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Abstract: If V is a (possibly infinite) set, G a permutation group on V , v ∈ V ,
and Ω an orbit of the stabiliser Gv, let GΩ

v denote the permutation group induced
by the action of Gv on Ω, and let N(G) be the normaliser of G in Sym(V ). In
the article, we discuss a relationship between the structures of Gv and GΩ

v . In
particular, we prove that if G is transitive and if the N(G)-orbital {(vg, ug) | u ∈
Ω, g ∈ N(G)} is strongly connected (when viewed as a digraph on V ), then every
simple homomorphic image of a subgroup of Gv is also a homomorphic image of
a subgroup of GΩ

v . This generalises a result of Wielandt concerning finite primite
permutation groups.

Keywords: permutation group, digraph, graph, stabiliser.

Slovenski naslov: O stabilizatorju točke v permutacijski grupi

Povzetek: Za množico V (lahko neskončno), permutacijsko grupo G na V ,
točko v ∈ V in orbito Ω delovanja stabilizatorja Gv, naj GΩ

v predstavlja permutaci-
jsko grupo na Ω, inducirano z delovanjem grupe Gv na Ω, in naj N(G) predstavlja
normalizator grupe G v simetrični grupi Sym(V ). V članku obravnavamo povezavo
med strukturama grup Gv in GΩ

v . Med drugim dokažemo, da je v primeru, ko je
G tranzitivna in je N(G)-orbitala {(vg, ug) | u ∈ Ω, g ∈ N(G)} krepko povezana
(razumljena kot usmerjen graf na množici točk V ), vsaka enostavna homomorfna
slika grupe Gv hkrati tudi homomorfna slika grupe GΩ

v . S tem posplošimo soroden
rezultat Wielandta o končnih primitivnih permutacijskih grupah.

Ključne besede: permutacijska grupa, usmerjen graf, graf, stabilizator.
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1 Introduction

It is well known that every transitive permutation group G with a point stabiliser
H ≤ G is permutation isomorphic to the natural action of G on the cosets G/H
by multiplication. It is therefore not surprising that determining the size and the
structure of a point stabiliser in a transitive permutation group is one of the central
problems in the theory of permutation groups. Particular attention has been given
to the relationship between the size of a point stabiliser Gv, and the size of an orbit
Ω 6= {v} of Gv (called a G-suborbit). In particular, the question whether the size
of Gv in a finite primitive permutation group is bounded above in terms of the size
of G-suborbits, was raised by Sims, and finally answered affirmatively in [2]. As we
show in this paper, the structure of a vertex stabiliser Gv seems to remain strongly
related to the structure of the permutation group GΩ

v (induced by the action of Gv

on a Gv-orbit Ω) even if the group G is not primitive (or finite).
Let V be a (possibly infinite) set, let G ≤ Sym(V ), let v ∈ V , and let Ω be an

orbit of the stabiliser Gv. Further, let K = Ker(Gv → GΩ
v ) denote the group of

all permutations in Gv fixing every element of Ω. Then GΩ
v (viewed as an abstract

group) is isomorphic to the quotient group Gv/K. Since, in principle, the kernel K
might be a rather complicated group, the vertex stabiliser Gv could be considerably
more complicated than GΩ

v . However, it can be shown that under certain assump-
tions on G and Ω, the structure of Gv (at least in the sense of the Jordan-Hölder
decomposition), is fully determined by the structure of the group GΩ

v . For exam-
ple, the following generalisation of Wielandt’s theorem [6, Theorem 18.2] has been
proved recently by Betten, Delandtsheer, Niemeyer, and Praeger. (In the statement
of his result, Wielandt assumed that G itself is finite and primitive.)

Theorem 1.1 ([1, Theorem[2.1]) Suppose that G is a transitive subgroup of Sym(V )
whose normaliser in Sym(V ) is finite and primitive. Let v ∈ V and let Ω ⊆ V \ {v}
be an orbit of Gv. Then every composition factor (in the sense of the Jordan-Hölder
Theorem) of the group Gv is isomorphic to a composition factor of some subgroup
of GΩ

v .

It this paper we generalise the above result and show that under certain restric-
tions the statement of Theorem 1.1 remains valid for (possibly infinite) permutation
groups with an imprimitive normaliser.

Even though the topic of the paper is essentially group theoretical, graph the-
oretical language and techniques will prove useful, and enable us to understand
Wielandt’s result in a more general setting.

By a digraph on a vertex set V , we mean any non-empty subset Γ of the set
V (2) = (V × V ) \ {(v, v) | v ∈ V }. For example, if G ≤ Sym(V ) is a permutation
group, and ∆ is a G-orbital (that is, an orbit of G on V (2)), then ∆ can be viewed
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as a digraph on V . The automorphism group of Γ, denoted by Aut(Γ), is the group
of all permutations on V that (when viewed as permutations on V (2)) preserve Γ.
Clearly, a permutation group G ≤ Sym(V ) is a subgroup of Aut(Γ) if and only if Γ
is a union of G-orbitals. For a set V and v ∈ V , consider the function Φv mapping
a digraph Γ ⊆ V (2) to the neighbourhood Γ(v) = {u | (v, u) ∈ Γ} of v in Γ. If G
is a transitive permutation group on V , then Φv induces a bijective correspondence
between digraphs Γ on V for which G ≤ Aut(Γ), and unions of Gv-orbits on V \{v}.
In this correspondence, G-orbitals (that is, digraphs on which G acts transitively)
bijectively correspond to Gv-orbits. This shows that every statement concerning the
action of Gv on a Gv-orbit can be expressed in terms of the action of G as a group
of digraph automorphisms.

A digraph Γ is locally finite if Γ(v) is finite for every v ∈ V , and is finite if its
vertex set is finite. For a digraph Γ ⊆ V (2), we let Γ∗ = {(u, v) | (v, u) ∈ Γ} and call
Γ a graph if Γ = Γ∗. A directed path of length n in Γ between vertices u, v ∈ V is a
finite sequence u = v0, v1, . . . , vn = v such that (vi−1, vi) ∈ Γ for every i ∈ {1, . . . , n}.
A path in Γ is a directed path in Γ ∪ Γ∗. A digraph Γ is (strongly) connected if for
every (u, v) ∈ V (2) there exists a (directed) path between u and v.

Recall that an abstract group is a section of a group G if it is a homomorphic
image of a subgroup of G. A section is called simple if it is a simple group. Note that
a group is a simple section of a finite group G if and only if it is a composition factor
of a subgroup of G. We can now state the following generalisation of Wielandt’s
theorem:

Theorem 1.2 Suppose that G is a (possibly infinite) transitive permutation group
on a set V , N(G) the normaliser of G in Sym(V ), ∆ ⊆ V (2) a G-orbital, Γ the
N(G)-orbital containing ∆, and v ∈ V . If Γ is strongly connected (when viewed as
a digraph on V ), then every simple section of Gv is also a section of G

∆(v)
v .

It is well known that a finite transitive permuation group G ≤ Sym(V ) is primi-
tive if and only if every G-orbital is strongly connected (see, for example, [3, Theorem
3.2A and Lemma 3.2A]). It is now clear that Theorem 1.2 implies the statement of
Theorem 1.1. Namely, if G, V , v and Ω are as in Theorem 1.1, and N(G) is the
normaliser of G in Sym(V ), then the N(G)-orbital Γ = {(vg, ug) | u ∈ Ω, g ∈
N(G)} is strongly connected (since N(G) is primitive), Γ contains the G-orbital
∆ = {(vg, ug) | u ∈ Ω, g ∈ G}, and ∆(v) = Ω. Hence, by Theorem 1.2, every simple
section of Gv is also a simple section of GΩ

v . Since simple sections of a finite group
are nothing but composition factors of its subgroups, the assertion of Theorem 1.1
follows.

In Section 3, we prove Theorem 1.2, by first proving a stronger, albeit rather
technical result (see Lemma 3.1). Several group and graph theoretical consequences
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of the latter are discussed in Section 4. But first, we review some basic notions and
facts needed later.

2 Preliminaries

Since we assume no finitness conditions on the groups, sets and digraphs, some use
of transfinite set theory is unavoidable. We refer the reader to [4] for a detailed
account on ordinal numbers and other set theoretical notions not defined here. The
usual well-ordering of the set of ordinals will be denoted by <, and α ≤ β will mean
that either α < β or α = β. We shall use the symbol α+ to denote the successor of
an ordinal α. The minimal ordinal number shall be denoted by 0 and its successor
by 1. For two ordinals α and β, we let [α, β) denote the set of ordinals η such that
α ≤ η < β, and by [α, β] we mean [α, β+) (note that by this definition, β = [0, β)
and β+ = [0, β] for every ordinal β). Recall that a non-zero ordinal is a limit ordinal
if it is not the successor of any other ordinal.

The reader should be aware that the assumption of the Axiom of Choice is needed
to prove our results in the most general form. In particular, we shall assume that
every set can be well ordered, and consequently, that for every set V there exists
a well-ordering of V and an order-preserving bijection from V to an ordinal α. In
this case, we shall say that V (together with the well-ordering of V ) gives rise to
the ordinal α.

Let α be an ordinal number, let H be a subgroup of a group G, let G be a set
of groups containing H and contained in G, and let f : [0, α] → G, f(β) = Gβ , be a
surjective function. Following [5], we say that

G = G0 B G1 B · · · B Gα = H

is a complete descending series between G and H of type α whenever:

1. Gα = H, G = G0, and G+
β C Gβ for every β ∈ [0, α); and

2.
⋂

β<λ Gβ = Gλ for every limit ordinal number λ ∈ [0, α].

The quotients Gβ/Gβ+ , β ∈ [0, α), shall be referred to as the factors of the complete
descending series. A complete descending series between a group G and the trivial
group 1, will be called a complete descending series of G. Clearly, if α is a finite
ordinal number, then a complete descending series of G is a normal series of G in
the usual sense. The following lemma will be needed in the proof of Theorem 1.2.

Lemma 2.1 Let S be a simple section of a group G and let

G = G0 B G1 B · · · B Gα = 1

be a complete descending series. Then S is a section of some quotient group Gβ/Gβ+,
β ∈ [0, α).
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Proof. By definition, there exists a subgroup H ≤ G and a group epimorphism
π : H → S. Let K denote the kernel of π. For every β ∈ [0, α] let Hβ = Gβ ∩ H
and Sβ = π(Hβ). Then it is easy to see that H = H0 B H1 B · · · B Hα = 1
and S = S0 B S1 B · · · B Sα = 1 are complete descending series of H and S,
respectively. We shall now show that there exists β ∈ [0, α) such that Sβ = S and
Sβ+ = 1. Consider the set {η ∈ [0, α] | Sη 6= S}. Since Sα = 1, this set is not
empty, hence it has a minimal element µ. If µ were a limit ordinal, then the obvious
equality Sµ =

⋂
β∈[0,µ) Sβ =

⋂
β∈[0,µ) S = S would lead to contradiction. Therefore,

there exists β ∈ [0, α) such that µ = β+. Since S is simple and S 6= Sµ C Sβ = S,
it follows that Sµ = Sβ+ = 1 and Sβ = S, as claimed. This clearly implies that
Hβ+ ≤ K and Hβ/(Hβ ∩ K) ∼= S. But then the Third Isomorphism Theorem
implies that S ∼= (Hβ/Hβ+)/((Hβ ∩ K)/Hβ+), and therefore S is a homomorphic
image of the group Hβ/Hβ+ . Now, by the Second Isomorphism Theorem, we have
that Hβ/Hβ+ = (Gβ ∩H)/(Gβ+ ∩H) ∼= (Gβ ∩H)Gβ+/Gβ+ , which is a subgroup of
Gβ/Gβ+ . Hence, S is a section of Gβ/Gβ+ .

A base of a permutation group G ≤ Sym(V ) is a subset B ⊆ V such that the
pointwise stabiliser G(B) of B in G is trivial (see for example [3, Section 3.3]). Bases
of permutation groups prove to be a useful tool in the analysis of finite primitive
permutation groups. In Definition 2.2 below, we introduce a variation of this notion.
For a digraph Γ ⊆ V (2) and a set of vertices U in V , we let Γ(U) denote the
union of U and all the neighbourhoods Γ(u), u ∈ U . (Note that by this definition
Γ(u) 6= Γ({u}); in fact, Γ({u}) = {u}∪Γ(u).) By Γ[U ] we denote the subdigraph of
Γ spanned by U , that is, the digraph Γ ∩ U (2) on the vertex set U .

Definition 2.2 Let Γ be a digraph on a vertex set V , let γ be an ordinal number,
and let δ : [0, γ) → V , η 7→ vη, be an arbitrary function. If for every η ∈ [1, γ) there
exists η′ < η such that vη ∈ Γ(vη′), then we say that δ is a directed sequence in Γ of
type γ. The vertex δ(0) will than be called the beginning of δ. If Γ(Im(δ)) is a base
of a group G ≤ Aut(Γ), then we say that δ is a G-leash in Γ.

With N = {0, 1, . . .} we mean the set of natural numbers, well-ordered in the
usual sense. (The ordinal arising from this well-ordering of N is denoted by ω.) For
a digraph Γ and for i ∈ N, let Γ(i)(v) denote the set of all vertices u for which the
shortest directed path from v to u has length i. In particular, Γ(0)(v) = {v} and
Γ(1)(v) = Γ(v).

Lemma 2.3 If Γ is a strongly connected digraph on a vertex set V , G ≤ Aut(Γ),
and v ∈ V , then there exists a G-leash of type

∑
i∈N γi with the beginning in v, where

γi, i ∈ N, is the ordinal number arising from a well-ordering of Γ(i)(v).

Proof. For every i ∈ N, there exists a well-ordering <i on Γ(i)(v) giving rise
to an ordinal number γi. Since Γ is strongly connected, we have V =

⋃
i∈N Γ(i)(v).
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Hence, there exists a well-ordering < on V giving rise to the ordinal number γ =∑
i∈N γi. (That is, for each u ∈ Γ(i)(V ) and w ∈ Γ(j)(V ), we let u < w whenever

either i < j, or i = j and u <i w.) Moreover, there exists an order-preserving
bijection δ : [0, γ) → V . It is now clear that δ is a directed sequence in Γ. Since the
image Im(δ) of δ is V , this directed sequence is also a G-leash for every G ≤ Aut(Γ).

3 A lemma and a proof of Theorem 1.2

We will now state and prove a general lemma about vertex stablisers in groups of
digraph automorphisms. After that, Theorem 1.2 will follow easily.

Lemma 3.1 Let α be an ordinal number, let {Γβ | β ∈ [0, α)} be a set of pairwise
disjoint digraphs on a vertex set V , let G ≤

⋂
{Aut(Γβ) | β ∈ [0, α)}, and let

Γ =
⋃
{Γβ | β ∈ [0, α)}. Suppose that there exists a G-leash δ in Γ of type γ. For

η ∈ [0, γ), let vη = δ(η), and let Vη = {vι | ι ∈ [0, η)}. Further, let G0 = Gv0, and
for every η ∈ [1, γ], let Gη = G(Γ(Vη)). Then the following holds:

(i) Gv0 = G0 B G1 B · · · B Gγ = 1 is a complete descending series for Gv0 of
type γ;

(ii) Gη/Gη+
∼= G

Γ(vη)
η ≤ G

Γ(vη)
vη for every η ∈ [0, γ).

Further, for η ∈ [0, γ) and β ∈ [1, α], let G0,η = Gη and Gβ,η =
⋂
{Gη ∩ G(Γι(vη)) |

ι ∈ [0, β)}. Then the following holds:

(iii) Gη = G0,η B G1,η B · · · B Gα,η = Gη+ is a complete descending series between
Gη and Gη+ of type α, with all the terms Gβ,η, β ∈ [0, α], normal in Gη;

(iv) Gβ,η/Gβ+,η
∼= G

Γβ(vη)
β,η ≤ G

Γβ(vη)
vη for every β ∈ [0, α).

Consequently, there exists a complete descending series for Gv0 of type αγ, with each
of its factors isomorphic to a subgroup of some local group G

Γβ(u)
u , β ∈ [0, α), u ∈ V .

Proof. We shall first prove that for every η ∈ [0, γ) we have Gη ≤ Gvη . This
is clearly true for η = 0. Now, if 0 < η, then, by definition of a directed sequence,
there exists η′ < η such that vη ∈ Γ(vη′). On the other hand, Gη is contained in
every point-wise stabiliser G(Γ(vι)) for ι < η, and thus also in G(Γ(vη′ )). Therefore,
Gη fixes vη, as claimed.

In particular, there exists a natural action of Gη on Γ(vη) (as well as on Γβ(vη)
for every β ∈ [0, α)). Since Gη+ = Gη ∩GΓ(vη) = Ker(Gη → G

Γ(vη)
η ), it follows that

Gη+ C Gη and Gη/Gη+
∼= G

Γ(vη)
η , completing the proof of Part (ii).
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Further, by the definition of a G-leash, it is obvious that Gγ =
⋂
{G(Γ(vι)) |

ι ∈ [0, γ)} = G(Γ(VΓ)) = G(Γ(Im(δ))) = 1. Now, let λ ∈ [1, γ], and observe that⋂
η∈[0,λ) Gη =

⋂
η∈[0,λ) G(Γ(Vη)) = G(Γ(Vλ)) = Gλ. Part (i) now follows if we apply

this equality for every limit ordinal number λ ≤ γ.
Similarly, for any η ∈ [0, γ) we have Gα,η = Gη ∩ G(∪{Γι(vη)|ι∈[0,α)}) = Gη ∩

G(Γ(vη)) = Gη+ . Observe also that for every λ ∈ [1, α], we have
⋂

β∈[0,λ) Gβ,η = Gλ,η.
This fact (when applied for limit ordinals λ) is needed in the proof of Part (iii).

Now, let β ∈ [0, α). Then Gβ+,η can be written either as Gη ∩G(∪{Γι(vη)|ι∈[0,β]}),

or as Gβ,η ∩ G(Γβ(vη)). This shows that Gβ+,η = Ker(Gη → G
∪{Γι(vη)|ι∈[0,β]}
η ) =

Ker(Gβ,η → G
Γβ(vη)
β,η ). In particular, Gβ+,η is normal in Gβ,η as well as in Gη.

Moreover, Gβ,η/Gβ+,η
∼= G

Γβ(vη)
β,η , as claimed in Part (iv). To complete the proof of

Part (iii), we need to show that Gλ,η is normal in Gη for every limit ordinal λ ≤ α.
But, since Gλ,η is the intersection of all Gβ+,η, β < λ, and since the latter are proven
to be normal in Gη, so is Gλ,η. The last assertion of the lemma now follows easily
from Parts (i) - (iv).

Proof of Theorem 1.2. Let G, N(G), ∆, Γ, v, and V be as in the statement
of Therorem 1.2. Since G is normal in N(G), every element of the set D = {∆g |
g ∈ N(G)} is a G-orbital. Moreover, the sets in D are pairwise disjoint and their
union is Γ. Let α be the ordinal number arising from a well-ordering of D. Then we
can label the elements of D by the ordinals β ∈ [0, α), that is, D = {Γβ | β ∈ [0, α)}.

Since G is a transitive subgroup of N(G), the group N(G) can be written as a
product of G and the stabiliser N(G)v. Consequently, D = {∆g | g ∈ N(G)v}. For
u ∈ V and g ∈ N(G)v, consider the local group G

∆g(u)
u

∼= Gu/G(∆g({u})). Since G

is transitive, there exists an element h ∈ G such that uh = v. Observe that the
conjugation by hg−1 maps Gu to Gv and G(∆g({u})) to G(∆({v})), and thus induces

an isomorphism between the local groups G
∆g(u)
u and G

∆(v)
v . Hence, all the local

groups G
Γβ
u (u), u ∈ U and β ∈ [0, α), are isomorphic to G

∆(v)
v .

By Lemma 2.3, there exists a G-leash δ : [0, γ) → V , such that δ(0) = v. More-
over, by Lemma 3.1, there exists a complete descending series for Gv with each of
its factors isomorphic to a subgroup of some local group G

Γβ(u)
u , which is isomorphic

to G
∆(v)
v , as shown above. Finally, by Lemma 2.1, every simple section of Gv is then

also a section of G
∆(v)
v .

4 Some implications of Lemma 3.1

The rather weak assumptions of Lemma 3.1 allow us to specialise the result in
numerous different directions. A few of them are considered below in a series of
remarks. Throughout this section the notation and all the assumptions of Lemma 3.1
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are maintained without further notice. In addition, we let v = v0. We start with
few remarks regarding different finitness conditions.

Remark 1. Assume that all the digraphs Γβ, β ∈ [0, α), are locally finite. Then

every local group G
Γβ(u)
u is finite, and the last assertion of Lemma 3.1 implies that

there exists a complete descending series between of Gv of type αγ with finite factors.
In the standard group theoretical terminology (see for example [5]) this means that
Gv is hypo-finite. If, in addition, the ordinal α is finite, then Γ is also locally finite
and the type of this descending series is either γ (if γ is infinite), or finite (if γ is
finite).

Remark 2. Assume now, that the ordinal γ is finite (that is, assume that the
G-leash in Γ is finite). Then the complete descending series in Part (i) of Lemma 3.1
is finite, and hence a normal series for Gv. If, in addition, Γ is locally finite, then
the factors of this normal series are finite. Moreover:

Corollary 4.1 Let Γ be a disjoint union of finitely many locally finite digraphs
Γ1, . . . ,Γm on a vertex set V , let v ∈ V , and let G ≤ Aut(Γi) for every i ∈
{1, . . . ,m}. If there exists a finite G-leash in Γ with the beginning in v, then the
following holds:

(i) Gv is a finite group;

(ii) if p is a prime divisor of |Gv|, then p divides |GΓi(u)
u | for some u ∈ V and some

i ∈ {1, . . . ,m};

(iii) if G
Γi(u)
u is solvable for every u ∈ V and every i ∈ {1, . . . ,m}, then Gv is

solvable;

(iv) if |Γi(u)| ≤ 4 for every u ∈ V and every i ∈ {1, . . . ,m}, then Gv is solvable.

Remark 3. If the digraph Γ is strongly connected, then Lemma 2.3 guarantees
the existence of a G-leash with the beginning in any prescribed vertex. Moreover, if
α is finite, then this G-leash can be chosen so that its type is at most ω. It follows
from Remark 1, that in this case, for every v ∈ V , there exists a complete descending
series of Gv of type at most ω with finite factors.

Remark 4. Assume now that Γ is a graph. Let η ∈ [1, γ) and η′ < η such that
vη ∈ Γ(vη′). Since Γ is a graph, then also vη′ ∈ Γ(vη), and thus G

Γ(vη)
η ≤ G

Γ(vη)
vηvη′

∼=
(GΓ(vη)

vη )vη′ . That is, every factor of the complete descending series for Gv in Part (i)
of Lemma 3.1, with the sole exception of the first one G1/G0 (which is isomorphic to
G

Γ(v)
v ), is a subgroup of a vertex stabiliser in a local group G

Γ(u)
u . This has further

interesting consequences.
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Remark 5. Suppose that Γ is a graph and that G
Γ(u)
u is semiregular for every

u ∈ V (recall that a permutation group is semiregular if the stabiliser of every
point is trivial). Then all the factors Gβ/Gβ+ , β ∈ [1, γ), in the series Gv =
G0 B G1 B · · · B Gγ = 1, are trivial. Suppose that G1 is not trivial, and let
µ = min{β ∈ [2, γ) | Gβ 6= G1}. If µ = β+ for some β, then 1 = Gβ/Gµ = G1/Gµ,
and thus Gµ = G1, a contradiction. On the other hand, if µ is a limit ordinal,
then Gµ =

⋂
β<µ Gβ =

⋂
β<µ G1 = G1, again contradicting the assumption on µ.

Therefore, G1 is trivial, and so G
Γ(v)
v

∼= G0/G1
∼= G0 = Gv. By taking Remark 3

into account, we may conclude the following:

Corollary 4.2 Let Γ be a connected graph on a vertex set V , and let G ≤ Aut(Γ) be
such that G

Γ(u)
u is semiregular for every u ∈ V . Then Gv

∼= G
Γ(v)
v for every v ∈ V .

Remark 6. Under the assumption that Γ is a graph, a variation of Theorem 1.2
can be proved.

Corollary 4.3 Let Γ be a connected graph on a vertex set V , let v ∈ V , let G ≤
Aut(Γ), and let S be a simple section of Gv. Then S is a section of the local group
G

Γ(v)
v , or it is a section of the point stabiliser (GΓ(u)

u )w in the local group G
Γ(u)
u for

some u ∈ V and w ∈ Γ(u).

Proof. As in the proof of Theorem 1.2, it follows that S is a section of one of the
factors Gβ/Gβ+ . If this happens for β = 0, then S is a section of G0/G1

∼= G
Γ(v)
v , as

asserted. On the other hand, if β ≥ 1, then Gβ/Gβ+ is a subgroup of (Gu∩Gw)Γ(u),
for some (u, w) ∈ Γ, and the result follows.

Remark 7. We shall conclude this section with a remark on the very special
situation where Γ is a finite vertex-transitive digraph. Observe that in this case
strong connectivity of Γ is equivalent to connectivity of Γ. Indeed, let Γ be a
connected digraph. For a vertex v of Γ, let S(v) denote the set containing v and all
the vertices u for which there exists a directed path from v to u. Clearly, S(u) ⊆ S(v)
for every u ∈ S(v), and S(v)g = S(vg) for every g ∈ Aut(Γ). Since Aut(Γ) is
transitive, this implies that |S(u)| = |S(v)| for every two vertices u, v. In particular,
S(u) = S(v) for every u ∈ S(v), and so the induced digraph Γ[S(v)] is strongly
connected. Hence, if Γ is not strongly connected, then there exists a pair (w, v) ∈ Γ
such that w 6∈ S(v). On the other hand, v ∈ S(w) implying S(v) = S(w), a
contradiction. This shows that the word “strongly connected” in the statements of
the results above can be substituted by “connected” whenever Γ is a finite vertex
transitive digraph.
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