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The Last Exluded Case of Dira's Map-ColorTheorem for ChoosabilityDaniel Kr�al'a Riste �Skrekovskia;b;�January 2004a Department of Applied Mathematis andInstitute for Theoretial Computer Siene (ITI)1Charles University,Malostransk�e n�am�est�� 25, 118 00, Prague, Czeh Republifkral,skrekog�kam.mff.uni.zb Department of Mathematis,University of Ljubljana,Jadranska 19, 1111 Ljubljana, SloveniaAbstratIn 1890, Heawood established the upper bound H(") = j7+p24"+12 kon the hromati number of every graph embedded on a surfae of Eulergenus " � 1. Almost 80 years later, the bound was shown to be tight byRingel and Youngs. These two results has beame known under the nameof the Map-Color Theorem. In 1956, Dira re�ned this by showing thatthe upper bound H(") is obtained only if a graph G ontains KH(") as asubgraph with exept of three surfaes. Albertson and Huthinson settledthese exluded ases in 1979. This result is nowadays known as Dira'sMap-Color Theorem.B�ohme, Mohar and Stiebitz extended Dira's Map-Color Theorem tothe ase of hoosability by showing that G is (H(") � 1)-hoosable unlessG ontains KH(") as a subgraph for " � 1 and " 6= 3. In the present paper,we settle the exluded ase of " = 3.�Supported in part by Researh Projet Z1-3129 of the Ministry of Siene and Tehnologyof Slovenia.1Institute for Theoretial Computer Siene is supported by Ministry of Eduation of CzehRepubli as projet LN00A056.
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1 IntrodutionWe study list olorings of graphs embedded on surfaes without boundary. Suhsurfaes are orientable surfaes �g, the sphere with g handles, and non-orientablesurfaes �h, the sphere with h ross-aps. The surfae �1 is the projetive plane,�2 is the Klein bottle, �1 is the torus, et. The Euler genus " of the surfae �gis 2g and the Euler genus of the surfae �h is h. The Euler genus of a graph isthe smallest Euler genus of a surfae on whih the graph an be embedded.Euler's formula for a graph G embedded on a surfae of Euler genus " statesthat n �m + f � 2 � " where n, m and f is the number of verties, edges andfaes of G, respetively. Moreover, the equality holds if and only if G is onnetedand every fae of the embedding is a 2-ell. Therefore, the number of edges of ann-vertex simple graph G whih an be embedded on the surfae of Euler genus "is at most 3n� 6 + 3". For " � 1, this implies that every graph embedded on asurfae of Euler genus " ontains a vertex of degree at most H(")� 1 where H(")is a so-alled Heawood number de�ned as follows:H(") = $7 +p24"+ 12 % .Hene, the hromati number of a graph embedded on a surfae of Euler genus" is at most H("). Let us remind that the hromati number �(G) of a graphG is the least number of olors needed to olor the verties of G so that no twoadjaent verties reeive the same olor. The above bound was onjetured to betight by Heawood [15℄. Indeed, Ringel [22℄ and Ringel and Youngs [24℄ showedthat it is possible to embed the omplete graph KH(") on eah surfae of Eulergenus " with an exeption of the Klein bottle �2. This result beame known asthe Map-Color Theorem.In 1956, Dira extended the Map-Color Theorem by showing that the hro-mati number of a graph G embedded on a surfae of Euler genus " � 1, " 6= 3,is equal to H(") if and only if G ontains KH(") as a subgraph. Almost 25 yearslater, Albertson and Huthinson [1℄ ompleted the three missing ases. Thus, wehave the following theorem whih is nowadays known under the name of Dira'sMap-Color Theorem:Theorem 1 Let G be a graph embedded on a surfae of Euler genus " � 1. IfG does not ontains KH(") as a subgraph, the hromati number of G is at mostH(")� 1.The hromati number of a graph embedded on the Klein bottle �2 is at mostsix and there are 6-hromati graphs whih an be embedded on �2 and whihdo not ontain K6 as a subgraph [1, 13℄. Let us remark that omplete graphsKH(")�1 (and in some ases also the join of the graphs KH(")�4 and C5) are theonly ritial (H(")� 1)-olorable graphs embeddable on a surfae of Euler genus2



" [25℄. We refer the reader for a more detailed introdution to embeddings ofgraphs on surfaes to [14, 21℄.In this paper, we fous on list olorings of graphs embedded on surfaes. Alist assignment is a funtion L whih assigns eah vertex v 2 V (G) a list L(v) ofavailable olors. For a given graph G and a given list assignment L, a oloring  ofthe verties of G is alled an L-oloring if (v) 2 L(v) for every vertex v 2 V (G).If the size of the list L(v) for every vertex v 2 V (G) is k, the list assignment issaid to be a list k-assignment. The hoie number, sometimes alled also the listhromati number, of a graph G is the smallest integer k suh that the graph Gan be olored from the lists of any list k-assignment. Suh a graph G is said tobe k-hoosable. The hoie number of a graph is learly at least its hromatinumber but the inequality might be strit. See the surveys [19, 27℄ for moredetails on this onept.As in the ase of the hromati number, the hoie number of a graph Gembedded on a surfae of Euler genus " � 1 is at most H("). The followingextension of Theorem 1 was proved by B�ohme, Mohar and Stiebitz [2℄:Theorem 2 If G is a graph embedded on a surfae of Euler genus " � 1, " 6= 3,then the hoie number of G is at most H(") and the equality holds if and only ifG ontains KH(") as a subgraph.As in the ase of ordinary olorings, the ases " = 0; 1; 3 turned out to need aspeial approah than the others. In the ase of planar graphs, Thomassen [26℄proved that the hoie number of eah planar graph is at most �ve and Voigt [28℄onstruted non-4-hoosable planar graphs. The ase of the projetive planerequired to be handled separately in [2℄ and the ase of the surfae �3 was leftopen. In this paper, we show that Theorem 1 holds also for the surfae �3 (seeTheorem 31). This ompletes the exluded ase of Theorem 1. We remark thatour result already found an appliation in oloring fae hypergraphs of graphsembedded on the surfae �3 [10℄.We follow a standard graph theoreti notation (the reader is welomed tosee [6, 29℄ for missing de�nitions). Let us reall some less ommon notation whihwe use. If G is a graph and W is a subset of its verties, then G[W ℄ denotes thesubgraph of G indued by the verties of W . Graphs whih we onsider neednot to be simple graphs unless expliitly stated that they are simple, i.e., someverties an be joined by parallel edges. Hene, we distinguish the degree deg(v)of a vertex v whih is the number of edges inident with v and the simple degreeof a vertex v whih is the number of distint verties adjaent to v.2 List olorings of graphsIn our onsiderations, we often work with list assignments in whih the sizes ofthe lists are not the same but they are related to degrees of the verties of a3



graph. So-alled Gallai trees play a prominent role in this setting. A onnetedgraph is said to be a Gallai tree if eah of its bloks is a omplete graph or anodd yle. Let us remind that a blok B of a graph G is its maximal 2-onnetedsubgraph. A vertex of a blok is said to be an internal vertex of B if it is not aut vertex, i.e., B is the only blok of G whih ontains it. A Gallai forest is agraph whose all omponents are Gallai trees. The following two theorems wereindependently proved by Borodin [3℄ and Erd}os, Rubin and Taylor [11℄:Theorem 3 Let G be a onneted graph with a list assignment L. If jL(v)j �degG(v) for every vertex v of G and the inequality is strit for at least one vertexof G, then G has an L-oloring.Theorem 4 Let G be a onneted graph with a list assignment L suh thatjL(v)j = degG(v) for every vertex v. If G does not have an L-oloring, then G isa Gallai tree. Moreover, if G is 2-onneted and it does not have an L-oloring,then the lists L(v) of all the verties v of G are the same.We remark that Theorems 3 and 4 have been extended to generalized oloringswith respet to hereditary properties [4, 5℄, to list olorings of hypergraphs [17℄,the hannel assignment problem [18, 20℄ and the list T -oloring [12℄.A graph G is said to be ritial non-k-hoosable if it is not k-hoosable andeah proper subgraph of G is k-hoosable. Note that suh a graph G must haveminimum degree at least k. We now state an extension of Dira's inequality forthe number of edges in olor ritial graphs [8℄ to list olorings whih was provedby Kostohka and Stiebitz [16℄:Theorem 5 If G 6= Kk+1 is a ritial non-k-hoosable graph of order n, then thenumber of edges of G is at least (kn+ k � 2)=2.At the end of this setion, we prove three spei� lemmas for list assignmentswith only two kinds of lists whih we later apply in Setion 6:Lemma 6 Let G be a 6-olorable graph with a 6-list assignment L. Suppose thatthere exist two lists L1 and L2 suh that the list L(v) of every vertex v 2 V (G)is L1 or L2. Then, G has an L-oloring.Proof: Let �1; : : : ; �6 be the olors of the list L1 and �1; : : : ; �6 the olors ofthe list L2. Let k be further the number of olors whih the lists L1 and L2 havein ommon. We may assume that �1 = �1, . . . , �k = �k. Fix now a 6-oloring 0of G using the numbers 1; : : : ; 6 as olors. We de�ne an L-oloring  of G basedon the oloring 0: (v) = ( �0(v) if L(v) = L1,�0(v) otherwise.4



Clearly, (v) 2 L(v) for every vertex v 2 V (G). If two adjaent verties wereassigned the same olor, then they would be olored with the same number by0. Hene,  is a desired L-oloring.The proof of Lemma 6 an be easily altered to a proof of eah of the next twolemmas:Lemma 7 Let G be a 6-olorable graph with a 6-list assignment L. Suppose thatthere exist two lists L1 and L2 suh that the list L(v) of every vertex v 2 V (G) isL1 or L2. Let v0 be a vertex of G and let  2 L(v0). Then, G has an L-oloring with (v0) = .Proof: Let us keep the notation used in the proof of Lemma 6 and assumewithout loss of generality that  2 L1 and  = �i. Consider now a 6-oloring0 : V (G) ! f1; : : : ; 6g of G with 0(v) = i and proeed as in the proof ofLemma 6.In the previous lemma, we found a list oloring whih assigns a presribedolor to a partiular vertex. In the next lemma, we �nd a list oloring whihavoids assigning a presribed olor to some of the verties:Lemma 8 Let G be a 6-olorable graph with a 6-list assignment L. Suppose thatthere exist two lists L1 and L2 suh that the list L(v) of every vertex v 2 V (G)is L1 or L2. Let V0 be a set onsisting of at most �ve verties of G and let  bean arbitrary olor. Then, G has an L-oloring  with (v) 6=  for every v 2 V0.Proof: Let us keep the notation used in the proof of Lemma 6 and assume that 2 L1 and  = �i. Similarly as in the proof of the previous lemma, onsider�rst a 6-oloring 0 : V (G)! f1; : : : ; 6g of G with 0(v) 6= i for all (at most �ve)verties v 2 V0 and proeed next as in the proof of Lemma 6.Let us remark that Lemmas 6{8 an be straightforwardly generalized to k-olorable graphs with k-list assignments.3 Minimal non-6-hoosable graphs on �3In this setion, we show that regarding our main result, Theorem 31, we anrestrit our attention to triangulations of the surfae �3 with minimum simpledegree six and establish several properties whih suh triangulations do have.From now on, we allow triangulations to have parallel edges but we always forbid5



bigon faes. A bigon is a fae whose boundary is formed by a single yle oflength two. If G is a triangulation with minimum simple degree six, its vertexv is said to be small if degG(v) = 6 and it is alled big otherwise. Note that nosmall vertex an be inident with two parallel edges; we use this fat later in theproofs without expliitly mentioning it. In a triangulation, we refer to the faesontaining a vertex v as to the neighborhood of v. Subwalks of the boundary walkof the only non-triangular fae of G n v are alled segments.Lemma 9 Suppose that there is a non-6-hoosable graph of Euler genus threewhih does not ontain K7 as a subgraph. Then, there exists a non-6-hoosabletriangulation of the surfae �3 with minimum simple degree six whih does notontain K7 as a subgraph suh that its small verties indue a Gallai forest.Proof: Let G be a ritial non-6-hoosable graph of Euler genus at most threewhih does not ontainK7 as a subgraph suh that the order n ofG is the smallestpossible. In partiular, G is a simple graph with minimum degree (at least) six.By Theorem 2, the graph G annot be embedded on a surfae of Euler genus twoor less. Fix now an embedding of G on the surfae �3. By Theorem 5, the graphG ontains at least 3n + 2 edges. By Euler's formula, the number of edges ofan n-vertex simple graph embedded on the surfae �3 is at most 3n+ 3 and theequality holds if and only if the graph is a triangulation. Note that this impliesthat the minimum degree of G is atually six.In what follows, we �rst onstrut a non-6-hoosable triangulation G0 of �3from the graph G. If the number of edges of G is 3n + 3, the graph G itself is atriangulation of �3 and we set G0 = G. In the rest, we deal with the ase thatthe number of edges of G is 3n + 2. Sine the graph G annot be embedded ona surfae of Euler genus two or less, eah fae of the embedding of G on �3 is a2-ell [30℄. In addition, all the faes of the embedding of G are triangles exeptfor a single quadrangular fae by Euler's formula. Let abd be the 4-yle whihbounds the quadrangular fae. Sine G is a simple graph with minimum degreesix, all the four verties a, b,  and d are distint. We now prove the followinglaim:Claim 9.1 Let G+a and G+ bd be the graphs obtained from G by adding edgesa and bd, respetively, to the interior of the fae abd. Then, G+ a or G+ bddoes not ontain K7 as a subgraph.Suppose that the laim is false. LetWa be the set of the verties of a subgraph ofG+ a isomorphi to K7 and Wbd the set of the verties of a subgraph of G+ bdisomorphi to K7. Sine G does not ontain K7 as a subgraph, the verties aand  must be ontained in Wa and the verties b and d in Wbd. In addition, Gontains neither an edge a nor an edge bd. Otherwise, K7 would be a subgraphof G. Finally, let W =Wa [Wbd. 6



Let k denote the number of verties ontained in both the sets Wa and Wbd,i.e., k = jWa \Wbdj. Observe that jW j = jWa [Wbdj = 14� k beause eah ofthe sets Wa and Wbd ontains exatly seven verties. Consider the embeddingof the graph G[W ℄ on �3 indued by the embedding of the graph G. Sine thisembedding of G[W ℄ ontains at least one non-triangular fae, namely the faeabd, the number of edges of G[W ℄ is at most 3(14� k) + 2 = 44� 3k by Euler'sformula. In addition, the equality holds if and only if all the faes exept for thefae abd are triangular.The number of edges of eah of the graphs G[Wa℄ and G[Wbd℄ is 20 beauseboth of them are isomorphi to the graph K7 without a single edge. The numberof edges of the graph G[W ℄ is thus at least 40 � m0 where m0 is the number ofedges of the graph G[Wa \ Wbd℄. Clearly, m0 � �k2�. Hene, the graph G[W ℄ontains at least 40 � �k2� edges. This leads to an immediate ontradition fork = 2; 3; 4; 5. Thus, it remains to onsider the ases k = 0; 1; 6; 7. We onsiderthem separately.If k = 0, then the sets Wa and Wbd are disjoint. Hene, the edge set ofthe graph G[W ℄ onsists of 40 edges of the graphs G[Wa℄ and G[Wbd℄ and atleast additional four edges forming the 4-yle abd. As noted above, the graphG annot have more than 44 edges. Therefore, G[W ℄ has exatly 44 edges andeah edge of G[W ℄ is either an edge of the 4-yle abd or it is ontained in oneof the subgraphs G[Wa℄ and G[Wbd℄. In addition, all the faes exept for thefae bounded by the 4-yle abd are triangular. Consider now the fae abv ofG[W ℄ inident with the edge ab. Sine the verties a and  are not adjaent, wehave v 6= . The edge av must be ontained in the subgraph G[Wa℄, and henev 2 Wa. Similarly, we onlude that v 2 Wbd. But this is impossible sine thesets Wa and Wbd are disjoint.If k = 1, then at least two edges of the yle abd are ontained neither in thegraph G[Wa℄ nor in the graph G[Wbd℄. Hene, G[W ℄ ontains at least 42 edges,namely 40 edges of the graphs G[Wa℄ and G[Wbd℄, and at least two additionaledges of the yle abd. But this is impossible beause G[W ℄ an ontain at most44� 3 � 1 = 41 edges by Euler's formula.If k = 7, then Wa = Wbd. Sine the graph G + a ontains a lique on thevertex set Wa and b; d 2 Wa, we infer that the verties b and d are joined by anedge in the graph G whih we already argued not to be the ase.Let us onsider the �nal ase that k = 6. Sine jWa \Wbdj = 6, at least oneof the verties b and d is ontained in the set Wa. If both b and d are ontainedin the set Wa, then they are adjaent in G whih is not the ase. Similarly,the set Wbd ontains preisely one of the verties a and . Sine G[Wa℄ + aand G[Wbd℄ + bd are liques, all the eight verties of G[W ℄ are mutually adjaentexept for the two pairs of verties a,  and b, d. Insert now the edge a insidethe fae bounded by the 4-yle abd. In this way, we obtain an embedding ofK�8 (the omplete graph K8 without an edge) on the surfae �3 but Ringel [23℄7



showed that suh an embedding does not exist.We exluded all the ases k = 0; : : : ; 7. Thus, G + a or G + bd does notontain K7 as a subgraph and so Claim 9.1 is established.If G is a triangulation, we set G0 to be the triangulation G itself. Otherwise,let G0 be one of the triangulations G + a or G + bd whih does not ontain K7as subgraph (at least one of them has this property by Claim 9.1). Note that G0may have a pair of parallel edges. The triangulation G0 has obviously minimumsimple degree at least six and it follows from Euler's formula that it is preiselysix.In the rest, we show that the small verties of G0 indue a Gallai forest.Assume the opposite. We show that G0 is 6-hoosable whih ontradits the fatthat G, whih is a subgraph of G0, is not 6-hoosable. Fix a list 6-assignmentL of G. Let H be a omponent of the subgraph indued by small verties ofG0 whih is not a Gallai tree. Sine G is a ritial non-6-hoosable graph, thegraph G n V (H) is 6-hoosable. Color now its verties by olors from the listsL. In partiular, all the big verties of G0 are olored. For every v 2 V (H), letL0(v) be a subset of L(v) with the olors assigned to the big neighbors of v beingremoved. Sine H onsists solely of the small verties, the size of a list L0(v) is atleast degH(v). By Theorem 4, the graph H has an L0-oloring. The L-oloringof the verties of G n V (H) and the L0-oloring of H form an L-oloring of G |ontradition.In the next lemma, we show that a triangulation of �3 with minimum simpledegree six an ontain only few big verties:Lemma 10 If G is a triangulation with minimum simple degree six of the surfae�3, then G ontains at most six big verties. In partiular, eah big vertex isadjaent to at least one small vertex. Moreover, if G ontains preisely six bigverties, then the degree of eah big vertex is seven.Proof: Let n be the number of verties of the graph G. By Euler's formula, thenumber of edges of G is preisely 3n+3. Hene, the sum of degrees of the vertiesof G is preisely 6n + 6. Therefore, the triangulation G an ontain at most sixbig verties (reall that the minimum simple degree of G is six). In partiular,eah big vertex is adjaent to a small vertex. If G ontains six big verties, thenthe degree of eah big vertex is seven.In the following three lemmas, we study more spei� properties of triangu-lations with minimum simple degree six:Lemma 11 Let G be a triangulation with minimum simple degree six of thesurfae �3. Suppose that G ontains a small vertex v whih is adjaent only to8



big verties. Then, the graph G ontains exatly six big verties and eah bigvertex has degree seven.Proof: Sine the minimum simple degree of G is six, all the six big neighbors ofv must be distint. The rest of the statement of the lemma now readily followsfrom Lemma 10.Lemma 12 Let G be a triangulation with minimum simple degree six of thesurfae �3. Suppose that the small verties of G indue a Gallai forest F . Let vbe a big vertex of G and let w1w2w3 be a segment ontained in its neighborhood.If w1 and w3 are big verties and w2 is a small vertex, then the omponent H ofF whih ontains the vertex w2 is not isomorphi to K5.Proof: Sine the vertex w2 of H is adjaent to three distint big verties in thetriangulation G (reall that the simple degree of w2 is six), namely the vertiesv, w1 and w3, its degree in H is at most three. Hene, the Gallai tree H annotbe a lique of order �ve.Lemma 13 Let G be a triangulation with minimum simple degree six of thesurfae �3 whih does not ontain K7 as a subgraph. If the small verties indue aGallai forest F in G, then eah small vertex is adjaent to at least two big verties.In partiular, the maximum degree of F is at most four and no omponent of Fis isomorphi to K6.Proof: Let v be an arbitrary small vertex ontained in a omponent H of F . Bythe assumption, H is a Gallai tree. If v is adjaent only to small verties, then thevertex v and all its six small neighbors must be in the same blok of H. Hene,the Gallai tree H must ontain a lique of order seven. But this is impossiblebeause G does not ontain K7 as a subgraph. Hene, eah small vertex has atleast one big neighbor.Assume now for the sake of ontradition that v has a single big neighbor v0.In partiular, degH(v) = 5. Sine G is a triangulation, then the vertex v is in thesame blok of H as its �ve small neighbors. Beause eah small vertex is adjaentto at least one big vertex, the maximum degree of H is at most �ve and H is2-onneted. Hene, the vertex v and its �ve neighbors are the only verties ofH and so H is isomorphi to K6. In partiular, eah vertex of H is adjaent toexatly one big vertex and thus there are exatly six edges between the vertiesof H and the big verties of G.Let w and w0 be the neighbors of v suh that the triangulation G ontains thefaes vv0w and vv0w0 (f. Figure 1). Eah big vertex whih is adjaent to a vertex9



vw0 v0w u
Figure 1: Notation used in the proof of Lemma 13.of H must be adjaent to at least three verties of H sine G is a triangulationand eah vertex of H is adjaent to exatly one big vertex. Hene, either there isa single big vertex adjaent to all the verties of H, whih is isomorphi to K6,or there are two big verties, eah having exatly three neighbors in H. Sine Gdoes not ontain K7 as a subgraph, the former is impossible. Thus, the latterholds and v, w and w0 are the only neighbors of the big vertex v0 in H.Let u be a ommon neighbor of w and v0 di�erent from v so that the triangu-lation G ontains a fae v0wu (f. Figure 1). Sine the only neighbors of v0 in Hare the verties v, w and w0, we onlude that u is a big vertex. However, thenthe vertex w of H has two big neighbors u and v and so its degree in H is atmost four | ontradition.In the last lemma of this setion, we show that if eah omponent induedby small verties in a triangulation onsists of at most �ve verties, then theminimum degree of a subgraph indued by the big verties is at least two:Lemma 14 Let G be a triangulation with minimum simple degree six of thesurfae �3. If eah omponent of the subgraph of G indued by the small vertiesof G onsists of at most �ve verties, then eah big vertex of G is inident withat least two edges joining it to other big verties.Proof: Suppose that the laim is false, i.e., there is a big vertex v of G inidentwith at most one edge leading to another big vertex. Let k be the numberof distint small verties adjaent to v. Sine no small vertex is inident withparallel edges, k � 6. All the k small neighbors of v are ontained in the sameomponent H of the subgraph of G indued by the small verties beause G isa triangulation. Hene, the number of verties of H is also at least six whihontradits the assumption of the lemma.
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4 Gallai trees in triangulations with minimumsimple degree sixIn the previous setion, we have observed that we an restrit our attention totriangulations of the surfae �3 in whih small verties indue a Gallai forest withmaximum vertex degree at most four. In this setion, we de�ne a weight and anextended weight of a Gallai tree with maximum degree at most four. This oneptis used in the next setion to show that the small verties of triangulations anindue only Gallai forests of a restrited type. This onept is de�ned and it anbe used for all surfaes.Fix a triangulation G of a surfae suh that the minimum simple degree of Gis six. Let H be a omponent of the subgraph of G indued by the small verties.Suppose that H is a Gallai tree. The weight of H in the triangulation G, denotedby wG(H), is equal to j�GHj where �GH is the set of edges between the vertiesof H and the rest of G. Notation �GH is also used for other subgraphs H of G.It is easy to observe that the following equality holds:wG(H) = Xv2V (H)(6� degH(v)). (1)In partiular, the weight of the Gallai tree H does not depend on a onsideredtriangulation G. Thus, we an de�ne the weight w(H) of H, independently of atriangulation G, as the sum in (1).We say that a fae f of a triangulation is big if exatly one vertex of f issmall, i.e., exatly two verties of f are big. The extended weight w+G(H) of H inthe triangulation G is equal to the weight of H inreased by the number of bigfaes ontaining a vertex of H. Note that the extended weight of the Gallai treeH ould depend on the triangulation G. We now de�ne the extended weight ofH, denoted by w+(H), to be the minimum of the extended weights w+G(H) for alltriangulations G with minimum simple degree six whih ontain H and do notontain K7 as a subgraph.Next, we establish some lower bounds on the extended weight of Gallai treeswith maximum vertex degree at most four. All our lower bounds will just dependon the struture of a Gallai tree, i.e., neither of them will be related to a onsideredtriangulation. Our �rst lower bound (whih will be later improved) is presentedin the following proposition:Proposition 15 Let G be a triangulation with minimum simple degree six andlet H be a omponent of the subgraph of G indued by the small verties. Supposethat H is a Gallai tree with maximum degree at most four. The extended weightof H in G is at least w�1 (H) wherew�1 (H) := w(H) + Xv2V (H) d+degH(v)11



(0a) (1a) (2a) (2b) (2)
(3a) (3b) (3) (4a) (4b) (4)Figure 2: Possible neighborhoods (upto symmetry) of a small vertex of degreezero, one, two, three and four. The small verties are depited by full irles andthe big verties by empty ones. The types of neighborhoods are labeled by pairsonsisting of the number of its small neighbors and a letter.with d+0 = 6, d+1 = 4, d+2 = 2 and d+3 = d+4 = 0.Proof: Possible neighborhoods of a small vertex of degree zero, one, two, threeand four are depited in Figure 2. It is easy to verify that a vertex v of a Gallai treeH with degH(v) = k must be ontained in at least d+k big faes. The statement ofthe proposition now readily follows from the de�nition of the extended weight.The label of a neighborhood in Figure 2 is said to be the type of the neigh-borhood of a small vertex v. This notion is to be used in the proof of the nextproposition in whih we improve the lower bound from Proposition 15 by realizingthat ertain types of neighborhoods annot appear next to eah other:Proposition 16 Let G be a triangulation with minimum vertex simple degree sixand let H be a omponent of the subgraph indued by the small verties. Supposethat H is a Gallai tree with maximum degree at most four. Then, the extendedweight of H is at least w�2 (H) wherew�2 (H) := w�1 (H) + 2`13 + `23 + 4`14 + 2`24with `ij being the number of bloks of H whih are liques of order j, whih ontainpreisely i ut-verties in H and at least one of these ut-verties has degreeexatly four in H.Proof: Let d+0 = 6, d+1 = 4, d+2 = 2 and d+3 = d+4 = 0 as de�ned in Proposi-tion 15. Consider a �xed blok B of the Gallai tree H whih is a lique of orderj, whih ontains exatly i ut-verties and suh that at least one ut-vertex v12



of B has degree four in H. The statement of the proposition is implied by thede�nitions of w+(H) and w�1 (H) and by Claims 16.1{16.4 whih follow:Claim 16.1 If i = 1 and j = 3, then the internal verties of the blok B areontained in at least 2d+2 + 2 big faes.Sine v is a ut-vertex and B is a lique of order four, the neighborhood of vmust of type (4). Then, the neighborhood of eah of the remaining two vertiesof B is of type (2a). Hene, the internal verties of B are ontained in at least6 = 2d+2 + 2 big faes.Claim 16.2 If i = 2 and j = 3, then the internal vertex of the blok B isontained in at least d+2 + 1 big faes.The type of the neighborhood of v must again be (4). Then, the neighborhoodof the only internal vertex of B is of type (2a) and it is ontained in exatly3 = d+2 + 1 big faes.Claim 16.3 If i = 1 and j = 4, then the internal verties of the blok B areontained in at least 3d+3 + 4 big faes.Sine v is a ut-vertex, its neighborhood must be of type (4b). Then, the neigh-borhood of none of the remaining three verties of B is of type (3) and at leastone is of type (3a). Hene, the internal verties of B are ontained in at least4 = 3d+3 + 4 big faes.Claim 16.4 If i = 2 and j = 4, then the internal verties of the blok B areontained in at least 2d+3 + 2 big faes.The type of the neighborhood of v must again be (4b). Then, the neighborhoodsof the two internal verties of B an be only of types (3a) and (3b). Hene, theinternal verties of B are ontained in at least 2 = 2d+3 + 2 big faes.Finally, we de�ne w�(H) for a Gallai tree H with maximum degree at mostfour as follows: w�(H) = 8><>: 16 if H = K4,13 if H = K5 andw�2 (H) otherwise.The weights w(H) and the bounds w�(H) of all Gallai trees H with maximumdegree at most four and with w�(H) � 32 an be found in Figure 3 (it is straight-forward to verify that all Gallai trees with this property are depited in the �gure;we avoid this veri�ation in order to keep the paper short). In the next lemma,we show that w�(H) is a lower bound on the extended weight of a Gallai tree H:13



w = 6w� = 12 w = 10w� = 18 w = 12w� = 18 w = 12w� = 16 w = 10w� = 13 w = 20w� = 30
w = 14w� = 24 w = 16w� = 24 w = 16w� = 24 w = 18w� = 30
w = 18w� = 30 w = 18w� = 30 w = 20w� = 30 w = 20w� = 30

w = 20w� = 30 w = 22w� = 30 w = 20w� = 30Figure 3: The weights w(H) and the values of the bound w�(H) of all Gallaitrees H with maximum degree at most four and with w�(H) � 32.
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Lemma 17 For eah Gallai tree H with maximum degree at most four, the fol-lowing inequality holds: w�(H) � w+(H).Proof: Let G be an arbitrary triangulation with minimum simple vertex degreesix whih does not ontain K7 as a subgraph suh that one of the omponentsof the subgraph of G indued by the small verties is isomorphi to H. We showthat w�(H) � w+G(H) whih implies the statement of the lemma.If the Gallai tree H is isomorphi to neither K4 nor K5, then w�(H) =w�2 (H) � w+G(H) by Proposition 16. So, we an assume that H is a liqueof order four or �ve. Let n be this order. Consider the (embedded) graph G0obtained from the triangulation G by removing the verties of H and let f bethe fae of G0 in whih H was embedded. Note that sine G is a triangulation,the fae f is uniquely determined. The degree of eah big vertex of G an bedereased by at most n beause the minimum simple degree of G is six and onlyn small verties of G were removed. The fae f is inident with at least 7 � nbig verties beause eah vertex of H is adjaent to six distint verties. If thefae f is inident with preisely 7 � n big verties, then the n verties of H areadjaent to the same 7� n big verties and they altogether form a opy of K7 inG. Therefore, f is inident with at least 8 � n big verties. Hene, the sum ofthe lengths of all the faial walks of f is at least 8�n. Eah edge of a faial walkof f is ontained in a big fae of G whih ontains a small vertex of H (reallthat G is a triangulation of the surfae and we removed only some of its smallverties). We an now onlude that w+G(H) � wG(H)+ (8�n) = w(H)+ 8�n.In partiular, if n = 4, then w+G(H) � 12 + 8 � 4 = 16 and if n = 5, thenw+G(H) � 10 + 8� 5 = 13.In the next lemma, we desribe a relation between the number of big vertiesand the weights and the extended weights of the omponents of a Gallai forestindued by small verties:Lemma 18 Let G be a triangulation with minimum simple degree six of thesurfae �3 suh that G does not ontain K7 as a subgraph. Suppose that thesmall verties of G indue a Gallai forest F with maximum degree at most fourwhih onsists of k omponents H1; : : : ; Hk. If b is the number of big verties ofG, then w�(H1) + � � � + w�(Hk) � 6b + 6. In addition, if eah omponent Hi,1 � i � k, ontains at most �ve verties, then w(H1) + � � �+ w(Hk) � 4b + 6.Proof: Let mS be j�GF j, i.e., the number of edges between the big verties andthe small verties, and letmB be the number of edges between the big verties. ByEuler's formula, the sum of degrees of the big verties of G is mS+2mB = 6b+6.The sum of j�GF j and the number of big faes of G is exatly w+G(H1)+ � � �+w+G(Hk), i.e., the sum of extended weights of the Gallai trees H1; : : : ; Hk in G.15



By Lemma 17, this sum is at least w�(H1) + � � �+ w�(Hk). On the other hand,the number of big faes is at most 2mB beause eah big fae is inident with anedge joining two big verties and an edge joining two big verties an be inidentwith at most two big faes. Therefore:w�(H1) + � � �+ w�(Hk) � w+G(H1) + � � �+ w+G(Hk) � mS + 2mB = 6b+ 6.In order to prove the seond part of the laim, assume that eah Gallai treeHi, 1 � i � k, ontains at most �ve verties. Eah big vertex is inident with atleast two edges joining it to other big verties by Lemma 14. Consequently, thenumber j�GF j of edges between the small verties and the big verties is at most6b+6� 2b = 4b+6. Sine j�GF j is equal to the sum of the weights of the Gallaitrees H1; : : : ; Hk, we onlude that w(H1) + � � �+ w(Hk) � 4b + 6.
5 Triangulations of the surfae �3As we have already noted, we an restrit our attention to triangulations of thesurfae �3 with minimum simple degree six in whih the small verties indue aGallai forest. In this setion, we study a possible struture of suh triangulationsand their Gallai forests.Lemma 19 Let G be a triangulation with minimum simple degree six of thesurfae �3 whih does not ontain K7 as a subgraph. Suppose that the smallverties indue a Gallai forest F in G. Then, F has at most three omponents.Proof: By Lemma 13, the maximum degree of of F is at most four. Note thatw�(H) � 12 for eah omponent H of F (f. Figure 3). The triangulation Gontains at most six big verties by Lemma 10. Therefore, we an infer fromLemma 18 that the sum of w�(H) for all omponents H of F is at most 42.Hene, F an have at most three omponents.In the next lemma, we desribe a struture of Gallai forests with two ompo-nents in triangulations whih we are interested in:Lemma 20 Let G be a triangulation with minimum simple degree six of thesurfae �3 whih does not ontain K7 as a subgraph. Suppose that the smallverties indue a Gallai forest F in G with two omponents H1 and H2. Then,at least one of the following holds:� H1 or H2 is isomorphi to K1, 16



� both H1 and H2 are liques of order between two and �ve, or� H1 is a lique of order between two and �ve, H2 ontains a vertex of degreeone (or vie versa) and G has preisely six big verties.Proof: Eah of the Gallai trees H1 and H2 has maximum degree at most fourby Lemma 13. If H1 or H2 is isomorphi to K1, then the lemma learly holds.Let us assume in the rest that neither H1 nor H2 is isomorphi to K1. Notethat by Lemma 10 there are at most six big verties. Hene, Lemma 18 impliesthe inequality w�(H1) + w�(H2) � 42. Sine the extended weight of a Gallaitree with maximum degree at most four whih is not a lique is at least 24 (f.Figure 3), we onlude that at least one of H1 and H2 is a lique.If both H1 and H2 are liques, the forest F is of the desired form. Hene,assume that H1 is a lique but H2 is not. Sine H1 is a lique of order 2, 3, 4 or 5,we infer that w�(H1) � 13 and hene w�(H2) � 29. Thus, w�(H2) = 24 and soH2 must ontain a vertex of degree one (f. Figure 3). Sine w�(H1)+w�(H2) �37, there are exatly six big verties by Lemmas 10 and 18. This ompletes theproof of the lemma.Finally, we show that if a Gallai forest indued by the small verties hasexatly three omponents, then at least two of them are isomorphi to K1:Lemma 21 Let G be a triangulation with minimum simple degree six of thesurfae �3 whih does not ontain K7 as a subgraph. Suppose that the smallverties indue a Gallai forest F in G with three omponents H1, H2 and H3 andthat G ontains a vertex with a simple degree at least seven. Then, at least twoof H1, H2 and H3 are isomorphi to K1.Proof: The maximum degree of eah of the Gallai trees H1, H2 and H3 is atmost four by Lemma 13 and thus eah of w�(H1), w�(H2) and w�(H3) is at leasttwelve (f. Figure 3). Sine the number of big verties of G is at most six byLemma 10, we an infer from Lemma 18 that the sum of w�(H1), w�(H2) andw�(H3) an be at most 42. Therefore, eah of w�(H1), w�(H2) and w�(H3) is atmost 42� 2 � 12 = 18. Hene, all the Gallai trees H1, H2 and H3 must be liquesof order at most �ve (f. Figure 3).In the rest of the proof, we show in a series of laims that at least two of theliques H1, H2 and H3 are of order one. This will establish the lemma.Claim 21.1 If none of the liques H1, H2 and H3 is of order one, then all ofthem have order �ve.Assume that the order of eah of the liques H1, H2 and H3 is distint fromone. Note �rst that the weights of the liques K2 and K5 are equal to 10 and17



the weights of the liques K3 and K4 are equal to 12. Sine eah of H1, H2and H3 has at most �ve verties, the sum of their weights an be at most 30by Lemmas 10 and 18. Hene, eah of the liques H1, H2 and H3 is isomorphito K2 or K5. Reall that w�(K2) = 18 and w�(K5) = 13. If at least one ofthe liques is of order two, then the sum w�(H1) + w�(H2) + w�(H3) is at least18 + 13 + 13 = 44 > 42 | ontradition. Hene, all the liques H1, H2 and H3are isomorphi to K5.Claim 21.2 The order of at least one of the liques H1, H2 and H3 is not �ve.Assume for ontradition that orders of all the liques H1, H2 and H3 are �ve.Then, w(H1)+w(H2)+w(H3) = 30. In other words, j�GF j = 30. By Lemmas 10and 18, the graph G ontains exatly six big verties and thus the degree of eahbig vertex is seven. Let further HB be the subgraph of G indued by the bigverties. By Lemma 14, the degree of eah vertex in HB is at least two, i.e., eahbig vertex is adjaent to at most �ve small verties. Sine the number of edgesbetween the small and big verties is 30, eah big vertex is adjaent to exatly�ve small verties and thus the multigraph HB is 2-regular, i.e., HB is a union ofyles.Sine G is a triangulation and the small verties indue a Gallai forest withthree omponents, the embedding of HB on �3 obtained from the triangulationG by removing the liques H1, H2 and H3 has at least three faes, namely thefaes whih originally ontained embeddings of H1, H2 and H3. Hene, HB mustonsist of at least two disjoint yles beause it is 2-regular. The graphHB annotonsist of more than three yles beause it has six verties. If HB onsists ofexatly three yles, then it is formed by three yles of length two. Sine thedegree of eah big vertex in G is seven, its simple degree is six. This ontraditsthe assumption of the lemma that G ontains a vertex with simple degree at leastseven. Hene, we an onlude that HB onsists of exatly two yles. Moreover,it onsists of either two yles of length three or a yle of length two and a yleof length four.The embedding of HB an have at most three faes. Reall that the subgraphindued by the small verties has three omponents. So, the embedding of HBhas exatly three faes. Observe that the liques H1, H2 and H3 were drawn indi�erent faes of HB beause G is a triangulation. Let fi, i = 1; 2; 3, be the faeof HB in whih the lique Hi was drawn.If HB onsists of a yle of length two and a yle of length four, the boundaryof one of the faes of HB, say the fae f1, is formed by two big verties b1 and b2whih are joined by two parallel edges. The verties of the lique H1 drawn inthe fae f1 an be adjaent only to the verties b1 and b2 and sine the minimumsimple degree ofG is six, eah vertex ofH1 is adjaent to both b1 and b2 (reall thatH1 is a lique of order �ve). Then, the verties of H1 together with the verties b1and b2 form a subgraph of G whih is isomorphi to K7, a ontradition. Hene,the graph HB must onsist of vertex-disjoint two yles of length three.18



Let b1b2b3 and b01b02b03 be the two yles of HB. We an assume without loss ofgenerality that the boundary of f1 is formed by the 3-yle b1b2b3, the boundaryof f2 by the 3-yles b1b2b3 and b01b02b03 and the boundary of f3 by the 3-yleb01b02b03.Let n1i , i = 1; 2; 3, be the number of neighbors of the vertex bi in the liqueH1 and n2i the number of neighbors of bi in H2. Observe that n1i +n2i = 5 for eahi = 1; 2; 3 beause the degree of bi in G is seven. Sine the fae f1 ontained thelique H1, the fae f2 ontained the lique H2 and G is a triangulation, eah ofthe numbers n1i and n2i is non-zero. By Lemma 12, we have n1i 6= 1 and n2i 6= 1.Hene, eah of them is either 2 or 3. In partiular, n11 + n12 + n13 � 9. But this isimpossible beause the sum n11+n12+n13 should be equal to the weight w(K5) = 10of the lique H1 | ontradition.Claim 21.3 At least one of the liques H1, H2 and H3 is isomorphi to K1.The above laim diretly follows from Claims 21.1 and 21.2.Claim 21.4 At least two of the Gallai trees H1, H2 and H3 are isomorphi toK1.By Claim 21.3, we an assume that H1 onsists of a single small vertex v0.Assume for ontradition that both H2 and H3 are liques of order at leasttwo. Then, the weights w(H2) and w(H3) are at least 10. Sine G is a tri-angulation, the big neighbors b1; : : : ; b6 of the vertex v0 form a 6-yle C, sayC = b1b2b3b4b5b6. Let w1; : : : ; w24 be the other neighbors of the big verties sothat w4i�3; w4i�2; w4i�1; w4i are the neighbors of the big vertex bi in the orderdepited in Figure 4. Note that the verties w1; : : : ; w24 are not neessarily alldistint, e.g., w1 = w24, and some of them ould be neighbors of the vertex v0.In the rest of the proof, edges whih join two big verties and whih are notinluded in the yle C are alled diagonals. The big verties b1; : : : ; b6 are joinedto the small verties of H2 and H3 by preisely w(H2) + w(H3) edges. Hene,besides the edges of the yle C, there are (24 � w(H2) � w(H3))=2 diagonals.Hene, there are at most two diagonals. On the other hand, there is at least onediagonal: Otherwise, sine G is a triangulation, all the verties w1; : : : ; w24 aresmall and thus they are ontained in the same omponent of the Gallai forest F .Then, F has only two omponents.We �rst onsider the ase that there is exatly one diagonal. Hene, there areexatly two indies i and i0, 1 � i < i0 � 24, suh that wi and wi0 are big verties.Then, the verties wi+1; : : : ; wi0�1 are small verties of the same Gallai tree, sayH2, and wi0+1; : : : ; w24; w1; : : : ; wi�1 are small verties of the other Gallai tree H3.In addition, the weight of one of H2 and H3 is 12 and the weight of the other oneis 10. We may assume that w(H2) = 12 and w(H3) = 10. In partiular, both H2and H3 are liques and i0 � i� 1 = w(H2) = 12 (modulo 24).19



v0b1 b2b3b4b5 b6w1 w2 w3 w4 w5w6w7w8w9w10w11w12w13w14w15w16w17w18w19w20w21w22w23w24

Figure 4: Notation used in Claim 21.4.

v0b1 b2b3b4b5 b6 v0b1 b2b3b4b5 b6 v0b1 b2b3b4b5 b6
Figure 5: Possible on�gurations from the proof of Claim 21.4 in the ase thatthere is a single diagonal. Edges joining two big verties are drawn as bold.
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There are three possible on�gurations (upto symmetry) of the edges betweenthe small verties and the big ones in the neighborhood of the vertex v0 whihare depited in Figure 5. Note that the vertex b2 in eah on�guration is adjaentto four verties of H2 and thus H2 is a lique of order at least four. Sine theweight of H2 is 12, the lique H2 has order four. Similarly, the vertex b5 in eahon�guration is adjaent to four verties of H3 and thus H3 must be a lique oforder �ve. The left and the middle on�gurations depited in Figure 5 annotappear in a triangulation: In order to see this, onsider the fae b1b6w1 = b1b6w24where the vertex w1 = w24 should be simultaneously big and small. The righton�guration annot appear in G by Lemma 12 beause the neighbor w1 of thebig vertex b1 annot be ontained in the Gallai tree isomorphi to K5.Let us onsider now the remaining ase that there are two diagonals. Hene,eah of H2 and H3 has weight 10, in partiular, eah of them is isomorphi to K2or K5.In this paragraph, we show that there annot be two big verties suh thateah of them has four neighbors in H2 (the analogous statement also holds forH3). Assume for ontradition that there are suh two big verties bi and bi0 .Sine the lique H2 has at least four verties, its order must be �ve. Reallnow that w(H2) = 10. By Lemma 12, the two edges whih join the verties ofH2 and the big verties and whih are inident neither with bi nor bi0 must beinident with the same big vertex. Let bi00 be this big vertex. By symmetry, wean assume that i = 1. Sine G is a triangulation, eah of the big verties b6and b2 is adjaent to a vertex of H2 (note that w24 = w1 and w4 = w5). Thus,fi0; i00g = f2; 6g. By symmetry, we an assume that i00 = 6 and i0 = 2. Again,sine G is a triangulation, the big vertex b3 is adjaent to a vertex of H2 (notethat w8 = w9). But this is impossible beause bi = b1, bi0 = b2 and bi00 = b6 arethe only big verties adjaent to a vertex of H2.Sine there are only two diagonals, at least two big verties b2 and b3 areadjaent to four small verties di�erent from the vertex v0. As we have shown inthe previous paragraph, the big verties b2 and b3 annot be adjaent to vertiesof the same lique. Hene, we an assume that b2 is adjaent to four verties ofthe lique H2 and b3 is adjaent to four verties of the lique H3. Sine eah ofthe liques H2 and H3 has at least four verties, the order of both of them is �ve(reall that we showed that eah of H2 and H3 is isomorphi to K2 or K5).By Lemma 12, no big vertex has a single neighbor in H2. Thus, eah bigvertex has either no neighbor in H2 or it has at least two neighbors in H2. Sinethere annot be two big verties with four neighbors in H2, only the followingtwo on�gurations an appear:� There is a big vertex, namely the vertex b2, adjaent to preisely four ver-ties of the lique H2 and there are other two big verties eah adjaent topreisely three verties of the lique H2.� There is a big vertex, namely the vertex b2, adjaent to preisely four ver-21



v0b1 b2b3b4b5 b6
Figure 6: The only possible on�guration from the proof of Claim 21.4 in thease that there are two diagonals. The diagonals are drawn as bold.ties of the lique H2 and there are other three big verties eah adjaentto preisely two verties of the lique H2.We show that the latter is impossible: Let b, b0 and b00 be the three big vertiesadjaent to two verties of H2. Sine G is a triangulation, eah of the vertiesb, b0 and b00 must be inident with at least one diagonal. If it is inident withjust a single diagonal, then it is adjaent to preisely one vertex of H3 whih isimpossible by Lemma 12. Hene, eah of the verties b, b0 and b00 is inident withtwo diagonals and onsequently, there must be at least three diagonals. But weassumed that there are only two diagonals. So, the big vertex b2 is adjaent tofour verties of the lique H2 and there are other two big verties eah adjaentto three verties of the lique H2. Similarly, the big vertex b3 is adjaent to fourverties of the lique H3 and there are other two big verties eah adjaent tothree verties of the lique H3.Sine G is a triangulation, the two big verties adjaent to three verties ofH2 must be neighbors of the vertex b2 in the 6-yle C. An analogous statementholds for H3 and the vertex b3. By symmetry, we an assume that the vertex b2is the big vertex b1 and the two big verties adjaent to preisely three vertiesof H2 are the big verties b6 and b2. Then, b3 must oinide with the big vertexb4 and eah of the verties b3 and b5 is adjaent to three verties of H3. Thison�guration is depited in Figure 6. Sine G is a triangulation, the bold edgesinident with the verties b2 and b3 in Figure 6 must lead to the same big vertex,but there is no big vertex in G inident with two suh edges | ontradition.This ompletes the proof of Claim 21.4.
6 List olorings of triangulations of �3As we have already seen, in order to prove our hoosability result, it is enough torestrit our attention to triangulations of the surfae �3 with minimum simpledegree six in whih small verties indue a Gallai forest of a ertain speial type22



and whih does not ontain K7 as a subgraph. In this setion, we prove thatgraphs of this type embedded on the surfae �3 are 6-hoosable. In Setion 7, weombine the results of Setion 5 and the results of this setion to onlude thatif a graph embedded on the surfae �3 does not ontain K7 as a subgraph, thenit is 6-hoosable.In some of our proofs, we �rst olor big verties of the triangulation and thenwe try to extend this oloring to small verties. The following four propositionwill help us in this task:Proposition 22 Let G be a graph with minimum simple degree six, L a list 6-assignment of G and S the vertex set of a omponent of the subgraph of G induedby the small verties. Suppose that some of the big verties are preolored so thatthere is a big vertex b adjaent to a small vertex s0 2 S suh that b is oloredwith a olor � 62 L(s0). Then, the preoloring of the big verties an be extendedto all the verties of S.Proof: Let L0(s) for eah s 2 S be the list of the olors of L(s) whih are notused to olor the big neighbors of s. Note that jL0(s)j � degG[S℄(s) for eah vertexs 2 S and jL0(s0)j > degG[S℄(s0). Hene, there exists an L0-oloring of G[S℄ byTheorem 3. This L0-oloring is the sought extension of the preoloring to S.Similarly as Proposition 22, one an prove the following two propositions:Proposition 23 Let G be a graph with minimum simple degree six, L a list 6-assignment of G and S the vertex set of a omponent of the subgraph of G induedby the small verties. Suppose that some of the big verties are preolored so thatthere is a small vertex s0 2 S adjaent to two big verties whih are olored withthe same olor. Then, the preoloring of the big verties an be extended to allthe verties of S.Proposition 24 Let G be a graph with minimum simple degree six, L a list 6-assignment of G and S the vertex set of a omponent of the subgraph of G induedby the small verties. Suppose that some of the big verties are preolored so thatthere is a small vertex s0 2 S adjaent to a big vertex b so that b is not olored.Then, the preoloring of the big verties an be extended to all the verties of S.The last of our propositions requires a di�erent proof:Proposition 25 Let G be a graph with minimum simple degree six, L a list 6-assignment of G and S the vertex set of a omponent of the subgraph of G induedby the small verties. Suppose that G[S℄ is a lique and there exist two vertiess1 and s2 of S and a olor � suh that � 2 L(s1), � 62 L(s2) and no big neighborof s1 is olored with �. Then, the preoloring of the big verties an be extendedto all the verties of S. 23



Proof: Let L0(s) for eah s 2 S be the list of the olors of L(s) not used to olorall the big neighbors of s. Note that jL0(s)j � degG[S℄(s) for eah vertex s 2 Sand L0(s1) 6= L0(s2). Hene, there exists an L0-oloring of G[S℄ by Theorem 4.This L0-oloring is the desired extension of the preoloring.Let us remark that Propositions 22{25 an be easily reformulated for list k-assignments for any k � 1. We keep them in the above form in order to makemore lear their appliations in the proofs of Lemmas 26{30.In the rest of this setion, we prove Lemmas 26{30 in whih we deal with alltypes of triangulations of �3 whih were desribed in Setion 5. The ourse of theproofs of these lemmas is more or less the same: We �x a 6-list assignment L of atriangulation G of �3 and assume that G has no L-oloring. In the rest of eah ofthe proofs, we proeed in a series of laims. We �rst show L(s) = L(b) for mostpairs of a small vertex s and a big vertex b whih are adjaent. Then, we deduethat G ontains preisely six big verties and they an be grouped into three pairsso that the verties of eah pair have the same list. Based on the struture ofthe triangulation and the list assignment, we eventually �nd an L-oloring of Gwhih ontradits our original assumption that there is no L-oloring. Althoughit might seem at the �rst sight that the proofs of the lemmas are essentially thesame, the arguments used to establish the laims are di�erent.The �rst ase whih we onsider is that small verties indue a Gallai tree:Lemma 26 Let G be a triangulation with minimum simple degree six of thesurfae �3 suh that G does not ontain K7 as a subgraph. If the verties ofdegree six indue a Gallai tree in G, then G is 6-hoosable.Proof: Suppose that the laim of the lemma is false. Fix a triangulation G,whih has the properties desribed in the statement of the lemma, and a list6-assignment L suh that G has no L-oloring. Let S be the set of small vertiesof G and B the set of big verties of G. Note that jBj � 6 by Lemma 10.Claim 26.1 Let s 2 S and b 2 B be two adjaent verties in G. Then, L(s) =L(b).Assume the opposite and let s 2 S and b 2 B be two adjaent verties withL(s) 6= L(b). Color �rst the vertex b with a olor � 2 L(b) n L(s). Then, olorproperly the remaining (at most �ve) big verties by olors from their lists. Thisis possible beause eah vertex has a list of six available olors. By the hoie ofthe olor of the vertex b, the oloring of the big verties an be extended to anL-oloring of G by Proposition 22 | ontradition.Claim 26.2 Let b be a big vertex. Then, there exists a big vertex b0 6= b withL(b) = L(b0). 24



Sine the minimum simple degree ofG is six and there are at most six big verties,the vertex b is adjaent to a small vertex s. Sine eah small vertex is adjaentto at least two big verties by Lemma 13, there exists a big vertex b0 6= b whihis adjaent to s. Then, L(b) = L(s) = L(b0) by Claim 26.1.Claim 26.3 There exist three big verties whose lists are mutually distint.Assume the opposite and let L1 and L2 be two lists suh that the list of eah bigvertex is L1 or L2. Sine eah small vertex s is adjaent to a big vertex, the listof s must be L1 or L2 by Claim 26.1. Hene, the list of eah vertex of G is L1or L2. By Theorem 1, the triangulation G is 6-olorable. Therefore, G has anL-oloring by Lemma 6 | ontradition.Claim 26.4 The graph G ontains preisely six big verties. Moreover, there isan ordering of the big verties b1, b2, b3, b4, b5 and b6 so that L(b1) = L(b2),L(b3) = L(b4) and L(b5) = L(b6) and the lists of any other pair of the big vertiesare distint.The laim diretly follows from Claims 26.2 and 26.3 and the fat that jBj � 6.Claim 26.5 Eah small vertex is adjaent to preisely two big verties. In par-tiular, the graph G[S℄ must be a lique of order �ve.Eah small vertex is adjaent to at least two big verties by Lemma 13. ByClaims 26.1 and 26.4, it an be adjaent to at most two big verties. Hene, eahsmall vertex is adjaent to preisely two big verties and it is adjaent to exatlyfour small verties. Sine the only 4-regular Gallai tree is K5, the graph G[S℄must be a lique of order �ve.Claim 26.6 The graph G has an L-oloring.Let b1, b2, b3, b4, b5 and b6 be the big verties ordered as in Claim 26.4. Let s1 ands3 be small neighbors of the verties b1 and b3, respetively. Suh verties s1 ands3 exist beause the minimum simple degree of G is six. By Claim 26.1, L(s1) =L(b1) and L(s3) = L(b3). So, L(s1) 6= L(s3). Choose a olor � 2 L(s3) n L(s1).Color properly the two big neighbors b3 and b4 of s3 by olors from their listsdi�erent from the olor � and the remaining big verties by arbitrary olors fromtheir lists. Sine G[S℄ is a lique of order �ve by Claim 26.5, no big neighbor ofthe vertex s3 is olored with the olor � and � 62 L(s1), it follows that the oloringof the big verties an be extended to an L-oloring of G by Proposition 25.The seond ase whih we onsider is that small verties indue a Gallai forestwith two omponents suh that at least one of the omponents is a single vertex:25



Lemma 27 Let G be a triangulation with minimum simple degree six of thesurfae �3 whih does not ontain K7 as a subgraph. If the small verties induea Gallai forest in G with preisely two omponents suh that at least one of themis isomorphi to K1, then the graph G is 6-hoosable.Proof: Suppose that the statement of the lemma is false. Fix a triangulationG of �3, whih satisfy the assumptions of the lemma, and a list 6-assignment Lsuh that G has no L-oloring. Let B be the set of big verties of G and S theset of small verties of G. Let s0 be further an isolated vertex of G[S℄ and letS0 = S n fs0g. Finally, let B0 � B be the set of big verties adjaent to at leastone vertex of S0. By Lemma 11, there are preisely six big verties and thus eahbig vertex is adjaent to the vertex s0. On the other hand, there are also twonon-adjaent big verties: Otherwise, G[B℄ is a lique and so G[B [ fs0g℄ is alique of order seven.Claim 27.1 If s 2 S0 and b 2 B0 are adjaent verties, then L(s) = L(b).Assume the opposite and let s 2 S0 and b 2 B0 be two adjaent verties withL(s) 6= L(b). Color �rst the vertex b by a olor � 2 L(b) n L(s). Let b0 6= b be avertex of G[B℄ whih is not adjaent to all the big verties. Suh a vertex existsas explained above. Color properly the vertex s0 by a olor from its list and thenthe remaining big verties one by one by olors from their lists so that the vertexb0 is olored as the last one. This is possible sine when we olor eah of theseverties, at most �ve of its neighbors are previously olored. By the hoie of theolor of the vertex b, this oloring an be extended to an L-oloring of the vertiesof S0 by Proposition 22. So, we obtain an L-oloring of G | ontradition.Claim 27.2 There are three verties of B0 whose lists are mutually distint.Assume the opposite and let L1 and L2 be two lists suh that the list of eahvertex of B0 is L1 or L2. By Claim 27.1 and Lemma 13, the list of eah vertex ofS0 is also L1 or L2.We �rst onsider the ase that all the verties of S0[B0 have the same list, sayL0, i.e., L0 = L1 or L0 = L2. If L(s0) 6= L0, then olor the verties of G[S0 [B0℄by olors from their lists so that at least one big neighbor of s0 is olored with aolor � 2 L0 nL(s0). Lemma 7 implies that this is possible beause G[S0 [B0℄ is6-olorable by Theorem 1 and all verties of S0 [B0 has the same list L0. Next,olor properly the remaining big verties by olors from their lists (note that theolored neighbors of eah vertex from B n B0 are only big verties and hene itis adjaent to at most �ve olored verties). Sine one of the neighbors of thevertex s0 is olored with a olor � 62 L(s0), we an now olor the vertex s0 by aolor from its list. Thus, we obtain an L-oloring of G | ontradition.If L(s0) = L0, then s0 has a big neighbor b with L(b) 6= L(s0): Otherwise, allthe verties of G have the same list and thus G has an L-oloring by Theorem 1.26



It follows from our assumption that the lists of all the verties of S0 [B0 are thesame that b 62 B0. Fix a olor � 2 L(b) n L(s0). Sine all the verties of S0 [ B0have the same list L0 and the graph G[S0 [ B0℄ is 6-olorable by Theorem 1, wean olor the verties of G[S0 [ B0℄ by olors from their lists. Afterwards, olorthe vertex b by � (reall that � 62 L0 and L0 = L(s0)). Next, olor properly theremaining big verties by olors from their lists. Note that the olored neighborsof eah vertex from B n B0 are only big verties and hene it is adjaent to atmost �ve olored verties. Finally, olor the vertex s0. This is possible beausea neighbor of s0 in G is olored with a olor � 62 L(s0). Thus, we obtain anL-oloring of G | ontradition.The �nal ase to onsider is that the lists of all the verties of S0 [ B0 arenot the same, in partiular L1 6= L2. Assume without loss of generality thatL(s0) 6= L1. Let � 2 L1 n L(s0) and let b1 2 B0 be a big vertex with L(b1) = L1.The existene of a vertex b1 follows from Claim 27.1. Fix a oloring of G[S0[B0℄suh that the olor of the vertex b1 is �. Suh a oloring exists by Lemma 7.Next, olor the remaining big verties by olors from their lists. This is possiblebeause the olored neighbors of eah vertex from BnB0 are only big verties andhene it is adjaent to at most �ve olored verties. Sine the vertex b1, whih isa neighbor of the vertex s0, is olored with a olor � 62 L(s0), we an now olorthe vertex s0. In this way, we obtain an L-oloring of G | ontradition.Claim 27.3 There is an ordering b1, b2, b3, b4, b5 and b6 of the six big vertiesof G suh that L(b1) = L(b2), L(b3) = L(b4) and L(b5) = L(b6) and the lists ofany other pair of the big verties are distint. Moreover, B0 = B.By Claim 27.2, there are three verties of B0 whose lists are mutually distint.Sine eah vertex of B0 is adjaent to a vertex of S0 (the set B0 was de�ned tobe the set of suh big verties) and eah vertex of S0 is adjaent to at least twobig verties by Lemma 13, it follows that there are exatly six big verties andthus B0 = B. The statement now readily follows from Claim 27.1.Claim 27.4 The graph G has an L-oloring.Let b1, b2, b3, b4, b5 and b6 be the big verties ordered as in Claim 27.3. ByClaims 27.1 and 27.3, eah vertex of S0 an be adjaent to at most two bigverties. Sine it must be adjaent to at least two big verties by Lemma 13,we onlude that the Gallai tree G[S0℄ is 4-regular and hene G[S0℄ is a lique oforder �ve.Sine G[B℄ is not a omplete graph, there is a big vertex, say b3 2 B, whihis not adjaent to all the big verties. Let s1 and s3 be verties of S0 adjaentto the big verties b1 and b3, respetively. By Claim 27.1, L(b1) = L(s1) andL(b3) = L(s3). In partiular, L(s1) 6= L(s3).Fix a olor � 2 L(s1) n L(s3). Color �rst the verties b1 and b2 by olorsfrom their lists whih are distint from the olor �. Next, olor s0 by a olor27



from its list and then the remaining big verties by olors from their lists so thatthe vertex b3 is olored as the last one. Again, it is possible to olor all the bigverties beause when we olor eah of them at most �ve of its neighbors arealready olored.This oloring an be extended to the lique G[S0℄ by Proposition 25 beauseof the hoie of the olors of the verties b1 and b2 and the fats that � 2 L(s1)and � 62 L(s3). In this way, we obtain an L-oloring of G | ontradition.The third ase to onsider is that the Gallai forest onsists of two liques:Lemma 28 Let G be a triangulation with minimum simple degree six of thesurfae �3 whih does not ontain K7 as a subgraph. If the graph indued bysmall verties onsists of two omponents, eah of them being a lique of order atleast two, then the graph G is 6-hoosable.Proof: Suppose that the lemma is false. Fix a triangulation G with the prop-erties from the statement of the lemma and a list 6-assignment L of G suh thatthere is no L-oloring of G. Let B be the set of big verties of G and let S1 andS2 be the vertex sets of the two liques of the subgraph of G indued by the smallverties. Note that the orders of both the liques G[S1℄ and G[S2℄ are at most�ve by Lemma 13.Claim 28.1 Let b1 be an arbitrary big vertex of G. It is possible to order the bigverties b1, b2, : : :, bjBj so that eah big vertex bi is adjaent to at most four bigverties bj with j < i.The laim is lear if jBj � 5 or if jBj = 6 and G[B℄ ontains two non-adjaentverties. Assume for ontradition that jBj = 6 and all the verties of G[B℄ aremutually adjaent. Sine the degree of eah vertex of B is seven by Lemma 10,eah of them is adjaent to at most two small verties. Hene, there are at most12 edges between the big verties and the small verties. However, sine theweights of G[S1℄ and G[S2℄ are at least ten, there are at least ten edges betweenS1 and B as well as between S2 and B | ontradition.Claim 28.2 Let s 2 S1 [ S2 and b 2 B be two adjaent verties in G. Then,L(s) = L(b).Assume the opposite and let s1 2 S1 and b 2 B be two adjaent verties withL(s1) 6= L(b) (the ase that suh a small vertex is ontained in S2 is symmetri).Fix a olor � 2 L(b) n L(s1). For every vertex s 2 S2, let L0(s) = L(s) n f�g if sis adjaent to the vertex b and L0(s) = L(s) otherwise.Let us onsider �rst the ase that there are two small verties s1 and s2 of S2with L0(s1) 6= L0(s2). We an assume without loss of generality that jL0(s1)j �28



jL0(s2)j. Fix a olor � 2 L0(s1)nL0(s2). Color the vertex b by � and the remainingbig verties properly by arbitrary olors from their lists so that eah of them isolored with a olor di�erent from �. This is learly possible: Just olor the bigverties in the order from Claim 28.1 with b1 = b. The oloring of the big vertiesan be extended to S1 by Proposition 22. Afterwards, it an be extended to S2by Proposition 25 (note that � 2 L0(s1) and no neighbor of s1 is olored with �and � 62 L0(s2)). This yields an L-oloring of G | ontradition.Next, we onsider the ase that there is a vertex v 2 S2 adjaent to b with� 62 L(v). In this ase, we olor the big verties arbitrarily so that the vertex bis olored with �. However, the preoloring of the big verties an be extendedto both S1 and S2 by Proposition 22 | ontradition.In the rest, we assume that all the lists L0(v) of the verties of v 2 S2 are thesame and the list of eah vertex of S2 adjaent to b ontains �. Hene, either novertex of S2 is adjaent to the vertex b or all the verties of S2 are adjaent tothe vertex b and the lists of all of them ontain the olor �. Let NB(s) be furtherthe set of big neighbors of a vertex s 2 S2. Reall that, by our assumption, thevertex b is ontained either in all the sets NB(s), s 2 S2, or in no set NB(s),s 2 S2.We now onsider the ase that there exist two small verties s1 and s2 of S2with NB(s1) 6= NB(s2). Color the vertex b by � and the remaining big verties byolors from their lists so that no two big verties are olored with the same olor(reall that there are at most six big verties). The oloring of the big vertiesan be extended to S1 by Proposition 22. For eah small vertex s 2 S2, let L00(s)be the subset of the list L(s) whih ontains the olors of L(s) not assigned tothe big neighbors of s. Note that jL00(s)j � degG[S2℄(s) for every vertex s 2 S2.In addition, L00(s1) 6= L00(s2) beause L0(s1) = L0(s2), NB(s1) 6= NB(s2) and allthe big verties are olored with mutually distint olors. By Theorem 4, thereexists an L00-oloring of G[S2℄. The L00-oloring of G[S2℄ and the oloring of thebig verties and S1 form an L-oloring of G | ontradition.The �nal ase is that the lists L0(s) of all the small verties s 2 S2 are thesame list, say L0, and the small verties of S2 are adjaent to the same set NB ofbig verties, i.e., NB(s) = NB for every s 2 S2. Note that jNBj = 7 � jS2j. Letb1 and b2 be two non-adjaent verties of NB. Suh two verties b1 and b2 exist:Otherwise, the graph G[NB [ S2℄ would be a lique of order seven.In this paragraph, we arefully olor at least two of the verties b, b1 andb2. Afterwards, we extend this preoloring to an L-oloring of G. Note that bmay oinide with b1 and b2. Color �rst the vertex b by the olor �. If b1 = b,then jL0j = 5, in partiular jL0j < jL(b2)j, and we olor the vertex b2 by a olor� 2 L(b2) n L0. If b2 = b, we proeed analogously. Assume now that the vertex bis neither b1 nor b2. Color the vertex b1 by a olor � 2 L(b1) n (L0 [f�g). This ispossible unless b1 is adjaent to b and � is the only olor ontained in L(b1) nL0.If b1 was not olored, then olor b2 by a olor � 2 L(b2) n (L0 [ f�g). We anolor the vertex b2 in this way unless b2 is adjaent to b and � is the only olor29



ontained in L(b2) n L0. If both b1 and b2 are not olored, then both the listsL(b1) and L(b2) ontain at least �ve olors (possibly distint) ommon with thelist L0. Hene, there is a olor � 2 L(b1) \ L(b2) \ L0 and we an olor both b1and b2 by �. Some of the big verties are now olored so that eah vertex of S2is adjaent to a vertex olored with a olor not ontained in L0 or to two vertiesolored with the same olor.Extend now the obtained oloring to all the big verties (reall again thatthere are at most six big verties). The oloring an be further extended to theverties of S1 by Proposition 22 (the vertex b is olored with �) and to the vertiesof S2 by Propositions 22 or 23 beause eah vertex of S2 is adjaent to a vertexolored with a olor not ontained in the list L0 or to two verties olored withthe same olor, respetively. This yields an L-oloring of G | ontradition.Claim 28.3 Let b be an arbitrary big vertex. Then, there exists a big vertexb0 6= b with L(b) = L(b0).Sine the minimum simple degree ofG is six and there are at most six big verties,the vertex b is adjaent to a small vertex s. And, sine eah small vertex isadjaent to at least two big verties by Lemma 13, there exists another big vertexb0 6= b whih is adjaent to s. Then, L(b) = L(b0) by Claim 28.2.Claim 28.4 There exist three big verties whose lists are mutually distint.Assume the opposite and let L1 and L2 be two lists suh that the list of eah bigvertex is L1 or L2. Sine eah small vertex s is adjaent to a big vertex, the listof the vertex s must be L1 or L2 by Claim 28.2. Hene, the list of eah vertex ofG is L1 or L2. By Theorem 1, G is 6-olorable. Therefore, G has an L-oloringby Lemma 6 | ontradition.Claim 28.5 There are exatly six big verties. In addition, there is an orderingb1, b2, b3, b4, b5 and b6 of the big verties with L(b1) = L(b2), L(b3) = L(b4) andL(b5) = L(b6) and the lists of any other pair of the big verties are distint.The above laim diretly follows from Claims 28.3 and 28.4 and Lemma 10.Claim 28.6 Eah small vertex is adjaent to preisely two big verties. In par-tiular, both G[S1℄ and G[S2℄ are isomorphi to K5.Eah small vertex is adjaent to at least two big verties by Lemma 13. ByClaims 28.2 and 28.5, it an be adjaent to at most two big verties. Hene,eah small vertex is adjaent to preisely two big verties and so it is adjaent topreisely four small verties. Sine K5 is the only 4-regular Gallai tree, it followsthat both G[S1℄ and G[S2℄ must be liques of order �ve.30



Claim 28.7 There are two verties of S1 whose lists are di�erent. Similarly,there are two verties of S2 whose lists are di�erent.Let b1, b2, b3, b4, b5 and b6 be the big verties of G ordered as in Claim 28.5.Sine G ontains six big verties, eah big vertex has degree seven. Suppose thatthe laim is false, i.e., the lists of all the verties of S1 are the same, say the listL(b1). Sine all the �ve verties of the lique G[S1℄ are adjaent to both b1 and b2by Claim 28.2, the verties b1 and b2 are not adjaent: Otherwise, G[S1[fb1; b2g℄would be a lique of order seven. By Lemma 14, the �ve verties of S1 are the onlysmall verties whih are adjaent to the verties b1 and b2. Fix a olor � 2 L(b1).Color the graph G[S2 [ fb3; b4; b5; b6g℄ so that none of the verties b3, b4, b5 andb6 is olored with the olor �. This is possible by Lemma 8 beause the list ofeah vertex of G[S2 [fb3; b4; b5; b6g℄ is L(b3) or L(b5) and G[S2 [fb3; b4; b5; b6g℄ is6-olorable by Theorem 1. Color now both b1 and b2 by the olor � and the �veverties of S2 properly by the remaining �ve olors from their lists. In this way,we obtain an L-oloring of G | ontradition. An analogue argument yields theseond part of the laim.Claim 28.8 There are three verties of S1 whose lists are mutually distint. Sim-ilarly, there are three verties of S2 whose lists are mutually distint.Let b1, b2, b3, b4, b5 and b6 be the big verties ordered as in Claim 28.5. Assumethat the laim is false, e.g., that the list of eah vertex of S1 is either L(b1) orL(b3). Sine the vertex b5 is adjaent to at least one small vertex and it is adjaentto no vertex of S1, it must be adjaent to a vertex of S2. By Claim 28.7, thereare two verties s1 and s2 of S2 whose lists L(s1) and L(s2) are di�erent. Bysymmetry, we an assume that L(s1) = L(b1) and L(s2) = L(b5).Fix a olor � 2 L(s1) nL(s2). Color now the verties of G[S1 [ fb1; b2; b3; b4g℄so that the olor of eah of the verties b1, b2, b3 and b4 is di�erent from �. This ispossible by Lemma 8 beause G[S1 [ fb1; b2; b3; b4g℄ is 6-olorable by Theorem 1.Color now the remaining two big verties b5 and b6. Note that neither b5 nor b6 isadjaent to a vertex of S1 by Claim 28.2 (reall that � 62 L(s2)). The oloring ofthe big verties an be extended to G[S2℄ by Proposition 25 beause of � 2 L(s1),� 62 L(s2) and the hoie of the olors of the big verties | ontradition.Claim 28.9 The graph G has an L-oloring.Let b1, b2, b3, b4, b5 and b6 be the big verties ordered as in Claim 28.5. ByClaims 28.2 and 28.8, the set S1 ontains two verties s11 and s21 with L(s11) = L(b1)and L(s21) = L(b3). Similarly, S2 ontains two verties s12 and s22 suh thatL(s12) = L(b1) and L(s22) = L(b3). Fix a olor � 2 L(b1) n L(b3). Color now theverties b1 and b2 by olors from their lists whih are di�erent from the olor �.Afterwards, olor the remaining four big verties. The oloring of the big vertiesan be extended to both G[S1℄ and G[S2℄ by Proposition 25 beause of � 2 L(s11),31



� 2 L(s12), � 62 L(s21), � 62 L(s22) and the hoie of the olors of the big verties.In this way, we eventually obtain an L-oloring of G.We now onsider the fourth possible type of the triangulation:Lemma 29 Let G be a triangulation with minimum simple degree six of thesurfae �3 whih does not ontain K7 as a subgraph. Suppose that G ontainssix big verties and that the small verties indue a Gallai forest in G with twoomponents whose vertex sets are S1 and S2. In addition, suppose that G[S1℄ isisomorphi to K2, K3, K4 or K5 and that the minimum degree of G[S2℄ is one.Then, the graph G is 6-hoosable.Proof: Suppose that the statement of the lemma is false. Fix a triangulationG, whih has the properties desribed in the statement of the lemma, and a list6-assignment L suh that G has no L-oloring. Let B be the set of the six bigverties of G and let s0 be a vertex of degree one in G[S2℄.Claim 29.1 There are two big verties b1 and b2 adjaent to the vertex s0 suhthat eah of them has at least two neighbors in S1.We distinguish four ases regarding to the order of the lique G[S1℄. If G[S1℄is a lique of order two, then at least four big verties are adjaent to both theverties of S1. Sine only one big vertex is not adjaent to the vertex s0, thereare at least three big verties adjaent to s0 and simultaneously adjaent to boththe verties of S1.If G[S1℄ is a lique of order three, then there are twelve edges between theverties of S1 and B (reall that w(K3) = 12). Sine jS1j = 3, at most threeof these edges an lead to the big vertex whih is not adjaent to the vertex s0.Hene, at least nine of these edges join the big neighbors of s0 and the verties ofS1. If four out of the �ve big neighbors of the vertex s0 has at most one neighborin S1, then there exists a big neighbor of s0 adjaent to at least �ve verties ofS1 whih is learly impossible (reall that jS1j = 3). Therefore, there are two bigneighbors of s0 with at least two neighbors in S1.The third ase is that the order of G[S1℄ is four. Hene, there are again twelveedges between the verties of S1 and the verties of B. At most four of theseedges (reall that the order of S1 is four) an lead to the big vertex b0 whih isnot adjaent to s0 and thus at least eight of them lead to the big neighbors ofs0. Hene, the laim is true unless all the four verties of S1 are adjaent to b0,all the four verties of S1 are adjaent to a big neighbor b1 of the vertex s0 andeah of the remaining big verties b2, b3, b4 and b5 has exatly one neighbor inS1. In that ase, the neighborhoods of the verties of S1 ontain the segmentsb0b2b1, b0b3b1, b0b4b1 and b0b5b1 beause G is a triangulation. In partiular, the32



vertex b0 is adjaent to all the four verties of S1 and to the big verties b2, b3,b4 and b5. This is impossible beause the degree of b0 is seven by Lemma 10.The �nal ase to onsider is that G[S1℄ is a lique of order �ve. Eah bigvertex adjaent to a vertex of S1 is adjaent to at least two verties of S1 byLemma 12. Hene, it is enough to show that at least two big neighbors of s0 arealso adjaent to a vertex of S1. Eah vertex of S1 must be adjaent to at least onebig neighbor of the vertex s0 beause there is only one big vertex non-adjaentto the vertex s0. On the other hand, eah big neighbor of s0 an be adjaent toat most four verties of S0 sine its degree in G is seven by Lemma 10. Thus,there are at least two big neighbors of s0 whih are adjaent to a vertex of S1 asdesired. This ompletes the proof of Claim 29.1.Claim 29.2 If s 2 S1 and b 2 B are adjaent verties, then L(s) = L(b).Assume the opposite for the sake of ontradition and let s 2 S1 and b 2 B be twoadjaent verties with L(s) 6= L(b). Let b0 be further a big vertex di�erent fromb whih is simultaneously adjaent to s0 and to at least two verties of S1. Suha vertex exists by Claim 29.1. Color the vertex b by a olor � 2 L(b) n L(s) andthe remaining big verties exept the vertex b0 properly by arbitrary olors fromtheir lists. We an extend the oloring of the big verties to S2 by Proposition 24beause the vertex b0 is not olored. Color now b0 by a olor from its list. This ispossible beause b0 has at most �ve olored neighbors (reall that b0 is adjaentto at least two verties of S1). Finally, we an extend this oloring to G[S1℄ byProposition 22 beause of the hoie of the olor of the vertex b. Thus, we obtainan L-oloring of G | ontradition.Claim 29.3 Suppose that there exist two lists L1 and L2 suh that the list of eahvertex of S1 is L1 or L2. Then, L(s) = L(b) for every adjaent verties s 2 S2and b 2 B.Assume the opposite and let s 2 S2 and b 2 B be two adjaent verties withL(s) 6= L(b). Let B1 be the set of big verties adjaent to a vertex of S1. ByClaim 29.2, the list of eah vertex of S1 [B1 is L1 or L2. In the rest, we onsidertwo ases regarding whether the vertex b is ontained in the set B1 or not.If b 2 B1, then onsider a oloring of G[S1 [ B1℄ whih assigns the vertex b aolor � 2 L(b)nL(s). Suh a oloring exists by Lemma 7. Color now the remainingbig verties properly by arbitrary olors from their lists. This is possible beauseeah big vertex ontained in B nB1 is adjaent only to the verties of B [S2 andthus eah big vertex from B nB1 is adjaent to at most �ve olored (big) verties.If b 62 B1, then onsider a oloring of G[S1 [B1℄ suh that no vertex of B1 isolored with a olor � 2 L(b) nL(s). Suh a oloring exists by Lemma 8 beausejB1j < jBj = 6. Color now the vertex b by � and the remaining big vertiesproperly by arbitrary olors from their lists.In both the ases onsidered above, the oloring an be extended to S2 byProposition 22 beause of the hoie of the olor of the vertex b | ontradition.33



Claim 29.4 There exist three verties of S1 with mutually distint lists.Suppose that the laim is false, i.e., there exist two lists L1 and L2 suh that thelist of eah vertex of S1 is L1 or L2. Then, the lists of all the �ve big vertiesadjaent to the vertex s0 are the same by Claim 29.3. Let b be the big vertexwhih is not adjaent to s0. Sine the minimum degree of G is six, the vertexb is adjaent to a small vertex s. By Lemma 13, the vertex s is adjaent to atleast two big verties and they must have the same list either by Claim 29.2 orby Claim 29.3. Hene, all the big verties have the same list. By Claims 29.2and 29.3, the lists of all the verties are the same. Then, G has an L-oloring byTheorem 1 | ontradition.Claim 29.5 There exists an ordering b1, b2, b3, b4, b5 and b6 of the big vertiesof G so that L(b1) = L(b2), L(b3) = L(b4) and L(b5) = L(b6) and the lists of anyother pair of the big verties are distint.Let s, s0 and s00 be three verties of G[S1℄ with mutually distint lists. Theyexist by Claim 29.4. Eah of the verties s, s0 and s00 is adjaent to at leasttwo big verties by Lemma 13 and its big neighbors must have the same list byClaim 29.2. The laim now readily follows.Claim 29.6 The graph G has an L-oloring.Let b1, b2, b3, b4, b5 and b6 be the big verties ordered as in Claim 29.5 and lets1, s2 and s3 be three verties of G[S1℄ with mutually distint lists (they existby Claim 29.4). By symmetry, we an assume that L(s1) = L(b1), L(s2) = L(b3)and L(s3) = L(b5) and that the vertex s0 is adjaent to the verties b1, b2, b3, b4and b5. By symmetry, we an assume that L(s0) 6= L(bi) for i 2 f1; 2; 5g.Fix olors � 2 L(bi) n L(s0) and � 2 L(b3) n L(b5). Color the vertex bi by theolor � and the verties b3 and b4 properly by olors from their lists whih aredi�erent from the olor �. Finally, olor properly the remaining big verties byarbitrary olors from their lists. The oloring of the big verties an be extendedto S1 by Proposition 25 and to S2 by Proposition 22. In this way, we onstrutan L-oloring of G | ontradition.The �nal ase to onsider is that the Gallai forest indued by small vertiesonsist of three omponents:Lemma 30 Let G be a triangulation with minimum simple degree six of thesurfae �3 whih does not ontain K7 as a subgraph. If the small verties induea Gallai forest in G with three omponents suh that at least two of the omponentsare isomorphi to K1, then the graph G is 6-hoosable.34



Proof: Suppose that the lemma is false. Fix a triangulation G, whih satis�esthe assumptions of the lemma, and a list 6-assignment L suh that G has no L-oloring. Let B be the set of big verties of G and let S be the set of small vertiesof G. Note that jBj = 6 and eah big vertex has degree seven by Lemma 11.By the assumption of the lemma, G[S℄ ontains two isolated verties s1 and s2.Let S0 be the set of the remaining small verties. Note that eah big vertex isadjaent to both s1 and s2. Sine G is a triangulation, the graph G[B℄ ontainsa yle of length six (onsider e.g., a yle around the vertex s1).Claim 30.1 There are at least four big verties with a neighbor in the set S0.If G[S0℄ is isomorphi to K1, then eah big vertex is adjaent to the only vertex ofS0 and the laim obviously holds. Assume in the rest that G[S0℄ is not isomorphito K1. Eah big vertex is adjaent to both the small verties s1 and s2 and to atleast two other big verties sine G[B℄ ontains a 6-yle. Hene, eah big vertexan be adjaent to at most three verties of S0. By Lemma 13, G[S0℄ is a Gallaitree with maximum degree at most four. Therefore, the weight of G[S0℄ is atleast 10 (f. Figure 3). So, there are at least ten edges joining the verties of S0to the big verties. Sine eah big vertex is adjaent to at most three verties ofS0, then there are at least four big verties with a neighbor from S0.Claim 30.2 There exists a big vertex b1 adjaent to the small vertex s1 withL(s1) 6= L(b1). Similarly, there exists a big vertex b2 adjaent to the small vertexs2 with L(s2) 6= L(b2).Assume the opposite, e.g., that all the big verties adjaent to s1 have the listL(s1) (the other part of the laim is symmetri). Sine s1 is adjaent to all the bigverties, all the big verties have the same list. Let b and b0 be two non-adjaentbig verties (they exist beause the vertex s1 is adjaent to all the six big vertiesand G does not ontain K7 as a subgraph). Note that L(b) = L(b0). Let b0 be abig vertex di�erent from the verties b and b0 whih has a neighbor in S0 (suh avertex b0 exists by Claim 30.1).Color now the verties b and b0 by the same olor � 2 L(b) = L(b0). Extendthis oloring to S0; suh an extension exists by Proposition 24 (reall that b0 isyet unolored). Color properly the remaining four big verties by olors fromtheir lists. Note that this is possible sine eah big vertex has degree seven andit is adjaent to both the verties s1 and s2 whih are not olored. Finally, olorproperly the verties s1 and s2 from their lists. We an do this beause theverties s1 and s2 have degree six and two of their neighbors, namely the vertiesb and b0, are olored with the same olor. Therefore, we obtain an L-oloring ofG | ontradition.Claim 30.3 There exists exatly one big vertex b1 adjaent to the small vertexs1 with L(s1) 6= L(b1). Similarly, there exists exatly one big vertex b2 adjaentto the small vertex s2 with L(s2) 6= L(b2).35



Assume for ontradition that the vertex s1 is adjaent to at least two big vertieswith their lists di�erent from the list L(s1) (the other part of the laim is sym-metri). Let b2 be a big vertex adjaent to the small vertex s2 with L(s2) 6= L(b2)(suh a big vertex exists by Claim 30.2). By our assumption, there exists a bigvertex b1 6= b2 adjaent to the small vertex s1 with L(s1) 6= L(b1). By Claim 30.1,there exists a big vertex b0 whih is di�erent from the verties b1 and b2 and whihis adjaent to a vertex of S0.Color the vertex b2 by a olor �2 2 L(b2) n L(s2). Let �1 2 L(b1) n L(s1). If�1 6= �2, then olor the vertex b1 by the olor �1. If �1 = �2, olor the vertex b1by any olor from its list di�erent from �1. Note that both s1 and s2 are adjaentto a big vertex olored with the olor not ontained in the lists L(s1) and L(s2),respetively. By Proposition 24 (note that the vertex b0 is still not olored), wean extend this oloring to the verties of S0.Color now properly the remaining four big verties by olors from their lists.This is possible sine eah big vertex has degree seven and it is adjaent to boththe verties s1 and s2 whih are not olored. Finally, olor properly the vertiess1 and s2 from their lists. Note that the verties s1 and s2 have degree six andeah of them has a neighbor olored with a olor not ontained in its list. In thisway, we obtain an L-oloring of G | ontradition.Claim 30.4 The graph G has an L-oloring.By Claim 30.3, the verties s1 and s2 are adjaent to exatly one big vertex witha list di�erent from L(s1) and L(s2), respetively. Hene, L(s1) = L(s2). Let bbe now the unique big vertex with L(b) 6= L(s1). Let b0 be a big vertex di�erentfrom the vertex b whih is adjaent to a vertex of S0 (suh a vertex b0 exists byClaim 30.1).Color the vertex b with the olor � 2 L(b) n L(s1) = L(b) n L(s2). By Propo-sition 24 (the vertex b0 is still not olored), we an extend this oloring to theverties of S0. Color properly the remaining �ve big verties by olors from theirlists. Note that this is possible sine eah big vertex has degree seven and itis adjaent to both the verties s1 and s2 whih are not olored yet. Finally,olor properly the verties s1 and s2 from their lists. We an do this beauseboth the verties s1 and s2 are adjaent to the vertex b olored with the olor� 62 L(s1) and L(s1) = L(s2). In this way, we obtain a proper L-oloring of G |ontradition.
7 Dira's Map-Color Theorem for Choosabilityfor the surfae �3We are now ready to prove the main theorem of this paper:36



Theorem 31 Let G be a graph of Euler genus three whih does not ontain K7as a subgraph. Then, G is 6-hoosable.Proof: By Lemma 9, it is enough to prove the theorem for triangulations ofthe surfae �3 with minimum simple degree six whih do not ontain K7 as asubgraph and in whih the small verties indue Gallai forests. Let us onsideran arbitrary triangulation G of �3 with these properties. By Theorem 4, Gontains a vertex with simple degree at least seven beause G is a triangulation,in partiular, it is 2-onneted.Let F be the Gallai forest indued by the small verties in G. By Lemma 19,the number k of the omponents of F is at most three. If k = 0, the graph Gontains no small verties and the number of its verties is at most six. Hene, Gis 6-hoosable. If k = 1, then G is 6-hoosable by Lemma 26. If k = 3, then two ofthe omponents of F are isomorphi to K1 by Lemma 21 and so G is 6-hoosableby Lemma 30. It remains to onsider the ase that F onsists of preisely twoomponents, say H1 and H2. By Lemma 20, at least one of the following holds:� H1 or H2 is isomorphi to K1,� both H1 and H2 are liques of order between two and �ve, or� H1 is a lique of order between two and �ve, H2 ontains a vertex of degreeone (or vie versa) and G ontains preisely six big verties.In the �rst ase, G is 6-hoosable by Lemma 27, in the seond ase, it is 6-hoosable by Lemma 28 and in the last ase, it is 6-hoosable by Lemma 29.This ompletes the proof of Theorem 31.We an ombine Theorems 2 and 31 to get the following:Theorem 32 If G is a graph embedded on a surfae of Euler genus " � 1, thenthe hoie number of G is at most H(") and the equality holds if and only if Gontains KH(") as a subgraph.Referenes[1℄ M. O. Albertson, J. P. Huthinson: The three exluded ases of Dira'smap-olor theorem, Ann. New York Aad. Si. 319 (1979), 7{17.[2℄ T. B�ohme, B. Mohar, M. Stiebitz: Dira's map-olor theorem for hoosabil-ity, J. Graph Theory 32 (1999), 327{339.[3℄ O. V. Borodin: Criterion of hromatiity of a degree presription, in: Ab-strats of IV All-Union Conf. on Theoretial Cybernetis, Novosibirsk, 1977,127{128 (in Russian). 37
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