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tIn 1890, Heawood established the upper bound H(") = j7+p24"+12 kon the 
hromati
 number of every graph embedded on a surfa
e of Eulergenus " � 1. Almost 80 years later, the bound was shown to be tight byRingel and Youngs. These two results has be
ame known under the nameof the Map-Color Theorem. In 1956, Dira
 re�ned this by showing thatthe upper bound H(") is obtained only if a graph G 
ontains KH(") as asubgraph with ex
ept of three surfa
es. Albertson and Hut
hinson settledthese ex
luded 
ases in 1979. This result is nowadays known as Dira
'sMap-Color Theorem.B�ohme, Mohar and Stiebitz extended Dira
's Map-Color Theorem tothe 
ase of 
hoosability by showing that G is (H(") � 1)-
hoosable unlessG 
ontains KH(") as a subgraph for " � 1 and " 6= 3. In the present paper,we settle the ex
luded 
ase of " = 3.�Supported in part by Resear
h Proje
t Z1-3129 of the Ministry of S
ien
e and Te
hnologyof Slovenia.1Institute for Theoreti
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1 Introdu
tionWe study list 
olorings of graphs embedded on surfa
es without boundary. Su
hsurfa
es are orientable surfa
es �g, the sphere with g handles, and non-orientablesurfa
es �h, the sphere with h 
ross-
aps. The surfa
e �1 is the proje
tive plane,�2 is the Klein bottle, �1 is the torus, et
. The Euler genus " of the surfa
e �gis 2g and the Euler genus of the surfa
e �h is h. The Euler genus of a graph isthe smallest Euler genus of a surfa
e on whi
h the graph 
an be embedded.Euler's formula for a graph G embedded on a surfa
e of Euler genus " statesthat n �m + f � 2 � " where n, m and f is the number of verti
es, edges andfa
es of G, respe
tively. Moreover, the equality holds if and only if G is 
onne
tedand every fa
e of the embedding is a 2-
ell. Therefore, the number of edges of ann-vertex simple graph G whi
h 
an be embedded on the surfa
e of Euler genus "is at most 3n� 6 + 3". For " � 1, this implies that every graph embedded on asurfa
e of Euler genus " 
ontains a vertex of degree at most H(")� 1 where H(")is a so-
alled Heawood number de�ned as follows:H(") = $7 +p24"+ 12 % .Hen
e, the 
hromati
 number of a graph embedded on a surfa
e of Euler genus" is at most H("). Let us remind that the 
hromati
 number �(G) of a graphG is the least number of 
olors needed to 
olor the verti
es of G so that no twoadja
ent verti
es re
eive the same 
olor. The above bound was 
onje
tured to betight by Heawood [15℄. Indeed, Ringel [22℄ and Ringel and Youngs [24℄ showedthat it is possible to embed the 
omplete graph KH(") on ea
h surfa
e of Eulergenus " with an ex
eption of the Klein bottle �2. This result be
ame known asthe Map-Color Theorem.In 1956, Dira
 extended the Map-Color Theorem by showing that the 
hro-mati
 number of a graph G embedded on a surfa
e of Euler genus " � 1, " 6= 3,is equal to H(") if and only if G 
ontains KH(") as a subgraph. Almost 25 yearslater, Albertson and Hut
hinson [1℄ 
ompleted the three missing 
ases. Thus, wehave the following theorem whi
h is nowadays known under the name of Dira
'sMap-Color Theorem:Theorem 1 Let G be a graph embedded on a surfa
e of Euler genus " � 1. IfG does not 
ontains KH(") as a subgraph, the 
hromati
 number of G is at mostH(")� 1.The 
hromati
 number of a graph embedded on the Klein bottle �2 is at mostsix and there are 6-
hromati
 graphs whi
h 
an be embedded on �2 and whi
hdo not 
ontain K6 as a subgraph [1, 13℄. Let us remark that 
omplete graphsKH(")�1 (and in some 
ases also the join of the graphs KH(")�4 and C5) are theonly 
riti
al (H(")� 1)-
olorable graphs embeddable on a surfa
e of Euler genus2



" [25℄. We refer the reader for a more detailed introdu
tion to embeddings ofgraphs on surfa
es to [14, 21℄.In this paper, we fo
us on list 
olorings of graphs embedded on surfa
es. Alist assignment is a fun
tion L whi
h assigns ea
h vertex v 2 V (G) a list L(v) ofavailable 
olors. For a given graph G and a given list assignment L, a 
oloring 
 ofthe verti
es of G is 
alled an L-
oloring if 
(v) 2 L(v) for every vertex v 2 V (G).If the size of the list L(v) for every vertex v 2 V (G) is k, the list assignment issaid to be a list k-assignment. The 
hoi
e number, sometimes 
alled also the list
hromati
 number, of a graph G is the smallest integer k su
h that the graph G
an be 
olored from the lists of any list k-assignment. Su
h a graph G is said tobe k-
hoosable. The 
hoi
e number of a graph is 
learly at least its 
hromati
number but the inequality might be stri
t. See the surveys [19, 27℄ for moredetails on this 
on
ept.As in the 
ase of the 
hromati
 number, the 
hoi
e number of a graph Gembedded on a surfa
e of Euler genus " � 1 is at most H("). The followingextension of Theorem 1 was proved by B�ohme, Mohar and Stiebitz [2℄:Theorem 2 If G is a graph embedded on a surfa
e of Euler genus " � 1, " 6= 3,then the 
hoi
e number of G is at most H(") and the equality holds if and only ifG 
ontains KH(") as a subgraph.As in the 
ase of ordinary 
olorings, the 
ases " = 0; 1; 3 turned out to need aspe
ial approa
h than the others. In the 
ase of planar graphs, Thomassen [26℄proved that the 
hoi
e number of ea
h planar graph is at most �ve and Voigt [28℄
onstru
ted non-4-
hoosable planar graphs. The 
ase of the proje
tive planerequired to be handled separately in [2℄ and the 
ase of the surfa
e �3 was leftopen. In this paper, we show that Theorem 1 holds also for the surfa
e �3 (seeTheorem 31). This 
ompletes the ex
luded 
ase of Theorem 1. We remark thatour result already found an appli
ation in 
oloring fa
e hypergraphs of graphsembedded on the surfa
e �3 [10℄.We follow a standard graph theoreti
 notation (the reader is wel
omed tosee [6, 29℄ for missing de�nitions). Let us re
all some less 
ommon notation whi
hwe use. If G is a graph and W is a subset of its verti
es, then G[W ℄ denotes thesubgraph of G indu
ed by the verti
es of W . Graphs whi
h we 
onsider neednot to be simple graphs unless expli
itly stated that they are simple, i.e., someverti
es 
an be joined by parallel edges. Hen
e, we distinguish the degree deg(v)of a vertex v whi
h is the number of edges in
ident with v and the simple degreeof a vertex v whi
h is the number of distin
t verti
es adja
ent to v.2 List 
olorings of graphsIn our 
onsiderations, we often work with list assignments in whi
h the sizes ofthe lists are not the same but they are related to degrees of the verti
es of a3



graph. So-
alled Gallai trees play a prominent role in this setting. A 
onne
tedgraph is said to be a Gallai tree if ea
h of its blo
ks is a 
omplete graph or anodd 
y
le. Let us remind that a blo
k B of a graph G is its maximal 2-
onne
tedsubgraph. A vertex of a blo
k is said to be an internal vertex of B if it is not a
ut vertex, i.e., B is the only blo
k of G whi
h 
ontains it. A Gallai forest is agraph whose all 
omponents are Gallai trees. The following two theorems wereindependently proved by Borodin [3℄ and Erd}os, Rubin and Taylor [11℄:Theorem 3 Let G be a 
onne
ted graph with a list assignment L. If jL(v)j �degG(v) for every vertex v of G and the inequality is stri
t for at least one vertexof G, then G has an L-
oloring.Theorem 4 Let G be a 
onne
ted graph with a list assignment L su
h thatjL(v)j = degG(v) for every vertex v. If G does not have an L-
oloring, then G isa Gallai tree. Moreover, if G is 2-
onne
ted and it does not have an L-
oloring,then the lists L(v) of all the verti
es v of G are the same.We remark that Theorems 3 and 4 have been extended to generalized 
oloringswith respe
t to hereditary properties [4, 5℄, to list 
olorings of hypergraphs [17℄,the 
hannel assignment problem [18, 20℄ and the list T -
oloring [12℄.A graph G is said to be 
riti
al non-k-
hoosable if it is not k-
hoosable andea
h proper subgraph of G is k-
hoosable. Note that su
h a graph G must haveminimum degree at least k. We now state an extension of Dira
's inequality forthe number of edges in 
olor 
riti
al graphs [8℄ to list 
olorings whi
h was provedby Kosto
hka and Stiebitz [16℄:Theorem 5 If G 6= Kk+1 is a 
riti
al non-k-
hoosable graph of order n, then thenumber of edges of G is at least (kn+ k � 2)=2.At the end of this se
tion, we prove three spe
i�
 lemmas for list assignmentswith only two kinds of lists whi
h we later apply in Se
tion 6:Lemma 6 Let G be a 6-
olorable graph with a 6-list assignment L. Suppose thatthere exist two lists L1 and L2 su
h that the list L(v) of every vertex v 2 V (G)is L1 or L2. Then, G has an L-
oloring.Proof: Let �1; : : : ; �6 be the 
olors of the list L1 and �1; : : : ; �6 the 
olors ofthe list L2. Let k be further the number of 
olors whi
h the lists L1 and L2 havein 
ommon. We may assume that �1 = �1, . . . , �k = �k. Fix now a 6-
oloring 
0of G using the numbers 1; : : : ; 6 as 
olors. We de�ne an L-
oloring 
 of G basedon the 
oloring 
0: 
(v) = ( �
0(v) if L(v) = L1,�
0(v) otherwise.4



Clearly, 
(v) 2 L(v) for every vertex v 2 V (G). If two adja
ent verti
es wereassigned the same 
olor, then they would be 
olored with the same number by
0. Hen
e, 
 is a desired L-
oloring.The proof of Lemma 6 
an be easily altered to a proof of ea
h of the next twolemmas:Lemma 7 Let G be a 6-
olorable graph with a 6-list assignment L. Suppose thatthere exist two lists L1 and L2 su
h that the list L(v) of every vertex v 2 V (G) isL1 or L2. Let v0 be a vertex of G and let 
 2 L(v0). Then, G has an L-
oloring
 with 
(v0) = 
.Proof: Let us keep the notation used in the proof of Lemma 6 and assumewithout loss of generality that 
 2 L1 and 
 = �i. Consider now a 6-
oloring
0 : V (G) ! f1; : : : ; 6g of G with 
0(v) = i and pro
eed as in the proof ofLemma 6.In the previous lemma, we found a list 
oloring whi
h assigns a pres
ribed
olor to a parti
ular vertex. In the next lemma, we �nd a list 
oloring whi
havoids assigning a pres
ribed 
olor to some of the verti
es:Lemma 8 Let G be a 6-
olorable graph with a 6-list assignment L. Suppose thatthere exist two lists L1 and L2 su
h that the list L(v) of every vertex v 2 V (G)is L1 or L2. Let V0 be a set 
onsisting of at most �ve verti
es of G and let 
 bean arbitrary 
olor. Then, G has an L-
oloring 
 with 
(v) 6= 
 for every v 2 V0.Proof: Let us keep the notation used in the proof of Lemma 6 and assume that
 2 L1 and 
 = �i. Similarly as in the proof of the previous lemma, 
onsider�rst a 6-
oloring 
0 : V (G)! f1; : : : ; 6g of G with 
0(v) 6= i for all (at most �ve)verti
es v 2 V0 and pro
eed next as in the proof of Lemma 6.Let us remark that Lemmas 6{8 
an be straightforwardly generalized to k-
olorable graphs with k-list assignments.3 Minimal non-6-
hoosable graphs on �3In this se
tion, we show that regarding our main result, Theorem 31, we 
anrestri
t our attention to triangulations of the surfa
e �3 with minimum simpledegree six and establish several properties whi
h su
h triangulations do have.From now on, we allow triangulations to have parallel edges but we always forbid5



bigon fa
es. A bigon is a fa
e whose boundary is formed by a single 
y
le oflength two. If G is a triangulation with minimum simple degree six, its vertexv is said to be small if degG(v) = 6 and it is 
alled big otherwise. Note that nosmall vertex 
an be in
ident with two parallel edges; we use this fa
t later in theproofs without expli
itly mentioning it. In a triangulation, we refer to the fa
es
ontaining a vertex v as to the neighborhood of v. Subwalks of the boundary walkof the only non-triangular fa
e of G n v are 
alled segments.Lemma 9 Suppose that there is a non-6-
hoosable graph of Euler genus threewhi
h does not 
ontain K7 as a subgraph. Then, there exists a non-6-
hoosabletriangulation of the surfa
e �3 with minimum simple degree six whi
h does not
ontain K7 as a subgraph su
h that its small verti
es indu
e a Gallai forest.Proof: Let G be a 
riti
al non-6-
hoosable graph of Euler genus at most threewhi
h does not 
ontainK7 as a subgraph su
h that the order n ofG is the smallestpossible. In parti
ular, G is a simple graph with minimum degree (at least) six.By Theorem 2, the graph G 
annot be embedded on a surfa
e of Euler genus twoor less. Fix now an embedding of G on the surfa
e �3. By Theorem 5, the graphG 
ontains at least 3n + 2 edges. By Euler's formula, the number of edges ofan n-vertex simple graph embedded on the surfa
e �3 is at most 3n+ 3 and theequality holds if and only if the graph is a triangulation. Note that this impliesthat the minimum degree of G is a
tually six.In what follows, we �rst 
onstru
t a non-6-
hoosable triangulation G0 of �3from the graph G. If the number of edges of G is 3n + 3, the graph G itself is atriangulation of �3 and we set G0 = G. In the rest, we deal with the 
ase thatthe number of edges of G is 3n + 2. Sin
e the graph G 
annot be embedded ona surfa
e of Euler genus two or less, ea
h fa
e of the embedding of G on �3 is a2-
ell [30℄. In addition, all the fa
es of the embedding of G are triangles ex
eptfor a single quadrangular fa
e by Euler's formula. Let ab
d be the 4-
y
le whi
hbounds the quadrangular fa
e. Sin
e G is a simple graph with minimum degreesix, all the four verti
es a, b, 
 and d are distin
t. We now prove the following
laim:Claim 9.1 Let G+a
 and G+ bd be the graphs obtained from G by adding edgesa
 and bd, respe
tively, to the interior of the fa
e ab
d. Then, G+ a
 or G+ bddoes not 
ontain K7 as a subgraph.Suppose that the 
laim is false. LetWa
 be the set of the verti
es of a subgraph ofG+ a
 isomorphi
 to K7 and Wbd the set of the verti
es of a subgraph of G+ bdisomorphi
 to K7. Sin
e G does not 
ontain K7 as a subgraph, the verti
es aand 
 must be 
ontained in Wa
 and the verti
es b and d in Wbd. In addition, G
ontains neither an edge a
 nor an edge bd. Otherwise, K7 would be a subgraphof G. Finally, let W =Wa
 [Wbd. 6



Let k denote the number of verti
es 
ontained in both the sets Wa
 and Wbd,i.e., k = jWa
 \Wbdj. Observe that jW j = jWa
 [Wbdj = 14� k be
ause ea
h ofthe sets Wa
 and Wbd 
ontains exa
tly seven verti
es. Consider the embeddingof the graph G[W ℄ on �3 indu
ed by the embedding of the graph G. Sin
e thisembedding of G[W ℄ 
ontains at least one non-triangular fa
e, namely the fa
eab
d, the number of edges of G[W ℄ is at most 3(14� k) + 2 = 44� 3k by Euler'sformula. In addition, the equality holds if and only if all the fa
es ex
ept for thefa
e ab
d are triangular.The number of edges of ea
h of the graphs G[Wa
℄ and G[Wbd℄ is 20 be
auseboth of them are isomorphi
 to the graph K7 without a single edge. The numberof edges of the graph G[W ℄ is thus at least 40 � m0 where m0 is the number ofedges of the graph G[Wa
 \ Wbd℄. Clearly, m0 � �k2�. Hen
e, the graph G[W ℄
ontains at least 40 � �k2� edges. This leads to an immediate 
ontradi
tion fork = 2; 3; 4; 5. Thus, it remains to 
onsider the 
ases k = 0; 1; 6; 7. We 
onsiderthem separately.If k = 0, then the sets Wa
 and Wbd are disjoint. Hen
e, the edge set ofthe graph G[W ℄ 
onsists of 40 edges of the graphs G[Wa
℄ and G[Wbd℄ and atleast additional four edges forming the 4-
y
le ab
d. As noted above, the graphG 
annot have more than 44 edges. Therefore, G[W ℄ has exa
tly 44 edges andea
h edge of G[W ℄ is either an edge of the 4-
y
le ab
d or it is 
ontained in oneof the subgraphs G[Wa
℄ and G[Wbd℄. In addition, all the fa
es ex
ept for thefa
e bounded by the 4-
y
le ab
d are triangular. Consider now the fa
e abv ofG[W ℄ in
ident with the edge ab. Sin
e the verti
es a and 
 are not adja
ent, wehave v 6= 
. The edge av must be 
ontained in the subgraph G[Wa
℄, and hen
ev 2 Wa
. Similarly, we 
on
lude that v 2 Wbd. But this is impossible sin
e thesets Wa
 and Wbd are disjoint.If k = 1, then at least two edges of the 
y
le ab
d are 
ontained neither in thegraph G[Wa
℄ nor in the graph G[Wbd℄. Hen
e, G[W ℄ 
ontains at least 42 edges,namely 40 edges of the graphs G[Wa
℄ and G[Wbd℄, and at least two additionaledges of the 
y
le ab
d. But this is impossible be
ause G[W ℄ 
an 
ontain at most44� 3 � 1 = 41 edges by Euler's formula.If k = 7, then Wa
 = Wbd. Sin
e the graph G + a
 
ontains a 
lique on thevertex set Wa
 and b; d 2 Wa
, we infer that the verti
es b and d are joined by anedge in the graph G whi
h we already argued not to be the 
ase.Let us 
onsider the �nal 
ase that k = 6. Sin
e jWa
 \Wbdj = 6, at least oneof the verti
es b and d is 
ontained in the set Wa
. If both b and d are 
ontainedin the set Wa
, then they are adja
ent in G whi
h is not the 
ase. Similarly,the set Wbd 
ontains pre
isely one of the verti
es a and 
. Sin
e G[Wa
℄ + a
and G[Wbd℄ + bd are 
liques, all the eight verti
es of G[W ℄ are mutually adja
entex
ept for the two pairs of verti
es a, 
 and b, d. Insert now the edge a
 insidethe fa
e bounded by the 4-
y
le ab
d. In this way, we obtain an embedding ofK�8 (the 
omplete graph K8 without an edge) on the surfa
e �3 but Ringel [23℄7



showed that su
h an embedding does not exist.We ex
luded all the 
ases k = 0; : : : ; 7. Thus, G + a
 or G + bd does not
ontain K7 as a subgraph and so Claim 9.1 is established.If G is a triangulation, we set G0 to be the triangulation G itself. Otherwise,let G0 be one of the triangulations G + a
 or G + bd whi
h does not 
ontain K7as subgraph (at least one of them has this property by Claim 9.1). Note that G0may have a pair of parallel edges. The triangulation G0 has obviously minimumsimple degree at least six and it follows from Euler's formula that it is pre
iselysix.In the rest, we show that the small verti
es of G0 indu
e a Gallai forest.Assume the opposite. We show that G0 is 6-
hoosable whi
h 
ontradi
ts the fa
tthat G, whi
h is a subgraph of G0, is not 6-
hoosable. Fix a list 6-assignmentL of G. Let H be a 
omponent of the subgraph indu
ed by small verti
es ofG0 whi
h is not a Gallai tree. Sin
e G is a 
riti
al non-6-
hoosable graph, thegraph G n V (H) is 6-
hoosable. Color now its verti
es by 
olors from the listsL. In parti
ular, all the big verti
es of G0 are 
olored. For every v 2 V (H), letL0(v) be a subset of L(v) with the 
olors assigned to the big neighbors of v beingremoved. Sin
e H 
onsists solely of the small verti
es, the size of a list L0(v) is atleast degH(v). By Theorem 4, the graph H has an L0-
oloring. The L-
oloringof the verti
es of G n V (H) and the L0-
oloring of H form an L-
oloring of G |
ontradi
tion.In the next lemma, we show that a triangulation of �3 with minimum simpledegree six 
an 
ontain only few big verti
es:Lemma 10 If G is a triangulation with minimum simple degree six of the surfa
e�3, then G 
ontains at most six big verti
es. In parti
ular, ea
h big vertex isadja
ent to at least one small vertex. Moreover, if G 
ontains pre
isely six bigverti
es, then the degree of ea
h big vertex is seven.Proof: Let n be the number of verti
es of the graph G. By Euler's formula, thenumber of edges of G is pre
isely 3n+3. Hen
e, the sum of degrees of the verti
esof G is pre
isely 6n + 6. Therefore, the triangulation G 
an 
ontain at most sixbig verti
es (re
all that the minimum simple degree of G is six). In parti
ular,ea
h big vertex is adja
ent to a small vertex. If G 
ontains six big verti
es, thenthe degree of ea
h big vertex is seven.In the following three lemmas, we study more spe
i�
 properties of triangu-lations with minimum simple degree six:Lemma 11 Let G be a triangulation with minimum simple degree six of thesurfa
e �3. Suppose that G 
ontains a small vertex v whi
h is adja
ent only to8



big verti
es. Then, the graph G 
ontains exa
tly six big verti
es and ea
h bigvertex has degree seven.Proof: Sin
e the minimum simple degree of G is six, all the six big neighbors ofv must be distin
t. The rest of the statement of the lemma now readily followsfrom Lemma 10.Lemma 12 Let G be a triangulation with minimum simple degree six of thesurfa
e �3. Suppose that the small verti
es of G indu
e a Gallai forest F . Let vbe a big vertex of G and let w1w2w3 be a segment 
ontained in its neighborhood.If w1 and w3 are big verti
es and w2 is a small vertex, then the 
omponent H ofF whi
h 
ontains the vertex w2 is not isomorphi
 to K5.Proof: Sin
e the vertex w2 of H is adja
ent to three distin
t big verti
es in thetriangulation G (re
all that the simple degree of w2 is six), namely the verti
esv, w1 and w3, its degree in H is at most three. Hen
e, the Gallai tree H 
annotbe a 
lique of order �ve.Lemma 13 Let G be a triangulation with minimum simple degree six of thesurfa
e �3 whi
h does not 
ontain K7 as a subgraph. If the small verti
es indu
e aGallai forest F in G, then ea
h small vertex is adja
ent to at least two big verti
es.In parti
ular, the maximum degree of F is at most four and no 
omponent of Fis isomorphi
 to K6.Proof: Let v be an arbitrary small vertex 
ontained in a 
omponent H of F . Bythe assumption, H is a Gallai tree. If v is adja
ent only to small verti
es, then thevertex v and all its six small neighbors must be in the same blo
k of H. Hen
e,the Gallai tree H must 
ontain a 
lique of order seven. But this is impossiblebe
ause G does not 
ontain K7 as a subgraph. Hen
e, ea
h small vertex has atleast one big neighbor.Assume now for the sake of 
ontradi
tion that v has a single big neighbor v0.In parti
ular, degH(v) = 5. Sin
e G is a triangulation, then the vertex v is in thesame blo
k of H as its �ve small neighbors. Be
ause ea
h small vertex is adja
entto at least one big vertex, the maximum degree of H is at most �ve and H is2-
onne
ted. Hen
e, the vertex v and its �ve neighbors are the only verti
es ofH and so H is isomorphi
 to K6. In parti
ular, ea
h vertex of H is adja
ent toexa
tly one big vertex and thus there are exa
tly six edges between the verti
esof H and the big verti
es of G.Let w and w0 be the neighbors of v su
h that the triangulation G 
ontains thefa
es vv0w and vv0w0 (
f. Figure 1). Ea
h big vertex whi
h is adja
ent to a vertex9



vw0 v0w u
Figure 1: Notation used in the proof of Lemma 13.of H must be adja
ent to at least three verti
es of H sin
e G is a triangulationand ea
h vertex of H is adja
ent to exa
tly one big vertex. Hen
e, either there isa single big vertex adja
ent to all the verti
es of H, whi
h is isomorphi
 to K6,or there are two big verti
es, ea
h having exa
tly three neighbors in H. Sin
e Gdoes not 
ontain K7 as a subgraph, the former is impossible. Thus, the latterholds and v, w and w0 are the only neighbors of the big vertex v0 in H.Let u be a 
ommon neighbor of w and v0 di�erent from v so that the triangu-lation G 
ontains a fa
e v0wu (
f. Figure 1). Sin
e the only neighbors of v0 in Hare the verti
es v, w and w0, we 
on
lude that u is a big vertex. However, thenthe vertex w of H has two big neighbors u and v and so its degree in H is atmost four | 
ontradi
tion.In the last lemma of this se
tion, we show that if ea
h 
omponent indu
edby small verti
es in a triangulation 
onsists of at most �ve verti
es, then theminimum degree of a subgraph indu
ed by the big verti
es is at least two:Lemma 14 Let G be a triangulation with minimum simple degree six of thesurfa
e �3. If ea
h 
omponent of the subgraph of G indu
ed by the small verti
esof G 
onsists of at most �ve verti
es, then ea
h big vertex of G is in
ident withat least two edges joining it to other big verti
es.Proof: Suppose that the 
laim is false, i.e., there is a big vertex v of G in
identwith at most one edge leading to another big vertex. Let k be the numberof distin
t small verti
es adja
ent to v. Sin
e no small vertex is in
ident withparallel edges, k � 6. All the k small neighbors of v are 
ontained in the same
omponent H of the subgraph of G indu
ed by the small verti
es be
ause G isa triangulation. Hen
e, the number of verti
es of H is also at least six whi
h
ontradi
ts the assumption of the lemma.
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4 Gallai trees in triangulations with minimumsimple degree sixIn the previous se
tion, we have observed that we 
an restri
t our attention totriangulations of the surfa
e �3 in whi
h small verti
es indu
e a Gallai forest withmaximum vertex degree at most four. In this se
tion, we de�ne a weight and anextended weight of a Gallai tree with maximum degree at most four. This 
on
eptis used in the next se
tion to show that the small verti
es of triangulations 
anindu
e only Gallai forests of a restri
ted type. This 
on
ept is de�ned and it 
anbe used for all surfa
es.Fix a triangulation G of a surfa
e su
h that the minimum simple degree of Gis six. Let H be a 
omponent of the subgraph of G indu
ed by the small verti
es.Suppose that H is a Gallai tree. The weight of H in the triangulation G, denotedby wG(H), is equal to j�GHj where �GH is the set of edges between the verti
esof H and the rest of G. Notation �GH is also used for other subgraphs H of G.It is easy to observe that the following equality holds:wG(H) = Xv2V (H)(6� degH(v)). (1)In parti
ular, the weight of the Gallai tree H does not depend on a 
onsideredtriangulation G. Thus, we 
an de�ne the weight w(H) of H, independently of atriangulation G, as the sum in (1).We say that a fa
e f of a triangulation is big if exa
tly one vertex of f issmall, i.e., exa
tly two verti
es of f are big. The extended weight w+G(H) of H inthe triangulation G is equal to the weight of H in
reased by the number of bigfa
es 
ontaining a vertex of H. Note that the extended weight of the Gallai treeH 
ould depend on the triangulation G. We now de�ne the extended weight ofH, denoted by w+(H), to be the minimum of the extended weights w+G(H) for alltriangulations G with minimum simple degree six whi
h 
ontain H and do not
ontain K7 as a subgraph.Next, we establish some lower bounds on the extended weight of Gallai treeswith maximum vertex degree at most four. All our lower bounds will just dependon the stru
ture of a Gallai tree, i.e., neither of them will be related to a 
onsideredtriangulation. Our �rst lower bound (whi
h will be later improved) is presentedin the following proposition:Proposition 15 Let G be a triangulation with minimum simple degree six andlet H be a 
omponent of the subgraph of G indu
ed by the small verti
es. Supposethat H is a Gallai tree with maximum degree at most four. The extended weightof H in G is at least w�1 (H) wherew�1 (H) := w(H) + Xv2V (H) d+degH(v)11



(0a) (1a) (2a) (2b) (2
)
(3a) (3b) (3
) (4a) (4b) (4
)Figure 2: Possible neighborhoods (upto symmetry) of a small vertex of degreezero, one, two, three and four. The small verti
es are depi
ted by full 
ir
les andthe big verti
es by empty ones. The types of neighborhoods are labeled by pairs
onsisting of the number of its small neighbors and a letter.with d+0 = 6, d+1 = 4, d+2 = 2 and d+3 = d+4 = 0.Proof: Possible neighborhoods of a small vertex of degree zero, one, two, threeand four are depi
ted in Figure 2. It is easy to verify that a vertex v of a Gallai treeH with degH(v) = k must be 
ontained in at least d+k big fa
es. The statement ofthe proposition now readily follows from the de�nition of the extended weight.The label of a neighborhood in Figure 2 is said to be the type of the neigh-borhood of a small vertex v. This notion is to be used in the proof of the nextproposition in whi
h we improve the lower bound from Proposition 15 by realizingthat 
ertain types of neighborhoods 
annot appear next to ea
h other:Proposition 16 Let G be a triangulation with minimum vertex simple degree sixand let H be a 
omponent of the subgraph indu
ed by the small verti
es. Supposethat H is a Gallai tree with maximum degree at most four. Then, the extendedweight of H is at least w�2 (H) wherew�2 (H) := w�1 (H) + 2`13 + `23 + 4`14 + 2`24with `ij being the number of blo
ks of H whi
h are 
liques of order j, whi
h 
ontainpre
isely i 
ut-verti
es in H and at least one of these 
ut-verti
es has degreeexa
tly four in H.Proof: Let d+0 = 6, d+1 = 4, d+2 = 2 and d+3 = d+4 = 0 as de�ned in Proposi-tion 15. Consider a �xed blo
k B of the Gallai tree H whi
h is a 
lique of orderj, whi
h 
ontains exa
tly i 
ut-verti
es and su
h that at least one 
ut-vertex v12



of B has degree four in H. The statement of the proposition is implied by thede�nitions of w+(H) and w�1 (H) and by Claims 16.1{16.4 whi
h follow:Claim 16.1 If i = 1 and j = 3, then the internal verti
es of the blo
k B are
ontained in at least 2d+2 + 2 big fa
es.Sin
e v is a 
ut-vertex and B is a 
lique of order four, the neighborhood of vmust of type (4
). Then, the neighborhood of ea
h of the remaining two verti
esof B is of type (2a). Hen
e, the internal verti
es of B are 
ontained in at least6 = 2d+2 + 2 big fa
es.Claim 16.2 If i = 2 and j = 3, then the internal vertex of the blo
k B is
ontained in at least d+2 + 1 big fa
es.The type of the neighborhood of v must again be (4
). Then, the neighborhoodof the only internal vertex of B is of type (2a) and it is 
ontained in exa
tly3 = d+2 + 1 big fa
es.Claim 16.3 If i = 1 and j = 4, then the internal verti
es of the blo
k B are
ontained in at least 3d+3 + 4 big fa
es.Sin
e v is a 
ut-vertex, its neighborhood must be of type (4b). Then, the neigh-borhood of none of the remaining three verti
es of B is of type (3
) and at leastone is of type (3a). Hen
e, the internal verti
es of B are 
ontained in at least4 = 3d+3 + 4 big fa
es.Claim 16.4 If i = 2 and j = 4, then the internal verti
es of the blo
k B are
ontained in at least 2d+3 + 2 big fa
es.The type of the neighborhood of v must again be (4b). Then, the neighborhoodsof the two internal verti
es of B 
an be only of types (3a) and (3b). Hen
e, theinternal verti
es of B are 
ontained in at least 2 = 2d+3 + 2 big fa
es.Finally, we de�ne w�(H) for a Gallai tree H with maximum degree at mostfour as follows: w�(H) = 8><>: 16 if H = K4,13 if H = K5 andw�2 (H) otherwise.The weights w(H) and the bounds w�(H) of all Gallai trees H with maximumdegree at most four and with w�(H) � 32 
an be found in Figure 3 (it is straight-forward to verify that all Gallai trees with this property are depi
ted in the �gure;we avoid this veri�
ation in order to keep the paper short). In the next lemma,we show that w�(H) is a lower bound on the extended weight of a Gallai tree H:13



w = 6w� = 12 w = 10w� = 18 w = 12w� = 18 w = 12w� = 16 w = 10w� = 13 w = 20w� = 30
w = 14w� = 24 w = 16w� = 24 w = 16w� = 24 w = 18w� = 30
w = 18w� = 30 w = 18w� = 30 w = 20w� = 30 w = 20w� = 30

w = 20w� = 30 w = 22w� = 30 w = 20w� = 30Figure 3: The weights w(H) and the values of the bound w�(H) of all Gallaitrees H with maximum degree at most four and with w�(H) � 32.
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Lemma 17 For ea
h Gallai tree H with maximum degree at most four, the fol-lowing inequality holds: w�(H) � w+(H).Proof: Let G be an arbitrary triangulation with minimum simple vertex degreesix whi
h does not 
ontain K7 as a subgraph su
h that one of the 
omponentsof the subgraph of G indu
ed by the small verti
es is isomorphi
 to H. We showthat w�(H) � w+G(H) whi
h implies the statement of the lemma.If the Gallai tree H is isomorphi
 to neither K4 nor K5, then w�(H) =w�2 (H) � w+G(H) by Proposition 16. So, we 
an assume that H is a 
liqueof order four or �ve. Let n be this order. Consider the (embedded) graph G0obtained from the triangulation G by removing the verti
es of H and let f bethe fa
e of G0 in whi
h H was embedded. Note that sin
e G is a triangulation,the fa
e f is uniquely determined. The degree of ea
h big vertex of G 
an bede
reased by at most n be
ause the minimum simple degree of G is six and onlyn small verti
es of G were removed. The fa
e f is in
ident with at least 7 � nbig verti
es be
ause ea
h vertex of H is adja
ent to six distin
t verti
es. If thefa
e f is in
ident with pre
isely 7 � n big verti
es, then the n verti
es of H areadja
ent to the same 7� n big verti
es and they altogether form a 
opy of K7 inG. Therefore, f is in
ident with at least 8 � n big verti
es. Hen
e, the sum ofthe lengths of all the fa
ial walks of f is at least 8�n. Ea
h edge of a fa
ial walkof f is 
ontained in a big fa
e of G whi
h 
ontains a small vertex of H (re
allthat G is a triangulation of the surfa
e and we removed only some of its smallverti
es). We 
an now 
on
lude that w+G(H) � wG(H)+ (8�n) = w(H)+ 8�n.In parti
ular, if n = 4, then w+G(H) � 12 + 8 � 4 = 16 and if n = 5, thenw+G(H) � 10 + 8� 5 = 13.In the next lemma, we des
ribe a relation between the number of big verti
esand the weights and the extended weights of the 
omponents of a Gallai forestindu
ed by small verti
es:Lemma 18 Let G be a triangulation with minimum simple degree six of thesurfa
e �3 su
h that G does not 
ontain K7 as a subgraph. Suppose that thesmall verti
es of G indu
e a Gallai forest F with maximum degree at most fourwhi
h 
onsists of k 
omponents H1; : : : ; Hk. If b is the number of big verti
es ofG, then w�(H1) + � � � + w�(Hk) � 6b + 6. In addition, if ea
h 
omponent Hi,1 � i � k, 
ontains at most �ve verti
es, then w(H1) + � � �+ w(Hk) � 4b + 6.Proof: Let mS be j�GF j, i.e., the number of edges between the big verti
es andthe small verti
es, and letmB be the number of edges between the big verti
es. ByEuler's formula, the sum of degrees of the big verti
es of G is mS+2mB = 6b+6.The sum of j�GF j and the number of big fa
es of G is exa
tly w+G(H1)+ � � �+w+G(Hk), i.e., the sum of extended weights of the Gallai trees H1; : : : ; Hk in G.15



By Lemma 17, this sum is at least w�(H1) + � � �+ w�(Hk). On the other hand,the number of big fa
es is at most 2mB be
ause ea
h big fa
e is in
ident with anedge joining two big verti
es and an edge joining two big verti
es 
an be in
identwith at most two big fa
es. Therefore:w�(H1) + � � �+ w�(Hk) � w+G(H1) + � � �+ w+G(Hk) � mS + 2mB = 6b+ 6.In order to prove the se
ond part of the 
laim, assume that ea
h Gallai treeHi, 1 � i � k, 
ontains at most �ve verti
es. Ea
h big vertex is in
ident with atleast two edges joining it to other big verti
es by Lemma 14. Consequently, thenumber j�GF j of edges between the small verti
es and the big verti
es is at most6b+6� 2b = 4b+6. Sin
e j�GF j is equal to the sum of the weights of the Gallaitrees H1; : : : ; Hk, we 
on
lude that w(H1) + � � �+ w(Hk) � 4b + 6.
5 Triangulations of the surfa
e �3As we have already noted, we 
an restri
t our attention to triangulations of thesurfa
e �3 with minimum simple degree six in whi
h the small verti
es indu
e aGallai forest. In this se
tion, we study a possible stru
ture of su
h triangulationsand their Gallai forests.Lemma 19 Let G be a triangulation with minimum simple degree six of thesurfa
e �3 whi
h does not 
ontain K7 as a subgraph. Suppose that the smallverti
es indu
e a Gallai forest F in G. Then, F has at most three 
omponents.Proof: By Lemma 13, the maximum degree of of F is at most four. Note thatw�(H) � 12 for ea
h 
omponent H of F (
f. Figure 3). The triangulation G
ontains at most six big verti
es by Lemma 10. Therefore, we 
an infer fromLemma 18 that the sum of w�(H) for all 
omponents H of F is at most 42.Hen
e, F 
an have at most three 
omponents.In the next lemma, we des
ribe a stru
ture of Gallai forests with two 
ompo-nents in triangulations whi
h we are interested in:Lemma 20 Let G be a triangulation with minimum simple degree six of thesurfa
e �3 whi
h does not 
ontain K7 as a subgraph. Suppose that the smallverti
es indu
e a Gallai forest F in G with two 
omponents H1 and H2. Then,at least one of the following holds:� H1 or H2 is isomorphi
 to K1, 16



� both H1 and H2 are 
liques of order between two and �ve, or� H1 is a 
lique of order between two and �ve, H2 
ontains a vertex of degreeone (or vi
e versa) and G has pre
isely six big verti
es.Proof: Ea
h of the Gallai trees H1 and H2 has maximum degree at most fourby Lemma 13. If H1 or H2 is isomorphi
 to K1, then the lemma 
learly holds.Let us assume in the rest that neither H1 nor H2 is isomorphi
 to K1. Notethat by Lemma 10 there are at most six big verti
es. Hen
e, Lemma 18 impliesthe inequality w�(H1) + w�(H2) � 42. Sin
e the extended weight of a Gallaitree with maximum degree at most four whi
h is not a 
lique is at least 24 (
f.Figure 3), we 
on
lude that at least one of H1 and H2 is a 
lique.If both H1 and H2 are 
liques, the forest F is of the desired form. Hen
e,assume that H1 is a 
lique but H2 is not. Sin
e H1 is a 
lique of order 2, 3, 4 or 5,we infer that w�(H1) � 13 and hen
e w�(H2) � 29. Thus, w�(H2) = 24 and soH2 must 
ontain a vertex of degree one (
f. Figure 3). Sin
e w�(H1)+w�(H2) �37, there are exa
tly six big verti
es by Lemmas 10 and 18. This 
ompletes theproof of the lemma.Finally, we show that if a Gallai forest indu
ed by the small verti
es hasexa
tly three 
omponents, then at least two of them are isomorphi
 to K1:Lemma 21 Let G be a triangulation with minimum simple degree six of thesurfa
e �3 whi
h does not 
ontain K7 as a subgraph. Suppose that the smallverti
es indu
e a Gallai forest F in G with three 
omponents H1, H2 and H3 andthat G 
ontains a vertex with a simple degree at least seven. Then, at least twoof H1, H2 and H3 are isomorphi
 to K1.Proof: The maximum degree of ea
h of the Gallai trees H1, H2 and H3 is atmost four by Lemma 13 and thus ea
h of w�(H1), w�(H2) and w�(H3) is at leasttwelve (
f. Figure 3). Sin
e the number of big verti
es of G is at most six byLemma 10, we 
an infer from Lemma 18 that the sum of w�(H1), w�(H2) andw�(H3) 
an be at most 42. Therefore, ea
h of w�(H1), w�(H2) and w�(H3) is atmost 42� 2 � 12 = 18. Hen
e, all the Gallai trees H1, H2 and H3 must be 
liquesof order at most �ve (
f. Figure 3).In the rest of the proof, we show in a series of 
laims that at least two of the
liques H1, H2 and H3 are of order one. This will establish the lemma.Claim 21.1 If none of the 
liques H1, H2 and H3 is of order one, then all ofthem have order �ve.Assume that the order of ea
h of the 
liques H1, H2 and H3 is distin
t fromone. Note �rst that the weights of the 
liques K2 and K5 are equal to 10 and17



the weights of the 
liques K3 and K4 are equal to 12. Sin
e ea
h of H1, H2and H3 has at most �ve verti
es, the sum of their weights 
an be at most 30by Lemmas 10 and 18. Hen
e, ea
h of the 
liques H1, H2 and H3 is isomorphi
to K2 or K5. Re
all that w�(K2) = 18 and w�(K5) = 13. If at least one ofthe 
liques is of order two, then the sum w�(H1) + w�(H2) + w�(H3) is at least18 + 13 + 13 = 44 > 42 | 
ontradi
tion. Hen
e, all the 
liques H1, H2 and H3are isomorphi
 to K5.Claim 21.2 The order of at least one of the 
liques H1, H2 and H3 is not �ve.Assume for 
ontradi
tion that orders of all the 
liques H1, H2 and H3 are �ve.Then, w(H1)+w(H2)+w(H3) = 30. In other words, j�GF j = 30. By Lemmas 10and 18, the graph G 
ontains exa
tly six big verti
es and thus the degree of ea
hbig vertex is seven. Let further HB be the subgraph of G indu
ed by the bigverti
es. By Lemma 14, the degree of ea
h vertex in HB is at least two, i.e., ea
hbig vertex is adja
ent to at most �ve small verti
es. Sin
e the number of edgesbetween the small and big verti
es is 30, ea
h big vertex is adja
ent to exa
tly�ve small verti
es and thus the multigraph HB is 2-regular, i.e., HB is a union of
y
les.Sin
e G is a triangulation and the small verti
es indu
e a Gallai forest withthree 
omponents, the embedding of HB on �3 obtained from the triangulationG by removing the 
liques H1, H2 and H3 has at least three fa
es, namely thefa
es whi
h originally 
ontained embeddings of H1, H2 and H3. Hen
e, HB must
onsist of at least two disjoint 
y
les be
ause it is 2-regular. The graphHB 
annot
onsist of more than three 
y
les be
ause it has six verti
es. If HB 
onsists ofexa
tly three 
y
les, then it is formed by three 
y
les of length two. Sin
e thedegree of ea
h big vertex in G is seven, its simple degree is six. This 
ontradi
tsthe assumption of the lemma that G 
ontains a vertex with simple degree at leastseven. Hen
e, we 
an 
on
lude that HB 
onsists of exa
tly two 
y
les. Moreover,it 
onsists of either two 
y
les of length three or a 
y
le of length two and a 
y
leof length four.The embedding of HB 
an have at most three fa
es. Re
all that the subgraphindu
ed by the small verti
es has three 
omponents. So, the embedding of HBhas exa
tly three fa
es. Observe that the 
liques H1, H2 and H3 were drawn indi�erent fa
es of HB be
ause G is a triangulation. Let fi, i = 1; 2; 3, be the fa
eof HB in whi
h the 
lique Hi was drawn.If HB 
onsists of a 
y
le of length two and a 
y
le of length four, the boundaryof one of the fa
es of HB, say the fa
e f1, is formed by two big verti
es b1 and b2whi
h are joined by two parallel edges. The verti
es of the 
lique H1 drawn inthe fa
e f1 
an be adja
ent only to the verti
es b1 and b2 and sin
e the minimumsimple degree ofG is six, ea
h vertex ofH1 is adja
ent to both b1 and b2 (re
all thatH1 is a 
lique of order �ve). Then, the verti
es of H1 together with the verti
es b1and b2 form a subgraph of G whi
h is isomorphi
 to K7, a 
ontradi
tion. Hen
e,the graph HB must 
onsist of vertex-disjoint two 
y
les of length three.18



Let b1b2b3 and b01b02b03 be the two 
y
les of HB. We 
an assume without loss ofgenerality that the boundary of f1 is formed by the 3-
y
le b1b2b3, the boundaryof f2 by the 3-
y
les b1b2b3 and b01b02b03 and the boundary of f3 by the 3-
y
leb01b02b03.Let n1i , i = 1; 2; 3, be the number of neighbors of the vertex bi in the 
liqueH1 and n2i the number of neighbors of bi in H2. Observe that n1i +n2i = 5 for ea
hi = 1; 2; 3 be
ause the degree of bi in G is seven. Sin
e the fa
e f1 
ontained the
lique H1, the fa
e f2 
ontained the 
lique H2 and G is a triangulation, ea
h ofthe numbers n1i and n2i is non-zero. By Lemma 12, we have n1i 6= 1 and n2i 6= 1.Hen
e, ea
h of them is either 2 or 3. In parti
ular, n11 + n12 + n13 � 9. But this isimpossible be
ause the sum n11+n12+n13 should be equal to the weight w(K5) = 10of the 
lique H1 | 
ontradi
tion.Claim 21.3 At least one of the 
liques H1, H2 and H3 is isomorphi
 to K1.The above 
laim dire
tly follows from Claims 21.1 and 21.2.Claim 21.4 At least two of the Gallai trees H1, H2 and H3 are isomorphi
 toK1.By Claim 21.3, we 
an assume that H1 
onsists of a single small vertex v0.Assume for 
ontradi
tion that both H2 and H3 are 
liques of order at leasttwo. Then, the weights w(H2) and w(H3) are at least 10. Sin
e G is a tri-angulation, the big neighbors b1; : : : ; b6 of the vertex v0 form a 6-
y
le C, sayC = b1b2b3b4b5b6. Let w1; : : : ; w24 be the other neighbors of the big verti
es sothat w4i�3; w4i�2; w4i�1; w4i are the neighbors of the big vertex bi in the orderdepi
ted in Figure 4. Note that the verti
es w1; : : : ; w24 are not ne
essarily alldistin
t, e.g., w1 = w24, and some of them 
ould be neighbors of the vertex v0.In the rest of the proof, edges whi
h join two big verti
es and whi
h are notin
luded in the 
y
le C are 
alled diagonals. The big verti
es b1; : : : ; b6 are joinedto the small verti
es of H2 and H3 by pre
isely w(H2) + w(H3) edges. Hen
e,besides the edges of the 
y
le C, there are (24 � w(H2) � w(H3))=2 diagonals.Hen
e, there are at most two diagonals. On the other hand, there is at least onediagonal: Otherwise, sin
e G is a triangulation, all the verti
es w1; : : : ; w24 aresmall and thus they are 
ontained in the same 
omponent of the Gallai forest F .Then, F has only two 
omponents.We �rst 
onsider the 
ase that there is exa
tly one diagonal. Hen
e, there areexa
tly two indi
es i and i0, 1 � i < i0 � 24, su
h that wi and wi0 are big verti
es.Then, the verti
es wi+1; : : : ; wi0�1 are small verti
es of the same Gallai tree, sayH2, and wi0+1; : : : ; w24; w1; : : : ; wi�1 are small verti
es of the other Gallai tree H3.In addition, the weight of one of H2 and H3 is 12 and the weight of the other oneis 10. We may assume that w(H2) = 12 and w(H3) = 10. In parti
ular, both H2and H3 are 
liques and i0 � i� 1 = w(H2) = 12 (modulo 24).19



v0b1 b2b3b4b5 b6w1 w2 w3 w4 w5w6w7w8w9w10w11w12w13w14w15w16w17w18w19w20w21w22w23w24

Figure 4: Notation used in Claim 21.4.

v0b1 b2b3b4b5 b6 v0b1 b2b3b4b5 b6 v0b1 b2b3b4b5 b6
Figure 5: Possible 
on�gurations from the proof of Claim 21.4 in the 
ase thatthere is a single diagonal. Edges joining two big verti
es are drawn as bold.
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There are three possible 
on�gurations (upto symmetry) of the edges betweenthe small verti
es and the big ones in the neighborhood of the vertex v0 whi
hare depi
ted in Figure 5. Note that the vertex b2 in ea
h 
on�guration is adja
entto four verti
es of H2 and thus H2 is a 
lique of order at least four. Sin
e theweight of H2 is 12, the 
lique H2 has order four. Similarly, the vertex b5 in ea
h
on�guration is adja
ent to four verti
es of H3 and thus H3 must be a 
lique oforder �ve. The left and the middle 
on�gurations depi
ted in Figure 5 
annotappear in a triangulation: In order to see this, 
onsider the fa
e b1b6w1 = b1b6w24where the vertex w1 = w24 should be simultaneously big and small. The right
on�guration 
annot appear in G by Lemma 12 be
ause the neighbor w1 of thebig vertex b1 
annot be 
ontained in the Gallai tree isomorphi
 to K5.Let us 
onsider now the remaining 
ase that there are two diagonals. Hen
e,ea
h of H2 and H3 has weight 10, in parti
ular, ea
h of them is isomorphi
 to K2or K5.In this paragraph, we show that there 
annot be two big verti
es su
h thatea
h of them has four neighbors in H2 (the analogous statement also holds forH3). Assume for 
ontradi
tion that there are su
h two big verti
es bi and bi0 .Sin
e the 
lique H2 has at least four verti
es, its order must be �ve. Re
allnow that w(H2) = 10. By Lemma 12, the two edges whi
h join the verti
es ofH2 and the big verti
es and whi
h are in
ident neither with bi nor bi0 must bein
ident with the same big vertex. Let bi00 be this big vertex. By symmetry, we
an assume that i = 1. Sin
e G is a triangulation, ea
h of the big verti
es b6and b2 is adja
ent to a vertex of H2 (note that w24 = w1 and w4 = w5). Thus,fi0; i00g = f2; 6g. By symmetry, we 
an assume that i00 = 6 and i0 = 2. Again,sin
e G is a triangulation, the big vertex b3 is adja
ent to a vertex of H2 (notethat w8 = w9). But this is impossible be
ause bi = b1, bi0 = b2 and bi00 = b6 arethe only big verti
es adja
ent to a vertex of H2.Sin
e there are only two diagonals, at least two big verti
es b2 and b3 areadja
ent to four small verti
es di�erent from the vertex v0. As we have shown inthe previous paragraph, the big verti
es b2 and b3 
annot be adja
ent to verti
esof the same 
lique. Hen
e, we 
an assume that b2 is adja
ent to four verti
es ofthe 
lique H2 and b3 is adja
ent to four verti
es of the 
lique H3. Sin
e ea
h ofthe 
liques H2 and H3 has at least four verti
es, the order of both of them is �ve(re
all that we showed that ea
h of H2 and H3 is isomorphi
 to K2 or K5).By Lemma 12, no big vertex has a single neighbor in H2. Thus, ea
h bigvertex has either no neighbor in H2 or it has at least two neighbors in H2. Sin
ethere 
annot be two big verti
es with four neighbors in H2, only the followingtwo 
on�gurations 
an appear:� There is a big vertex, namely the vertex b2, adja
ent to pre
isely four ver-ti
es of the 
lique H2 and there are other two big verti
es ea
h adja
ent topre
isely three verti
es of the 
lique H2.� There is a big vertex, namely the vertex b2, adja
ent to pre
isely four ver-21



v0b1 b2b3b4b5 b6
Figure 6: The only possible 
on�guration from the proof of Claim 21.4 in the
ase that there are two diagonals. The diagonals are drawn as bold.ti
es of the 
lique H2 and there are other three big verti
es ea
h adja
entto pre
isely two verti
es of the 
lique H2.We show that the latter is impossible: Let b, b0 and b00 be the three big verti
esadja
ent to two verti
es of H2. Sin
e G is a triangulation, ea
h of the verti
esb, b0 and b00 must be in
ident with at least one diagonal. If it is in
ident withjust a single diagonal, then it is adja
ent to pre
isely one vertex of H3 whi
h isimpossible by Lemma 12. Hen
e, ea
h of the verti
es b, b0 and b00 is in
ident withtwo diagonals and 
onsequently, there must be at least three diagonals. But weassumed that there are only two diagonals. So, the big vertex b2 is adja
ent tofour verti
es of the 
lique H2 and there are other two big verti
es ea
h adja
entto three verti
es of the 
lique H2. Similarly, the big vertex b3 is adja
ent to fourverti
es of the 
lique H3 and there are other two big verti
es ea
h adja
ent tothree verti
es of the 
lique H3.Sin
e G is a triangulation, the two big verti
es adja
ent to three verti
es ofH2 must be neighbors of the vertex b2 in the 6-
y
le C. An analogous statementholds for H3 and the vertex b3. By symmetry, we 
an assume that the vertex b2is the big vertex b1 and the two big verti
es adja
ent to pre
isely three verti
esof H2 are the big verti
es b6 and b2. Then, b3 must 
oin
ide with the big vertexb4 and ea
h of the verti
es b3 and b5 is adja
ent to three verti
es of H3. This
on�guration is depi
ted in Figure 6. Sin
e G is a triangulation, the bold edgesin
ident with the verti
es b2 and b3 in Figure 6 must lead to the same big vertex,but there is no big vertex in G in
ident with two su
h edges | 
ontradi
tion.This 
ompletes the proof of Claim 21.4.
6 List 
olorings of triangulations of �3As we have already seen, in order to prove our 
hoosability result, it is enough torestri
t our attention to triangulations of the surfa
e �3 with minimum simpledegree six in whi
h small verti
es indu
e a Gallai forest of a 
ertain spe
ial type22



and whi
h does not 
ontain K7 as a subgraph. In this se
tion, we prove thatgraphs of this type embedded on the surfa
e �3 are 6-
hoosable. In Se
tion 7, we
ombine the results of Se
tion 5 and the results of this se
tion to 
on
lude thatif a graph embedded on the surfa
e �3 does not 
ontain K7 as a subgraph, thenit is 6-
hoosable.In some of our proofs, we �rst 
olor big verti
es of the triangulation and thenwe try to extend this 
oloring to small verti
es. The following four propositionwill help us in this task:Proposition 22 Let G be a graph with minimum simple degree six, L a list 6-assignment of G and S the vertex set of a 
omponent of the subgraph of G indu
edby the small verti
es. Suppose that some of the big verti
es are pre
olored so thatthere is a big vertex b adja
ent to a small vertex s0 2 S su
h that b is 
oloredwith a 
olor � 62 L(s0). Then, the pre
oloring of the big verti
es 
an be extendedto all the verti
es of S.Proof: Let L0(s) for ea
h s 2 S be the list of the 
olors of L(s) whi
h are notused to 
olor the big neighbors of s. Note that jL0(s)j � degG[S℄(s) for ea
h vertexs 2 S and jL0(s0)j > degG[S℄(s0). Hen
e, there exists an L0-
oloring of G[S℄ byTheorem 3. This L0-
oloring is the sought extension of the pre
oloring to S.Similarly as Proposition 22, one 
an prove the following two propositions:Proposition 23 Let G be a graph with minimum simple degree six, L a list 6-assignment of G and S the vertex set of a 
omponent of the subgraph of G indu
edby the small verti
es. Suppose that some of the big verti
es are pre
olored so thatthere is a small vertex s0 2 S adja
ent to two big verti
es whi
h are 
olored withthe same 
olor. Then, the pre
oloring of the big verti
es 
an be extended to allthe verti
es of S.Proposition 24 Let G be a graph with minimum simple degree six, L a list 6-assignment of G and S the vertex set of a 
omponent of the subgraph of G indu
edby the small verti
es. Suppose that some of the big verti
es are pre
olored so thatthere is a small vertex s0 2 S adja
ent to a big vertex b so that b is not 
olored.Then, the pre
oloring of the big verti
es 
an be extended to all the verti
es of S.The last of our propositions requires a di�erent proof:Proposition 25 Let G be a graph with minimum simple degree six, L a list 6-assignment of G and S the vertex set of a 
omponent of the subgraph of G indu
edby the small verti
es. Suppose that G[S℄ is a 
lique and there exist two verti
ess1 and s2 of S and a 
olor � su
h that � 2 L(s1), � 62 L(s2) and no big neighborof s1 is 
olored with �. Then, the pre
oloring of the big verti
es 
an be extendedto all the verti
es of S. 23



Proof: Let L0(s) for ea
h s 2 S be the list of the 
olors of L(s) not used to 
olorall the big neighbors of s. Note that jL0(s)j � degG[S℄(s) for ea
h vertex s 2 Sand L0(s1) 6= L0(s2). Hen
e, there exists an L0-
oloring of G[S℄ by Theorem 4.This L0-
oloring is the desired extension of the pre
oloring.Let us remark that Propositions 22{25 
an be easily reformulated for list k-assignments for any k � 1. We keep them in the above form in order to makemore 
lear their appli
ations in the proofs of Lemmas 26{30.In the rest of this se
tion, we prove Lemmas 26{30 in whi
h we deal with alltypes of triangulations of �3 whi
h were des
ribed in Se
tion 5. The 
ourse of theproofs of these lemmas is more or less the same: We �x a 6-list assignment L of atriangulation G of �3 and assume that G has no L-
oloring. In the rest of ea
h ofthe proofs, we pro
eed in a series of 
laims. We �rst show L(s) = L(b) for mostpairs of a small vertex s and a big vertex b whi
h are adja
ent. Then, we dedu
ethat G 
ontains pre
isely six big verti
es and they 
an be grouped into three pairsso that the verti
es of ea
h pair have the same list. Based on the stru
ture ofthe triangulation and the list assignment, we eventually �nd an L-
oloring of Gwhi
h 
ontradi
ts our original assumption that there is no L-
oloring. Althoughit might seem at the �rst sight that the proofs of the lemmas are essentially thesame, the arguments used to establish the 
laims are di�erent.The �rst 
ase whi
h we 
onsider is that small verti
es indu
e a Gallai tree:Lemma 26 Let G be a triangulation with minimum simple degree six of thesurfa
e �3 su
h that G does not 
ontain K7 as a subgraph. If the verti
es ofdegree six indu
e a Gallai tree in G, then G is 6-
hoosable.Proof: Suppose that the 
laim of the lemma is false. Fix a triangulation G,whi
h has the properties des
ribed in the statement of the lemma, and a list6-assignment L su
h that G has no L-
oloring. Let S be the set of small verti
esof G and B the set of big verti
es of G. Note that jBj � 6 by Lemma 10.Claim 26.1 Let s 2 S and b 2 B be two adja
ent verti
es in G. Then, L(s) =L(b).Assume the opposite and let s 2 S and b 2 B be two adja
ent verti
es withL(s) 6= L(b). Color �rst the vertex b with a 
olor � 2 L(b) n L(s). Then, 
olorproperly the remaining (at most �ve) big verti
es by 
olors from their lists. Thisis possible be
ause ea
h vertex has a list of six available 
olors. By the 
hoi
e ofthe 
olor of the vertex b, the 
oloring of the big verti
es 
an be extended to anL-
oloring of G by Proposition 22 | 
ontradi
tion.Claim 26.2 Let b be a big vertex. Then, there exists a big vertex b0 6= b withL(b) = L(b0). 24



Sin
e the minimum simple degree ofG is six and there are at most six big verti
es,the vertex b is adja
ent to a small vertex s. Sin
e ea
h small vertex is adja
entto at least two big verti
es by Lemma 13, there exists a big vertex b0 6= b whi
his adja
ent to s. Then, L(b) = L(s) = L(b0) by Claim 26.1.Claim 26.3 There exist three big verti
es whose lists are mutually distin
t.Assume the opposite and let L1 and L2 be two lists su
h that the list of ea
h bigvertex is L1 or L2. Sin
e ea
h small vertex s is adja
ent to a big vertex, the listof s must be L1 or L2 by Claim 26.1. Hen
e, the list of ea
h vertex of G is L1or L2. By Theorem 1, the triangulation G is 6-
olorable. Therefore, G has anL-
oloring by Lemma 6 | 
ontradi
tion.Claim 26.4 The graph G 
ontains pre
isely six big verti
es. Moreover, there isan ordering of the big verti
es b1, b2, b3, b4, b5 and b6 so that L(b1) = L(b2),L(b3) = L(b4) and L(b5) = L(b6) and the lists of any other pair of the big verti
esare distin
t.The 
laim dire
tly follows from Claims 26.2 and 26.3 and the fa
t that jBj � 6.Claim 26.5 Ea
h small vertex is adja
ent to pre
isely two big verti
es. In par-ti
ular, the graph G[S℄ must be a 
lique of order �ve.Ea
h small vertex is adja
ent to at least two big verti
es by Lemma 13. ByClaims 26.1 and 26.4, it 
an be adja
ent to at most two big verti
es. Hen
e, ea
hsmall vertex is adja
ent to pre
isely two big verti
es and it is adja
ent to exa
tlyfour small verti
es. Sin
e the only 4-regular Gallai tree is K5, the graph G[S℄must be a 
lique of order �ve.Claim 26.6 The graph G has an L-
oloring.Let b1, b2, b3, b4, b5 and b6 be the big verti
es ordered as in Claim 26.4. Let s1 ands3 be small neighbors of the verti
es b1 and b3, respe
tively. Su
h verti
es s1 ands3 exist be
ause the minimum simple degree of G is six. By Claim 26.1, L(s1) =L(b1) and L(s3) = L(b3). So, L(s1) 6= L(s3). Choose a 
olor � 2 L(s3) n L(s1).Color properly the two big neighbors b3 and b4 of s3 by 
olors from their listsdi�erent from the 
olor � and the remaining big verti
es by arbitrary 
olors fromtheir lists. Sin
e G[S℄ is a 
lique of order �ve by Claim 26.5, no big neighbor ofthe vertex s3 is 
olored with the 
olor � and � 62 L(s1), it follows that the 
oloringof the big verti
es 
an be extended to an L-
oloring of G by Proposition 25.The se
ond 
ase whi
h we 
onsider is that small verti
es indu
e a Gallai forestwith two 
omponents su
h that at least one of the 
omponents is a single vertex:25



Lemma 27 Let G be a triangulation with minimum simple degree six of thesurfa
e �3 whi
h does not 
ontain K7 as a subgraph. If the small verti
es indu
ea Gallai forest in G with pre
isely two 
omponents su
h that at least one of themis isomorphi
 to K1, then the graph G is 6-
hoosable.Proof: Suppose that the statement of the lemma is false. Fix a triangulationG of �3, whi
h satisfy the assumptions of the lemma, and a list 6-assignment Lsu
h that G has no L-
oloring. Let B be the set of big verti
es of G and S theset of small verti
es of G. Let s0 be further an isolated vertex of G[S℄ and letS0 = S n fs0g. Finally, let B0 � B be the set of big verti
es adja
ent to at leastone vertex of S0. By Lemma 11, there are pre
isely six big verti
es and thus ea
hbig vertex is adja
ent to the vertex s0. On the other hand, there are also twonon-adja
ent big verti
es: Otherwise, G[B℄ is a 
lique and so G[B [ fs0g℄ is a
lique of order seven.Claim 27.1 If s 2 S0 and b 2 B0 are adja
ent verti
es, then L(s) = L(b).Assume the opposite and let s 2 S0 and b 2 B0 be two adja
ent verti
es withL(s) 6= L(b). Color �rst the vertex b by a 
olor � 2 L(b) n L(s). Let b0 6= b be avertex of G[B℄ whi
h is not adja
ent to all the big verti
es. Su
h a vertex existsas explained above. Color properly the vertex s0 by a 
olor from its list and thenthe remaining big verti
es one by one by 
olors from their lists so that the vertexb0 is 
olored as the last one. This is possible sin
e when we 
olor ea
h of theseverti
es, at most �ve of its neighbors are previously 
olored. By the 
hoi
e of the
olor of the vertex b, this 
oloring 
an be extended to an L-
oloring of the verti
esof S0 by Proposition 22. So, we obtain an L-
oloring of G | 
ontradi
tion.Claim 27.2 There are three verti
es of B0 whose lists are mutually distin
t.Assume the opposite and let L1 and L2 be two lists su
h that the list of ea
hvertex of B0 is L1 or L2. By Claim 27.1 and Lemma 13, the list of ea
h vertex ofS0 is also L1 or L2.We �rst 
onsider the 
ase that all the verti
es of S0[B0 have the same list, sayL0, i.e., L0 = L1 or L0 = L2. If L(s0) 6= L0, then 
olor the verti
es of G[S0 [B0℄by 
olors from their lists so that at least one big neighbor of s0 is 
olored with a
olor � 2 L0 nL(s0). Lemma 7 implies that this is possible be
ause G[S0 [B0℄ is6-
olorable by Theorem 1 and all verti
es of S0 [B0 has the same list L0. Next,
olor properly the remaining big verti
es by 
olors from their lists (note that the
olored neighbors of ea
h vertex from B n B0 are only big verti
es and hen
e itis adja
ent to at most �ve 
olored verti
es). Sin
e one of the neighbors of thevertex s0 is 
olored with a 
olor � 62 L(s0), we 
an now 
olor the vertex s0 by a
olor from its list. Thus, we obtain an L-
oloring of G | 
ontradi
tion.If L(s0) = L0, then s0 has a big neighbor b with L(b) 6= L(s0): Otherwise, allthe verti
es of G have the same list and thus G has an L-
oloring by Theorem 1.26



It follows from our assumption that the lists of all the verti
es of S0 [B0 are thesame that b 62 B0. Fix a 
olor � 2 L(b) n L(s0). Sin
e all the verti
es of S0 [ B0have the same list L0 and the graph G[S0 [ B0℄ is 6-
olorable by Theorem 1, we
an 
olor the verti
es of G[S0 [ B0℄ by 
olors from their lists. Afterwards, 
olorthe vertex b by � (re
all that � 62 L0 and L0 = L(s0)). Next, 
olor properly theremaining big verti
es by 
olors from their lists. Note that the 
olored neighborsof ea
h vertex from B n B0 are only big verti
es and hen
e it is adja
ent to atmost �ve 
olored verti
es. Finally, 
olor the vertex s0. This is possible be
ausea neighbor of s0 in G is 
olored with a 
olor � 62 L(s0). Thus, we obtain anL-
oloring of G | 
ontradi
tion.The �nal 
ase to 
onsider is that the lists of all the verti
es of S0 [ B0 arenot the same, in parti
ular L1 6= L2. Assume without loss of generality thatL(s0) 6= L1. Let � 2 L1 n L(s0) and let b1 2 B0 be a big vertex with L(b1) = L1.The existen
e of a vertex b1 follows from Claim 27.1. Fix a 
oloring of G[S0[B0℄su
h that the 
olor of the vertex b1 is �. Su
h a 
oloring exists by Lemma 7.Next, 
olor the remaining big verti
es by 
olors from their lists. This is possiblebe
ause the 
olored neighbors of ea
h vertex from BnB0 are only big verti
es andhen
e it is adja
ent to at most �ve 
olored verti
es. Sin
e the vertex b1, whi
h isa neighbor of the vertex s0, is 
olored with a 
olor � 62 L(s0), we 
an now 
olorthe vertex s0. In this way, we obtain an L-
oloring of G | 
ontradi
tion.Claim 27.3 There is an ordering b1, b2, b3, b4, b5 and b6 of the six big verti
esof G su
h that L(b1) = L(b2), L(b3) = L(b4) and L(b5) = L(b6) and the lists ofany other pair of the big verti
es are distin
t. Moreover, B0 = B.By Claim 27.2, there are three verti
es of B0 whose lists are mutually distin
t.Sin
e ea
h vertex of B0 is adja
ent to a vertex of S0 (the set B0 was de�ned tobe the set of su
h big verti
es) and ea
h vertex of S0 is adja
ent to at least twobig verti
es by Lemma 13, it follows that there are exa
tly six big verti
es andthus B0 = B. The statement now readily follows from Claim 27.1.Claim 27.4 The graph G has an L-
oloring.Let b1, b2, b3, b4, b5 and b6 be the big verti
es ordered as in Claim 27.3. ByClaims 27.1 and 27.3, ea
h vertex of S0 
an be adja
ent to at most two bigverti
es. Sin
e it must be adja
ent to at least two big verti
es by Lemma 13,we 
on
lude that the Gallai tree G[S0℄ is 4-regular and hen
e G[S0℄ is a 
lique oforder �ve.Sin
e G[B℄ is not a 
omplete graph, there is a big vertex, say b3 2 B, whi
his not adja
ent to all the big verti
es. Let s1 and s3 be verti
es of S0 adja
entto the big verti
es b1 and b3, respe
tively. By Claim 27.1, L(b1) = L(s1) andL(b3) = L(s3). In parti
ular, L(s1) 6= L(s3).Fix a 
olor � 2 L(s1) n L(s3). Color �rst the verti
es b1 and b2 by 
olorsfrom their lists whi
h are distin
t from the 
olor �. Next, 
olor s0 by a 
olor27



from its list and then the remaining big verti
es by 
olors from their lists so thatthe vertex b3 is 
olored as the last one. Again, it is possible to 
olor all the bigverti
es be
ause when we 
olor ea
h of them at most �ve of its neighbors arealready 
olored.This 
oloring 
an be extended to the 
lique G[S0℄ by Proposition 25 be
auseof the 
hoi
e of the 
olors of the verti
es b1 and b2 and the fa
ts that � 2 L(s1)and � 62 L(s3). In this way, we obtain an L-
oloring of G | 
ontradi
tion.The third 
ase to 
onsider is that the Gallai forest 
onsists of two 
liques:Lemma 28 Let G be a triangulation with minimum simple degree six of thesurfa
e �3 whi
h does not 
ontain K7 as a subgraph. If the graph indu
ed bysmall verti
es 
onsists of two 
omponents, ea
h of them being a 
lique of order atleast two, then the graph G is 6-
hoosable.Proof: Suppose that the lemma is false. Fix a triangulation G with the prop-erties from the statement of the lemma and a list 6-assignment L of G su
h thatthere is no L-
oloring of G. Let B be the set of big verti
es of G and let S1 andS2 be the vertex sets of the two 
liques of the subgraph of G indu
ed by the smallverti
es. Note that the orders of both the 
liques G[S1℄ and G[S2℄ are at most�ve by Lemma 13.Claim 28.1 Let b1 be an arbitrary big vertex of G. It is possible to order the bigverti
es b1, b2, : : :, bjBj so that ea
h big vertex bi is adja
ent to at most four bigverti
es bj with j < i.The 
laim is 
lear if jBj � 5 or if jBj = 6 and G[B℄ 
ontains two non-adja
entverti
es. Assume for 
ontradi
tion that jBj = 6 and all the verti
es of G[B℄ aremutually adja
ent. Sin
e the degree of ea
h vertex of B is seven by Lemma 10,ea
h of them is adja
ent to at most two small verti
es. Hen
e, there are at most12 edges between the big verti
es and the small verti
es. However, sin
e theweights of G[S1℄ and G[S2℄ are at least ten, there are at least ten edges betweenS1 and B as well as between S2 and B | 
ontradi
tion.Claim 28.2 Let s 2 S1 [ S2 and b 2 B be two adja
ent verti
es in G. Then,L(s) = L(b).Assume the opposite and let s1 2 S1 and b 2 B be two adja
ent verti
es withL(s1) 6= L(b) (the 
ase that su
h a small vertex is 
ontained in S2 is symmetri
).Fix a 
olor � 2 L(b) n L(s1). For every vertex s 2 S2, let L0(s) = L(s) n f�g if sis adja
ent to the vertex b and L0(s) = L(s) otherwise.Let us 
onsider �rst the 
ase that there are two small verti
es s1 and s2 of S2with L0(s1) 6= L0(s2). We 
an assume without loss of generality that jL0(s1)j �28



jL0(s2)j. Fix a 
olor � 2 L0(s1)nL0(s2). Color the vertex b by � and the remainingbig verti
es properly by arbitrary 
olors from their lists so that ea
h of them is
olored with a 
olor di�erent from �. This is 
learly possible: Just 
olor the bigverti
es in the order from Claim 28.1 with b1 = b. The 
oloring of the big verti
es
an be extended to S1 by Proposition 22. Afterwards, it 
an be extended to S2by Proposition 25 (note that � 2 L0(s1) and no neighbor of s1 is 
olored with �and � 62 L0(s2)). This yields an L-
oloring of G | 
ontradi
tion.Next, we 
onsider the 
ase that there is a vertex v 2 S2 adja
ent to b with� 62 L(v). In this 
ase, we 
olor the big verti
es arbitrarily so that the vertex bis 
olored with �. However, the pre
oloring of the big verti
es 
an be extendedto both S1 and S2 by Proposition 22 | 
ontradi
tion.In the rest, we assume that all the lists L0(v) of the verti
es of v 2 S2 are thesame and the list of ea
h vertex of S2 adja
ent to b 
ontains �. Hen
e, either novertex of S2 is adja
ent to the vertex b or all the verti
es of S2 are adja
ent tothe vertex b and the lists of all of them 
ontain the 
olor �. Let NB(s) be furtherthe set of big neighbors of a vertex s 2 S2. Re
all that, by our assumption, thevertex b is 
ontained either in all the sets NB(s), s 2 S2, or in no set NB(s),s 2 S2.We now 
onsider the 
ase that there exist two small verti
es s1 and s2 of S2with NB(s1) 6= NB(s2). Color the vertex b by � and the remaining big verti
es by
olors from their lists so that no two big verti
es are 
olored with the same 
olor(re
all that there are at most six big verti
es). The 
oloring of the big verti
es
an be extended to S1 by Proposition 22. For ea
h small vertex s 2 S2, let L00(s)be the subset of the list L(s) whi
h 
ontains the 
olors of L(s) not assigned tothe big neighbors of s. Note that jL00(s)j � degG[S2℄(s) for every vertex s 2 S2.In addition, L00(s1) 6= L00(s2) be
ause L0(s1) = L0(s2), NB(s1) 6= NB(s2) and allthe big verti
es are 
olored with mutually distin
t 
olors. By Theorem 4, thereexists an L00-
oloring of G[S2℄. The L00-
oloring of G[S2℄ and the 
oloring of thebig verti
es and S1 form an L-
oloring of G | 
ontradi
tion.The �nal 
ase is that the lists L0(s) of all the small verti
es s 2 S2 are thesame list, say L0, and the small verti
es of S2 are adja
ent to the same set NB ofbig verti
es, i.e., NB(s) = NB for every s 2 S2. Note that jNBj = 7 � jS2j. Letb1 and b2 be two non-adja
ent verti
es of NB. Su
h two verti
es b1 and b2 exist:Otherwise, the graph G[NB [ S2℄ would be a 
lique of order seven.In this paragraph, we 
arefully 
olor at least two of the verti
es b, b1 andb2. Afterwards, we extend this pre
oloring to an L-
oloring of G. Note that bmay 
oin
ide with b1 and b2. Color �rst the vertex b by the 
olor �. If b1 = b,then jL0j = 5, in parti
ular jL0j < jL(b2)j, and we 
olor the vertex b2 by a 
olor� 2 L(b2) n L0. If b2 = b, we pro
eed analogously. Assume now that the vertex bis neither b1 nor b2. Color the vertex b1 by a 
olor � 2 L(b1) n (L0 [f�g). This ispossible unless b1 is adja
ent to b and � is the only 
olor 
ontained in L(b1) nL0.If b1 was not 
olored, then 
olor b2 by a 
olor � 2 L(b2) n (L0 [ f�g). We 
an
olor the vertex b2 in this way unless b2 is adja
ent to b and � is the only 
olor29




ontained in L(b2) n L0. If both b1 and b2 are not 
olored, then both the listsL(b1) and L(b2) 
ontain at least �ve 
olors (possibly distin
t) 
ommon with thelist L0. Hen
e, there is a 
olor � 2 L(b1) \ L(b2) \ L0 and we 
an 
olor both b1and b2 by �. Some of the big verti
es are now 
olored so that ea
h vertex of S2is adja
ent to a vertex 
olored with a 
olor not 
ontained in L0 or to two verti
es
olored with the same 
olor.Extend now the obtained 
oloring to all the big verti
es (re
all again thatthere are at most six big verti
es). The 
oloring 
an be further extended to theverti
es of S1 by Proposition 22 (the vertex b is 
olored with �) and to the verti
esof S2 by Propositions 22 or 23 be
ause ea
h vertex of S2 is adja
ent to a vertex
olored with a 
olor not 
ontained in the list L0 or to two verti
es 
olored withthe same 
olor, respe
tively. This yields an L-
oloring of G | 
ontradi
tion.Claim 28.3 Let b be an arbitrary big vertex. Then, there exists a big vertexb0 6= b with L(b) = L(b0).Sin
e the minimum simple degree ofG is six and there are at most six big verti
es,the vertex b is adja
ent to a small vertex s. And, sin
e ea
h small vertex isadja
ent to at least two big verti
es by Lemma 13, there exists another big vertexb0 6= b whi
h is adja
ent to s. Then, L(b) = L(b0) by Claim 28.2.Claim 28.4 There exist three big verti
es whose lists are mutually distin
t.Assume the opposite and let L1 and L2 be two lists su
h that the list of ea
h bigvertex is L1 or L2. Sin
e ea
h small vertex s is adja
ent to a big vertex, the listof the vertex s must be L1 or L2 by Claim 28.2. Hen
e, the list of ea
h vertex ofG is L1 or L2. By Theorem 1, G is 6-
olorable. Therefore, G has an L-
oloringby Lemma 6 | 
ontradi
tion.Claim 28.5 There are exa
tly six big verti
es. In addition, there is an orderingb1, b2, b3, b4, b5 and b6 of the big verti
es with L(b1) = L(b2), L(b3) = L(b4) andL(b5) = L(b6) and the lists of any other pair of the big verti
es are distin
t.The above 
laim dire
tly follows from Claims 28.3 and 28.4 and Lemma 10.Claim 28.6 Ea
h small vertex is adja
ent to pre
isely two big verti
es. In par-ti
ular, both G[S1℄ and G[S2℄ are isomorphi
 to K5.Ea
h small vertex is adja
ent to at least two big verti
es by Lemma 13. ByClaims 28.2 and 28.5, it 
an be adja
ent to at most two big verti
es. Hen
e,ea
h small vertex is adja
ent to pre
isely two big verti
es and so it is adja
ent topre
isely four small verti
es. Sin
e K5 is the only 4-regular Gallai tree, it followsthat both G[S1℄ and G[S2℄ must be 
liques of order �ve.30



Claim 28.7 There are two verti
es of S1 whose lists are di�erent. Similarly,there are two verti
es of S2 whose lists are di�erent.Let b1, b2, b3, b4, b5 and b6 be the big verti
es of G ordered as in Claim 28.5.Sin
e G 
ontains six big verti
es, ea
h big vertex has degree seven. Suppose thatthe 
laim is false, i.e., the lists of all the verti
es of S1 are the same, say the listL(b1). Sin
e all the �ve verti
es of the 
lique G[S1℄ are adja
ent to both b1 and b2by Claim 28.2, the verti
es b1 and b2 are not adja
ent: Otherwise, G[S1[fb1; b2g℄would be a 
lique of order seven. By Lemma 14, the �ve verti
es of S1 are the onlysmall verti
es whi
h are adja
ent to the verti
es b1 and b2. Fix a 
olor � 2 L(b1).Color the graph G[S2 [ fb3; b4; b5; b6g℄ so that none of the verti
es b3, b4, b5 andb6 is 
olored with the 
olor �. This is possible by Lemma 8 be
ause the list ofea
h vertex of G[S2 [fb3; b4; b5; b6g℄ is L(b3) or L(b5) and G[S2 [fb3; b4; b5; b6g℄ is6-
olorable by Theorem 1. Color now both b1 and b2 by the 
olor � and the �veverti
es of S2 properly by the remaining �ve 
olors from their lists. In this way,we obtain an L-
oloring of G | 
ontradi
tion. An analogue argument yields these
ond part of the 
laim.Claim 28.8 There are three verti
es of S1 whose lists are mutually distin
t. Sim-ilarly, there are three verti
es of S2 whose lists are mutually distin
t.Let b1, b2, b3, b4, b5 and b6 be the big verti
es ordered as in Claim 28.5. Assumethat the 
laim is false, e.g., that the list of ea
h vertex of S1 is either L(b1) orL(b3). Sin
e the vertex b5 is adja
ent to at least one small vertex and it is adja
entto no vertex of S1, it must be adja
ent to a vertex of S2. By Claim 28.7, thereare two verti
es s1 and s2 of S2 whose lists L(s1) and L(s2) are di�erent. Bysymmetry, we 
an assume that L(s1) = L(b1) and L(s2) = L(b5).Fix a 
olor � 2 L(s1) nL(s2). Color now the verti
es of G[S1 [ fb1; b2; b3; b4g℄so that the 
olor of ea
h of the verti
es b1, b2, b3 and b4 is di�erent from �. This ispossible by Lemma 8 be
ause G[S1 [ fb1; b2; b3; b4g℄ is 6-
olorable by Theorem 1.Color now the remaining two big verti
es b5 and b6. Note that neither b5 nor b6 isadja
ent to a vertex of S1 by Claim 28.2 (re
all that � 62 L(s2)). The 
oloring ofthe big verti
es 
an be extended to G[S2℄ by Proposition 25 be
ause of � 2 L(s1),� 62 L(s2) and the 
hoi
e of the 
olors of the big verti
es | 
ontradi
tion.Claim 28.9 The graph G has an L-
oloring.Let b1, b2, b3, b4, b5 and b6 be the big verti
es ordered as in Claim 28.5. ByClaims 28.2 and 28.8, the set S1 
ontains two verti
es s11 and s21 with L(s11) = L(b1)and L(s21) = L(b3). Similarly, S2 
ontains two verti
es s12 and s22 su
h thatL(s12) = L(b1) and L(s22) = L(b3). Fix a 
olor � 2 L(b1) n L(b3). Color now theverti
es b1 and b2 by 
olors from their lists whi
h are di�erent from the 
olor �.Afterwards, 
olor the remaining four big verti
es. The 
oloring of the big verti
es
an be extended to both G[S1℄ and G[S2℄ by Proposition 25 be
ause of � 2 L(s11),31



� 2 L(s12), � 62 L(s21), � 62 L(s22) and the 
hoi
e of the 
olors of the big verti
es.In this way, we eventually obtain an L-
oloring of G.We now 
onsider the fourth possible type of the triangulation:Lemma 29 Let G be a triangulation with minimum simple degree six of thesurfa
e �3 whi
h does not 
ontain K7 as a subgraph. Suppose that G 
ontainssix big verti
es and that the small verti
es indu
e a Gallai forest in G with two
omponents whose vertex sets are S1 and S2. In addition, suppose that G[S1℄ isisomorphi
 to K2, K3, K4 or K5 and that the minimum degree of G[S2℄ is one.Then, the graph G is 6-
hoosable.Proof: Suppose that the statement of the lemma is false. Fix a triangulationG, whi
h has the properties des
ribed in the statement of the lemma, and a list6-assignment L su
h that G has no L-
oloring. Let B be the set of the six bigverti
es of G and let s0 be a vertex of degree one in G[S2℄.Claim 29.1 There are two big verti
es b1 and b2 adja
ent to the vertex s0 su
hthat ea
h of them has at least two neighbors in S1.We distinguish four 
ases regarding to the order of the 
lique G[S1℄. If G[S1℄is a 
lique of order two, then at least four big verti
es are adja
ent to both theverti
es of S1. Sin
e only one big vertex is not adja
ent to the vertex s0, thereare at least three big verti
es adja
ent to s0 and simultaneously adja
ent to boththe verti
es of S1.If G[S1℄ is a 
lique of order three, then there are twelve edges between theverti
es of S1 and B (re
all that w(K3) = 12). Sin
e jS1j = 3, at most threeof these edges 
an lead to the big vertex whi
h is not adja
ent to the vertex s0.Hen
e, at least nine of these edges join the big neighbors of s0 and the verti
es ofS1. If four out of the �ve big neighbors of the vertex s0 has at most one neighborin S1, then there exists a big neighbor of s0 adja
ent to at least �ve verti
es ofS1 whi
h is 
learly impossible (re
all that jS1j = 3). Therefore, there are two bigneighbors of s0 with at least two neighbors in S1.The third 
ase is that the order of G[S1℄ is four. Hen
e, there are again twelveedges between the verti
es of S1 and the verti
es of B. At most four of theseedges (re
all that the order of S1 is four) 
an lead to the big vertex b0 whi
h isnot adja
ent to s0 and thus at least eight of them lead to the big neighbors ofs0. Hen
e, the 
laim is true unless all the four verti
es of S1 are adja
ent to b0,all the four verti
es of S1 are adja
ent to a big neighbor b1 of the vertex s0 andea
h of the remaining big verti
es b2, b3, b4 and b5 has exa
tly one neighbor inS1. In that 
ase, the neighborhoods of the verti
es of S1 
ontain the segmentsb0b2b1, b0b3b1, b0b4b1 and b0b5b1 be
ause G is a triangulation. In parti
ular, the32



vertex b0 is adja
ent to all the four verti
es of S1 and to the big verti
es b2, b3,b4 and b5. This is impossible be
ause the degree of b0 is seven by Lemma 10.The �nal 
ase to 
onsider is that G[S1℄ is a 
lique of order �ve. Ea
h bigvertex adja
ent to a vertex of S1 is adja
ent to at least two verti
es of S1 byLemma 12. Hen
e, it is enough to show that at least two big neighbors of s0 arealso adja
ent to a vertex of S1. Ea
h vertex of S1 must be adja
ent to at least onebig neighbor of the vertex s0 be
ause there is only one big vertex non-adja
entto the vertex s0. On the other hand, ea
h big neighbor of s0 
an be adja
ent toat most four verti
es of S0 sin
e its degree in G is seven by Lemma 10. Thus,there are at least two big neighbors of s0 whi
h are adja
ent to a vertex of S1 asdesired. This 
ompletes the proof of Claim 29.1.Claim 29.2 If s 2 S1 and b 2 B are adja
ent verti
es, then L(s) = L(b).Assume the opposite for the sake of 
ontradi
tion and let s 2 S1 and b 2 B be twoadja
ent verti
es with L(s) 6= L(b). Let b0 be further a big vertex di�erent fromb whi
h is simultaneously adja
ent to s0 and to at least two verti
es of S1. Su
ha vertex exists by Claim 29.1. Color the vertex b by a 
olor � 2 L(b) n L(s) andthe remaining big verti
es ex
ept the vertex b0 properly by arbitrary 
olors fromtheir lists. We 
an extend the 
oloring of the big verti
es to S2 by Proposition 24be
ause the vertex b0 is not 
olored. Color now b0 by a 
olor from its list. This ispossible be
ause b0 has at most �ve 
olored neighbors (re
all that b0 is adja
entto at least two verti
es of S1). Finally, we 
an extend this 
oloring to G[S1℄ byProposition 22 be
ause of the 
hoi
e of the 
olor of the vertex b. Thus, we obtainan L-
oloring of G | 
ontradi
tion.Claim 29.3 Suppose that there exist two lists L1 and L2 su
h that the list of ea
hvertex of S1 is L1 or L2. Then, L(s) = L(b) for every adja
ent verti
es s 2 S2and b 2 B.Assume the opposite and let s 2 S2 and b 2 B be two adja
ent verti
es withL(s) 6= L(b). Let B1 be the set of big verti
es adja
ent to a vertex of S1. ByClaim 29.2, the list of ea
h vertex of S1 [B1 is L1 or L2. In the rest, we 
onsidertwo 
ases regarding whether the vertex b is 
ontained in the set B1 or not.If b 2 B1, then 
onsider a 
oloring of G[S1 [ B1℄ whi
h assigns the vertex b a
olor � 2 L(b)nL(s). Su
h a 
oloring exists by Lemma 7. Color now the remainingbig verti
es properly by arbitrary 
olors from their lists. This is possible be
auseea
h big vertex 
ontained in B nB1 is adja
ent only to the verti
es of B [S2 andthus ea
h big vertex from B nB1 is adja
ent to at most �ve 
olored (big) verti
es.If b 62 B1, then 
onsider a 
oloring of G[S1 [B1℄ su
h that no vertex of B1 is
olored with a 
olor � 2 L(b) nL(s). Su
h a 
oloring exists by Lemma 8 be
ausejB1j < jBj = 6. Color now the vertex b by � and the remaining big verti
esproperly by arbitrary 
olors from their lists.In both the 
ases 
onsidered above, the 
oloring 
an be extended to S2 byProposition 22 be
ause of the 
hoi
e of the 
olor of the vertex b | 
ontradi
tion.33



Claim 29.4 There exist three verti
es of S1 with mutually distin
t lists.Suppose that the 
laim is false, i.e., there exist two lists L1 and L2 su
h that thelist of ea
h vertex of S1 is L1 or L2. Then, the lists of all the �ve big verti
esadja
ent to the vertex s0 are the same by Claim 29.3. Let b be the big vertexwhi
h is not adja
ent to s0. Sin
e the minimum degree of G is six, the vertexb is adja
ent to a small vertex s. By Lemma 13, the vertex s is adja
ent to atleast two big verti
es and they must have the same list either by Claim 29.2 orby Claim 29.3. Hen
e, all the big verti
es have the same list. By Claims 29.2and 29.3, the lists of all the verti
es are the same. Then, G has an L-
oloring byTheorem 1 | 
ontradi
tion.Claim 29.5 There exists an ordering b1, b2, b3, b4, b5 and b6 of the big verti
esof G so that L(b1) = L(b2), L(b3) = L(b4) and L(b5) = L(b6) and the lists of anyother pair of the big verti
es are distin
t.Let s, s0 and s00 be three verti
es of G[S1℄ with mutually distin
t lists. Theyexist by Claim 29.4. Ea
h of the verti
es s, s0 and s00 is adja
ent to at leasttwo big verti
es by Lemma 13 and its big neighbors must have the same list byClaim 29.2. The 
laim now readily follows.Claim 29.6 The graph G has an L-
oloring.Let b1, b2, b3, b4, b5 and b6 be the big verti
es ordered as in Claim 29.5 and lets1, s2 and s3 be three verti
es of G[S1℄ with mutually distin
t lists (they existby Claim 29.4). By symmetry, we 
an assume that L(s1) = L(b1), L(s2) = L(b3)and L(s3) = L(b5) and that the vertex s0 is adja
ent to the verti
es b1, b2, b3, b4and b5. By symmetry, we 
an assume that L(s0) 6= L(bi) for i 2 f1; 2; 5g.Fix 
olors � 2 L(bi) n L(s0) and � 2 L(b3) n L(b5). Color the vertex bi by the
olor � and the verti
es b3 and b4 properly by 
olors from their lists whi
h aredi�erent from the 
olor �. Finally, 
olor properly the remaining big verti
es byarbitrary 
olors from their lists. The 
oloring of the big verti
es 
an be extendedto S1 by Proposition 25 and to S2 by Proposition 22. In this way, we 
onstru
tan L-
oloring of G | 
ontradi
tion.The �nal 
ase to 
onsider is that the Gallai forest indu
ed by small verti
es
onsist of three 
omponents:Lemma 30 Let G be a triangulation with minimum simple degree six of thesurfa
e �3 whi
h does not 
ontain K7 as a subgraph. If the small verti
es indu
ea Gallai forest in G with three 
omponents su
h that at least two of the 
omponentsare isomorphi
 to K1, then the graph G is 6-
hoosable.34



Proof: Suppose that the lemma is false. Fix a triangulation G, whi
h satis�esthe assumptions of the lemma, and a list 6-assignment L su
h that G has no L-
oloring. Let B be the set of big verti
es of G and let S be the set of small verti
esof G. Note that jBj = 6 and ea
h big vertex has degree seven by Lemma 11.By the assumption of the lemma, G[S℄ 
ontains two isolated verti
es s1 and s2.Let S0 be the set of the remaining small verti
es. Note that ea
h big vertex isadja
ent to both s1 and s2. Sin
e G is a triangulation, the graph G[B℄ 
ontainsa 
y
le of length six (
onsider e.g., a 
y
le around the vertex s1).Claim 30.1 There are at least four big verti
es with a neighbor in the set S0.If G[S0℄ is isomorphi
 to K1, then ea
h big vertex is adja
ent to the only vertex ofS0 and the 
laim obviously holds. Assume in the rest that G[S0℄ is not isomorphi
to K1. Ea
h big vertex is adja
ent to both the small verti
es s1 and s2 and to atleast two other big verti
es sin
e G[B℄ 
ontains a 6-
y
le. Hen
e, ea
h big vertex
an be adja
ent to at most three verti
es of S0. By Lemma 13, G[S0℄ is a Gallaitree with maximum degree at most four. Therefore, the weight of G[S0℄ is atleast 10 (
f. Figure 3). So, there are at least ten edges joining the verti
es of S0to the big verti
es. Sin
e ea
h big vertex is adja
ent to at most three verti
es ofS0, then there are at least four big verti
es with a neighbor from S0.Claim 30.2 There exists a big vertex b1 adja
ent to the small vertex s1 withL(s1) 6= L(b1). Similarly, there exists a big vertex b2 adja
ent to the small vertexs2 with L(s2) 6= L(b2).Assume the opposite, e.g., that all the big verti
es adja
ent to s1 have the listL(s1) (the other part of the 
laim is symmetri
). Sin
e s1 is adja
ent to all the bigverti
es, all the big verti
es have the same list. Let b and b0 be two non-adja
entbig verti
es (they exist be
ause the vertex s1 is adja
ent to all the six big verti
esand G does not 
ontain K7 as a subgraph). Note that L(b) = L(b0). Let b0 be abig vertex di�erent from the verti
es b and b0 whi
h has a neighbor in S0 (su
h avertex b0 exists by Claim 30.1).Color now the verti
es b and b0 by the same 
olor � 2 L(b) = L(b0). Extendthis 
oloring to S0; su
h an extension exists by Proposition 24 (re
all that b0 isyet un
olored). Color properly the remaining four big verti
es by 
olors fromtheir lists. Note that this is possible sin
e ea
h big vertex has degree seven andit is adja
ent to both the verti
es s1 and s2 whi
h are not 
olored. Finally, 
olorproperly the verti
es s1 and s2 from their lists. We 
an do this be
ause theverti
es s1 and s2 have degree six and two of their neighbors, namely the verti
esb and b0, are 
olored with the same 
olor. Therefore, we obtain an L-
oloring ofG | 
ontradi
tion.Claim 30.3 There exists exa
tly one big vertex b1 adja
ent to the small vertexs1 with L(s1) 6= L(b1). Similarly, there exists exa
tly one big vertex b2 adja
entto the small vertex s2 with L(s2) 6= L(b2).35



Assume for 
ontradi
tion that the vertex s1 is adja
ent to at least two big verti
eswith their lists di�erent from the list L(s1) (the other part of the 
laim is sym-metri
). Let b2 be a big vertex adja
ent to the small vertex s2 with L(s2) 6= L(b2)(su
h a big vertex exists by Claim 30.2). By our assumption, there exists a bigvertex b1 6= b2 adja
ent to the small vertex s1 with L(s1) 6= L(b1). By Claim 30.1,there exists a big vertex b0 whi
h is di�erent from the verti
es b1 and b2 and whi
his adja
ent to a vertex of S0.Color the vertex b2 by a 
olor �2 2 L(b2) n L(s2). Let �1 2 L(b1) n L(s1). If�1 6= �2, then 
olor the vertex b1 by the 
olor �1. If �1 = �2, 
olor the vertex b1by any 
olor from its list di�erent from �1. Note that both s1 and s2 are adja
entto a big vertex 
olored with the 
olor not 
ontained in the lists L(s1) and L(s2),respe
tively. By Proposition 24 (note that the vertex b0 is still not 
olored), we
an extend this 
oloring to the verti
es of S0.Color now properly the remaining four big verti
es by 
olors from their lists.This is possible sin
e ea
h big vertex has degree seven and it is adja
ent to boththe verti
es s1 and s2 whi
h are not 
olored. Finally, 
olor properly the verti
ess1 and s2 from their lists. Note that the verti
es s1 and s2 have degree six andea
h of them has a neighbor 
olored with a 
olor not 
ontained in its list. In thisway, we obtain an L-
oloring of G | 
ontradi
tion.Claim 30.4 The graph G has an L-
oloring.By Claim 30.3, the verti
es s1 and s2 are adja
ent to exa
tly one big vertex witha list di�erent from L(s1) and L(s2), respe
tively. Hen
e, L(s1) = L(s2). Let bbe now the unique big vertex with L(b) 6= L(s1). Let b0 be a big vertex di�erentfrom the vertex b whi
h is adja
ent to a vertex of S0 (su
h a vertex b0 exists byClaim 30.1).Color the vertex b with the 
olor � 2 L(b) n L(s1) = L(b) n L(s2). By Propo-sition 24 (the vertex b0 is still not 
olored), we 
an extend this 
oloring to theverti
es of S0. Color properly the remaining �ve big verti
es by 
olors from theirlists. Note that this is possible sin
e ea
h big vertex has degree seven and itis adja
ent to both the verti
es s1 and s2 whi
h are not 
olored yet. Finally,
olor properly the verti
es s1 and s2 from their lists. We 
an do this be
auseboth the verti
es s1 and s2 are adja
ent to the vertex b 
olored with the 
olor� 62 L(s1) and L(s1) = L(s2). In this way, we obtain a proper L-
oloring of G |
ontradi
tion.
7 Dira
's Map-Color Theorem for Choosabilityfor the surfa
e �3We are now ready to prove the main theorem of this paper:36



Theorem 31 Let G be a graph of Euler genus three whi
h does not 
ontain K7as a subgraph. Then, G is 6-
hoosable.Proof: By Lemma 9, it is enough to prove the theorem for triangulations ofthe surfa
e �3 with minimum simple degree six whi
h do not 
ontain K7 as asubgraph and in whi
h the small verti
es indu
e Gallai forests. Let us 
onsideran arbitrary triangulation G of �3 with these properties. By Theorem 4, G
ontains a vertex with simple degree at least seven be
ause G is a triangulation,in parti
ular, it is 2-
onne
ted.Let F be the Gallai forest indu
ed by the small verti
es in G. By Lemma 19,the number k of the 
omponents of F is at most three. If k = 0, the graph G
ontains no small verti
es and the number of its verti
es is at most six. Hen
e, Gis 6-
hoosable. If k = 1, then G is 6-
hoosable by Lemma 26. If k = 3, then two ofthe 
omponents of F are isomorphi
 to K1 by Lemma 21 and so G is 6-
hoosableby Lemma 30. It remains to 
onsider the 
ase that F 
onsists of pre
isely two
omponents, say H1 and H2. By Lemma 20, at least one of the following holds:� H1 or H2 is isomorphi
 to K1,� both H1 and H2 are 
liques of order between two and �ve, or� H1 is a 
lique of order between two and �ve, H2 
ontains a vertex of degreeone (or vi
e versa) and G 
ontains pre
isely six big verti
es.In the �rst 
ase, G is 6-
hoosable by Lemma 27, in the se
ond 
ase, it is 6-
hoosable by Lemma 28 and in the last 
ase, it is 6-
hoosable by Lemma 29.This 
ompletes the proof of Theorem 31.We 
an 
ombine Theorems 2 and 31 to get the following:Theorem 32 If G is a graph embedded on a surfa
e of Euler genus " � 1, thenthe 
hoi
e number of G is at most H(") and the equality holds if and only if G
ontains KH(") as a subgraph.Referen
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