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Abstract

The crossing number of Sierpiński graphs S(n, k) and their reg-
ularizations S+(n, k) and S++(n, k) is studied. Explicit drawings of
these graphs are presented and proved to be optimal for S+(n, k) and
S++(n, k) for every n ≥ 1 and k ≥ 1. These are the first nontrivial
families of graphs of “fractal” type whose crossing number is known.
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1 Introduction

A drawing of a graph G is a pair of mappings ϕ : V (G) → R
2 and ψ :

E(G)× [0, 1] → R
2 where ϕ is 1-1 and for each e = uv ∈ E(G), the induced

map ψe : {e} × [0, 1] → R
2 is a simple polygonal arc joining ϕ(u) and ϕ(v).

It is required that the arc ψe is internally disjoint from ϕ(V (G)).
The pair-crossing number, pair-cr(D), of a drawing D = (ϕ,ψ) is the

number of crossing pairs of D, where a crossing pair is an unordered pair
{e, f} of distinct edges for which there exist s, t ∈ (0, 1) such that ψ(e, s) =

∗Supported by the Ministry of Education, Science and Sport of Slovenia under the
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ψ(f, t). The common point ψ(e, s) = ψ(f, t) in R
2 is said to be a crossing

point of e and f and the pair {(e, s), (f, t)} is referred to as a crossing. The
total number of crossings of D is called the crossing number cr(D) of D.

The pair-crossing number, pair-cr(G), of the graph G is the minimum
pair-crossing number of all drawings of G, and the crossing number, cr(G),
of G is the minimum crossing number of all drawings of G. It is an open
question (see, e.g., [13]) if pair-cr(G) = cr(G) for every graph G. In this
paper we shall restrict ourselves to cr(G) but all arguments work also for
the pair-crossing number.

The exact value of the crossing number is known only for a few specific
families of graphs. Such families include generalized Petersen graphs P (N, 3)
[15], Cartesian products of all 5-vertex graphs with paths [7], and Cartesian
products of two specific 5-vertex graphs with the star K1,n [8]. For the
Cartesian products of cycles it is conjectured that cr(Cm �Cn) = (m− 2)n
for 3 ≤ m ≤ n and has recently been proved in [2] that for any fixed m the
conjecture holds for all n ≥ m(m+1). The conjecture has also been verified
for m ≤ 7 [1, 14]. Also, the crossing numbers of the complete bipartite
graphs Kk,n are known for every k ≤ 6 and arbitrary n. We refer to recent
surveys [9, 12] for more details.

In this paper we study the crossing number of Sierpiński graphs S(n, k)
and their regularizations S+(n, k) and S++(n, k). They are defined in Sec-
tion 2. In contrast to all families mentioned above, whose crossing num-
ber has been considered in the literature, graphs S(n, k) do not have linear
growth. Their number of vertices grows exponentially fast in terms of n, and
they exhibit certain “fractal” behavior. Therefore, it seems rather interest-
ing that their crossing number can be determined precisely, see Theorem 4.1.

Let us observe that crossing numbers of extended Sierpiński graphs
S+(n, k) and S++(n, k) in Theorem 4.1 are expressed in terms of the cross-
ing number of the complete graph Kk+1. It is known that cr(Kr) = 0 for
r ≤ 4, cr(K5) = 1, cr(K6) = 3, cr(K7) = 9, cr(K8) = 18, cr(K9) = 36, and
cr(K10) = 60. Values of cr(Kr) for r ≥ 11 are not known.

2 Sierpiński graphs and their regularizations

Sierpiński graphs S(n, k) were introduced in [5], where it is in particular
shown that the graph S(n, 3), n ≥ 1, is isomorphic to the graph of the
Tower of Hanoi with n disks. For more results on these graphs see [3, 6].
The definition of the graphs S(n, k) was motivated by topological studies
of the Lipscomb’s space which generalizes the Sierpiński triangular curve
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(Sierpiński gasket), cf. [10, 11].
The Sierpiński graph S(n, k) (n, k ≥ 1) is defined on the vertex set

{1, . . . , k}n, two different vertices u = (u1, . . . , un) and v = (v1, . . . , vn)
being adjacent if and only if there exists an h ∈ {1, . . . , n} such that

(i) ut = vt, for t = 1, . . . , h− 1;
(ii) uh 6= vh; and
(iii) ut = vh and vt = uh for t = h+ 1, . . . , n.

In the rest we will shortly write 〈u1u2 . . . un〉 for (u1, u2, . . . , un).
A vertex of the form 〈ii . . . i〉 of S(n, k) is called an extreme vertex . The

extreme vertices of S(n, k) are of degree k− 1 while the degree of any other
vertex is k. Note also that in S(n, k) there are k extreme vertices and that
|S(n, k)| = kn.

Let n ≥ 2, then for i = 1, . . . , k, let Si(n−1, k) be the subgraph of S(n, k)
induced by the vertices of the form 〈iv2v3 . . . vn〉. Note that Si(n − 1, k) is
isomorphic to S(n− 1, k).

Let

ρi,j =

{

1; i 6= j,
0; i = j,

and set in addition

P i
j1j2 ... jm

= ρi,j1ρi,j2 . . . ρi,jm(2) ,

where the right-hand side term is a binary number, rhos representing its
digits. Then we have [5]:

Proposition 2.1 Let 〈u1u2 . . . un〉 be a vertex of S(n, k). Then its distance

in S(n, k) from the extreme vertex 〈ii . . . i〉 is equal to:

dS(n,k)(〈u1u2 . . . un〉, 〈ii . . . i〉) = P i
u1u2 ... un

.

In the rest, in particular when introducing regularizations of the Sierpiński
graphs, the following lemma will be useful.

Lemma 2.2 For any n ≥ 1 and any k ≥ 1, Aut(S(n, k)) is isomorphic

to Sym(k), where Aut(S(n, k)) acts as Sym(k) on the extreme vertices of

S(n, k).

Proof. Let ϕ ∈ Aut(S(n, k)). Then the degree condition implies that ϕ
permutes the k extreme vertices of S(n, k). Let f(ϕ) ∈ Sym(k) be the
corresponding permutation. We claim that f : Aut(S(n, k)) → Sym(k) is a
bijection.

3



We first show that f is surjective. So let π ∈ Sym(k) and define
ϕ : V (S(n, k)) → V (S(n, k)) with ϕ(〈i1i2 . . . in〉) = 〈π(i1)π(i2) . . . π(in)〉.
Clearly, ϕ is 1-1. Let u, v ∈ V (S(n, k)). Then u is adjacent to v if and only if
u = 〈i1i2 . . . ik−1rs . . . s〉 and v = 〈i1i2 . . . ik−1sr . . . r〉, where k ∈ {1, . . . , n}
and r 6= s. But this is if and only if ϕ(u) = 〈ϕ(i1) . . . ϕ(ik−1)ϕ(r)ϕ(s) . . . ϕ(s)〉
is adjacent to ϕ(v) = 〈ϕ(i1) . . . ϕ(ik−1)ϕ(s)ϕ(r) . . . ϕ(r)〉 because ϕ(r) 6=
ϕ(s). Hence ϕ ∈ Aut(S(n, k)) and, clearly, maps extreme vertices onto
extreme vertices.

To show injectivity we are going to prove that given ϕ ∈ Aut(S(n, k)),
ϕ is the unique automorphism with the image f(ϕ). Let u = 〈i1i2 . . . in〉 be
an arbitrary vertex of S(n, k) and set

D(u) = ( d(u, 〈11 . . . 1〉), . . . , d(u, 〈kk . . . k〉) )

be its vector of distances from the extreme vertices. Since ϕ is an automor-
phism that maps extreme vertices onto extreme vertices,

D(ϕ(u)) = ( d(ϕ(u), ϕ(〈11 . . . 1〉)), . . . , d(ϕ(u), ϕ(〈kk . . . k〉)) ) .

Moreover, Proposition 2.1 implies that if u 6= v then D(u) 6= D(v). Hence
ϕ(u) is uniquely determined, so there is a unique automorphism (namely ϕ)
with the image f(ϕ). 2

We now introduce the extended Sierpiński graphs S+(n, k) and S++(n, k).
The graph S+(n, k), n ≥ 1, k ≥ 1, is obtained from S(n, k) by adding a new
vertex w, called the special vertex of S+(n, k), and all edges joining w with
extreme vertices of S(n, k). The graphs S++(n, k), n ≥ 1, k ≥ 1, are de-
fined as follows. For n = 1 we set S++(1, k) = Kk+1. Suppose now that
n ≥ 2. Then S++(n, k) is the graph obtained from the disjoint union of
k+1 copies of S(n− 1, k) in which the extreme vertices in distinct copies of
S(n− 1, k) are connected as the complete graph Kk+1. By Lemma 2.2, this
construction defines a unique graph. Fig. 1 shows graphs S(2, 4), S+(2, 4),
and S++(2, 4).

S+(n, k) is a k-regular graph on kn +1 vertices; in particular, S+(1, k) =
Kk+1. Note also that S++(n, k) is a k-regular graph on kn−1(k+1) vertices
that can also be described as the graph obtained from the disjoint union of
a copy of S(n, k) and a copy of S(n− 1, k) such that the extreme vertices of
S(n, k) and the extreme vertices of S(n−1, k) are connected by a matching.

For a fixed k we will write Sn, S+
n , and S++

n for S(n, k), S+(n, k), and
S++(n, k), respectively. Also, Si(n − 1, k) will be denoted by Si

n−1. The
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(a) (c)(b)

w

Figure 1: Graphs (a) S(2, 4), (b) S+(2, 4), and (c) S++(2, 4)

graph S+
n consists of k disjoint copies S1

n−1, . . . , S
k
n−1 of Sn−1 and an addi-

tional vertex w. Let eij = eji be the edge joining Si
n−1 and Sj

n−1, where
i 6= j, and ei0 = e0i the edge joining Si

n−1 and w, so that

V (S+
n ) =

k
⋃

i=1

V (Si
n−1) ∪ {w}, and

E(S+
n ) =

k
⋃

i=1

E(Si
n−1) ∪ {eij | 0 ≤ i < j ≤ k} .

Similar notation is also used for S++
n where w is replaced by S0

n−1.

Lemma 2.3 For any fixed k ≥ 3 and every n ≥ 2, we have Aut(S+
n ) ≈

Sym(k) and Aut(S++
n ) ≈ Sym(k + 1), where Aut(S+

n ) and Aut(S++
n ) act

as Sym(k) on the extreme vertices of the subgraph Sn in S+
n and S++

n ,

respectively.

Proof. Let π ∈ Sym(k) and let ϕ be the unique automorphism of Sn that
acts on the extreme vertices of S(n, k) as π, cf. Lemma 2.2. Then we can
extend ϕ to an automorphism of S+

n , resp. S++
n by fixing f on the special

vertex w of S+
n , resp. the special copy S0

n−1 of Sn−1.
The blocks of the action of the automorphism group on the vertex set are

vertex sets of subgraphs Si
n−1, and any permutation of these blocks defines

a unique automorphism of S+
n (or S++

n ). This easily implies the statement
of the lemma. 2
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3 Drawings of S+
n , S++

n , and Sn

For k ≤ 3 and every n ≥ 1, Sierpiński graphs S(n, k) and their regulariza-
tions S+(n, k) and S++(n, k) are planar, cf. [4]. We now describe explicit
drawings of these graphs for any k ≥ 4. Our results are given in terms of the
crossing number of complete graphs, we refer to [16] for more information
on cr(Kk), k ∈ N.

Lemma 3.1 For every k ≥ 4 and n ≥ 1 we have:

(i) cr(S+
n ) ≤ k · cr(S+

n−1) + cr(Kk+1) ≤
kn − 1

k − 1
cr(Kk+1) .

(ii) cr(S++
n ) ≤ cr(S+

n ) + cr(S+
n−1) ≤

(k + 1)kn−1 − 2

k − 1
cr(Kk+1) .

Proof. (i) For n = 1 the graph S+
n is Kk+1, so it can be (optimally) drawn

with cr(Kk+1) crossings. For n ≥ 2 we draw the graph S+
n inductively

as follows. First take an optimal drawing of S+
n−1. We may assume that

the special vertex of S+
n−1 is on the unbounded face of this drawing. It

we “erase” a small neighborhood of the special vertex in this drawing, we
obtain a drawing D′ of Sn−1 together with pendant edges incident with
all extreme vertices and all sticking out to the infinite face. Clearly, D′ has
cr(S+

n−1) crossings. We now take an optimal drawing ofKk+1 (with cr(Kk+1)
crossings). Select an arbitrary vertex w of this drawing to represent the
special vertex of S+

n . Around every remaining vertex v of Kk+1 select small
enough disk ∆v so that only drawings of edges incident with v intersect
∆v. For each of such edges uv, follow its drawing from u towards v until
∆v is reached for the first time, and then erase the rest of the drawing of
this edge. Now, add the drawing D′ inside ∆v and connect its pending
edges with the points on ∂∆v where arcs coming from the outside have
been stopped. By Lemma 2.3, the resulting drawing is a drawing D of S+

n .
Clearly, cr(D) = k ·cr(D′)+cr(Kk+1) = k ·cr(S+

n−1)+cr(Kk+1). This implies
the first inequality in (i). The second inequality easily follows by induction.

The same construction in which also the special vertex is replaced by a
drawing of S+

n−1 shows (ii). 2

In the next section we will prove that the drawings described above are
optimal for every k ≥ 4.

The construction from the proof of Lemma 3.1 can also be used for the
graphs Sn with a modification that an optimal drawing of Kk is used instead
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of Kk+1. In this way we obtain, using Lemma 3.1(i),

cr(Sn) ≤ k · cr(S+
n−1) + cr(Kk) ≤

k(kn−1 − 1)

k − 1
cr(Kk+1) + cr(Kk) . (1)

However, in contrast to the optimality of the construction for S+
n and S++

n ,
these drawings for the graphs Sn are not always optimal, as shown for k = 4
by the following proposition whose upper bound is strictly smaller than the
one in (1).

Proposition 3.2 For any n ≥ 3,

3

16
4n ≤ cr(S(n, 4)) ≤

1

3
4n −

12n − 8

3
.

Proof. Let k = 4 and consider the drawings of S(2, 4) and S(3, 4) as shown
in Fig. 2.

Figure 2: Drawings of S(2, 4) and S(3, 4)

For n ≥ 4 we inductively construct a drawing of S(n, 4) from four copies
of S(n − 1, 4) analogously as the drawing of S(3, 4) is obtained from the
drawing of S(2, 4). Let an be the number of crossings of this drawing of
S(n, 4). Then a2 = 0 and an = 4an−1 + 12(n − 2), n ≥ 3 with the solution
an = 4n/3 − 4n+ 8/3.

On the other hand, we are going to show that cr(S(3, 4)) = 12. Since
cr(S(n + 1, 4)) ≥ 4 cr(S(n, 4)), this will prove the lower bound.
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Let D be a drawing of S = S(3, 4). The graph S contains 16 disjoint
copies of K4, twelve of which do not contain extreme vertices of S. Let
L1, . . . , L12 be these subgraphs. For i = 1, . . . , 12 we define a subgraph L+

i

such that the following conditions are satisfied:

(a) Li ⊆ L+
i .

(b) L+
i is a nonplanar graph and in the drawing of L+

i , there is a crossing
Ci = {(ei, si), (fi, ti)} involving an edge ei ∈ E(Li).

(c) If j < i, then ej /∈ E(L+
i ).

The graphs L+
i can be obtained as follows. Suppose that L+

1 , . . . , L
+
i−1

have already been defined and that their edges e1, . . . , ei−1 have been se-
lected. The graph S′ = S − {e1, . . . , ei−1} is connected. If we contract all
edges in S′ −Li, the resulting graph is isomorphic to K5. This implies that
S′ contains a subgraph L+

i that is either homeomorphic to K5 or to the
graph obtained from K5 by splitting one of its vertices into a pair of adja-
cent vertices x, y, each of which is adjacent to two vertices of the 4-clique
Li. Clearly, L+

i satisfies (a) and (c), and we leave it to the reader to verify
(b).

Condition (c) implies that all crossings Ci are distinct. This shows that
cr(D) ≥ 12 and completes the proof. 2

4 Lower bounds

In this section we prove the main result of this paper. As before, we shall
consider k ≥ 2 as being fixed and will omit it from the notation of Sn, S+

n

and S++
n .

Theorem 4.1 For any fixed k ≥ 2 and every n ≥ 1 we have:

(i) cr(S+
n ) =

kn − 1

k − 1
cr(Kk+1) .

(ii) cr(S++
n ) =

(k + 1)kn−1 − 2

k − 1
cr(Kk+1) .

By Lemma 3.1 we only have to prove that the values on the right hand
side of (i) and (ii) are lower bounds for the crossing number. The proof is
deferred to the end of this section.

Below we will introduce some notation that applies for all three families
of graphs, Sn, S+

n and S++
n . Recall that for every i and j 6= i, there is
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precisely one edge, denoted by eij = eji connecting Si
n−1 with Sj

n−1. The
edge eij is incident with an extreme vertex of Si

n−1 and this vertex is called
the jth extreme vertex of Si

n−1 and denoted by zi
j . With this notation,

eij = eji = zi
jz

j
i . We also consider Sn as a subgraph of S+

n , and then the

extreme vertices of Sn are precisely the vertices zi
0, 1 ≤ i ≤ k.

Lemma 4.2 For every n ≥ 1, Sn contains a subdivision of the complete

graph Kk in which vertices of degree k− 1 are precisely the extreme vertices

of Sn.

Proof. The proof is by induction on n. The claim is trivially true for
S1 = Kk. For n ≥ 2, the subdivision of Kk in Sn is obtained by taking the
union of all edges eij (1 ≤ i < j ≤ k) and all paths in subdivision cliques in
Si

n−1 joining the extreme vertex zi
0 with zi

j , j /∈ {0, i}, i = 1, . . . , k. 2

In what follows, we fix a subdivision of Kk in every Si
n−1 and denote by

P i
jℓ the path in this subdivision joining the extreme vertices zi

j and zi
ℓ.

Lemma 4.3 Let k ≥ 3 and n ≥ 1. If τ0, . . . , τk are integers such that τi ∈
{0, . . . , k}\{i} for i = 0, . . . , k, then S++

n contains a subgraph K(τ0, . . . , τk)
which is isomorphic to a subdivision of the complete graph Kk+1 in which

vertices of degree k are precisely the vertices zi
τi
, i = 0, . . . , k.

There are kk+1 distinct choices for parameters τ0, . . . , τk; they give rise

to kk+1 distinct subdivisions of Kk+1. Every edge eij is in every such sub-

division. Every edge contained in some path P i
jl is in precisely 2kk of them,

while other edges of S++
n are in none.

Proof. The subgraph K(τ0, . . . , τk) consists of all paths Rij = P i
τij

∪{eij}∪

P j
iτj

, 0 ≤ i < j ≤ k.
The claims in the second part of the lemma are easy to verify. Let us

just observe that the path P i
jl is in K(τ0, . . . , τk) if and only if τi = j or

τi = l. 2

Let D be a drawing. For subdrawings K,L of D, let cr(K,L) be the
number of crossings involving an edge of K and an edge of L. We write
cr(K) = cr(K,K). We also allow K or L be a subgraph of S = Sn, S+

n or
S++

n , in which case cr(K,L) refers to their drawings under D.
Two drawings D and D′ are said to be isomorphic if there is a home-

omorphism of the extended plane (the plane plus the point at the infinity,
which is homeomorphic to the 2-sphere) mapping D onto D′.
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Let D be a drawing of S = Sn, S+
n or S++

n . For every Si
n−1 ⊆ S, let Di

be the induced drawing of Si
n−1.

Lemma 4.4 Let k ≥ 4 be an integer. Let D be a drawing of S++
n . Then

there is a drawing D′ of S++
n such that:

(a) For every i = 0, . . . , k, the subdrawings Di and D′
i of Si

n−1 in D
and D′, respectively, are isomorphic.

(b) For i 6= j, cr(D′
i,D

′
j) = 0 and D′

j is contained in the unbounded

face of D′
i.

(c) cr(D′) ≤ cr(D).

Proof. For i ∈ {0, . . . , k}, the graph Bi = S++
n − Si

n−1 is isomorphic to Sn.

For every extreme vertex zj
ℓ of Sj

n−1 in Bi ≈ Sn, let Zi
jℓ be the subgraph

consisting of k (or k − 1 if ℓ = i) internally disjoint paths Rm = P j
ℓm ∪

{ejm} ∪ Pm
ji (m /∈ {i, j}) and Ri = P j

ℓi. Finally, let W i
jℓ be the subgraph

of S++
n which is the union of Si

n−1, Z
i
jℓ, and all edges eim (m 6= i) joining

Si
n−1 with Zi

jℓ. Then W i
jℓ is isomorphic to a subdivision of the graph S+

n−1

in which zj
ℓ plays the role of the special vertex in S+

n−1. Among all such

subgraphs W i
jℓ (j 6= ℓ, i /∈ {j, ℓ}), let Si+

n−1 be one whose induced drawing

has minimum number of crossings in D. Let D+
i be a drawing isomorphic

to the induced drawing of Si+
n−1 such that the special vertex is on the outer

face of the drawing.
Drawings D+

0 , . . . ,D
+
k can be combined (as explained in the proof of

Lemma 3.1) so that a drawing D′ of S++
n satisfying (a) and (b) is obtained

and such that

cr(D′) =

k
∑

i=0

cr(D+
i ) + cr(Kk+1) . (2)

We introduce the following notation, where all crossing numbers are taken
with respect to the drawing D:

ci := cr(Di),

cij := cr(Di,Dj),

fi := cr(Di, Fi), where Fi = {eij | j 6= i},

fi := cr(Di, Fi), where Fi = {ejℓ | j 6= ℓ, i /∈ {j, ℓ}},

fij := cr(Fi \ {eij}, Fj \ {eji}).
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Figure 3: Subgraph W i
jℓ

Clearly,

cr(D) ≥

k
∑

i=0

ci +

k
∑

i=0

fi +

k
∑

i=0

fi +
1

2

k
∑

i=0

∑

j 6=i

(cij + fij) . (3)

Next, let c+i = cr(D+
i ) (where the number of crossings is counted with

respect to the drawing D′). Then:

c+i = ci + fi + min{cr(Di, Z
i
jℓ) | j 6= i, ℓ 6= j}

≤ ci + fi +
1

k2

∑

j 6=i

∑

ℓ 6=j

cr(Di, Z
i
jℓ) (4)

≤ ci + fi +
1

k2

(

∑

j 6=i

(k + 2)cij + 2kfi

)

. (5)

Inequality (4) holds since the minimum is always smaller or equal to the
average, while (5) follows from the observation that an edge of Sj

n−1 (j 6= i)
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is in at most 2 subgraphs Zi
jl and in at most k subgraphs Zi

ml (m /∈ {i, j}),

while an edge ejm (i /∈ {j,m}) belongs to precisely 2k subgraphs Zi
jl and

Zi
ml.

Combining (2)–(5), we get

cr(D) − cr(D′) + cr(Kk+1) = cr(D) −

k
∑

i=0

c+i

≥

k
∑

i=0

fi +

k
∑

i=0

∑

j 6=i

(1

2
−
k + 2

k2

)

cij −
2

k

k
∑

i=0

fi +
1

2

k
∑

i=0

∑

j 6=i

fij

=
k − 2

k

k
∑

i=0

fi +
k2 − 2k − 4

2k2

k
∑

i=0

∑

j 6=i

cij +
1

2

k
∑

i=0

∑

j 6=i

fij . (6)

For k = 4 we have

cr(D) − cr(D′) ≥
1

2

4
∑

i=0

fi +
1

8

4
∑

i=0

∑

j 6=i

cij − 1 . (7)

If cij = 0 for every i and j, and every fi = 0, then a drawing isomorphic
to D satisfies (a)–(c). Otherwise, (7) implies that cr(D) − cr(D′) > −1.
Since the left hand side is an integer, this implies that cr(D′) ≤ cr(D). This
completes the proof for k = 4.

Suppose now that k ≥ 5. By (6), it remains to see that

1

2

k
∑

i=0

∑

j 6=i

fij +
k − 2

k

k
∑

i=0

fi +
k2 − 2k − 4

2k2

k
∑

i=0

∑

j 6=i

cij ≥ r (8)

where r = cr(Kk+1).
Let us consider all kk+1 subgraphs K(τ0, . . . , τk) of S++

n isomorphic to
subdivisions of Kk+1; see Lemma 4.3. A crossing (in D) of two edges of
K(τ0, . . . , τk) is said to be pure if the two edges lie on subdivided edges of
Kk+1 that are not incident in Kk+1. Any drawing of K(τ0, . . . , τk) has at
least r pure crossings.

Let C = {(e, s), (f, t)} be a crossing in D. Let us estimate the maximum
number of subgraphs K(τ0, . . . , τk) in which C is a pure crossing.

(i) If e ∈ Fi \ {eij} and f ∈ Fj \ {eji}, where i 6= j, then C is a pure
crossing in at most kk+1 subgraphs K(τ0, . . . , τk).
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(ii) If e ∈ E(Si
n−1) and f = ejl, where i /∈ {j, l}, then by Lemma 4.3, C

can be a pure crossing in at most 2kk subgraphs K(τ0, . . . , τk).

(iii) If e ∈ E(Si
n−1) and f ∈ E(Sj

n−1), where i 6= j, then C can be a

pure crossing of K(τ0, . . . , τk) only when e ∈ E(P i
ab), f ∈ E(P j

cd),
τi ∈ {a, b}, and τj ∈ {c, d}. So, 4kk−1 is an upper bound for the
number of such cases.

The bounds derived in (i)–(iii) imply that

kk+1 r ≤ kk+1 1

2

k
∑

i=0

∑

j 6=i

fij + 2kk

k
∑

i=0

fi + 4kk−1
k

∑

i=0

∑

j 6=i

cij . (9)

Clearly, 2/k ≤ (k − 2)/k (for k ≥ 4) and 4/k2 ≤ (k2 − 2k − 4)/(2k2) (for
k ≥ 5). Therefore (9) implies (8). The proof is complete. 2

Inequalities used at the very last step of the above proof are strict for
k ≥ 5. If either some fi 6= 0 or some cij 6= 0, this would imply that the
lower bound would be strictly greater than the upper bound of Lemma 4.4
(if D is an optimal drawing). This implies that every optimal drawing of
S++

n (for k ≥ 5) satisfies the condition stated for D′ in Lemma 4.4(b).

Proof of Theorem 4.1. We may assume that k ≥ 4. By Lemma 3.1 we
only have to prove that the values in (i) and (ii) are lower bounds for the
crossing number. The proof is by induction on n. The case when n = 1 is
trivial, so we assume that n ≥ 2.

By Lemma 4.4, there is an optimal drawing D of S++
n such that condition

(b) of the lemma holds for its subdrawings D0, . . . ,Dk. In other words,
cr(Di,Dj) = 0 and Dj is in the unbounded face of Di for every i 6= j. This
implies that

cr(D) ≥
k

∑

i=0

cr(D+
i ) + cr(Kk+1) ≥ (k + 1) cr(S+

n−1) + cr(Kk+1). (10)

By the induction hypothesis for (i), cr(S+
n−1) ≥ kn−1−1

k−1 cr(Kk+1), so (10)
implies (ii).

To prove (i), suppose that there is a drawing D′ of S+
n with cr(D′) <

kn−1
k−1 cr(Kk+1). As in the proof of Lemma 3.1 we see that D′ and a drawing

13



of S+
n−1 can be combined in such a way as to get a drawing D of S++

n with

cr(D) = cr(D′) + cr(S+
n−1)

<
kn − 1

k − 1
cr(Kk+1) +

kn−1 − 1

k − 1
cr(Kk+1)

=
(k + 1)kn−1 − 2

k − 1
cr(Kk+1).

This is a contradiction to the already proved equality in (ii). 2
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