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Abstract

In 1890, Heawood established the upper bound H(e) = [”7 V224’5+1J

on the chromatic number of every graph embedded on a surface of Euler
genus € > 1. Almost 80 years later, the bound was shown to be tight by
Ringel and Youngs. These two results has became known under the name
of the Map-Color Theorem. In 1956, Dirac refined this by showing that
the upper bound H(e) is obtained only if a graph G contains Ky, as a
subgraph with except of three surfaces. Albertson and Hutchinson settled
these excluded cases in 1979. This result is nowadays known as Dirac’s
Map-Color Theorem.

Bohme, Mohar and Stiebitz extended Dirac’s Map-Color Theorem to
the case of choosability by showing that G is (H(e) — 1)-choosable unless
G contains Ky (. as a subgraph for € > 1 and ¢ # 3. In the present paper,
we settle the excluded case of € = 3.
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1 Introduction

We study list colorings of graphs embedded on surfaces without boundary. Such
surfaces are orientable surfaces X4, the sphere with g handles, and non-orientable
surfaces 11, the sphere with h cross-caps. The surface II; is the projective plane,
II, is the Klein bottle, ¥ is the torus, etc. The Euler genus ¢ of the surface X,
is 2¢g and the Euler genus of the surface Il is h. The Euler genus of a graph is
the smallest Euler genus of a surface on which the graph can be embedded.

Euler’s formula for a graph G embedded on a surface of Euler genus ¢ states
that n —m + f > 2 — ¢ where n, m and f is the number of vertices, edges and
faces of GG, respectively. Moreover, the equality holds if and only if G is connected
and every face of the embedding is a 2-cell. Therefore, the number of edges of an
n-vertex simple graph GG which can be embedded on the surface of Euler genus e
is at most 3n — 6 + 3. For € > 1, this implies that every graph embedded on a
surface of Euler genus € contains a vertex of degree at most H(¢) — 1 where H(¢)
is a so-called Heawood number defined as follows:

r VAT |
He)=|——].
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Hence, the chromatic number of a graph embedded on a surface of Euler genus
¢ is at most H(g). Let us remind that the chromatic number x(G) of a graph
G is the least number of colors needed to color the vertices of G' so that no two
adjacent vertices receive the same color. The above bound was conjectured to be
tight by Heawood [15]. Indeed, Ringel [22] and Ringel and Youngs [24] showed
that it is possible to embed the complete graph Kp(.) on each surface of Euler
genus ¢ with an exception of the Klein bottle II,. This result became known as
the Map-Color Theorem.

In 1956, Dirac extended the Map-Color Theorem by showing that the chro-
matic number of a graph G embedded on a surface of Euler genus € > 1, ¢ # 3,
is equal to H(¢) if and only if G contains Kp(.) as a subgraph. Almost 25 years
later, Albertson and Hutchinson [1] completed the three missing cases. Thus, we
have the following theorem which is nowadays known under the name of Dirac’s
Map-Color Theorem:

Theorem 1 Let G be a graph embedded on a surface of Euler genus ¢ > 1. If
G does not contains Kg.) as a subgraph, the chromatic number of G is at most
H(e) —1.

The chromatic number of a graph embedded on the Klein bottle II, is at most
six and there are 6-chromatic graphs which can be embedded on II, and which
do not contain Kj as a subgraph [1, 13]. Let us remark that complete graphs
Kp(s)-1 (and in some cases also the join of the graphs Ky ()—4 and Cs) are the
only critical (H () — 1)-colorable graphs embeddable on a surface of Euler genus



e [25]. We refer the reader for a more detailed introduction to embeddings of
graphs on surfaces to [14, 21].

In this paper, we focus on list colorings of graphs embedded on surfaces. A
list assignment is a function L which assigns each vertex v € V(G) a list L(v) of
available colors. For a given graph G and a given list assignment L, a coloring ¢ of
the vertices of G is called an L-coloring if ¢(v) € L(v) for every vertex v € V(G).
If the size of the list L(v) for every vertex v € V(G) is k, the list assignment is
said to be a list k-assignment. The choice number, sometimes called also the [ist
chromatic number, of a graph G is the smallest integer k£ such that the graph G
can be colored from the lists of any list k-assignment. Such a graph G is said to
be k-choosable. The choice number of a graph is clearly at least its chromatic
number but the inequality might be strict. See the surveys [19, 27] for more
details on this concept.

As in the case of the chromatic number, the choice number of a graph G
embedded on a surface of Euler genus ¢ > 1 is at most H(g). The following
extension of Theorem 1 was proved by Béhme, Mohar and Stiebitz [2]:

Theorem 2 If G is a graph embedded on a surface of Euler genus e > 1, € # 3,
then the choice number of G is at most H(g) and the equality holds if and only if
G contains Ky as a subgraph.

As in the case of ordinary colorings, the cases ¢ = 0,1, 3 turned out to need a
special approach than the others. In the case of planar graphs, Thomassen [26]
proved that the choice number of each planar graph is at most five and Voigt [28]
constructed non-4-choosable planar graphs. The case of the projective plane
required to be handled separately in [2] and the case of the surface I3 was left
open. In this paper, we show that Theorem 1 holds also for the surface II3 (see
Theorem 31). This completes the excluded case of Theorem 1. We remark that
our result already found an application in coloring face hypergraphs of graphs
embedded on the surface II3 [10].

We follow a standard graph theoretic notation (the reader is welcomed to
see [6, 29] for missing definitions). Let us recall some less common notation which
we use. If G is a graph and W is a subset of its vertices, then G[W] denotes the
subgraph of G induced by the vertices of W. Graphs which we consider need
not to be simple graphs unless explicitly stated that they are simple, i.e., some
vertices can be joined by parallel edges. Hence, we distinguish the degree deg(v)
of a vertex v which is the number of edges incident with v and the simple degree
of a vertex v which is the number of distinct vertices adjacent to v.

2 List colorings of graphs

In our considerations, we often work with list assignments in which the sizes of
the lists are not the same but they are related to degrees of the vertices of a



graph. So-called Gallai trees play a prominent role in this setting. A connected
graph is said to be a Gallai tree if each of its blocks is a complete graph or an
odd cycle. Let us remind that a block B of a graph G is its maximal 2-connected
subgraph. A vertex of a block is said to be an internal vertex of B if it is not a
cut vertex, i.e., B is the only block of G which contains it. A Gallai forest is a
graph whose all components are Gallai trees. The following two theorems were
independently proved by Borodin [3] and Erdés, Rubin and Taylor [11]:

Theorem 3 Let G be a connected graph with a list assignment L. If |L(v)| >
degq (v) for every vertex v of G and the inequality is strict for at least one vertex
of G, then G has an L-coloring.

Theorem 4 Let GG be a connected graph with a list assignment L such that
|L(v)| = degq(v) for every vertex v. If G does not have an L-coloring, then G is
a Gallai tree. Moreover, if G is 2-connected and it does not have an L-coloring,
then the lists L(v) of all the vertices v of G are the same.

We remark that Theorems 3 and 4 have been extended to generalized colorings
with respect to hereditary properties [4, 5], to list colorings of hypergraphs [17],
the channel assignment problem [18, 20] and the list T-coloring [12].

A graph G is said to be critical non-k-choosable if it is not k-choosable and
each proper subgraph of GG is k-choosable. Note that such a graph G must have
minimum degree at least k. We now state an extension of Dirac’s inequality for
the number of edges in color critical graphs [8] to list colorings which was proved
by Kostochka and Stiebitz [16]:

Theorem 5 If G # Kj.y1 is a critical non-k-choosable graph of order n, then the
number of edges of G is at least (kn + k — 2)/2.

At the end of this section, we prove three specific lemmas for list assignments
with only two kinds of lists which we later apply in Section 6:

Lemma 6 Let G be a 6-colorable graph with a 6-list assignment L. Suppose that
there exist two lists Ly and Lo such that the list L(v) of every verter v € V(Q)
1s Ly or Ly. Then, G has an L-coloring.

Proof: Let ay,...,ag be the colors of the list L; and fy,..., 3 the colors of
the list L,. Let k& be further the number of colors which the lists L; and L, have
in common. We may assume that o; = 1, ..., ap = f. Fix now a 6-coloring ¢
of G using the numbers 1,...,6 as colors. We define an L-coloring ¢ of G' based
on the coloring cy:

Qeo(vy if L(v) = Ly,
o(v) = { 602((,]; othe(rvgfise.



Clearly, c¢(v) € L(v) for every vertex v € V(G). If two adjacent vertices were
assigned the same color, then they would be colored with the same number by
co. Hence, c is a desired L-coloring.

]

The proof of Lemma 6 can be easily altered to a proof of each of the next two
lemmas:

Lemma 7 Let G be a 6-colorable graph with a 6-list assignment L. Suppose that
there exist two lists Ly and Ly such that the list L(v) of every vertex v € V/(G) is
Ly or Ly. Let vy be a vertex of G and let v € L(vg). Then, G has an L-coloring
¢ with c(vy) = 7.

Proof: Let us keep the notation used in the proof of Lemma 6 and assume
without loss of generality that v € L; and v = «;. Consider now a 6-coloring
co : V(G) — {1,...,6} of G with ¢y(v) = 7 and proceed as in the proof of
Lemma 6.

]

In the previous lemma, we found a list coloring which assigns a prescribed
color to a particular vertex. In the next lemma, we find a list coloring which
avoids assigning a prescribed color to some of the vertices:

Lemma 8 Let G be a 6-colorable graph with a 6-list assignment L. Suppose that
there exist two lists Ly and Lo such that the list L(v) of every verter v € V(Q)
1s Ly or Ly. Let Viy be a set consisting of at most five vertices of G and let v be
an arbitrary color. Then, G has an L-coloring ¢ with c(v) # v for every v € V.

Proof: Let us keep the notation used in the proof of Lemma 6 and assume that
v € Ly and v = ;. Similarly as in the proof of the previous lemma, consider
first a 6-coloring ¢p : V/(G) — {1,...,6} of G with ¢y(v) # i for all (at most five)
vertices v € Vy and proceed next as in the proof of Lemma 6.

]

Let us remark that Lemmas 6-8 can be straightforwardly generalized to k-
colorable graphs with k-list assignments.

3 Minimal non-6-choosable graphs on Il

In this section, we show that regarding our main result, Theorem 31, we can
restrict our attention to triangulations of the surface II3 with minimum simple
degree six and establish several properties which such triangulations do have.
From now on, we allow triangulations to have parallel edges but we always forbid



bigon faces. A bigon is a face whose boundary is formed by a single cycle of
length two. If G is a triangulation with minimum simple degree six, its vertex
v is said to be small if deg,(v) = 6 and it is called big otherwise. Note that no
small vertex can be incident with two parallel edges; we use this fact later in the
proofs without explicitly mentioning it. In a triangulation, we refer to the faces
containing a vertex v as to the neighborhood of v. Subwalks of the boundary walk
of the only non-triangular face of G'\ v are called segments.

Lemma 9 Suppose that there is a non-6-choosable graph of Euler genus three
which does not contain K7 as a subgraph. Then, there exists a non-6-choosable
triangulation of the surface Ilz with minimum simple degree sixz which does not
contain K7 as a subgraph such that its small vertices induce a Gallai forest.

Proof: Let GG be a critical non-6-choosable graph of Euler genus at most three
which does not contain K7 as a subgraph such that the order n of GG is the smallest
possible. In particular, G is a simple graph with minimum degree (at least) six.
By Theorem 2, the graph GG cannot be embedded on a surface of Euler genus two
or less. Fix now an embedding of G on the surface II3. By Theorem 5, the graph
G contains at least 3n + 2 edges. By Euler’s formula, the number of edges of
an n-vertex simple graph embedded on the surface Il3 is at most 3n + 3 and the
equality holds if and only if the graph is a triangulation. Note that this implies
that the minimum degree of GG is actually six.

In what follows, we first construct a non-6-choosable triangulation G’ of II3
from the graph G. If the number of edges of G is 3n + 3, the graph G itself is a
triangulation of II3 and we set G' = G. In the rest, we deal with the case that
the number of edges of GG is 3n + 2. Since the graph G cannot be embedded on
a surface of Euler genus two or less, each face of the embedding of GG on I3 is a
2-cell [30]. In addition, all the faces of the embedding of G are triangles except
for a single quadrangular face by Euler’s formula. Let abed be the 4-cycle which
bounds the quadrangular face. Since G is a simple graph with minimum degree
six, all the four vertices a, b, ¢ and d are distinct. We now prove the following
claim:

Claim 9.1 Let G+ac and G+ bd be the graphs obtained from G by adding edges
ac and bd, respectively, to the interior of the face abed. Then, G + ac or G + bd
does not contain K; as a subgraph.

Suppose that the claim is false. Let W,. be the set of the vertices of a subgraph of
G + ac isomorphic to K; and Wy, the set of the vertices of a subgraph of G' + bd
isomorphic to K7. Since G' does not contain K; as a subgraph, the vertices a
and ¢ must be contained in W, and the vertices b and d in Wj,. In addition, G
contains neither an edge ac nor an edge bd. Otherwise, K; would be a subgraph
of G. Finally, let W = W, U W,.



Let k denote the number of vertices contained in both the sets W,,. and Wy,
i.e., k= |Wa N Wyy|. Observe that |W| = |W,. UWy| = 14 — k because each of
the sets W,. and W,, contains exactly seven vertices. Consider the embedding
of the graph G[W] on II3 induced by the embedding of the graph G. Since this
embedding of G[IW] contains at least one non-triangular face, namely the face
abed, the number of edges of G[W] is at most 3(14 — k) + 2 = 44 — 3k by Euler’s
formula. In addition, the equality holds if and only if all the faces except for the
face abed are triangular.

The number of edges of each of the graphs G[W,.] and G[Wy4] is 20 because
both of them are isomorphic to the graph K7 without a single edge. The number
of edges of the graph G[W] is thus at least 40 — m’ where m’ is the number of
edges of the graph G[W,. N W,,]. Clearly, m' < ('2“) Hence, the graph G[IV]
contains at least 40 — (’2“) edges. This leads to an immediate contradiction for
k = 2,3,4,5. Thus, it remains to consider the cases k = 0,1,6,7. We consider
them separately.

If £ = 0, then the sets W,. and W, are disjoint. Hence, the edge set of
the graph G[W] consists of 40 edges of the graphs G[W,.] and G[W,,] and at
least additional four edges forming the 4-cycle abed. As noted above, the graph
G cannot have more than 44 edges. Therefore, G[W] has exactly 44 edges and
each edge of G[W] is either an edge of the 4-cycle abcd or it is contained in one
of the subgraphs G[W, | and G[Wy,]. In addition, all the faces except for the
face bounded by the 4-cycle abed are triangular. Consider now the face abv of
G[W] incident with the edge ab. Since the vertices a and ¢ are not adjacent, we
have v # ¢. The edge av must be contained in the subgraph G[W,.], and hence
v € W,.. Similarly, we conclude that v € W,,. But this is impossible since the
sets W,. and W, are disjoint.

If £k =1, then at least two edges of the cycle abed are contained neither in the
graph G[W,.] nor in the graph G[W,,]|. Hence, G[IV] contains at least 42 edges,
namely 40 edges of the graphs G[W,.] and G[W,4], and at least two additional
edges of the cycle abed. But this is impossible because G[IW] can contain at most
44 — 3 -1 = 41 edges by Euler’s formula.

If Kk =7, then W,. = W,4. Since the graph G + ac contains a clique on the
vertex set W,. and b,d € W,., we infer that the vertices b and d are joined by an
edge in the graph G which we already argued not to be the case.

Let us consider the final case that & = 6. Since |W,. N Wj,4| = 6, at least one
of the vertices b and d is contained in the set W,.. If both b and d are contained
in the set W,., then they are adjacent in G which is not the case. Similarly,
the set W,y contains precisely one of the vertices a and ¢. Since G[Wy.] + ac
and G[W,q| + bd are cliques, all the eight vertices of G[IW] are mutually adjacent
except for the two pairs of vertices a, ¢ and b, d. Insert now the edge ac inside
the face bounded by the 4-cycle abed. In this way, we obtain an embedding of
Kg (the complete graph Ky without an edge) on the surface II3 but Ringel [23]



showed that such an embedding does not exist.
We excluded all the cases £ = 0,...,7. Thus, G + ac or G + bd does not
contain K; as a subgraph and so Claim 9.1 is established.

If G is a triangulation, we set G’ to be the triangulation G itself. Otherwise,
let G’ be one of the triangulations G + ac or G + bd which does not contain K7
as subgraph (at least one of them has this property by Claim 9.1). Note that G’
may have a pair of parallel edges. The triangulation G’ has obviously minimum
simple degree at least six and it follows from Euler’s formula that it is precisely
SiX.

In the rest, we show that the small vertices of G’ induce a Gallai forest.
Assume the opposite. We show that G’ is 6-choosable which contradicts the fact
that G, which is a subgraph of G’, is not 6-choosable. Fix a list 6-assignment
L of G. Let H be a component of the subgraph induced by small vertices of
G' which is not a Gallai tree. Since G is a critical non-6-choosable graph, the
graph G \ V(H) is 6-choosable. Color now its vertices by colors from the lists
L. In particular, all the big vertices of G’ are colored. For every v € V(H), let
L'(v) be a subset of L(v) with the colors assigned to the big neighbors of v being
removed. Since H consists solely of the small vertices, the size of a list L'(v) is at
least degy (v). By Theorem 4, the graph H has an L'-coloring. The L-coloring
of the vertices of G \ V(H) and the L’-coloring of H form an L-coloring of G —
contradiction.

]

In the next lemma, we show that a triangulation of II3 with minimum simple
degree six can contain only few big vertices:

Lemma 10 If G is a triangulation with minimum simple degree six of the surface
I3, then G contains at most six big vertices. In particular, each big verter is
adjacent to at least one small verter. Moreover, if G contains precisely siz big
vertices, then the degree of each big vertex is seven.

Proof: Let n be the number of vertices of the graph GG. By Euler’s formula, the
number of edges of GG is precisely 3n+3. Hence, the sum of degrees of the vertices
of G is precisely 6n + 6. Therefore, the triangulation GG can contain at most six
big vertices (recall that the minimum simple degree of G is six). In particular,
each big vertex is adjacent to a small vertex. If G contains six big vertices, then
the degree of each big vertex is seven.

[ |

In the following three lemmas, we study more specific properties of triangu-
lations with minimum simple degree six:

Lemma 11 Let G be a triangulation with minimum simple degree sixz of the
surface I13. Suppose that G' contains a small vertex v which is adjacent only to



big vertices. Then, the graph G contains exactly six big vertices and each big
vertex has degree seven.

Proof: Since the minimum simple degree of G is six, all the six big neighbors of
v must be distinct. The rest of the statement of the lemma now readily follows
from Lemma 10.

]

Lemma 12 Let G be a triangulation with minimum simple degree sixz of the
surface Tl3. Suppose that the small vertices of G induce a Gallai forest F'. Let v
be a big vertex of G and let wiwows be a segment contained in its neighborhood.
If wy and w3 are big vertices and ws s a small vertex, then the component H of
F which contains the vertex wsy is not isomorphic to Ks.

Proof: Since the vertex wy of H is adjacent to three distinct big vertices in the
triangulation G (recall that the simple degree of wy is six), namely the vertices
v, wy and ws, its degree in H is at most three. Hence, the Gallai tree H cannot
be a clique of order five.

]

Lemma 13 Let G be a triangulation with minimum simple degree six of the
surface I3 which does not contain K as a subgraph. If the small vertices induce a
Gallai forest F' in G, then each small vertex is adjacent to at least two big vertices.
In particular, the mazimum degree of F' is at most four and no component of F'
18 1somorphic to K.

Proof: Let v be an arbitrary small vertex contained in a component H of F'. By
the assumption, H is a Gallai tree. If v is adjacent only to small vertices, then the
vertex v and all its six small neighbors must be in the same block of H. Hence,
the Gallai tree H must contain a clique of order seven. But this is impossible
because G does not contain K7 as a subgraph. Hence, each small vertex has at
least one big neighbor.

Assume now for the sake of contradiction that v has a single big neighbor v'.
In particular, degy(v) = 5. Since G is a triangulation, then the vertex v is in the
same block of H as its five small neighbors. Because each small vertex is adjacent
to at least one big vertex, the maximum degree of H is at most five and H is
2-connected. Hence, the vertex v and its five neighbors are the only vertices of
H and so H is isomorphic to Kg. In particular, each vertex of H is adjacent to
exactly one big vertex and thus there are exactly six edges between the vertices
of H and the big vertices of G.

Let w and w' be the neighbors of v such that the triangulation G' contains the
faces vv'w and vv'w' (cf. Figure 1). Each big vertex which is adjacent to a vertex
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Figure 1: Notation used in the proof of Lemma 13.

of H must be adjacent to at least three vertices of H since G is a triangulation
and each vertex of H is adjacent to exactly one big vertex. Hence, either there is
a single big vertex adjacent to all the vertices of H, which is isomorphic to K,
or there are two big vertices, each having exactly three neighbors in H. Since G
does not contain K; as a subgraph, the former is impossible. Thus, the latter
holds and v, w and w’ are the only neighbors of the big vertex v’ in H.

Let u be a common neighbor of w and v’ different from v so that the triangu-
lation G contains a face v'wu (cf. Figure 1). Since the only neighbors of v’ in H
are the vertices v, w and w', we conclude that v is a big vertex. However, then
the vertex w of H has two big neighbors u and v and so its degree in H is at
most four — contradiction.

]

In the last lemma of this section, we show that if each component induced
by small vertices in a triangulation consists of at most five vertices, then the
minimum degree of a subgraph induced by the big vertices is at least two:

Lemma 14 Let G be a triangulation with minimum simple degree six of the
surface 115. If each component of the subgraph of G induced by the small vertices
of G consists of at most five vertices, then each big vertex of G is incident with
at least two edges joining it to other big vertices.

Proof: Suppose that the claim is false, i.e., there is a big vertex v of GG incident
with at most one edge leading to another big vertex. Let k& be the number
of distinct small vertices adjacent to v. Since no small vertex is incident with
parallel edges, k& > 6. All the k& small neighbors of v are contained in the same
component H of the subgraph of G’ induced by the small vertices because G is
a triangulation. Hence, the number of vertices of H is also at least six which
contradicts the assumption of the lemma.

]

10



4 Gallai trees in triangulations with minimum
simple degree six

In the previous section, we have observed that we can restrict our attention to
triangulations of the surface II3 in which small vertices induce a Gallai forest with
maximum vertex degree at most four. In this section, we define a weight and an
extended weight of a Gallai tree with maximum degree at most four. This concept
is used in the next section to show that the small vertices of triangulations can
induce only Gallai forests of a restricted type. This concept is defined and it can
be used for all surfaces.

Fix a triangulation G of a surface such that the minimum simple degree of GG
is six. Let H be a component of the subgraph of GG induced by the small vertices.
Suppose that H is a Gallai tree. The weight of H in the triangulation G, denoted
by wg(H), is equal to |0z H | where 0z H is the set of edges between the vertices
of H and the rest of G. Notation 0z H is also used for other subgraphs H of G.
It is easy to observe that the following equality holds:

we(H) = 3 (6—degy(v)). (1)

veV(H)

In particular, the weight of the Gallai tree H does not depend on a considered
triangulation G. Thus, we can define the weight w(H) of H, independently of a
triangulation G, as the sum in (1).

We say that a face f of a triangulation is big if exactly one vertex of f is
small, i.e., exactly two vertices of f are big. The extended weight wl(H) of H in
the triangulation G is equal to the weight of H increased by the number of big
faces containing a vertex of H. Note that the extended weight of the Gallai tree
H could depend on the triangulation G. We now define the ertended weight of
H, denoted by w*(H), to be the minimum of the extended weights w;(H) for all
triangulations G' with minimum simple degree six which contain H and do not
contain K7 as a subgraph.

Next, we establish some lower bounds on the extended weight of Gallai trees
with maximum vertex degree at most four. All our lower bounds will just depend
on the structure of a Gallai tree, i.e., neither of them will be related to a considered
triangulation. Our first lower bound (which will be later improved) is presented
in the following proposition:

Proposition 15 Let G be a triangulation with minimum simple degree siz and
let H be a component of the subgraph of G induced by the small vertices. Suppose
that H s a Gallai tree with mazimum degree at most four. The extended weight
of H in G is at least wi(H) where

wP(H) :=w(H)+ Y )dJr

degp (v)
veV(H

11



(0a) (1a) (2a) (2b) (2¢)
(3a) (3b) (3c) (4a) (4b) (4c)

Figure 2: Possible neighborhoods (upto symmetry) of a small vertex of degree
zero, one, two, three and four. The small vertices are depicted by full circles and
the big vertices by empty ones. The types of neighborhoods are labeled by pairs
consisting of the number of its small neighbors and a letter.

with df =6, d =4, dj =2 and df =df =0.

Proof: Possible neighborhoods of a small vertex of degree zero, one, two, three
and four are depicted in Figure 2. It is easy to verify that a vertex v of a Gallai tree
H with degy (v) = k must be contained in at least d; big faces. The statement of
the proposition now readily follows from the definition of the extended weight.

]

The label of a neighborhood in Figure 2 is said to be the type of the neigh-
borhood of a small vertex v. This notion is to be used in the proof of the next
proposition in which we improve the lower bound from Proposition 15 by realizing
that certain types of neighborhoods cannot appear next to each other:

Proposition 16 Let G be a triangulation with minimum vertex simple degree six
and let H be a component of the subgraph induced by the small vertices. Suppose
that H is a Gallai tree with maximum degree at most four. Then, the extended
weight of H is at least wy (H) where

wy (H) = wP(H) + 205 + 03 + 405 + 20}

with Z; being the number of blocks of H which are cliques of order j, which contain
precisely 1 cut-vertices in H and at least one of these cut-vertices has degree
exactly four in H.

Proof: Let dj =6, df = 4, dj = 2 and df = dj = 0 as defined in Proposi-
tion 15. Consider a fixed block B of the Gallai tree H which is a clique of order
j, which contains exactly ¢ cut-vertices and such that at least one cut-vertex v
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of B has degree four in H. The statement of the proposition is implied by the
definitions of w™(H) and w{(H) and by Claims 16.1-16.4 which follow:

Claim 16.1 If ¢ = 1 and j = 3, then the internal vertices of the block B are
contained in at least 2dj + 2 big faces.

Since v is a cut-vertex and B is a clique of order four, the neighborhood of v
must of type (4¢). Then, the neighborhood of each of the remaining two vertices
of B is of type (2a). Hence, the internal vertices of B are contained in at least
6 = 2d; + 2 big faces.

Claim 16.2 If i = 2 and j = 3, then the internal vertex of the block B is
contained in at least dj + 1 big faces.

The type of the neighborhood of v must again be (4c). Then, the neighborhood
of the only internal vertex of B is of type (2a) and it is contained in exactly
3 = df + 1 big faces.

Claim 16.3 If i = 1 and j = 4, then the internal vertices of the block B are
contained in at least 3d3 + 4 big faces.

Since v is a cut-vertex, its neighborhood must be of type (4b). Then, the neigh-
borhood of none of the remaining three vertices of B is of type (3c) and at least
one is of type (3a). Hence, the internal vertices of B are contained in at least
4 = 3d3 + 4 big faces.

Claim 16.4 If i = 2 and j = 4, then the internal vertices of the block B are
contained in at least 2d3 + 2 big faces.

The type of the neighborhood of v must again be (4b). Then, the neighborhoods
of the two internal vertices of B can be only of types (3a) and (3b). Hence, the
internal vertices of B are contained in at least 2 = 2dj + 2 big faces.

]

Finally, we define w®(H) for a Gallai tree H with maximum degree at most

four as follows:
16 if H=K,,

w?(H) =4 13 if H = Kj5 and
wy (H) otherwise.

The weights w(H) and the bounds w®(H) of all Gallai trees H with maximum
degree at most four and with w®(H) < 32 can be found in Figure 3 (it is straight-
forward to verify that all Gallai trees with this property are depicted in the figure;
we avoid this verification in order to keep the paper short). In the next lemma,
we show that w®(H) is a lower bound on the extended weight of a Gallai tree H:
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- — A XSO

w==6 w =10 w =12 w =12 w = 10 w = 20
w® =12 w® =18 w® =18 w® =16 w® =13 w® =30

] P X

w =14 w = 16 w = 16 w =18
w® =24 w® =24 w® =24 w® =30
w =18 w =18 w = 20 w = 20
w® =30 w® =30 w® =30 w® =30
w:20 w:22 w:20
w® = 30 w® =30 w® =30

Figure 3: The weights w(H) and the values of the bound w®(H) of all Gallai
trees H with maximum degree at most four and with w®(H) < 32.
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Lemma 17 For each Gallai tree H with mazximum degree at most four, the fol-
lowing inequality holds:

w?(H) <w*(H).

Proof: Let G be an arbitrary triangulation with minimum simple vertex degree
six which does not contain K7 as a subgraph such that one of the components
of the subgraph of G induced by the small vertices is isomorphic to H. We show
that w®(H) < w(H) which implies the statement of the lemma.

If the Gallai tree H is isomorphic to neither K, nor Kj, then w®(H) =
wy(H) < wg(H) by Proposition 16. So, we can assume that H is a clique
of order four or five. Let n be this order. Consider the (embedded) graph G’
obtained from the triangulation G by removing the vertices of H and let f be
the face of G’ in which H was embedded. Note that since G is a triangulation,
the face f is uniquely determined. The degree of each big vertex of G' can be
decreased by at most n because the minimum simple degree of GG is six and only
n small vertices of G were removed. The face f is incident with at least 7 —n
big vertices because each vertex of H is adjacent to six distinct vertices. If the
face f is incident with precisely 7 — n big vertices, then the n vertices of H are
adjacent to the same 7 — n big vertices and they altogether form a copy of K7 in
G. Therefore, f is incident with at least 8 — n big vertices. Hence, the sum of
the lengths of all the facial walks of f is at least 8 —n. Each edge of a facial walk
of f is contained in a big face of G which contains a small vertex of H (recall
that G is a triangulation of the surface and we removed only some of its small
vertices). We can now conclude that wj(H) > we(H) + (8 —n) = w(H) +8 —n.
In particular, if n = 4, then wi(H) > 12 +8 —4 = 16 and if n = 5, then
wg(H) > 10+ 8 —5 = 13.

]

In the next lemma, we describe a relation between the number of big vertices
and the weights and the extended weights of the components of a Gallai forest
induced by small vertices:

Lemma 18 Let G be a triangulation with minimum simple degree six of the
surface 113 such that G does not contain K; as a subgraph. Suppose that the
small vertices of G induce a Gallai forest F' with maximum degree at most four
which consists of k components Hy, ..., H,. If b is the number of big vertices of
G, then w®(Hy) + -+ + w®(Hy) < 6b+ 6. In addition, if each component H;,
1 <i <k, contains at most five vertices, then w(H;) + -+ + w(Hy) < 4b + 6.

Proof: Let mg be |0gF], i.e., the number of edges between the big vertices and
the small vertices, and let mp be the number of edges between the big vertices. By
Euler’s formula, the sum of degrees of the big vertices of G is mg+2mp = 6b-+6.

The sum of |0 F | and the number of big faces of G is exactly wi(Hy) +- - -+
wg(Hy), i.e., the sum of extended weights of the Gallai trees Hy, ..., Hy in G.
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By Lemma 17, this sum is at least w®(H;) + - -+ +w¥(Hy). On the other hand,
the number of big faces is at most 2mp because each big face is incident with an
edge joining two big vertices and an edge joining two big vertices can be incident
with at most two big faces. Therefore:

wO(Hy) + -+ w(Hg) < wh(Hy) + -+ wh(Hy) < mg + 2mp = 6b + 6.

In order to prove the second part of the claim, assume that each Gallai tree
H;, 1 <i <k, contains at most five vertices. Each big vertex is incident with at
least two edges joining it to other big vertices by Lemma 14. Consequently, the
number |0 F| of edges between the small vertices and the big vertices is at most
6b+ 6 —2b = 4b+ 6. Since |0gF| is equal to the sum of the weights of the Gallai
trees Hy, ..., Hy, we conclude that w(H;) + - - - + w(Hy) < 4b + 6.

]

5 Triangulations of the surface Il

As we have already noted, we can restrict our attention to triangulations of the
surface I3 with minimum simple degree six in which the small vertices induce a
Gallai forest. In this section, we study a possible structure of such triangulations
and their Gallai forests.

Lemma 19 Let G be a triangulation with minimum simple degree six of the
surface Tl3 which does not contain K; as a subgraph. Suppose that the small
vertices induce a Gallai forest F' in GG. Then, F' has at most three components.

Proof: By Lemma 13, the maximum degree of of F'is at most four. Note that
w®(H) > 12 for each component H of F (cf. Figure 3). The triangulation G
contains at most six big vertices by Lemma 10. Therefore, we can infer from
Lemma 18 that the sum of w®(H) for all components H of F is at most 42.
Hence, F' can have at most three components.

]

In the next lemma, we describe a structure of Gallai forests with two compo-
nents in triangulations which we are interested in:

Lemma 20 Let G be a triangulation with minimum simple degree six of the
surface 1l3 which does not contain K; as a subgraph. Suppose that the small
vertices induce a Gallai forest F' in G with two components H, and H,. Then,
at least one of the following holds:

e H, or Hy is isomorphic to Ky,
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e both Hy and Hy are cliques of order between two and five, or

e H, is a clique of order between two and five, Hy contains a vertex of degree
one (or vice versa) and G has precisely siz big vertices.

Proof: Each of the Gallai trees H; and H, has maximum degree at most four
by Lemma 13. If H; or H, is isomorphic to K, then the lemma clearly holds.
Let us assume in the rest that neither H; nor H, is isomorphic to K;. Note
that by Lemma 10 there are at most six big vertices. Hence, Lemma 18 implies
the inequality w®(H;) + w®(Hz) < 42. Since the extended weight of a Gallai
tree with maximum degree at most four which is not a clique is at least 24 (cf.
Figure 3), we conclude that at least one of H; and Hs is a clique.

If both H; and H, are cliques, the forest F' is of the desired form. Hence,
assume that H; is a clique but H, is not. Since H; is a clique of order 2, 3, 4 or 5,
we infer that w®(H;) > 13 and hence w®(Hy) < 29. Thus, w®(H,) = 24 and so
H, must contain a vertex of degree one (cf. Figure 3). Since w®(H,)+w®(Hy) >
37, there are exactly six big vertices by Lemmas 10 and 18. This completes the
proof of the lemma.

]

Finally, we show that if a Gallai forest induced by the small vertices has
exactly three components, then at least two of them are isomorphic to K;:

Lemma 21 Let G be a triangulation with minimum simple degree six of the
surface 13 which does not contain K; as a subgraph. Suppose that the small
vertices induce a Gallai forest F' in G with three components Hy, Hy and H3 and
that G contains a vertex with a simple degree at least seven. Then, at least two
of Hy, Hy and H3 are isomorphic to K.

Proof: The maximum degree of each of the Gallai trees H;, H, and Hj is at
most four by Lemma 13 and thus each of w®(H;), w®(H,) and w®(Hj) is at least
twelve (cf. Figure 3). Since the number of big vertices of G is at most six by
Lemma 10, we can infer from Lemma 18 that the sum of w®(H;), w®(H;) and
w®(H3) can be at most 42. Therefore, each of w®(H;), w?(H,) and w®(Hs) is at
most 42 — 2 -12 = 18. Hence, all the Gallai trees H;, H, and Hz must be cliques
of order at most five (cf. Figure 3).

In the rest of the proof, we show in a series of claims that at least two of the
cliques Hy, H, and Hj are of order one. This will establish the lemma.

Claim 21.1 If none of the cliques Hy, Hy and Hz is of order one, then all of
them have order five.

Assume that the order of each of the cliques H;, H, and Hj is distinct from
one. Note first that the weights of the cliques K, and K5 are equal to 10 and
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the weights of the cliques K3 and K, are equal to 12. Since each of Hy, H,
and Hj3 has at most five vertices, the sum of their weights can be at most 30
by Lemmas 10 and 18. Hence, each of the cliques H;, H, and Hj is isomorphic
to Ky or K5. Recall that w?(K3) = 18 and w®(K5) = 13. If at least one of
the cliques is of order two, then the sum w®(H;) + w®(Hy) + w?(Hj) is at least
18 + 13 + 13 = 44 > 42 — contradiction. Hence, all the cliques Hy, Hy and Hj
are isomorphic to K.

Claim 21.2 The order of at least one of the cliques Hy, Hy and H3 is not five.

Assume for contradiction that orders of all the cliques H;, Hy and Hj are five.
Then, w(H,)+w(Hy) +w(H;) = 30. In other words, |0gF| = 30. By Lemmas 10
and 18, the graph G contains exactly six big vertices and thus the degree of each
big vertex is seven. Let further Hp be the subgraph of G induced by the big
vertices. By Lemma 14, the degree of each vertex in Hp is at least two, i.e., each
big vertex is adjacent to at most five small vertices. Since the number of edges
between the small and big vertices is 30, each big vertex is adjacent to exactly
five small vertices and thus the multigraph Hp is 2-regular, i.e., Hp is a union of
cycles.

Since G is a triangulation and the small vertices induce a Gallai forest with
three components, the embedding of Hg on II3 obtained from the triangulation
G by removing the cliques H;, Hy and Hj has at least three faces, namely the
faces which originally contained embeddings of Hy, Hy and H3. Hence, Hpg must
consist of at least two disjoint cycles because it is 2-regular. The graph Hg cannot
consist of more than three cycles because it has six vertices. If Hp consists of
exactly three cycles, then it is formed by three cycles of length two. Since the
degree of each big vertex in GG is seven, its simple degree is six. This contradicts
the assumption of the lemma that GG contains a vertex with simple degree at least
seven. Hence, we can conclude that Hp consists of exactly two cycles. Moreover,
it consists of either two cycles of length three or a cycle of length two and a cycle
of length four.

The embedding of Hp can have at most three faces. Recall that the subgraph
induced by the small vertices has three components. So, the embedding of Hpg
has exactly three faces. Observe that the cliques Hy, Hy and Hj3 were drawn in
different faces of Hg because G is a triangulation. Let f;, i = 1,2, 3, be the face
of Hp in which the clique H; was drawn.

If Hp consists of a cycle of length two and a cycle of length four, the boundary
of one of the faces of Hg, say the face fi, is formed by two big vertices b; and b
which are joined by two parallel edges. The vertices of the clique H; drawn in
the face f; can be adjacent only to the vertices b; and by and since the minimum
simple degree of G is six, each vertex of H; is adjacent to both b; and by (recall that
Hj is a clique of order five). Then, the vertices of H; together with the vertices by
and b, form a subgraph of G' which is isomorphic to K7, a contradiction. Hence,
the graph Hp must consist of vertex-disjoint two cycles of length three.
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Let bybobs and bbb be the two cycles of Hg. We can assume without loss of
generality that the boundary of f; is formed by the 3-cycle b,b5b3, the boundary
of fo by the 3-cycles bibebs and bjbyby and the boundary of f3 by the 3-cycle
b b, b

Let n!, : = 1,2,3, be the number of neighbors of the vertex b; in the clique
H, and n? the number of neighbors of b; in Hy. Observe that n! +n? = 5 for each
1 = 1,2, 3 because the degree of b; in GG is seven. Since the face f; contained the
clique Hy, the face f; contained the clique H, and G is a triangulation, each of
the numbers n; and n? is non-zero. By Lemma 12, we have n} # 1 and n? # 1.
Hence, each of them is either 2 or 3. In particular, n; + nj + nj < 9. But this is
impossible because the sum nj +nj+n3 should be equal to the weight w(K5) = 10
of the clique H; — contradiction.

Claim 21.3 At least one of the cliques Hy, Hy and Hjz is isomorphic to K.
The above claim directly follows from Claims 21.1 and 21.2.

Claim 21.4 At least two of the Gallai trees Hy, Hy and Hsz are isomorphic to
K.

By Claim 21.3, we can assume that H; consists of a single small vertex wvg.
Assume for contradiction that both H; and Hj3 are cliques of order at least
two. Then, the weights w(H,) and w(Hj) are at least 10. Since G is a tri-
angulation, the big neighbors by,...,bs of the vertex vy, form a 6-cycle C', say
C = byibyb3bybsbg. Let wq, ..., woy be the other neighbors of the big vertices so
that wy;_3, wy;i_o, wyi_1,ws; are the neighbors of the big vertex b; in the order
depicted in Figure 4. Note that the vertices wy,...,wys are not necessarily all
distinct, e.g., w; = woyy, and some of them could be neighbors of the vertex vy.

In the rest of the proof, edges which join two big vertices and which are not
included in the cycle C' are called diagonals. The big vertices by, ..., bg are joined
to the small vertices of Hy and Hj by precisely w(Hs) + w(H3) edges. Hence,
besides the edges of the cycle C, there are (24 — w(H,) — w(Hj3))/2 diagonals.
Hence, there are at most two diagonals. On the other hand, there is at least one
diagonal: Otherwise, since GG is a triangulation, all the vertices wy, ..., wy, are
small and thus they are contained in the same component of the Gallai forest F'.
Then, F' has only two components.

We first consider the case that there is exactly one diagonal. Hence, there are
exactly two indices 7 and 7', 1 < i < i’ < 24, such that w; and w; are big vertices.
Then, the vertices w;,1,...,wy_1 are small vertices of the same Gallai tree, say
Hy, and wyryq, ..., woy, wy,...,w; ;1 are small vertices of the other Gallai tree Hs.
In addition, the weight of one of Hy; and Hj is 12 and the weight of the other one
is 10. We may assume that w(Hy) = 12 and w(H3) = 10. In particular, both Hy
and Hj are cliques and i/ —i — 1 = w(H,) = 12 (modulo 24).
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w1 w2 w3z W4

Wie W15 W14 W13

Figure 4: Notation used in Claim 21.4.

Figure 5: Possible configurations from the proof of Claim 21.4 in the case that
there is a single diagonal. Edges joining two big vertices are drawn as bold.
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There are three possible configurations (upto symmetry) of the edges between
the small vertices and the big ones in the neighborhood of the vertex vy, which
are depicted in Figure 5. Note that the vertex by in each configuration is adjacent
to four vertices of Hy and thus H, is a clique of order at least four. Since the
weight of Hy is 12, the clique H, has order four. Similarly, the vertex bs in each
configuration is adjacent to four vertices of H3 and thus H3 must be a clique of
order five. The left and the middle configurations depicted in Figure 5 cannot
appear in a triangulation: In order to see this, consider the face bibgw; = b1bgway
where the vertex w; = w4 should be simultaneously big and small. The right
configuration cannot appear in G by Lemma 12 because the neighbor w; of the
big vertex b; cannot be contained in the Gallai tree isomorphic to K.

Let us consider now the remaining case that there are two diagonals. Hence,
each of Hy and Hj has weight 10, in particular, each of them is isomorphic to K5
or K.

In this paragraph, we show that there cannot be two big vertices such that
each of them has four neighbors in Hs (the analogous statement also holds for
Hj3). Assume for contradiction that there are such two big vertices b; and b;.
Since the clique Hs has at least four vertices, its order must be five. Recall
now that w(H,) = 10. By Lemma 12, the two edges which join the vertices of
H, and the big vertices and which are incident neither with b; nor by must be
incident with the same big vertex. Let b;» be this big vertex. By symmetry, we
can assume that ¢ = 1. Since G is a triangulation, each of the big vertices bg
and by is adjacent to a vertex of Hy (note that wey = wy and wy = ws). Thus,
{#',i"} = {2,6}. By symmetry, we can assume that " = 6 and i’ = 2. Again,
since G is a triangulation, the big vertex b3 is adjacent to a vertex of Hy (note
that wg = wyg). But this is impossible because b; = by, by = by and by» = bg are
the only big vertices adjacent to a vertex of Hj.

Since there are only two diagonals, at least two big vertices ? and b® are
adjacent to four small vertices different from the vertex vy. As we have shown in
the previous paragraph, the big vertices b and b cannot be adjacent to vertices
of the same clique. Hence, we can assume that b? is adjacent to four vertices of
the clique H, and b? is adjacent to four vertices of the clique Hs. Since each of
the cliques Hy and Hj has at least four vertices, the order of both of them is five
(recall that we showed that each of Hy and Hj is isomorphic to K5 or Kj).

By Lemma 12, no big vertex has a single neighbor in H,. Thus, each big
vertex has either no neighbor in H, or it has at least two neighbors in H,. Since
there cannot be two big vertices with four neighbors in H,, only the following
two configurations can appear:

e There is a big vertex, namely the vertex b?, adjacent to precisely four ver-
tices of the clique H, and there are other two big vertices each adjacent to
precisely three vertices of the clique Hs.

e There is a big vertex, namely the vertex b%, adjacent to precisely four ver-
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Figure 6: The only possible configuration from the proof of Claim 21.4 in the
case that there are two diagonals. The diagonals are drawn as bold.

tices of the clique Hy and there are other three big vertices each adjacent
to precisely two vertices of the clique Hj.

We show that the latter is impossible: Let b, b" and 0" be the three big vertices
adjacent to two vertices of Hs. Since G is a triangulation, each of the vertices
b, b’ and 0" must be incident with at least one diagonal. If it is incident with
just a single diagonal, then it is adjacent to precisely one vertex of Hs which is
impossible by Lemma 12. Hence, each of the vertices b, b’ and b” is incident with
two diagonals and consequently, there must be at least three diagonals. But we
assumed that there are only two diagonals. So, the big vertex b? is adjacent to
four vertices of the clique Hy and there are other two big vertices each adjacent
to three vertices of the clique H,. Similarly, the big vertex b? is adjacent to four
vertices of the clique Hs and there are other two big vertices each adjacent to
three vertices of the clique Hj.

Since G is a triangulation, the two big vertices adjacent to three vertices of
H, must be neighbors of the vertex b? in the 6-cycle C. An analogous statement
holds for H3 and the vertex . By symmetry, we can assume that the vertex b?
is the big vertex b; and the two big vertices adjacent to precisely three vertices
of H, are the big vertices bg and by. Then, b* must coincide with the big vertex
b, and each of the vertices b3 and b5 is adjacent to three vertices of Hs. This
configuration is depicted in Figure 6. Since G is a triangulation, the bold edges
incident with the vertices by and b3 in Figure 6 must lead to the same big vertex,
but there is no big vertex in G incident with two such edges — contradiction.
This completes the proof of Claim 21.4.

]

6 List colorings of triangulations of II;

As we have already seen, in order to prove our choosability result, it is enough to
restrict our attention to triangulations of the surface II3 with minimum simple
degree six in which small vertices induce a Gallai forest of a certain special type
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and which does not contain K; as a subgraph. In this section, we prove that
graphs of this type embedded on the surface II3 are 6-choosable. In Section 7, we
combine the results of Section 5 and the results of this section to conclude that
if a graph embedded on the surface 13 does not contain K, as a subgraph, then
it is 6-choosable.

In some of our proofs, we first color big vertices of the triangulation and then
we try to extend this coloring to small vertices. The following four proposition
will help us in this task:

Proposition 22 Let G be a graph with minimum simple degree siz, L a list 6-
assignment of G and S the vertex set of a component of the subgraph of G induced
by the small vertices. Suppose that some of the big vertices are precolored so that
there is a big verter b adjacent to a small vertexr so € S such that b is colored
with a color oo & L(sg). Then, the precoloring of the big vertices can be extended
to all the vertices of S.

Proof: Let L'(s) for each s € S be the list of the colors of L(s) which are not
used to color the big neighbors of s. Note that [L'(s)| > deggg)(s) for each vertex
s € S and |L'(sg)| > deggg)(s0). Hence, there exists an L'-coloring of G[S] by
Theorem 3. This L'-coloring is the sought extension of the precoloring to S.

u

Similarly as Proposition 22, one can prove the following two propositions:

Proposition 23 Let G be a graph with minimum simple degree siz, L a list 6-
assignment of G and S the vertex set of a component of the subgraph of G induced
by the small vertices. Suppose that some of the big vertices are precolored so that
there is a small verter sy € S adjacent to two big vertices which are colored with
the same color. Then, the precoloring of the big vertices can be extended to all
the vertices of S.

Proposition 24 Let G be a graph with minimum simple degree siz, L a list 6-
assignment of G- and S the vertex set of a component of the subgraph of G induced
by the small vertices. Suppose that some of the big vertices are precolored so that
there is a small vertex so € S adjacent to a big vertex b so that b is not colored.
Then, the precoloring of the big vertices can be extended to all the vertices of S.

The last of our propositions requires a different proof:

Proposition 25 Let G be a graph with minimum simple degree siz, L a list 6-
assignment of G and S the vertex set of a component of the subgraph of G induced
by the small vertices. Suppose that G[S] is a clique and there exist two vertices
sy and sy of S and a color « such that o € L(s1), a & L(s2) and no big neighbor
of s1 1s colored with . Then, the precoloring of the big vertices can be extended
to all the vertices of S.
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Proof: Let L'(s) for each s € S be the list of the colors of L(s) not used to color
all the big neighbors of s. Note that |L'(s)| > degq g (s) for each vertex s € S
and L'(s1) # L'(s2). Hence, there exists an L'-coloring of G[S] by Theorem 4.
This L'-coloring is the desired extension of the precoloring.

u

Let us remark that Propositions 22-25 can be easily reformulated for list k-
assignments for any £ > 1. We keep them in the above form in order to make
more clear their applications in the proofs of Lemmas 26-30.

In the rest of this section, we prove Lemmas 26-30 in which we deal with all
types of triangulations of I3 which were described in Section 5. The course of the
proofs of these lemmas is more or less the same: We fix a 6-list assignment L of a
triangulation G of I3 and assume that G has no L-coloring. In the rest of each of
the proofs, we proceed in a series of claims. We first show L(s) = L(b) for most
pairs of a small vertex s and a big vertex b which are adjacent. Then, we deduce
that GG contains precisely six big vertices and they can be grouped into three pairs
so that the vertices of each pair have the same list. Based on the structure of
the triangulation and the list assignment, we eventually find an L-coloring of G
which contradicts our original assumption that there is no L-coloring. Although
it might seem at the first sight that the proofs of the lemmas are essentially the
same, the arguments used to establish the claims are different.

The first case which we consider is that small vertices induce a Gallai tree:

Lemma 26 Let G be a triangulation with minimum simple degree sixz of the
surface 1l such that G does not contain K7 as a subgraph. If the vertices of
degree siz induce a Gallai tree in G, then G is 6-choosable.

Proof: Suppose that the claim of the lemma is false. Fix a triangulation G,
which has the properties described in the statement of the lemma, and a list
6-assignment L such that G has no L-coloring. Let S be the set of small vertices
of G and B the set of big vertices of G. Note that |B| < 6 by Lemma 10.

Claim 26.1 Let s € S and b € B be two adjacent vertices in G. Then, L(s) =
L(b).

Assume the opposite and let s € S and b € B be two adjacent vertices with
L(s) # L(b). Color first the vertex b with a color & € L(b) \ L(s). Then, color
properly the remaining (at most five) big vertices by colors from their lists. This
is possible because each vertex has a list of six available colors. By the choice of
the color of the vertex b, the coloring of the big vertices can be extended to an
L-coloring of G' by Proposition 22 — contradiction.

Claim 26.2 Let b be a big vertex. Then, there exists a big vertexr b’ # b with
L(b) = L(V).
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Since the minimum simple degree of GG is six and there are at most six big vertices,
the vertex b is adjacent to a small vertex s. Since each small vertex is adjacent
to at least two big vertices by Lemma 13, there exists a big vertex b’ # b which
is adjacent to s. Then, L(b) = L(s) = L(0') by Claim 26.1.

Claim 26.3 There exist three big vertices whose lists are mutually distinct.

Assume the opposite and let L; and L, be two lists such that the list of each big
vertex is Ly or Ly. Since each small vertex s is adjacent to a big vertex, the list
of s must be Ly or L, by Claim 26.1. Hence, the list of each vertex of G is L,
or Ly. By Theorem 1, the triangulation G is 6-colorable. Therefore, G has an
L-coloring by Lemma 6 — contradiction.

Claim 26.4 The graph G contains precisely siz big vertices. Moreover, there is
an ordering of the big vertices by, b, b3, by, bs and bg so that L(by) = L(bs),
L(b3) = L(by) and L(bs) = L(bg) and the lists of any other pair of the big vertices
are distinct.

The claim directly follows from Claims 26.2 and 26.3 and the fact that |B| < 6.

Claim 26.5 FEach small vertex is adjacent to precisely two big vertices. In par-
ticular, the graph G[S] must be a clique of order five.

Each small vertex is adjacent to at least two big vertices by Lemma 13. By
Claims 26.1 and 26.4, it can be adjacent to at most two big vertices. Hence, each
small vertex is adjacent to precisely two big vertices and it is adjacent to exactly
four small vertices. Since the only 4-regular Gallai tree is Kj5, the graph G[S]
must be a clique of order five.

Claim 26.6 The graph G has an L-coloring.

Let by, b, b3, by, b5 and bg be the big vertices ordered as in Claim 26.4. Let s; and
s3 be small neighbors of the vertices b; and b3, respectively. Such vertices s; and
s3 exist because the minimum simple degree of G is six. By Claim 26.1, L(s;) =
L(by) and L(s3) = L(b3). So, L(s1) # L(s3). Choose a color a € L(s3) \ L(s1).
Color properly the two big neighbors b3 and by of s3 by colors from their lists
different from the color o and the remaining big vertices by arbitrary colors from
their lists. Since G[S] is a clique of order five by Claim 26.5, no big neighbor of
the vertex s3 is colored with the color o and o ¢ L(s1), it follows that the coloring
of the big vertices can be extended to an L-coloring of G' by Proposition 25.

]

The second case which we consider is that small vertices induce a Gallai forest
with two components such that at least one of the components is a single vertex:
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Lemma 27 Let G be a triangulation with minimum simple degree six of the
surface 113 which does not contain K7 as a subgraph. If the small vertices induce
a Gallat forest in G with precisely two components such that at least one of them
s isomorphic to Ky, then the graph G is 6-choosable.

Proof: Suppose that the statement of the lemma is false. Fix a triangulation
G of 113, which satisfy the assumptions of the lemma, and a list 6-assignment L
such that G has no L-coloring. Let B be the set of big vertices of G and S the
set of small vertices of G. Let sy be further an isolated vertex of G[S] and let
So =S\ {so}. Finally, let By C B be the set of big vertices adjacent to at least
one vertex of Sy. By Lemma 11, there are precisely six big vertices and thus each
big vertex is adjacent to the vertex so. On the other hand, there are also two
non-adjacent big vertices: Otherwise, G[B] is a clique and so G[B U {sp}] is a
clique of order seven.

Claim 27.1 If s € Sy and b € By are adjacent vertices, then L(s) = L(b).

Assume the opposite and let s € Sy and b € By be two adjacent vertices with
L(s) # L(b). Color first the vertex b by a color av € L(b) \ L(s). Let b’ # b be a
vertex of G[B] which is not adjacent to all the big vertices. Such a vertex exists
as explained above. Color properly the vertex sy by a color from its list and then
the remaining big vertices one by one by colors from their lists so that the vertex
b’ is colored as the last one. This is possible since when we color each of these
vertices, at most five of its neighbors are previously colored. By the choice of the
color of the vertex b, this coloring can be extended to an L-coloring of the vertices
of Sy by Proposition 22. So, we obtain an L-coloring of G — contradiction.

Claim 27.2 There are three vertices of By whose lists are mutually distinct.

Assume the opposite and let L; and Ly be two lists such that the list of each
vertex of By is L1 or Ly. By Claim 27.1 and Lemma 13, the list of each vertex of
Sp is also Ly or L.

We first consider the case that all the vertices of SoU By have the same list, say
Ly, i.e., Ly = Ly or Ly = Ly. If L(sg) # Ly, then color the vertices of G[Sy U By
by colors from their lists so that at least one big neighbor of s( is colored with a
color o € L \ L(sg). Lemma 7 implies that this is possible because G[Sy U By] is
6-colorable by Theorem 1 and all vertices of Sy U By has the same list L. Next,
color properly the remaining big vertices by colors from their lists (note that the
colored neighbors of each vertex from B\ By are only big vertices and hence it
is adjacent to at most five colored vertices). Since one of the neighbors of the
vertex sq is colored with a color a € L(sg), we can now color the vertex sy by a
color from its list. Thus, we obtain an L-coloring of G — contradiction.

If L(sg) = Ly, then sy has a big neighbor b with L(b) # L(sp): Otherwise, all
the vertices of G have the same list and thus G has an L-coloring by Theorem 1.
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It follows from our assumption that the lists of all the vertices of Sy U By are the
same that b € By. Fix a color a € L(b) \ L(sp). Since all the vertices of Sy U By
have the same list Ly and the graph G[S, U By] is 6-colorable by Theorem 1, we
can color the vertices of G[Sy U By] by colors from their lists. Afterwards, color
the vertex b by « (recall that o & Ly and Ly = L(sp)). Next, color properly the
remaining big vertices by colors from their lists. Note that the colored neighbors
of each vertex from B\ By are only big vertices and hence it is adjacent to at
most five colored vertices. Finally, color the vertex so. This is possible because
a neighbor of sy in G is colored with a color o ¢ L(sp). Thus, we obtain an
L-coloring of G — contradiction.

The final case to consider is that the lists of all the vertices of Sy U By are
not the same, in particular Ly # L,. Assume without loss of generality that
L(so) # L1. Let a € Ly \ L(s¢) and let by € By be a big vertex with L(b;) = L;.
The existence of a vertex by follows from Claim 27.1. Fix a coloring of G[SyU By
such that the color of the vertex b; is a. Such a coloring exists by Lemma 7.
Next, color the remaining big vertices by colors from their lists. This is possible
because the colored neighbors of each vertex from B\ By are only big vertices and
hence it is adjacent to at most five colored vertices. Since the vertex by, which is
a neighbor of the vertex s, is colored with a color o & L(sp), we can now color
the vertex sg. In this way, we obtain an L-coloring of G — contradiction.

Claim 27.3 There is an ordering by, ba, b3, by, bs and bg of the six big vertices
of G such that L(by) = L(bs), L(b3) = L(bs) and L(bs) = L(bg) and the lists of

any other pair of the big vertices are distinct. Moreover, By = B.

By Claim 27.2, there are three vertices of By whose lists are mutually distinct.
Since each vertex of By is adjacent to a vertex of Sy (the set By was defined to
be the set of such big vertices) and each vertex of Sy is adjacent to at least two
big vertices by Lemma 13, it follows that there are exactly six big vertices and
thus By = B. The statement now readily follows from Claim 27.1.

Claim 27.4 The graph G has an L-coloring.

Let by, by, b3, by, b5 and bg be the big vertices ordered as in Claim 27.3. By
Claims 27.1 and 27.3, each vertex of Sy can be adjacent to at most two big
vertices. Since it must be adjacent to at least two big vertices by Lemma 13,
we conclude that the Gallai tree G[Sy] is 4-regular and hence G[Sy] is a clique of
order five.

Since G[B] is not a complete graph, there is a big vertex, say b3 € B, which
is not adjacent to all the big vertices. Let s; and s3 be vertices of Sy adjacent
to the big vertices by and b3, respectively. By Claim 27.1, L(b) = L(s;) and
L(bs) = L(s3). In particular, L(sy) # L(s3).

Fix a color v € L(sy) \ L(s3). Color first the vertices b; and by by colors
from their lists which are distinct from the color a. Next, color sy by a color
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from its list and then the remaining big vertices by colors from their lists so that
the vertex b3 is colored as the last one. Again, it is possible to color all the big
vertices because when we color each of them at most five of its neighbors are
already colored.
This coloring can be extended to the clique G[Sy| by Proposition 25 because
of the choice of the colors of the vertices b; and by and the facts that o € L(s)
and « € L(s3). In this way, we obtain an L-coloring of G — contradiction.
]

The third case to consider is that the Gallai forest consists of two cliques:

Lemma 28 Let G be a triangulation with minimum simple degree sixz of the
surface Il3 which does not contain K; as a subgraph. If the graph induced by
small vertices consists of two components, each of them being a clique of order at
least two, then the graph G is 6-choosable.

Proof: Suppose that the lemma is false. Fix a triangulation G' with the prop-
erties from the statement of the lemma and a list 6-assignment L of GG such that
there is no L-coloring of GG. Let B be the set of big vertices of G and let S; and
Sy be the vertex sets of the two cliques of the subgraph of G induced by the small
vertices. Note that the orders of both the cliques G[Si] and G[S,] are at most
five by Lemma 13.

Claim 28.1 Let by be an arbitrary big vertex of G. It is possible to order the big
vertices by, by, ..., b so that each big vertex b; is adjacent to at most four big
vertices b; with j < 1.

The claim is clear if |B| < 5 or if |B| = 6 and G[B] contains two non-adjacent
vertices. Assume for contradiction that |B| = 6 and all the vertices of G[B] are
mutually adjacent. Since the degree of each vertex of B is seven by Lemma 10,
each of them is adjacent to at most two small vertices. Hence, there are at most
12 edges between the big vertices and the small vertices. However, since the
weights of G[S1] and G[Ss] are at least ten, there are at least ten edges between
S; and B as well as between S, and B — contradiction.

Claim 28.2 Let s € S; US55 and b € B be two adjacent vertices in G. Then,
L(s) = L(b).

Assume the opposite and let s; € S; and b € B be two adjacent vertices with
L(s1) # L(b) (the case that such a small vertex is contained in Sy is symmetric).
Fix a color aw € L(b) \ L(s1). For every vertex s € Sy, let L'(s) = L(s) \ {a} if s
is adjacent to the vertex b and L'(s) = L(s) otherwise.

Let us consider first the case that there are two small vertices s' and s? of S,
with L'(s') # L'(s?). We can assume without loss of generality that |L'(s')| >
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|L'(s%)]. Fix acolor 8 € L'(s')\ L'(s?). Color the vertex b by a and the remaining
big vertices properly by arbitrary colors from their lists so that each of them is
colored with a color different from 5. This is clearly possible: Just color the big
vertices in the order from Claim 28.1 with b; = b. The coloring of the big vertices
can be extended to S; by Proposition 22. Afterwards, it can be extended to S5
by Proposition 25 (note that 8 € L'(s') and no neighbor of s' is colored with 3
and 3 ¢ L'(s?)). This yields an L-coloring of G — contradiction.

Next, we consider the case that there is a vertex v € S, adjacent to b with
a & L(v). In this case, we color the big vertices arbitrarily so that the vertex b
is colored with a. However, the precoloring of the big vertices can be extended
to both Sy and S5 by Proposition 22 — contradiction.

In the rest, we assume that all the lists L'(v) of the vertices of v € Sy are the
same and the list of each vertex of Sy adjacent to b contains cr. Hence, either no
vertex of Sy is adjacent to the vertex b or all the vertices of S, are adjacent to
the vertex b and the lists of all of them contain the color a. Let Ng(s) be further
the set of big neighbors of a vertex s € Sy. Recall that, by our assumption, the
vertex b is contained either in all the sets Ng(s), s € So, or in no set Np(s),
S € SQ.

We now consider the case that there exist two small vertices s' and s? of S,
with Np(s') # Np(s?). Color the vertex b by o and the remaining big vertices by
colors from their lists so that no two big vertices are colored with the same color
(recall that there are at most six big vertices). The coloring of the big vertices
can be extended to S; by Proposition 22. For each small vertex s € Sy, let L"(s)
be the subset of the list L(s) which contains the colors of L(s) not assigned to
the big neighbors of s. Note that |L"(s)| > degng for every vertex s € Sy.
In addition, L"(s') # L"(s?) because L'(s') = L'(s ') # Np(s?) and all
the big vertices are colored with mutually d1st1nct colors. By Theorem 4, there
exists an L"-coloring of G[Ss]. The L"-coloring of G[S,] and the coloring of the
big vertices and S; form an L-coloring of G — contradiction.

The final case is that the lists L'(s) of all the small vertices s € Sy are the
same list, say Lg, and the small vertices of Sy are adjacent to the same set Np of
big vertices, i.e., Ng(s) = Np for every s € Sy. Note that |[Ng| =7 — |Sy|. Let
by and by be two non-adjacent vertices of Ng. Such two vertices b; and by exist:
Otherwise, the graph G[Ng U S3] would be a clique of order seven.

In this paragraph, we carefully color at least two of the vertices b, b; and
by. Afterwards, we extend this precoloring to an L-coloring of G. Note that b
may coincide with b; and by. Color first the vertex b by the color a. If by = b,
then |Lo| = 5, in particular |Ly| < |L(bs)|, and we color the vertex by by a color
p € L(bg) \ Lo. If by = b, we proceed analogously. Assume now that the vertex b
is neither b; nor by. Color the vertex by by a color 5 € L(b)\ (LyU{a}). This is
possible unless b, is adjacent to b and « is the only color contained in L(by) \ Ly.
If b; was not colored, then color by by a color 5 € L(by) \ (Lo U {a}). We can
color the vertex by in this way unless by is adjacent to b and « is the only color
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contained in L(by) \ Lo. If both b; and by are not colored, then both the lists
L(by) and L(by) contain at least five colors (possibly distinct) common with the
list Ly. Hence, there is a color § € L(by) N L(by) N Ly and we can color both by
and by by 5. Some of the big vertices are now colored so that each vertex of S,
is adjacent to a vertex colored with a color not contained in L, or to two vertices
colored with the same color.

Extend now the obtained coloring to all the big vertices (recall again that
there are at most six big vertices). The coloring can be further extended to the
vertices of S; by Proposition 22 (the vertex b is colored with «) and to the vertices
of Sy by Propositions 22 or 23 because each vertex of S, is adjacent to a vertex
colored with a color not contained in the list Ly or to two vertices colored with
the same color, respectively. This yields an L-coloring of G — contradiction.

Claim 28.3 Let b be an arbitrary big vertex. Then, there exists a big vertex
b # b with L(b) = L(V').

Since the minimum simple degree of GG is six and there are at most six big vertices,
the vertex b is adjacent to a small vertex s. And, since each small vertex is
adjacent to at least two big vertices by Lemma 13, there exists another big vertex
b' # b which is adjacent to s. Then, L(b) = L(V') by Claim 28.2.

Claim 28.4 There exist three big vertices whose lists are mutually distinct.

Assume the opposite and let L; and Ly be two lists such that the list of each big
vertex is Ly or Ly. Since each small vertex s is adjacent to a big vertex, the list
of the vertex s must be L; or Ly by Claim 28.2. Hence, the list of each vertex of
G is Ly or Ly. By Theorem 1, G is 6-colorable. Therefore, G has an L-coloring
by Lemma 6 — contradiction.

Claim 28.5 There are exactly six big vertices. In addition, there is an ordering
b1, by, b3, by, bs and bg of the big vertices with L(by) = L(by), L(b3) = L(bs) and
L(bs) = L(bg) and the lists of any other pair of the big vertices are distinct.

The above claim directly follows from Claims 28.3 and 28.4 and Lemma 10.

Claim 28.6 FEach small vertex is adjacent to precisely two big vertices. In par-
ticular, both G[S1] and G[Ss] are isomorphic to K.

Each small vertex is adjacent to at least two big vertices by Lemma 13. By
Claims 28.2 and 28.5, it can be adjacent to at most two big vertices. Hence,
each small vertex is adjacent to precisely two big vertices and so it is adjacent to
precisely four small vertices. Since Kj is the only 4-regular Gallai tree, it follows
that both G[S;] and G[S;] must be cliques of order five.
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Claim 28.7 There are two vertices of S; whose lists are different. Similarly,
there are two vertices of So whose lists are different.

Let by, bs, b3, by, bs and bg be the big vertices of GG ordered as in Claim 28.5.
Since GG contains six big vertices, each big vertex has degree seven. Suppose that
the claim is false, i.e., the lists of all the vertices of S; are the same, say the list
L(by). Since all the five vertices of the clique G[S;] are adjacent to both by and by
by Claim 28.2, the vertices b; and by are not adjacent: Otherwise, G[S;U{by, b }]
would be a clique of order seven. By Lemma 14, the five vertices of S; are the only
small vertices which are adjacent to the vertices b; and by. Fix a color o € L(by).
Color the graph G[Ss U {bs, by, bs, bg}] so that none of the vertices b3, by, bs and
bg is colored with the color ae. This is possible by Lemma 8 because the list of
each vertex of G[SQ U {bg, b4, b5, bﬁ}] is L(b3) or L(b5) and G[SQ U {b3, b4, b5, bG}] is
6-colorable by Theorem 1. Color now both b; and by by the color o and the five
vertices of Sy properly by the remaining five colors from their lists. In this way,
we obtain an L-coloring of G — contradiction. An analogue argument yields the
second part of the claim.

Claim 28.8 There are three vertices of S1 whose lists are mutually distinct. Sim-
ilarly, there are three vertices of So whose lists are mutually distinct.

Let by, bo, b3, by, bs and bg be the big vertices ordered as in Claim 28.5. Assume
that the claim is false, e.g., that the list of each vertex of S is either L(by) or
L(bs). Since the vertex bs is adjacent to at least one small vertex and it is adjacent
to no vertex of Si, it must be adjacent to a vertex of S,. By Claim 28.7, there
are two vertices s' and s* of Sy whose lists L(s') and L(s?) are different. By
symmetry, we can assume that L(s') = L(b,) and L(s*) = L(bs).

Fix a color a € L(s') \ L(s?). Color now the vertices of G[S; U {by, bz, b3, bs}]
so that the color of each of the vertices by, by, b3 and by is different from «. This is
possible by Lemma 8 because G[S; U {by, by, b3, by }] is 6-colorable by Theorem 1.
Color now the remaining two big vertices bs and bs. Note that neither b5 nor bg is
adjacent to a vertex of S; by Claim 28.2 (recall that o & L(s?)). The coloring of
the big vertices can be extended to G[Ss] by Proposition 25 because of a € L(s),
o & L(s?) and the choice of the colors of the big vertices — contradiction.

Claim 28.9 The graph G has an L-coloring.

Let by, by, b3, by, b5 and bg be the big vertices ordered as in Claim 28.5. By
Claims 28.2 and 28.8, the set S; contains two vertices s and s7 with L(s{) = L(by)
and L(s?) = L(b3). Similarly, Sy contains two vertices si and s3 such that
L(s}) = L(b;) and L(s3) = L(b3). Fix a color a € L(by) \ L(b3). Color now the
vertices b; and by by colors from their lists which are different from the color a.
Afterwards, color the remaining four big vertices. The coloring of the big vertices

can be extended to both G[S;] and G[S,] by Proposition 25 because of o € L(s}),
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o € L(s)), a & L(s?), a & L(s3) and the choice of the colors of the big vertices.
In this way, we eventually obtain an L-coloring of G.
]

We now consider the fourth possible type of the triangulation:

Lemma 29 Let G be a triangulation with minimum simple degree sixz of the
surface Tl3 which does not contain K7 as a subgraph. Suppose that G contains
siz big vertices and that the small vertices induce a Gallai forest in G with two
components whose verter sets are Sy and Sy. In addition, suppose that G[Sy] is
isomorphic to Ky, K3, K, or Ky and that the minimum degree of G[Ss] is one.
Then, the graph G is 6-choosable.

Proof: Suppose that the statement of the lemma is false. Fix a triangulation
GG, which has the properties described in the statement of the lemma, and a list
6-assignment L such that G has no L-coloring. Let B be the set of the six big
vertices of G and let sy be a vertex of degree one in G[S,].

Claim 29.1 There are two big vertices b* and b* adjacent to the vertex sy such
that each of them has at least two neighbors in S.

We distinguish four cases regarding to the order of the clique G[S;]. If G[S]]
is a clique of order two, then at least four big vertices are adjacent to both the
vertices of S;. Since only one big vertex is not adjacent to the vertex sq, there
are at least three big vertices adjacent to sg and simultaneously adjacent to both
the vertices of Sj.

If G[S,] is a clique of order three, then there are twelve edges between the
vertices of S; and B (recall that w(Kj3) = 12). Since |Si| = 3, at most three
of these edges can lead to the big vertex which is not adjacent to the vertex sy.
Hence, at least nine of these edges join the big neighbors of sy and the vertices of
Sp. If four out of the five big neighbors of the vertex sy has at most one neighbor
in 57, then there exists a big neighbor of sy adjacent to at least five vertices of
S1 which is clearly impossible (recall that |S;| = 3). Therefore, there are two big
neighbors of sy with at least two neighbors in S.

The third case is that the order of G[Si] is four. Hence, there are again twelve
edges between the vertices of S; and the vertices of B. At most four of these
edges (recall that the order of S; is four) can lead to the big vertex by which is
not adjacent to sy and thus at least eight of them lead to the big neighbors of
so. Hence, the claim is true unless all the four vertices of S; are adjacent to by,
all the four vertices of S are adjacent to a big neighbor b; of the vertex s, and
each of the remaining big vertices by, b3, by and bs has exactly one neighbor in
Si. In that case, the neighborhoods of the vertices of S; contain the segments
boboby, bobsby, bobyby and bybsb; because GG is a triangulation. In particular, the
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vertex by is adjacent to all the four vertices of Sy and to the big vertices bo, b3,
b, and bs. This is impossible because the degree of b, is seven by Lemma 10.

The final case to consider is that G[S;] is a clique of order five. Each big
vertex adjacent to a vertex of S is adjacent to at least two vertices of S; by
Lemma 12. Hence, it is enough to show that at least two big neighbors of s are
also adjacent to a vertex of S;. Each vertex of S; must be adjacent to at least one
big neighbor of the vertex sy, because there is only one big vertex non-adjacent
to the vertex so. On the other hand, each big neighbor of sy can be adjacent to
at most four vertices of Sy since its degree in GG is seven by Lemma 10. Thus,
there are at least two big neighbors of sy which are adjacent to a vertex of S; as
desired. This completes the proof of Claim 29.1.

Claim 29.2 If s € Sy and b € B are adjacent vertices, then L(s) = L(b).

Assume the opposite for the sake of contradiction and let s € S; and b € B be two
adjacent vertices with L(s) # L(b). Let b’ be further a big vertex different from
b which is simultaneously adjacent to sy and to at least two vertices of S;. Such
a vertex exists by Claim 29.1. Color the vertex b by a color o € L(b) \ L(s) and
the remaining big vertices except the vertex o’ properly by arbitrary colors from
their lists. We can extend the coloring of the big vertices to Sy by Proposition 24
because the vertex b’ is not colored. Color now b’ by a color from its list. This is
possible because b' has at most five colored neighbors (recall that o' is adjacent
to at least two vertices of S;). Finally, we can extend this coloring to G[S;] by
Proposition 22 because of the choice of the color of the vertex b. Thus, we obtain
an L-coloring of G — contradiction.

Claim 29.3 Suppose that there exist two lists Ly and Ly such that the list of each
vertex of Sy is Ly or Ly. Then, L(s) = L(b) for every adjacent vertices s € Sy
and b € B.

Assume the opposite and let s € S, and b € B be two adjacent vertices with
L(s) # L(b). Let By be the set of big vertices adjacent to a vertex of S;. By
Claim 29.2, the list of each vertex of S; U B; is L or Ly. In the rest, we consider
two cases regarding whether the vertex b is contained in the set B; or not.

If b € By, then consider a coloring of G[S; U B;| which assigns the vertex b a
color a € L(b)\L(s). Such a coloring exists by Lemma 7. Color now the remaining
big vertices properly by arbitrary colors from their lists. This is possible because
each big vertex contained in B\ B is adjacent only to the vertices of BU S, and
thus each big vertex from B\ By is adjacent to at most five colored (big) vertices.

If b ¢ By, then consider a coloring of G[S; U By] such that no vertex of By is
colored with a color v € L(b) \ L(s). Such a coloring exists by Lemma 8 because
|B,| < |B] = 6. Color now the vertex b by o and the remaining big vertices
properly by arbitrary colors from their lists.

In both the cases considered above, the coloring can be extended to S, by
Proposition 22 because of the choice of the color of the vertex b — contradiction.
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Claim 29.4 There exist three vertices of S with mutually distinct lists.

Suppose that the claim is false, i.e., there exist two lists L; and Ly such that the
list of each vertex of Sy is L; or Ly. Then, the lists of all the five big vertices
adjacent to the vertex sy are the same by Claim 29.3. Let b be the big vertex
which is not adjacent to sy. Since the minimum degree of G is six, the vertex
b is adjacent to a small vertex s. By Lemma 13, the vertex s is adjacent to at
least two big vertices and they must have the same list either by Claim 29.2 or
by Claim 29.3. Hence, all the big vertices have the same list. By Claims 29.2
and 29.3, the lists of all the vertices are the same. Then, G has an L-coloring by
Theorem 1 — contradiction.

Claim 29.5 There exists an ordering by, by, bz, by, bs and bg of the big vertices
of G so that L(by) = L(bs), L(bs) = L(bs) and L(bs) = L(bg) and the lists of any

other pair of the big vertices are distinct.

Let s, s and s” be three vertices of G[S;] with mutually distinct lists. They
exist by Claim 29.4. Each of the vertices s, s’ and s” is adjacent to at least
two big vertices by Lemma 13 and its big neighbors must have the same list by
Claim 29.2. The claim now readily follows.

Claim 29.6 The graph G has an L-coloring.

Let by, by, b3, by, bs and bg be the big vertices ordered as in Claim 29.5 and let
s1, S2 and sz be three vertices of G[S;] with mutually distinct lists (they exist
by Claim 29.4). By symmetry, we can assume that L(s;) = L(by), L(s2) = L(bs)
and L(s3) = L(bs) and that the vertex s, is adjacent to the vertices by, by, b3, by
and bs. By symmetry, we can assume that L(sg) # L(b;) for i € {1,2,5}.

Fix colors v € L(b;) \ L(so) and 8 € L(b3) \ L(b5). Color the vertex b; by the
color v and the vertices by and by properly by colors from their lists which are
different from the color §. Finally, color properly the remaining big vertices by
arbitrary colors from their lists. The coloring of the big vertices can be extended
to S by Proposition 25 and to Sy by Proposition 22. In this way, we construct
an L-coloring of G — contradiction.

]

The final case to consider is that the Gallai forest induced by small vertices
consist of three components:

Lemma 30 Let G be a triangulation with minimum simple degree sixz of the
surface 113 which does not contain K7 as a subgraph. If the small vertices induce
a Gallai forest in G with three components such that at least two of the components
are isomorphic to Ky, then the graph G is 6-choosable.
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Proof: Suppose that the lemma is false. Fix a triangulation G, which satisfies
the assumptions of the lemma, and a list 6-assignment L such that G has no L-
coloring. Let B be the set of big vertices of G and let S be the set of small vertices
of G. Note that |B| = 6 and each big vertex has degree seven by Lemma 11.
By the assumption of the lemma, G[S] contains two isolated vertices s; and ss.
Let Sy be the set of the remaining small vertices. Note that each big vertex is
adjacent to both s; and s,. Since G is a triangulation, the graph G[B] contains
a cycle of length six (consider e.g., a cycle around the vertex s;).

Claim 30.1 There are at least four big vertices with a neighbor in the set Sy.

If G[So] is isomorphic to K, then each big vertex is adjacent to the only vertex of
So and the claim obviously holds. Assume in the rest that G[Sp] is not isomorphic
to K. Each big vertex is adjacent to both the small vertices s; and sy and to at
least two other big vertices since G[B] contains a 6-cycle. Hence, each big vertex
can be adjacent to at most three vertices of Sy. By Lemma 13, G[So] is a Gallai
tree with maximum degree at most four. Therefore, the weight of G[So] is at
least 10 (cf. Figure 3). So, there are at least ten edges joining the vertices of Sy
to the big vertices. Since each big vertex is adjacent to at most three vertices of
Sp, then there are at least four big vertices with a neighbor from Sj.

Claim 30.2 There exists a big vertex by adjacent to the small vertex s, with

L(s1) # L(by). Similarly, there exists a big vertex by adjacent to the small vertex
So with L(Sg) §£ L(bg)

Assume the opposite, e.g., that all the big vertices adjacent to s; have the list
L(s1) (the other part of the claim is symmetric). Since s; is adjacent to all the big
vertices, all the big vertices have the same list. Let b and b’ be two non-adjacent
big vertices (they exist because the vertex s is adjacent to all the six big vertices
and G does not contain K7 as a subgraph). Note that L(b) = L(V'). Let by be a
big vertex different from the vertices b and b' which has a neighbor in Sy (such a
vertex by exists by Claim 30.1).

Color now the vertices b and b' by the same color a € L(b) = L(V'). Extend
this coloring to Sp; such an extension exists by Proposition 24 (recall that bg is
yet uncolored). Color properly the remaining four big vertices by colors from
their lists. Note that this is possible since each big vertex has degree seven and
it is adjacent to both the vertices s; and s, which are not colored. Finally, color
properly the vertices s; and sy from their lists. We can do this because the
vertices s; and sy have degree six and two of their neighbors, namely the vertices
b and b, are colored with the same color. Therefore, we obtain an L-coloring of
G — contradiction.

Claim 30.3 There exists exactly one big vertex by adjacent to the small vertex
sy with L(s1) # L(by). Similarly, there exists exactly one big vertex by adjacent
to the small verter sy with L(ss) # L(by).
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Assume for contradiction that the vertex s; is adjacent to at least two big vertices
with their lists different from the list L(s;) (the other part of the claim is sym-
metric). Let by be a big vertex adjacent to the small vertex s, with L(sg) # L(bs)
(such a big vertex exists by Claim 30.2). By our assumption, there exists a big
vertex by # by adjacent to the small vertex s; with L(s;) # L(b;). By Claim 30.1,
there exists a big vertex by which is different from the vertices b; and b, and which
is adjacent to a vertex of Sj.

Color the vertex by by a color ap € L(b) \ L(s2). Let ay € L(by) \ L(s1). If
a1 # i, then color the vertex b; by the color ;. If a; = a, color the vertex by
by any color from its list different from «;. Note that both s; and s, are adjacent
to a big vertex colored with the color not contained in the lists L(s;) and L(ss),
respectively. By Proposition 24 (note that the vertex by is still not colored), we
can extend this coloring to the vertices of Sy.

Color now properly the remaining four big vertices by colors from their lists.
This is possible since each big vertex has degree seven and it is adjacent to both
the vertices s; and s, which are not colored. Finally, color properly the vertices
s1 and s from their lists. Note that the vertices s; and s, have degree six and
each of them has a neighbor colored with a color not contained in its list. In this
way, we obtain an L-coloring of G — contradiction.

Claim 30.4 The graph G has an L-coloring.

By Claim 30.3, the vertices s; and s, are adjacent to exactly one big vertex with
a list different from L(s;) and L(s3), respectively. Hence, L(s;) = L(s3). Let b
be now the unique big vertex with L(b) # L(s;). Let by be a big vertex different
from the vertex b which is adjacent to a vertex of Sy (such a vertex by exists by
Claim 30.1).

Color the vertex b with the color o € L(b) \ L(s1) = L(b) \ L(s2). By Propo-
sition 24 (the vertex by is still not colored), we can extend this coloring to the
vertices of Sy. Color properly the remaining five big vertices by colors from their
lists. Note that this is possible since each big vertex has degree seven and it
is adjacent to both the vertices s; and sy which are not colored yet. Finally,
color properly the vertices s; and sy from their lists. We can do this because
both the vertices s; and s, are adjacent to the vertex b colored with the color
a & L(s1) and L(s1) = L(sq). In this way, we obtain a proper L-coloring of G —
contradiction.

]

7 Dirac’s Map-Color Theorem for Choosability
for the surface I3

We are now ready to prove the main theorem of this paper:
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Theorem 31 Let G be a graph of FEuler genus three which does not contain K;
as a subgraph. Then, G is 6-choosable.

Proof: By Lemma 9, it is enough to prove the theorem for triangulations of
the surface 13 with minimum simple degree six which do not contain K7 as a
subgraph and in which the small vertices induce Gallai forests. Let us consider
an arbitrary triangulation G of II3 with these properties. By Theorem 4, G
contains a vertex with simple degree at least seven because G is a triangulation,
in particular, it is 2-connected.

Let F' be the Gallai forest induced by the small vertices in G. By Lemma 19,
the number k of the components of F' is at most three. If £ = 0, the graph G
contains no small vertices and the number of its vertices is at most six. Hence, G
is 6-choosable. If £ = 1, then GG is 6-choosable by Lemma 26. If £ = 3, then two of
the components of F' are isomorphic to K; by Lemma 21 and so G is 6-choosable
by Lemma 30. It remains to consider the case that F' consists of precisely two
components, say H; and H,. By Lemma 20, at least one of the following holds:

e H, or H, is isomorphic to K1,
e both H; and H, are cliques of order between two and five, or

e H, is a clique of order between two and five, H, contains a vertex of degree
one (or vice versa) and G contains precisely six big vertices.

In the first case, G is 6-choosable by Lemma 27, in the second case, it is 6-
choosable by Lemma 28 and in the last case, it is 6-choosable by Lemma 29.
This completes the proof of Theorem 31.

[ |

We can combine Theorems 2 and 31 to get the following:

Theorem 32 If G is a graph embedded on a surface of Fuler genus ¢ > 1, then
the choice number of G is at most H(g) and the equality holds if and only if G
contains Kg) as a subgraph.
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