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Abstract

The well-known Petersen G(5, 2) admits a semi-regular automorphism
α acting on the vertex set with two orbits of equal size. This makes it
a bicirculant. It is shown that trivalent bicirculants fall into four classes.
Some basic properties of trivalent bicirculants are explored and the con-
nection to combinatorial and geometric configurations are studied. Some
analogues of the polycirculant conjecture are mentioned.

1 Introduction and Classification

The object of this study are trivalent (cubic) graphs admitting an action of
a cyclic group having two equally sized vertex orbits. Such graphs are called
bicirculants. The automorphism α that generates the corresponding cyclic group
is said to be semi-regular. Let G be a bicirculant and let α be the corresponding
semi-regular automorphism. By V (G) = V1 ∪ V2 we denote the decomposition
of the vertex set into the two orbits where

V1 = {u0, u1, ..., un−1}
V2 = {v0, v1, ..., vn−1}

and α(ui) = ui+1, α(vi) = vi+1, i = 0, 1, ..., n − 1. Note that all computations
are mod n.

There are two types of edges with respect to α. An edge e that has both of
its endpoints in the same orbit is said to be a rim edge (R), otherwise, if the
two endpoints belong to distinct orbits, the edge is said to be a spoke (S). Now
we distinguish four classes of bicirculants (with respect to a given semi-regular
element α). Consider the types of edges incident with a common vertex. If all
the edges are rim edges, we denote the corresponding class by 3R, if two of them
are rim edges the class is denoted by 2R + S, if only one edge is a rim edge, the
class is denoted by R + 2S, while the remaining class, composed of only spoke
edges is denoted by 3S.

Recall that the Möbius ladder Mn on 2n vertices is a graph on the vertex set
{v0, v1, ..., v2n−1} with two types of edges vk ∼ vk+1, vk ∼ vk+n, k = 0, 1, ..., n−
1.
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Also, a generalized Petersen graph G(n, r) is a graph on the vertex set

{u0, u1, ..., un−1, v0, v1, ..., vn−1}

with the adjacencies:

uk ∼ uk+1, vi ∼ vk+r, uk ∼ vk, k = 0, 1, ..., n− 1.

In particular, G(5, 2) is the Petersen graph, G(10, 2) is the dodecahedron
graph, and G(n, 1) is also known as the n−prism Πn.

A circulant graph is a possibly disconnected Cayley graph of a cyclic group.
It is well-known that each circulant C(n, S) can be described by two parameters:
an integer n and s symbol S ⊂ Zn, such that 0 /∈ S, S = −S. It follows, that
for a cubic circulant we have S = {i,−i, n/2} and therefore n has to be even.
Each cubic circulant graph either consists of isomorphic copies of r−prisms Πr

or Möbius ladders.
Bicirculants have been studied in the past [18]. They form a subclass of

important class of graphs, called polycirculants; see for instance [17, 19, 18] and
also [2, 23].

We are interested only in simple graphs (graphs with no loops or parallel
edges. However in describing them we use general graphs and even pregraphs,
allowing parallel edges, loops and even half-edges.

Proposition 1. In any cubic bicirculant graph the type of vertex is constant;
i.e. all the vertices have the same type.

Proof. Since the type of a vertex is preserved by the automorphism α the vertices
in the same orbit have the same type. As both vertex orbits have the same size,
the number of spokes per vertex is constant.

As we mentioned earlier, this decomposition in general may depend on α.
We shall explain the structure of each of the four classes.

Class 3R. Since there are no edges between V1 and V2 the graph G|Vi in-
duced on Vi, i = 1, 2, is a union of connected components. G|Vi is therefore a
cubic circulant graph. This means that n = |V1| = |V2| has to be an even num-
ber. The only connected cubic circulants are Möbius ladders and odd prisms.
This completely reveals the structure of graphs in 3R. None of them is con-
nected. Each graph from 3R has a number of vertices divisible by 4. Girth is
at most 4. The graphs on 2n vertices can be described by three parameters
n, i, j and are denoted by T (n, i, j) where n is an even integer; see Figure 1.
Since T (n, i, j), T (n, j, i) and T (n, n− i, n− j) are isomorphic, we may assume
0 < i ≤ j ≤ n− 1, i + j ≤ n. There are three types of edges:

uk ∼ uk+i, k = 0, 1, ..., n− 1.

vk ∼ vk+j , k = 0, 1, ..., n− 1.

uk ∼ uk+n/2, vk ∼ vk+n/2, k = 0, 1, ..., n− 1.

In order to describe the structure of T (n, i, j) we need new notation. let
g(n, k) = gcd(n, k), if n/gcd(n, k) is even and let g(n, k) = gcd(n, k)/2 if
n/gcd(n, k) is odd. Furthermore, let Xt denote a Möbius ladder Mt/2 if t is
even or a prism Πt, if t is odd. Let r = n/ gcd(n, i) and let s = n/ gcd(n, j).
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Figure 1: Each cubic bicirculant on 2n vertices is a cyclic cover over one of the
four cubic pregraphs on two vertices. The voltage group in each case is Zn.

Hence T (n, i, j) consists of g(n, i) copies of Xr and g(n, j) copies of Xs. Clearly
each prism or Möbius ladder lies entirely in one of the two orbits. For instance
T (6, 1, 2) has one component isomorphic to Π3 and the other to M3; see Figure 2.

Class 3S. All edges have one endpoint in V1 and the other one in V2. The
graphs therefore coincide with cubic cyclic Haar graphs introduced in [16]. They
can be described by three parameters n, i, j and are denoted by H(n, i, j). We
may assume 0 < i < j ≤ n− 1, i + j ≤ n.

uk ∼ vk, k = 0, 1, ..., n− 1.

uk ∼ vk+i, k = 0, 1, ..., n− 1.

uk ∼ vk+j , k = 0, 1, ..., n− 1.

Class 2R + S. Each vertex from V1 is incident with two rim edges and one
spoke. The same is true for each vertex from V2. The class of graphs coincides
with the so-called I-graphs and can be described by three parameters n, i, j and
are denoted by I(n, i, j). These graphs have been studied in [3]. Using the same
argument as above we may assume 0 < i ≤ j ≤ n−1, i+j ≤ n, i 6= n/2, j 6= n/2.
Note that i = n/2 and j = n/2 are forbidden as they would result in parallel
edges.

uk ∼ vk, k = 0, 1, ..., n− 1.

uk ∼ uk+i, k = 0, 1, ..., n− 1.

vk ∼ vk+j , k = 0, 1, ..., n− 1.

Class R + 2S. Each vertex from V1 is incident with a single rim edge and
two spokes. The same is true for each vertex from V2. The class of graphs
F (n, i) can be described by two parameters n and i with 0 < i ≤ n/2 and n
even.
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uk ∼ vk, k = 0, 1, ..., n− 1.

uk ∼ vk+i, k = 0, 1, ..., n− 1.

uk ∼ uk+n/2, vk ∼ vk+n/2, k = 0, 1, ..., n− 1.

It is not hard to see that F (n, i) are composed of disjoint Möbius ladders or
prisms. Note that a different choice of α would put this graph in the class 3R.

Let us summarize the previous discussion in a form of a theorem. We provide
a short proof that uses voltage graphs and covering graphs; for definitions and
similar use of covering graph technique see for instance [2, 22]. The base spaces
are pre-graphs. These are graphs with half-edges. The only voltages that can be
assigned to half-edges are involutions. If we want to have covering spaces to be
graphs (without half-edges), the voltage has to be a fixed-point free involution.
Since the voltage group in our case is Zn, the only admissible voltage on a
half-edge is n/2. When a base graph contains a vertex with incident pair of
half-edges they can be replaced by a loop with a voltage n/2. This reduces the
number of possible base pre-graphs and hence the number of cases to four. In
the drawing of voltage graph G with voltage assignment γ : E(G) → Zn we
omit the arrow on an edge e if it can be reversed without changing the graph,
i.e. if γ(e) = −γ(e).

Theorem 2. Any cubic bicirculant on 2n vertices is isomorphic to one of the
following graphs: T (n, i, j),H(n, i, j), I(n, i, j) and F (n, j).

Proof. By definition, a cubic bicirculant is a cyclic covering graph over a cubic
pregraph on two vertices. Since there are exactly four cubic pregraphs on two
vertices, the bicirculants naturally fall into four classes as shown in Figure 1.
In each case we have, in addition to n, the number of layers of each fiber, two
parameters that arise by voltage assignment to the edges; compare [22].

Figure 2 depicts some graphs described in Theorem 2. In the remainder
of the paper we use the results that were obtained during the study of graphs
H(n, i, j); [16] and I(n, i, j); [3]. According to [9] a zero-symmetric graph is a
vertex-transitive, trivalent graph whose edges are partitioned into three orbits
by its automorphism group.

2 Some Basic Properties

Here we will explore three basic properties of bicirculants.

Proposition 3. A cubic bicirculant graph G is connected if and only if:

1. G = H(n, i, j) and gcd(n, i, j) = 1.

2. G = I(n, i, j) and gcd(n, i, j) = 1.

3. G = F (n, i) and gcd(n, i) = 1 or gcd(n, i) = 2 and n/2 is odd.

Proof. Since none of the graphs T (n, i, j) is connected we have to consider only
the remaining three classes. Case 1 follows from [16], Proposition 3.1. Case 2 is
described in [3]. The remaining case F (n, i) is clearly disconnected if gcd(n, i) >
2 and is connected if gcd(n, i) = 1. If gcd(n, i) = 2 the spokes alone form two
cycles that are connected by the rim edges if and only if both cycles are odd.
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M3 Π3

H(9, 1, 3) I(12, 3, 4)

Figure 2: T (6, 1, 2) has two components M3 and Π3 shown above. H(9, 1, 3) is
the smallest zero-symmetric graph; see [9]. I(12, 3, 4) is the smallest I−graph
that is not isomorphic to a generalized Petersen graph. The family of graphs
F (n, i) has no new members.

Theorem 4. Each cubic bicirculant connected graph G is 3-connected.

Proof. In each of the three classes of graphs one can find three vertex disjoint
paths between any pair of vertices.

Since the girth of any Möbius ladder or prism graph is at most 4, it follows
that girth(T (n, i, j)) ≤ 4 and girth(F (n, i)) ≤ 4. In [16] it was shown that
girth(H(n, i, j)) ≤ 6. and in [3] it was shown that girth(I(n, i, j) ≤ 8. In these
references one can find recipes for computing girth of these graphs.

Since the semi-regular automorphism α produces only two orbits, there are
only two cases concerning vertex transitivity.

Proposition 5. A cubic bicirculant graph G is vertex transitive if and only if

1. G = T (n, i, j) and gcd(n, i) = gcd(n, j)

2. any G = H(n, i, j)
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3. G = I(n, i, j) and gcd(n, i) = gcd(n, j) = 1, G is isomorphic to the dodec-
ahedron graph G(10, 2) or else there exists and integer r such that j = r.i
(mod n) and i = ±r.j (mod n).

4. any F (n, i).

Proof. The graphs in the first case are vertex-transitive if and only if they have
all connected components isomorphic. The second case is covered in [16]. Each
cyclic Haar graph is a Cayley graph. The third case follows from [3] where it is
shown that the only transitive I-graphs are certain generalized Petersen graphs.
The class of vertex-transitive generalized Petersen graphs was established in
[10]. The last case has all connected components isomorphic and each of them
is vertex-transitive.

Proposition 6. A cubic bicriculant graph G is bipartite if and only if

• any G = T (n, i, j), n even, and n/ gcd(n, i) and n/ gcd(n, j) are odd num-
bers.

• G = H(n, i, j)

• G = I(n, i, j) and n is even and i and j are odd.

• G = F (n, i), n is even and i is odd.

Proof. In the first and the last case we only have to distinguish even Möbius
ladders from odd prisms. The second case follows from [16] and the third one
from [3].

Proposition 7. A cubic bicirculant graph G is a Cayley graph if and only if

• G = T (n, i, j) and gcd(n, i) = gcd(n, j)

• any G = H(n, i, j).

• G = I(n, i, j) and gcd(n, i) = gcd(n, j) = 1 and there exists and integer r
such that j = r.i( mod n) and i = r.j( mod n).

• any G = F (n, i).

Proof. In the first case we have to make sure that all connected components are
isomorphic. The second case follows from [16] and the third one from [3]. The
last case is trivial.

3 Bicirculants and Configurations

Finally, let us touch on a problem of configurations. A combinatorial (v3) con-
figuration is an incidence structure composed of v points and v lines and there
are exactly three points on each line and there are exactly three lines passing
through each point. Furthermore, any pair of distinct points determines at
most one line. For the basic facts on configurations, the reader may consult
for instance [2]. These configurations were counted in [1] for v ≤ 18. There
is an important connection between configurations and graphs. A Levi graph
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Figure 3: The graph G(18, 5) = I(18, 1, 5) is the smallest bicirculant graph that
is a Levi graph of a triangle-free configuration; compare [4]
.

(see [8]) of a (v3) configuration is a bipartite cubic graph where black vertices
represent points and white vertices represent lines of the configuration. The
incidence of point and line is represented as an edge of the corresponding Levi
graph. The girth of any Levi graph is at least 6. A cycle of length 6 in the
Levi graph corresponds to a triangle in the combinatorial configuration. Simi-
larly, a cycle of length 8 corresponds to quadrangles in the configuration. In [1]
triangle-free configurations have been counted as well. This means that cubic
bipartite graphs of girth at least 8 have been counted. Recent paper [4] studies
small triangle-free configurations.

If we restrict our attention to the configurations whose Levi graphs are bi-
circulants, then each configuration contains either a triangle or a quadrangle.
There is another approach to this connection. In [2] polycyclic configurations
have been studied. Levi graphs of polycyclic configurations are polycirculants.
A bicirculant is a polycirculant of order 2. The polycirculants arising from
polycyclic configurations have an additional property that each orbit is an inde-
pendent set of vertices. Let us call such polycirculants independent. The only
independent bicirculants are cyclic Haar graphs. They correspond to cyclic
configurations.

It is possible to characterize Levi graphs among the bicirculants.

Theorem 8. A cubic bicirculant is a Levi graph of a combinatorial configuration
if and only if

• G = H(n, i, j) and 0 6= i, 0 6= j, i 6= j, 2i 6= j, 2j 6= i, i + j 6= 0, n 6= 2i, n 6=
2j.

• G = I(n, i, j) and n is even, i and j are odd and n 6= 4i, n 6= 4j, i 6=
j, i + j 6= 0.

Proof. Only the second and third case apply for girth to be at least 6. The
claim follows from [3], Theorems 3 and 7. For bipartite I(n, i, j) the conditions
for the girth can be simplified since no odd cycles are possible.
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Figure 4: In the Table 4 only one graph from each equivalence class is presented.
For instance there are eight graphs isomorphic to the smallest one I(60, 5, 3).
One of the isomorphs is I(60, 25, 9) and is easier to visualize. The paper [3]
addresses the problem of isomorphism of I-graphs in detail.

Theorem 9. A cubic bicirculant is a Levi graph of a combinatorial triangle free
configuration if and only if G = I(n, i, j) and n is even, i and j are odd and
0 6= 2i, 0 6= 2j, 0 6= 4i, 0 6= 4j, i 6= j, i + j 6= 0, 3i 6= j, 3j 6= i, 3i 6= −j, 3j 6=
−i, 0 6= 6i, 0 6= 6j, 2i 6= 2j, 2i + 2j 6= 0, 3i 6= j, 3j 6= i, 3i 6= −j, 3j 6= −i.

Proof. Only certain I-graphs have girth greater than 6. The result follows from
[3], Theorems 3 and 7.

If we want the graph to be different from any generalized Petersen graph,
we have to add two more conditions: gcd(n, i) > 1, gcd(n, j) > 1.

Using the above theorems we produced our tables.
In addition to combinatorial configuration we also have geometric config-

urations of points and lines in the Euclidean plane. The problem is which
combinatorial configurations admit geometric realizations.

According to the Theorem 4 all connected configurations of this paper are
3-connected. This means that the corresponding Levi graph is 3-connected. The
smallest two cyclic configurations (73) and (83) are not geometrically realizable.
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7 3 1 8 3 1 9 3 1 10 3 1 11 3 1
12 3 1 12 8 1 12 9 8 13 3 1 13 10 1

Table 1: Parameters for the graphs H(n, i, j) of girth 6. They constitute the
class of Levi graphs of cyclic (n3) configurations n ≤ 13; see [1].

8 3 1 10 3 1 12 5 1 14 3 1 16 3 1
16 5 3 18 3 1 20 3 1 20 7 3

Table 2: Parameters for the bipartite graphs I(n, i, j) of girth at least 6, n ≤ 20.

18 5 1 22 5 1 24 5 1 24 5 3 24 7 1
26 5 1 26 5 3 28 5 1 30 7 1 30 7 3
30 11 1

Table 3: Parameters for the bipartite graphs I(n, i, j) of girth 8, n ≤ 30. For
the smallest one see Figure 3

60 5 3 70 7 5 84 7 3 90 5 3 90 9 5
110 11 5 120 5 3 120 9 5 126 7 3 126 9 7
130 13 5 132 11 3 140 7 5 150 5 3 150 9 5
154 11 7 156 13 3 168 7 3 168 9 7 170 17 5
180 5 3 180 9 5 180 21 5 182 13 7 190 19 5
198 11 3 198 11 9

Table 4: Parameters for the bipartite graphs I(n, i, j) that are not generalized
Petersen graphs of girth 8, n ≤ 198.
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Figure 5: Using the theory from [3] we can construct 4 geometrically distinct
(603) triangle free astral configurations with the same Levi graph I(60, 5, 3).

In [4] the following conjecture is posed:

Conjecture 1. Every 3-connected combinatorial (n3) configuration with v > 10
is geometrically realizable.

If this Conjecture is true, then all other configurations of this paper are
geometrically realizable. Note that for n ≤ 12 there are only three exam-
ples that violate this Conjecture. In addition to the Fano plane (73) and the
Möbius-Kantor configuration (83) there is only one more. Among the ten (103)
combinatorial configurations, there is one that admits no geometric realizations.

The smallest I-graph of girth 8 is the generalized Petersen graph G(18, 5)
that has an important role in connection with astral configurations, see [4]. The
smallest non-generalized Petersen I-graph of girth 8 is I(60, 5, 3), see Figure 4;
compare [3]. There are eight I−graphs isomorphic to I(60, 5, 3). However, there
is only one self-dual combinatorial configuration resulting from these graphs. As
we have seen in Figure 6 this combinatorial (603) configuration admits a geomet-
ric realization. Using theory developed in [2] we can construct other symmetric
geometric realizations of this combinatorial configuration. For instance, exactly
four of them are astral; see Figure 5.

This rises one more question that would be interesting to address. We have
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Figure 6: The graph I(60, 25, 9) from Figure 4 is a Levi graph for a number of
geometric configurations. Four astral ones are shown in Figure 5. Some features
are more clearly visible in this stellar geometric (603) configuration.

seen that different I-graphs can be isomorphic. On the other hand the same
combinatorial configuration may produce distinct geometric configurations. A
natural question is: how many distinct geometric forms can a combinatorial
configuration possess? Some geometric configurations admit a lot of freedom.
Sometimes we may continuously move a point and keep the required incidences
until we reach a different configuration. Obviously, there are only finite number
of possibilities. It would be interesting to explore this idea and at least give some
non-trivial upper bound for a number of distinct geometric realizations of given
(v3) configuration. Obviously, before we can answer this question we have to
define when two geometric configurations are “the same”. Since any geometric
configuration is a line arrangement [24] we may have to use the idea of equality
of line arrangements. But that is a subject for a separate work. We conclude this
topic by exhibiting a projectively rigid configuration (42) Figure 7 that admits
six Euclidean configurations and defines four Euclidean line arrangements.
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Figure 7: Six Euclidean realizations of the combinatorial (42) configuration.
Projectively they are all indistinguishable. Note that the 6 Euclidean realiza-
tions define only 4 distinct Euclidean line arrangements.

4 Bicirculants and the Polycirculant Conjecture

The original polycirculant conjecture as stated in 1981 by Dragan Marušič [17]
can be formulated as follows:

Conjecture 2. Every vertex transitive graph admits a non-trivial semi-regular
automorphism.

In [21] the authors have proven the conjecture for the case of cubic graphs.
Motivated by configurations one can try to modify the conjecture to a dif-

ferent environment.

Conjecture 3. Every point- and line- transitive combinatorial configuration is
a polycyclic configuration.

If we translate this conjecture to the language of graphs and we forget about
the girth 6, we can reformulate the conjecture as follows:

Conjecture 4. Every bipartite graph that has all black vertices in a single orbit
and all white vertices in a single orbit, admits a semi-regular automorphism.

When Branko Grünbaum introduced the notion of an astral configuration in
[14] he had in mind geometric configurations. A geometric (v3) configuration is
called astral if its group of isometric symmetries has only two point orbits and
two line orbits. The only groups of symmetry possible for an astral configuration
are cyclic groups or dihedral groups, see Figure 8.

This gives rise to the following generalization of a semi-regular element α ∈
AutG. Instead of semi-regular element α one can view the corresponding semi-
regular cyclic group, generated by α. More generally, a subgroup Γ ≤ AutG
acting on the vertex set of G is called semi-regular, if all vertex orbits are of the
same size.

A natural combinatorial counterpart to astral configurations can be defined
as follows. A cubic bipartite graph is called astral if it admits a semi-regular

12



Figure 8: Two astral configurations. The left one has cyclic while the right one
has dihedral group of symmetries. Each one is the smallest in its class.

group of automorphism Γ ≤ Aut G with two black and two white orbits. Using
examples of Figure 8 it is clear that there exist cubic bipartite graphs that are
cyclically or dihedrally astral. It would be interesting to see what can be said
about other groups than can appear in astral cubic bipartite graphs.
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