 If we have polyhedral embeddings of G1 and G2 at least one
of which is non-orientable and construct a polyhedral embedding of G =
G1 · G2 as in the proof of Theorem 3.2, then the embedding of G is non-
orientable.

Let G1 and G2 be cubic graphs. Choose a vertex v in G1, an edge v3v4

in G1 and a vertex z0 in G2. Let the three neighbours of v be v0, v1, v2 and
let z1, z2, u4 be the neighbours of z0. Let the neighbours of z1, z2 other than
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u be u0, u1 and u2, u3, respectively. If all these vertices are distinct, remove
the vertex v from G1, vertices z0, z1, z2 from G2 and the edge v3v4 from G1.
If we join pairs viui, i = 0, 1, 2, 3, 4, we get a cubic graph G = G1♦G2, which
is called a square product of graphs G1 and G2 (see also Figure 5). The cut
Q = {viui | i = 0, . . . , 4} in G is said to be the product cut . It is well known
(cf., e.g. [3]) that if G1 and G2 are snarks, then their square product is also
a snark.

Theorem 3.5 Let G be a cubic graph with a matching Q, which is a 5-
cut of G. If G admits a polyhedral embedding (in an orientable surface),
then there exist graphs G1 and G2 such that G = G1♦G2 and Q is the
corresponding product cut and such that G2 admits a polyhedral embedding
(in an orientable surface).

Proof. Suppose that G has a polyhedral embedding. Since Q is a cut, every
facial cycle contains an even number of edges in Q. It is easy to see that
none of them contains four edges of Q (since the embedding is polyhedral).
This implies that there are precisely 5 facial cycles F0, . . . , F4 that intersect
Q and that the edges viui of Q, i = 0, . . . , 4, can be enumerated so that Fi

contains edges viui and vi+1ui+1, indices modulo 5, and v0, . . . , v4 are in the
same component of G − Q.

The facial cycles Fi are of the form Fi = viuiRiui+1vi+1Pivi, i = 0, . . . , 4,
indices modulo 5. Since the embedding is polyhedral, every one of the pairs
of paths Pi, Pi+1 and Ri, Ri+1 is disjoint.

Suppose that the facial cycles Fi and Fi+2 are disjoint for some i. Then
both pairs Pi, Pi+2 and Ri, Ri+2 are disjoint. One of the pairs Pi+2, Pi+4

and Ri+2, Ri+4, i = 0, . . . , 4, is disjoint. Because of the symmetry, we can
assume that the pair Ri+2, Ri+4 is disjoint.

Suppose now that all pairs of cycles Fi, Fi+2, i = 0, . . . , 4, intersect. In
at least three out of five pairs, Fi and Fi+2 intersect on the same “side” (Pi

and Pi+2 or Ri and Ri+2). By symmetry, we may assume that intersections
are between Pi and Pi+2. Since facial cycles Fi and Fi+2 intersect at most
once, it follows that there exists an index j such that Rj , Rj+2, Rj+4 are
pairwise disjoint.

By above, we can assume that R4, R1, R3 are pairwise disjoint. Now we
can add to G − Q new vertices v, z0, z1, z2 and edges v0v, v1v, v2v, v3v4

and u0z1, u1z1, u2z2 ,u3z2, z1z0, z2z0, u4z0 so that the graph G is a square
product of G1 and G2. In the embedding of G2 we keep all rotations and
signatures of vertices and edges that were already in G and we naturally
replace deleted edges with the added ones. Around vertices z0, z1, z2 we
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Figure 5: The square product of G1 and G2.

can set rotations so that facial cycles in G2, which were not already in
G, are D0 = u0R0u1z1, D1 = z0z1u1R1u2z2z0, D2 = z2u2R2u3z2, D3 =
z0z2u3R3u4z0 and D4 = z0u4R4u0z1z0. The only new intersections of facial
cycles of G2 are between D4 and D1 and between D1 and D3. Hence the
embedding of G2 is polyhedral and if the embedding of G is in an orientable
surface, so is the embedding of G2.

4 Flower snarks

Let Jk be the graph with vertices ai, bi, ci, di and edges aiai+1, aibi, bici,
bidi, cidi+1, dici+1 for i = 0, . . . , k − 1, indices modulo k. If k ≥ 5 is odd,
then the graph Jk is a snark and is called the flower snark of order k [4].
The graph J5 is shown in Figure 6. Szekeres proved that flower snarks have
no polyhedral embeddings in orientable surfaces [8]. The goal of this section
is to prove the following

Theorem 4.1 For k ≥ 4 the flower graph Jk has no polyhedral embeddings.
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Figure 6: The Flower snark J5.

The rest of this section is devoted to the proof of Theorem 4.1.
The subgraph Yj of Jk induced on vertices {aj , bj , cj , dj} is called the jth

star or simply just a star in Jk.
Suppose that we have a polyhedral embedding of Jk. Let us look at how

facial cycles can traverse Yj . If we walk along a facial cycle C, come to Yj

from Yj−1 and then leave Yj going back to Yj−1, we say that C is a backward
face at j. Similarly we define a forward face at j, which is a facial cycle that
enters Yj from Yj+1 and leaves it towards Yj+1.

If a cubic graph G has a polyhedral embedding, then at every vertex
v ∈ V (G) with neighbours v1, v2, v3, each path P = vivvj , j 6= i, defines a
unique facial cycle, which we will denote by F (P ).

Lemma 4.2 If C is a facial cycle that contains at least two vertices of Yj,
then the intersection of C with Yj is one of the three possible paths: ajbjcj,
ajbjdj or cjbjdj.

Proof. A cycle C can enter and exit Yj only through vertices aj , cj or dj .
Suppose now that aj , cj ∈ V (C). The facial cycle C ′ = F (ajbjcj) intersects
C in two nonadjacent vertices aj and cj , so C = C ′ and C ′ contains the path
ajbjcj . Similar conclusion holds if aj and dj are on C or if cj and dj are on
C. Since all facial cycles are induced, the intersection C ∩ Yj can consists
only of one of the three paths.
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A facial cycle, which is neither forward nor backward at Yj , is called a
cross face. It follows from Lemma 4.2 that each facial cycle, which intersects
Yj , is either a backward, forward or a cross face.

Lemma 4.3 At Yj there can be at most one backward (forward) face. If
there is one backward face, then there is also one forward face and four
distinct cross faces. The backward face at Yj is forward at Yj−1 and the
forward face at Yj is backward at Yj+1.

Proof. Suppose we have two backward (forward) faces. By Lemma 4.2
they intersect at an edge adjacent to bj . If they intersect at bjaj , they also
intersect at aj−1aj , which is a contradiction. Similarly we get a contradic-
tion, if they intersect at bjcj or bjdj . This shows that there is at most one
backward (forward) face.

Suppose now that C is a backward face. The edges between Yj and Yj+1

are traversed twice by C and four times by cross faces. The cross faces
therefore traverse the edges between Yj and Yj+1 at most four times, hence
there must be a forward face at Yj .

If C contains the path ajbjcj , then {aj−1, dj−1} ⊆ C ∩ Yj−1. By Lemma
4.2, C ∩ Yj−1 = aj−1bj−1dj−1, so C is a forward face at Yj−1. A similar
conclusion holds if C ∩ Yj is either ajbjdj or cjbjdj . Similarly we also show
that a forward face at Yj is backward at Yj+1.

Out of facial cycles F (ajbjcj), F (ajbjdj) and F (cibjdj) one is a backward
face, one is a forward face and one is a cross face. Since the one that is a
cross face is the only cross face, which contains more than one vertex of Yj ,
all cross faces are distinct.

A backward face at j is called a bottom face if it contains the edge aj−1aj

and is called a top face if it does not contain aj−1aj . A top face at Yj is of the
form cj−1bj−1dj−1cjbjdjcj−1. So it is clear that we cannot have backward
top faces at Yj and Yj+1 at the same time.

The star Yj is of type 0 , if all facial cycles, which intersect it, are cross
faces. It is of type 1 , if there is one forward and one backward face at Yj .

Lemma 4.2 implies that if the graph Jk has a polyhedral embedding,
then all stars are of type 0 or all stars are of type 1.

Lemma 4.4 If Jk has a polyhedral embedding, then k ≤ 6 and all stars are
of type 1.

Proof. By Lemma 4.2 every polyhedral embedding of Jk has at least four
cross faces. For each j = 0, . . . , k − 1 we have at least one intersection
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between four selected cross faces on edges from Yj to Yj+1. Since we can
have at most 6 such intersections, we have k ≤ 6.

If all stars are of type 0, then Jk has precisely 6 facial cycles. The
geometric dual of G on S has 6 vertices and 4k·3

2
= 6k edges. Since the dual

is a simple graph, it has at most 15 edges, so 6k ≤ 15. This implies that
k ≤ 2.

Lemma 4.5 The graph J4 has no polyhedral embeddings.

Proof. Suppose we have a polyhedral embedding of J4. All stars are of
type 1, so there are precisely 4 cross faces. We have three 4-cycles C1 =
a0a1a2a3a0, C2 = d0c1d2c3d0, C3 = c0d1c2c3c0 in J4, which are facial cycles
by Lemma 2.2. These cycles are all cross faces. As in the proof of Lemma
4.4, we see that there are at least four intersections of cross faces. But since
C1, C2, C3 are pairwise disjoint, this is not possible.

Lemma 4.6 The flower snark J5 has no polyhedral embeddings.

Proof. Suppose we have a polyhedral embedding of J5. Each star must
be of type 1. If all backward faces are bottom faces, then the inner cross
face a0a1a2a3a4a0 does not intersect any other cross faces. So we have 5
intersections between three cross faces, which is not possible.

Since we cannot have two consecutive top faces, we must have two con-
secutive bottom faces at stars j and j + 1 and a top face at star j + 2. We
can assume j = 1. The facial cycle F (a0a1a2) contains the path a0a1a2a3a4.
If not, it would intersect twice with one of the bottom faces at stars 1 or
2. So it must be a0 . . . a4a0. The facial cycle, which contains b2a2 and is
different from the backward face at star 2, must contain the path b2a2a3b3.
This facial cycle intersects twice with the facial cycle d2b2c2d3b3c3d2, which
is a contradiction.

Lemma 4.7 The graph J6 has no polyhedral embeddings.

Proof. All stars in J6 are of type 1. We have three 6-cycles C1 =
a0a1 . . . a5a0, C2 = c0d1c2 . . . d5c0 and C3 = c0d1c2 . . . d5c0. From previ-
ous proofs it follows that at each star Yj one of the four cross faces goes
from one of C1, C2, C3 to another. We say that this cross face has made
a transition at Yj . It is obvious that if a cross face makes at least one
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transition, it makes more than one transition. So one cross face makes no
transitions, since we can have at most 6 transitions. Let the four cross faces
be F1, F2, F3, F4 and let F1 be the one, which does not make any transition.
Because of the symmetry, we can assume that F1 = C1.

There are four cross faces and six intersections between them. This
implies that they must all pairwise intersect and in particular, all cycles F2,
F3, F4 intersect F1. All transitions of cross faces are transitions of Fi to C1

and from C1, i = 2, 3, 4. In particular, the cycle F2 makes a transition to
the cycle C1 at some star Yj and a transitions from C1 at the star Yi+1. But
then F2 is not induced, which is a contradiction.

This completes the proof of Theorem 4.1.

5 Goldberg snarks

In 1981 Goldberg discovered another infinite family of snarks [1]. Let Gk be
a cubic graph with vertices ai, bi, ci, di, gi, hi, ei, fi for i = 0, . . . , k−1, and
edges aiai+1, aibi, bici, bidi, ciei, cigi, difi, dihi, eifi, gihi, eifi+1, higi+1,
for i = 0, . . . k − 1, where indices are modulo k. If k ≥ 5 is odd, then Gk

is known as the Goldberg snark . Accordingly, we refer to all graphs Gk as
Goldberg graphs. The graph G5 is shown in Figure 7.

Theorem 5.1 No Goldberg graph has a polyhedral embedding in an ori-
entable surface. On the other hand, every Goldberg graph Gk, k ≥ 3, has a
polyhedral embedding in the non-orientable surface of Euler genus k.

Proof. Suppose that the graph Gk has a polyhedral embedding in an
orientable surface. For every i = 0, . . . , k − 1 we have have two 5-cycles
Bi = bidihigicibi and Ci = bidifieicibi. By Lemma 2.3 both are facial
cycles. This is a contradiction, since Bi and Ci intersect in two edges cibi

and bidi.
An embedding in a non-orientable surface has the following facial cycles:

(a) A = a0a1 . . . ak−1a0 and B = f0e0f1e1 . . . fk−1ek−1f0,

(b) Ci = bidifieicibi, i = 0, . . . , k − 1,

(c) Di = gihigi+1hi+1di+1fi+1eicigi, i = 0, . . . , k − 1,

(d) Ei = aiai+1bi+1ci+1gi+1hidibiai, i = 0, . . . , k − 1.
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c0 d0

e0 f0

g0 h0

Figure 7: The Goldberg snark G5.

It is easy to see that this determines a non-orientable polyhedral embedding.
The Euler genus of the underlying surface of the embedding is calculated
from Euler’s formula 2− ǫ(Gk) = |V (Gk)|− |E(Gk)|+ |F (Gk)| = 8k− 3

2
8k +

3k + 2 = 2 − k.

Goldberg graphs have more than one polyhedral embedding, not all of
the same genus. They can be described as follows.

Consider the subgraph Ti induced on vertices ai, bi, ci, di, ei, fi, gi and
hi. Let us look at how facial cycles can traverse it. There are (at least) two
possibilities.

There is a facial 5-cycle Ci = bidihigicibi and there are facial cycles that
contain paths P i

1 = ai−1aiai+1, P i
2 = gi−1higihi+1, P i

3 = gi−1hidifieifi−1,
P i

4 = hi+1gicidieifiei+1, P i
5 = ei+1fidibiaiai+1 and P i

6 = fi−1eicibiaiai−1,
where P i

1 and P i
2 can possibly be part of the same facial cycle. In such case,

we say that Ti is of type 1 .
The second possibility is the following. There is a facial 5-cycle Di =

bicieifidibi and there are facial cycles that contain paths Ri
1 = ai−1aiai+1,

Ri
2 = fi−1eifiei+1, Ri

3 = ai−1aibidihigi−1, Ri
4 = ai+1aibicigihi+1, Ri

5 =
fi−1eicigihigi−1 and Ri

6 = ei+1fidibihigihi+1, where Ri
1 and Ri

2 can possibly
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be part of the same facial cycle. We say that Ti is of type 2 .
We now choose arbitrary the types of all subgraphs Ti and join facial

segments described above into facial cycles as follows. There is an automor-
phism of the graph Gk, which sends all cycles Ci into cycles Di, so we can
assume that the subgraph Ti is of type 1. If not, we join facial segments
symmetrically according to this automorphism.

If subgraphs Ti and Ti+1 are both of type 1, we join facial segments P i
1

and P i+1
1

, P i
2 and P i+1

2
, P i

4 and P i+1
3

and facial segments P i
5 and P i+1

6
.

If the subgraph Ti is of type 1 and Ti+1 of type 2, we join facial segments
P i

1, Ri+1
3

and P i
2, facial segments Ri+1

1
, P i

5 and Ri+1
2

and facial segments P i
4

and Ri+1
5

.
If all subgraphs Ti are of type 1 (or all are of type 2), then the embedding

is the one described in the proof of Theorem 5.1. If there are two consecutive
subgraphs Ti and Ti+1 of different types, we say that there is a transition
at i. It is easy to see that the embedding is polyhedral if we have at least
6 transitions. It is also easy to see that the number of facial cycles of
the embedding is 3k. In this manner we have obtained a large number
of (combinatorially) different polyhedral embeddings of the graph Gk in a
surface of Euler genus k − 2.

This shows that Goldberg snarks admit polyhedral embeddings in dis-
tinct non-orientable surfaces (of Euler genus k and k−2) and that they admit
combinatorially different polyhedral embeddings in the same non-orientable
surface (of Euler genus k − 2). This fact by itself is of certain interest, see
[5, Section 5].

Corollary 5.2 For every positive integer k there exists a cubic graph of
class 2, which polyhedrally embeds in the non-orientable surface Nk of Euler
genus k. For every k > 0 and k 6= 2 there exists a snark, which polyhedrally
embeds in Nk.

Proof. The Petersen graph P has a polyhedral embedding in N1. By
Theorem 5.1 the Goldberg snark G2k+1 has a polyhedral embedding in N2k+1

for every k ≥ 1. The graph G3 is not a snark since it contains a 3-cycle
C = a0a1a2a0. If we contract C to a vertex, we obtain a snark G′

3, which
polyhedrally embeds in N3 (cf. Theorem 3.1). For k > 1 we have a snark
H2k+2 = G2k+1 · P , which polyhedrally embeds in N2k+2, and H4 = G′

3 · P ,
which polyhedrally embeds in N4 (cf. Theorem 3.2). The dot product H2 =
P ·J3 polyhedrally embeds in N2. The graph H2 is not 3-edge-colorable, but
is not a snark, since the girth of H2 is 4.
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There are two non-isomorphic dot products of two copies of the Petersen
graph P , which are known as Blanuša’s snarks. But since the dual of P in
the projective plane is K6, we cannot use Theorem 3.2 to obtain polyhedral
embeddings in the Klein bottle for either of them. Indeed, it can be shown
that they do not have such embeddings. It is possible that no snark exists
which polyhedrally embeds in the Klein bottle.

Problem 5.3 Is there a snark that has a polyhedral embedding in the Klein
bottle?

6 Computer search

All snarks and all cyclically 4-edge-connected cubic graphs of class 2 having
up to 30 vertices are known. They were generated by computer and are
available at [9]. We have used this database to verify Conjecture 1.2 on them
(using computer). Combined with Theorem 3.1 this computation shows:

Theorem 6.1 Every cubic graph with at most 30 vertices that has a poly-
hedral embedding in an orientable surface is 3-edge-colorable.
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