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HOLOMORPHIC DISCS WITH DENSE IMAGES

FRANC FORSTNERIC AND JORG WINKELMANN

ABSTRACT. Let A be the open unit disc in C, X a connected
complex manifold and D the set of all holomorphic maps f: A - X
with f(A) = X. We prove that D is dense in Hol(A, X).

1. INTRODUCTION

Let A, = {z € C: |z| < r} and A = A;. In [7] the second author
proved that for any irreducible complex space X there exists a holo-
morphic map A — X with dense image, and he raised the question
whether the set of all holomorphic maps A — X with dense image
forms a dense subset of the set Hol(A, X) of all holomorphic maps
A — X with respect to the topology of locally uniform convergence.

In this paper we show that the answer to this question is positive if
X is smooth, but negative for some singular space.

Theorem 1. For any connected complex manifold X the set of holo-
morphic maps A — X with dense images forms a dense subset in
Hol(A, X). The conclusion fails for some singular complex surface X .

The situation is quite different for proper discs, i.e., proper holo-
morphic maps A — X. The paper [3] contains an example of a non-
pseudoconvex bounded domain X C C? such that a certain nonempty
open subset U C X is not intersected by the image of any proper holo-
morphic disc A — X. On the other hand, proper holomorphic discs
exist in great abundance in Stein manifolds [5], [1], [2].

2. PREPARATIONS

Lemma 1. Let W, be a decreasing sequence (i.e., Wy 11 C W,,) of open
sets with A C W,, C Ay for every n. Let K =N, W, and assume that
the interior of K coincides with A. Furthermore assume that there are
biholomorphic maps ¢n: A — W, with ¢,(0) =0 forn=1,2,....
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Then there exists an automorphism o € Aut(A) and a subsequence
(¢n, ) of the sequence (¢y,) such that ¢, oa~" converges locally uniformly
to the identity map ida on A.

Proof. Montel’s theorem shows that, after passing to a suitable sub-
sequence, we have lim, .o ¢, = a: A = K and lim, (4, s) =
B: A — A. Since the limit maps are holomorphic and satisfy a/(0) = 0
and £(0) = 0, we conclude that a(A) C IntK = A and S(A) C A.
Moreover avo 3 = ida = 3 o a, and hence both o and 3 are automor-
phisms of A (indeed, rotations z — ze'), O

We also need the following special case of a result of the first author
(theorem 3.2 in [4]):

Proposition 1. Let X be a complex manifold, 0 < r < 1, E the real
line segment [1,2] C C, K = AUE, U an open neighbourhood of A in
C, S a finite subset of K and f: UUFE — X a continuous map which
15 holomorphic on U.

Then there is a sequence of pair of open neighbourhoods W, C C of
K and holomorphic maps ¢,: W,, — X such that:

(1) gnli converges uniformly to f|x as n — 0o, and

(2) gnla) = f(a) for alla € S and n € N.

3. TOWARDS THE MAIN RESULT

In this section we prove the following proposition which is the main
technical result in the paper. The first statement in theorem 1 (§1) is
an immediate corollary.

Proposition 2. Let X be a connected complexr manifold endowed with
a complete Riemannian metric and induced distance d, S a countable
subset of X, f: A — X a holomorphic map, € >0 and 0 < r < 1.

Then there exists a holomorphic map F: A — X such that

(a) S C F(A), and

(b) d(f(2), F(z)) <€ for all z € A,.

Proof. Let si, s9,S3,.. be an enumeration of the elements of S. We
shall inductively construct a sequence of holomorphic maps f,: A —
X, numbers 7, € (0,1) and points aip,...,an, € A satisfying the
following properties for n =0,1,2,.. .

(1) fo=fand ro =,

(2) (rp+1)/2 <rpyr <1,

(3) fulaj,) =s;forn>1and j=1,2,...,n,

(4) d(fo(2), far1(2)) < 27 e for all z € A,, , and
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(5) da(@jn, @jni1) < 27" for j =1,2,...,n where do denotes the
Poincaré distance on the unit disc.
Assume inductively that the data for level n (i.e., f,, rn, a;,) have
been chosen. (For n = 0 we do not have any points a;o.) With n fixed
we choose an increasing sequence of real numbers A\, with A\, > r,

and limy_,,, A, = 1. For every k € N the map gx(z) ] fa(Akz) € X
is defined and holomorphic on the disc A/, D A. After a slight
shrinking of its domain we can extend it continuously to the segment
E =[1,2] € C such that the right end point 2 of E is mapped to the
next point s,1 € S (this is possible since X is connected).

Applying proposition 1 to the extended map gr we obtain for every
k € N an open neighbourhood V}, C C of K = AUE and a holomorphic
map gx: Vx — X such that

(i) 1gx(2) — fu(Mr2)| < 27F for all 2z € A,
(i) ge(2) = snp1, and

(i) gr(ajn/Ae) = falajn) =s; for j=1,... n.

Next we choose a decreasing sequence of simply connected open sets
W, Cc C (k€ N) with K ¢ W, C V;, and K = N;W}. Notice that
IntK = A. By lemma 1 there is a sequence of biholomorphic maps

Consider the holomorphic maps hy = gr o ¢p: A — X. By our
construction we know that limy_, ., hy = f,, locally uniformly on A.

To fulfill the inductive step it thus suffices to choose f,, 1 = hy for a
sufficiently large k, a1 = ajn/M (= 1,...,0), Gnyini = o5 (2).
Finally we choose a number r,, satisfying

r, +1

2
This completes the inductive step.

By properties (2) and (4) the sequence f,, converges locally uniformly
in A to a holomorphic map F': A — X. Aided by property (1) we also
control d(f(z), F(z)) for z € A,. Since the Poincaré metric is complete,
property (5) insures that for every fixed j € N the sequence a;, € A
(n = j,j+1,...) has an accumulation point b; inside of A, and (3)
implies F'(b;) = s; for j =1,2,.... Hence S C F(A). O

max{|an 1,041 }<rpp <1

4. SINGULAR SPACES

We use an example of Kaliman and Zaidenberg [6] to show that for
a complex spaces X with singularities the set of maps A — X with

dense image need not be dense in Hol(A, X). We denote by Sing(X)
the singular locus of X.
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Proposition 3. There is a singular compact complex surface S, a non-
constant holomorphic map f: A — S and an open neighbourhood 2 of
[ in Hol(A,S) such that g(A) C Sing(S) for every g € Q.

Proof. In [6] Kaliman and Zaidenberg constructed an example of a
singular surface S with normalization 7: Z — S such that S contains
a rational curve C' ~ P! while Z is smooth and hyperbolic. Denote
by dz the Kobayashi distance function on Z. We choose two distinct
points p,q € C' and open relatively compact neighbourhoods V' of p
and W of ¢ in S such that VN W = ). The preimages 7—'(V) and
7~ Y(W) in Z are also compact, and since Z is hyperbolic we have

r =min{dz(z,y): z € 7 (V),y € a~* (W)} > 0.

Fix a point a € A with 0 < da(0,a) < r and let Q consist of all
holomorphic maps g: A — S satisfying ¢(0) € V and g(a) € W. Since
both p and ¢ are lying on the rational curve C', there is a holomorphic
map g: A — C with ¢g(0) =p € V and g(a) = ¢ € W; hence the set Q
is not empty. Clearly €2 is open in Hol(A, S).

To conclude the proof it remains to show that g(A) C Sing(S) for
all g € Q. Indeed, a holomorphic map g: A — S with g(A) ¢ Sing(S)
admits a holomorphic lifting g: A — Z with rog = ¢g. If g € Q then
by construction

dz(9(0),g(a)) > r > da(0,a)
which violates the distance decreasing property for the Kobayashi pseu-
dometric. This contradiction establishes the claim. 0]

In particular, we see that in this example the set of all holomorphic
maps f: A — S with dense image does not constitute a dense subset
of Hol(1,S).
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