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Abstract

Several basic theorems about the chromatic number of graphs can
be extended to results in which, in addition to the existence of a k-
coloring, it is also shown that all k-colorings of the graph in question are
Kempe equivalent. Here, it is also proved that for a planar graph with
chromatic number less than k, all k-colorings are Kempe equivalent.

1 Introduction

Let G be a graph and k ≥ 1 an integer. A vertex set U ⊆ V (G) is inde-
pendent if no two vertices of U are adjacent in G. A k-coloring of G is a
partition of V (G) in k independent sets U1, . . . , Uk, called color classes. If
v ∈ Ui (i ∈ {1, . . . , k}), then v is said to have color i. Every k-coloring can
be identified with a mapping c : V (G) → {1, . . . , k} where c(v) is the color
of v. The chromatic number of G is denoted by χ(G).

Let a, b ∈ {1, . . . , k} be distinct colors. Denote by G(a, b) the subgraph
of G induced on vertices of color a or b. Every connected component K of
G(a, b) is called a K-component (short for Kempe component). By switching
the colors a and b on K, a new coloring is obtained. This operation is called a
K-change (short for Kempe change). Two k-colorings c1, c2 are K-equivalent
(or Kk-equivalent), in symbols c1 ∼k c2, if c2 can be obtained from c1 by a
sequence of K-changes, possibly involving more than one pair of colors in
successive K-changes.

∗Supported in part by the Ministry of Science and Technology of Slovenia, Research
Project J1–0502–0101–98.
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Let Ck = Ck(G) be the set of all k-colorings of G. The equivalence
classes Ck/∼k are called the Kk-classes (or just K-classes). The number of
Kk-classes of G is denoted by Kc(G, k).

K-changes have been introduced by Kempe in his false proof of the four
color theorem. They have proved to be an utmost useful tool in graph col-
oring theory. It remains one of the basic and most powerful tools. The
results of this paper show that some basic theorems about graph colorings
can usually be turned into stronger K-equivalence results where it can be
proved that all k-colorings are K-equivalent. These results have been one
of our motivations to study K-equivalence of colorings. Several such results
have been published by Meyniel and Las Vergnas [8, 6] who proved, in par-
ticular, that all 5-colorings of a planar graph (respectively, a K5-minor free
graph) are K-equivalent. Fisk [4] proved that all 4-colorings of an Eulerian
triangulation of the plane are K-equivalent. We extend these results by
showing that in every planar graph G with chromatic number less than k,
all k-colorings are K-equivalent (see Corollary 4.5).

The second motivation to study K-equivalence is the possibility to gen-
erate colorings either by using K-changes as a heuristic argument [1, 11],
or with the goal of obtaining a random coloring by applying random walks
and rapidly mixing Markov chains [14]. For instance, Vigoda [14] proved
that the Markov chain, whose state space is Ck(G) and whose transitions
correspond to K-changes, quickly converges to the stationary distribution if
k ≥ 11

6 Δ(G). On the other hand [7], there are bipartite graphs for which
the Markov chain needs exponentially many steps to come close to the sta-
tionary distribution if k = O(Δ/ log Δ). Later, Hayes and Vigoda [5] proved
rapid mixing for k > (1 + ε)Δ(G) for all ε > 0 assuming that G has girth
more than 9 and Δ = Ω(log n). Dyer et al. [2] studied the same phenomenon
on random graphs with expected average degree d, where d is a constant.
Kempe change method has been successfully applied in some experiments
[12] leading to new theoretical results.

2 Basic results

The following result shows that the study of Kk-equivalence may be inter-
esting also when k is much larger than the chromatic number of the graph.
It also shows that it is possible that Kc(G, k − 1) = 1 and Kc(G, k) > 1.

Proposition 2.1 (a) Let G be a bipartite graph and k ≥ 2 an integer. Then
Kc(G, k) = 1.
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(b) For any integers l ≥ 3 and k > l, there exists a graph G with chro-
matic number l such that Kc(G, l) = 1 and Kc(G, k) > 1.

Proof. (a) Clearly, any two 2-colorings are K2-equivalent. Hence, it suffices
to prove that every k-coloring of G is K-equivalent to a 2-coloring. This is
easy to see and is left to the reader.

(b) Let G be the categorical product Kl×Kk. Its vertices are pairs (i, j),
1 ≤ i ≤ l, 1 ≤ j ≤ k, and vertices (i, j) and (i′, j′) are adjacent if and only
if i �= i′ and j �= j′. Let c be the l-coloring of G where c((i, j)) = i, and
let c′ be the k-coloring of G where c′((i, j)) = j. It is easy to see that c
is the unique l-coloring of G, so χ(G) = l and Kc(G, l) = 1. On the other
hand, c′ is not K-equivalent to any other k-coloring since all its 2-colored
subgraphs G(a, b) are connected. In particular, it is not K-equivalent to c,
so Kc(G, k) > 1.

There are other graphs with the same properties as in Proposition 2.1(b).
They can be obtained from Kl × Kk by replacing every vertex (i, j) by
an independent set U(i, j) (of any size) and, for any two adjacent vertices
(i, a) and (i′, b) of Kl × Kk adding edges between U(i, a) and U(i′, b) so
that the subgraph induced on ∪l

i=1(U(i, a) ∪ U(i, b)) is connected. This
construction describes the l-colorable graphs with a k-coloring which is not
K-equivalent to any other k-coloring. More generally, it would be interesting
to characterize l-colorable graphs (l < k) with a k-coloring (k large) which
is not K-equivalent to any (k− 1)-coloring. This problem was considered by
Las Vergnas and Meyniel [6] who conjectured that such graphs contain the
complete graph Kk as a minor.

Lemma 2.2 Suppose that c0 is a (k − 1)-coloring of a graph G and that U
is an independent vertex set of G. Then c0 is K-equivalent in Ck(G) to a
k-coloring of G, one of whose color classes is U .

Proof. Let U = {u1, . . . , ur}. For i = 1, . . . , r, let ci be the k-coloring
of G that is obtained from ci−1 by recoloring the vertex ui with color k.
It is clear that the vertex ui forms a K-component in ci−1 for colors k and
ci−1(ui) = c0(ui). Therefore, ci is K-equivalent to ci−1. This shows that cr

is a coloring that is K-equivalent to c0, and one of its color classes is U .

Corollary 2.3 Let k be an integer. Suppose that G is a graph such that
every k-coloring of G is K-equivalent to some (k − 1)-coloring. If U is an
independent vertex set of G, then Kc(G, k) ≤ Kc(G − U, k − 1).
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Proof. For i = 1, 2, let ci be a k-coloring of G. By assumption, ci is
K-equivalent to a (k − 1)-coloring c′i. By Lemma 2.2, c′i is K-equivalent to a
k-coloring c′′i , one of whose color classes is U . The restrictions of c′′1 and c′′2
to G − U are (k − 1)-colorings of G − U . If they are Kk−1-equivalent, then
c′′1 ∼k c′′2 , and hence c1 ∼k c2. This completes the proof.

A graph G is d-degenerate if every subgraph of G contains a vertex of
degree ≤ d. Corollary 2.3 can be used to prove the following result of Las
Vergnas and Meyniel [6, Proposition 2.1]:

Proposition 2.4 If G is a d-degenerate graph and k > d is an integer, then
Kc(G, k) = 1.

Proof. Since G is d-degenerate, its vertices can be enumerated as v1, . . . , vn

such that the degree of vi in the subgraph Gi induced on vertices v1, . . . , vi

is at most d, i = 1, . . . , n. Let U be the “greedy” independent set of G. The
set U can be constructed by the following procedure: start with the empty
set, and then consecutively, for i = 1, . . . , n, add vi into the current set U
if no neighbor of vi has been placed into U in earlier steps. An important
property of U is that the graph G−U is (d− 1)-degenerate. To see this, let
G′ be a subgraph of G− U . Let vi be the vertex of G′ with largest value of
i. Vertex vi has at most d neighbors among v1, . . . , vi−1. Since vi /∈ U , at
least one of those neighbors is in U . Therefore, the degree of vi in G′ is at
most d − 1.

The proof proceeds by induction on n. If n = 1, the statement is clear.
Otherwise, let G′ = G − vn and let c′1 be the restriction of c0 to G′. Let c′

be a (k − 1)-coloring of G′. By the induction hypothesis, c′1 is K-equivalent
to c′. There is a sequence of K-changes, c′1 ∼k c′2 ∼k · · · ∼k c′r = c′. Let ci be
an extension of c′i to G, and let c be a (k − 1)-coloring of G extending c′.

There are two colors, say ai and bi, that are involved in the K-change
yielding c′i+1 from c′i. We assume that ai �= k. Since vn has degree at most
d < k, there were at least two candidates αi, βi for ci(vn) (when we have
made our choice what ci would be). If {ai, bi} = {αi, βi}, then we take any
one of them to be ci(vn). Otherwise, we take one that is not in {ai, bi}.
Such a choice implies that ci ∼k c′′i+1, where c′′i+1 is an extension of c′i+1 to
G. Now we define ci+1 by obeying the condition imposed above, i.e. that
ci+1(vn) is not in {ai+1, bi+1} whenever possible. Clearly, c′′i+1 ∼k ci+1 since
the two colorings differ only at vn which is a K-component for colors αi+1

and βi+1. This shows that c0 is K-equivalent to c′′r , an extension of c′r. If
c′′r (vn) = k, another K-change can replace this color by another one, thus
yielding a (k − 1)-coloring.
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The above proof shows that every k-coloring of G is K-equivalent to some
(k − 1)-coloring. By Corollary 2.3, Kc(G, k) ≤ Kc(G − U, k − 1), where U
is the vertex set selected at the beginning of the proof. Now, the proof is
easily completed by applying induction on d.

An immediate corollary of Proposition 2.4 is:

Corollary 2.5 Let Δ be the maximum degree of a graph G and let k ≥ Δ+1
be an integer. Then Kc(G, k) = 1. If G is connected and contains a vertex
of degree < Δ, then also Kc(G,Δ) = 1.

We conjecture that the last statement of Corollary 2.5 can be extended
to include all connected Δ-regular graphs with the exception of odd cycles
and complete graphs.

The following proposition is left as an exercise.

Proposition 2.6 Let G be a graph of order n, let α be the cardinality of
a largest independent vertex set in G, and let k ≥ n − α + 1 be an integer.
Then every k-coloring of G is Kk-equivalent to the k-coloring in which a
fixed maximum independent set is a color class and every other color class
is a single vertex. In particular, Kc(G, k) = 1.

3 Edge-colorings

Coloring the edges of a graph G is the same as coloring the vertices of its
line graph L(G). Vizing’s Theorem states that the edges of a graph with
maximum degree Δ can be colored with Δ+1 colors, i.e., χ′(G) = χ(L(G)) ≤
Δ + 1. We prove:

Theorem 3.1 Let Δ be the maximum degree of a graph G. If k ≥ χ′(G)+2
is an integer, then Kc(L(G), k) = 1.

Proof. The proof is by induction on χ′(G). The case when χ′(G) ≤ 2
follows by Proposition 2.1(a), so assume that χ′(G) ≥ 3.

Let c be an arbitrary k-edge-coloring of G. First, we claim that c is K-
equivalent to a (k−1)-edge-coloring. To prove this, we may assume that c has
m > 0 edges of color k and that every k-edge-coloring which is K-equivalent
to c has at least m edges of color k. The standard “fan” arguments of
Vizing show that there is a sequence of K-changes which transforms c into
an edge-coloring with m − 1 edges of color k, a contradiction. (Cf., e.g., [3]
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for details.) However, in order to make the proof self-contained, we repeat
those arguments.

Let c and m > 0 be as above. We say that a color a is missing at a vertex
v of G if no edge incident with v is colored a. Since k ≥ Δ + 2, at least two
colors are missing at each vertex, and at least one of them is different from
k. Clearly, if the same color a is missing at adjacent vertices u and v, then
the change of the color of the edge uv to a represents a K-change.

Let e = uv be an edge of color k. Suppose that color a1 is missing at u
and that a0 is missing at v. If a0 = a1, then changing the color of e to a0 is
a K-change, yielding a coloring with m− 1 edges of color k, a contradiction.
So, there is an edge vv1 of color a1. There is a color a2 �= k which is missing
at v1. If a2 is missing at v, we recolor vv1 with a2 and, as mentioned above,
are henceforth able to get rid of the color k at e. Therefore, there is an edge
vv2 of color a2.

Consider the K-component K ⊆ G(a0, a2) at the vertex v1. After the
corresponding K-change, a0 becomes missing at v1. If a0 is still missing
at v, then we get a contradiction as above. Therefore, the corresponding
K-change has changed the color a2 at v to a0, so vv2 ∈ E(K).

We shall now repeat the above procedure and henceforth have distinct
edges vv1, . . . , vvr whose colors are a1, . . . , ar (respectively), and such that
color ai is missing at vi−1 for i = 2, . . . , r. Moreover, the K-component in
G(a0, ai) at vi−1 is a path from vi−1 to v, whose last edge is viv. Having
this situation, there is a color ar+1 �= k that is missing at vr. If ar+1 /∈
{a0, . . . , ar}, then we consider the K-component K ⊆ G(a0, ar+1) at vr. If
this is a path ending at v, its last edge, call it vr+1v, has color ar+1, and we
proceed with the next step. If K does not contain v, then after the K-change
at K, a0 is missing at vr and at v. Now, we recolor vvr with a0, then we
recolor vvr−1 with ar, vvr−2 with ar−1, . . . , vv1 with a2. Finally, recolor e
with a1. All these recolorings were K-changes, so we have a coloring with
m − 1 edges of color k, a contradiction.

From now on, we may assume that ar+1 = aj , where 0 ≤ j < r. Let us
consider K ⊆ G(a0, aj) at vr. The K-change at K makes a0 missing at vr.
Since the component of G(a0, aj) containing vvj is a path from vj−1 to vj

and v, K does not contain vvj . Therefore, a0 is still missing at v. Now we
conclude as above. This completes the proof of the claim.

By repeating the above arguments again if necessary, we conclude that
c is K-equivalent to a (Δ + 1)-edge-coloring.

Fix an edge-coloring c0 with the color partition E(G) = M1 ∪ · · · ∪ Mr,
r = χ′(G). It suffices to prove that any (Δ + 1)-edge-coloring c of G is
K-equivalent with c0 in CΔ+2(L(G)). By Lemma 2.2, c is K-equivalent to a

6



(Δ + 2)-coloring c′ whose first color class is Mr. Now, the proof is complete
by applying induction on the graph G − Mr.

It would be interesting to extend Theorem 3.1 to include (Δ+1)-colorings
as well. It is possible that Kc(L(G), χ′(G) + 1), Kc(L(G),Δ + 2), or even
Kc(L(G),Δ+1) are always 1. Let us remark, however, that there are graphs
for which Kc(L(G), χ′(G)) > 1. Such examples are given after Theorem 3.3
below. We emphasize, specifically, the following interesting special case of
the above speculations:

Conjecture 3.2 If G is a graph with Δ(G) ≤ 3, then all its 4-edge-
colorings are K-equivalent.

We can say more if G is bipartite.

Theorem 3.3 Let Δ be the maximum degree of a bipartite graph G. If
k ≥ Δ + 1 is an integer, then Kc(L(G), k) = 1.

Proof. The proof is the same as for Theorem 3.1 except that we need to
show that every k-edge-coloring of G is Kk-equivalent to a Δ-edge-coloring.
This is a standard exercise and is left to the reader.

The complete bipartite graph Kp,p (where p is a prime) has a p-edge-
coloring in which any two color classes form a Hamiltonian cycle. This
example shows that Theorem 3.3 cannot be extended to Δ-colorings, not
even for complete bipartite graphs.

Problem 3.4 For which cubic bipartite graphs is Kc(L(G), 3) = 1?

A special case of this problem, when G is planar and 3-connected has
been solved by Fisk. Let G be a 3-connected cubic planar bipartite graph. Its
dual graph T is a 3-colorable triangulation of the plane. Fisk [4] proved (see
Theorem 4.1 below) that any two 4-colorings of T are K-equivalent. If c1, c2

are 3-edge-colorings of G, they determine 4-colorings c∗1, c∗2 (respectively)
of T . It is easy to see that a K-change on 4-colorings of T corresponds
to a sequence of one or more K-changes among the corresponding 3-edge-
colorings in G. This implies that c1 and c2 are K-equivalent, and hence
Kc(L(G), 3) = 1.

Let us observe that planarity is essential for the above examples since
the graph K3,3 has non-equivalent edge-colorings, Kc(L(K3,3), 3) = 2.
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4 Planar graphs

In [10], the author described an infinite class of “almost Eulerian” triangu-
lations of the plane that have a special 4-coloring which is not K-equivalent
to any other 4-coloring (and other 4-colorings exist). This shows that there
are planar triangulations for which Kc(G, 4) ≥ 2. By taking 3-sums of
such graphs, we get planar triangulations with arbitrarily many equivalence
classes of 4-colorings.

Meyniel [8] proved that Kc(G, 5) = 1 for every planar graph (and also
Kc(G, k) = 1 if k ≥ 6, which follows by 5-degeneracy of planar graphs). In
this section we prove a similar result for 4-colorings in the case when G is
3-colorable (cf. Theorem 4.4). A special case of this result, when G is a
3-colorable triangulation of the plane was proved by Fisk [4].

Theorem 4.1 (Fisk [4]) Let G be a 3-colorable triangulation of the plane.
Then Kc(G, 4) = 1.

In order to extend Theorem 4.1, we shall need two auxiliary results.

Lemma 4.2 Suppose that G is a subgraph of a graph G̃. Let c̃1, c̃2 be r-
colorings of G̃. Denote by ci the restriction of c̃i to G, i = 1, 2. If c̃1 and
c̃2 are Kr-equivalent, then c1 and c2 are Kr-equivalent colorings of G.

Proof. Any K-component in G̃ gives rise to one or more K-components in
G, with respect to the induced coloring of G. This implies the lemma.

A near-triangulation of the plane is a plane graph such that all its faces
except the outer face are triangles.

Proposition 4.3 Suppose that G is a planar graph with a facial cycle C. If
c1, c2 are 4-colorings of G, then there is a near-triangulation T of the plane
with the outer cycle C such that T ∩ G = C and there are 4-colorings c′1, c′2
of G which are K-equivalent to c1 and c2, respectively, such that they both
can be extended to 4-colorings of G∪T . Moreover, if the restriction of c1 to
C is a 3-coloring, then c′1 = c1, and c1 can be extended to a 3-coloring of T .

Proof. Let C = v1v2 . . . vkv1. The proof is by induction on k. If k = 3,
then T = C, c′1 = c1, and c′2 = c2. Suppose now that k ≥ 4. If there
are indices i, j (1 ≤ i < j ≤ k) such that vi and vj are not consecutive
vertices of C and such that c1(vi) �= c1(vj) and c2(vi) �= c2(vj), then we
add the edge vivj inside C and apply induction on C1 = vivi+1 . . . vjvi and
C2 = vjvj+1 . . . vkv1 . . . vivj .
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More precisely, let G1 = G + vivj. By the induction hypothesis for
the cycle C1, there are sequences of K-changes in G1 (and hence also in
G, by Lemma 4.2) transforming c1 into c11, and transforming c2 into c12,
respectively, and there is a near-triangulation T1 with outer cycle C1 such
that c11 and c12 can be extended to colorings c̄11 and c̄12 of G1 ∪ T1. Next,
apply the induction hypothesis to G1∪T1 for the facial cycle C2 and colorings
c̄11 and c̄12. Let T2 be the corresponding near-triangulation, and c′11, c′12 the
corresponding colorings of G1 ∪ T1 that can be extended to G1 ∪ T1 ∪ T2.
By Lemma 4.2, the K-changes which produce c′11 and c′12 from c̄11 and c̄12,
respectively, can be made in G. All together, the restriction c′l of the coloring
c′1l to G is K-equivalent to cl in G (l = 1, 2). Clearly, c′l has an extension
to G ∪ T , where T = T1 ∪ T2. Therefore, T can be taken as the required
near-triangulation for C.

If the restriction of c1 to C is a 3-coloring, then c11 = c1 and the restric-
tion of c1 to C1 can be extended to a 3-coloring of T1. Similarly, c′11 = c1,
and c1 can be extended to a 3-coloring of T . This proves the “moreover”
part of the proposition.

1a 1a 1a2b 2b 1c
2b

24b 2c 2c
1b

13a 3a 2a

(a) (b) (c)

Figure 1: The special cases

Next, we show that vertices vi, vj exist unless one of the cases in Figure 1
occurs (where c1 is represented by colors 1–4 and c2 by colors a–d), up to
permutations of colors, dihedral symmetries of C and up to changing the
roles of c1 and c2. This is easy to see if k = 4. The details are left to
the reader. If k ≥ 5, we argue as follows. Suppose that vi, vj do not
exist. We may assume that c1(v1) = c1(v3) = 1. Then c1(v1) �= c1(v4),
so c2(v1) = c2(v4) = a may be assumed. Suppose that c1(v2) = 2 and
c2(v2) = b. Since b = c2(v2) �= c2(v4) = a, we have c1(v4) = c1(v2) = 2.
Now, c1(v2) �= c1(v5), so c2(v5) = b. Next, c2(v5) �= c2(v3) implies that
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c1(v5) = c1(v3) = 1. It follows, in particular, that k ≥ 6. Similar conclusions
as before imply that c1(v6) = 2 and c2(v3) = c2(v6) = c. If k = 6, this is the
exceptional case of Figure 1(c). If k ≥ 7, then we see that either v2, v7 or
v4, v7 is the required pair vi, vj .

Let us consider the exceptional case shown in Figure 1(c). Let v1 be the
vertex with c1(v1) = 1 and c2(v1) = a (upper-left). Try first a K-change of
colors 1 and 3 at v1. If this change gives rise to the same exception, there is
a (1,3)-colored path P joining v1 and v3. Now, a K-change of colors 2 and 4
at v2 changes c1 into a coloring which does not fit Figure 1(c). None of these
K-changes affects c2, and we are done unless we do not want to change c1

because of the “moreover” part. In that case we are allowed to use the fourth
color in the extension of c2, and we take T to be the near-triangulation with
one interior point joined to all vertices on C.

Consider now the case of Figure 1(b). By symmetry, we may assume
that c1 is not allowed to be changed according to the “moreover” part of the
proposition. Let v1 be the vertex in the upper-left corner. By a K-change of
colors a and d at v1, or of b and c at v2, we replace c2 either by a 4-coloring
which uses on C all four or only two of the colors. In each case, we can
triangulate C by adding two adjacent vertices p, q such that p is adjacent to
v1, v2, v4, and q is adjacent to v2, v3, v4.

The final case is the one shown in Figure 1(a). If we want c′2 = c2, then
we let T be the near-triangulation consisting of C and a vertex of degree
4 inside. Then c2 extends to a 3-coloring of T , and c1 also extends to a 4-
coloring with the exception of the case when all vertices on C have distinct
colors. In the latter case, we can either K-change colors 1 and 3 at v1, or
change 2 and 4 at v2, without affecting the colors at v3 and v4. The new
coloring c′1 extends to T .

Suppose, finally, that we want c′1 = c1. In this case, c1 is a 3-coloring
on C. Up to symmetries, we may assume either c1(v3) = 1 and c1(v4) = 2,
or c1(v3) = 3 and c1(v4) = 2. In the first case we can take the same near-
triangulation T as above (one interior vertex of degree 4). In the latter case,
we take two interior vertices u1, u2 in T , where u1 is adjacent to u2, v4, v1, v2

and u2 is adjacent to u1, v2, v3, v4. This completes the proof.

Theorem 4.4 Let G be a 3-colorable planar graph. Then Kc(G, 4) = 1.

Proof. In order to be able to assume that G is 2-connected, we apply
induction on the number of blocks of G. If G = G1 ∪ G2, where G1 ∩ G2 is
either empty or a cutvertex v, we apply induction hypotheses on G1 and G2
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but making sure that we never use a K-change on a K-component containing
v. This is possible since a K-change using component K of Gi(a, b) is the
same as making K-changes on all components of Gi(a, b) distinct from K.

From now on, we assume that G is 2-connected. Let c1 be a 3-coloring
of G. It suffices to see that every 4-coloring of G is K-equivalent to c1.

Let c2 be a 4-coloring of G. Let C1, . . . , Cm be the facial cycles of G.
Let G0 = G, c0

1 = c1 and c0
2 = c2. For i = 1, . . . ,m, we apply Proposition

4.3 to the graph Gi−1, its facial cycle Ci and the colorings ci−1
1 and ci−1

2 .
We conclude that there is a near-triangulation Ti with outer cycle Ci such
that Gi−1 ∩ Ti = Ci. Let Gi = Gi−1 ∪ Ti. By Proposition 4.3, ci−1

1 can
be extended to a 3-coloring ci

1 of Gi, and ci−1
2 is K-equivalent in Gi−1 to a

4-coloring that has an extension ci
2 to Gi.

The final graph Gm is a triangulation with the 3-coloring cm
1 . By The-

orem 4.1, cm
2 is K-equivalent to cm

1 . By successfully applying Lemma 4.2
to Gm−1 ⊆ Gm, etc. up until G0 ⊆ G1, we conclude that cm−1

2 ∼k cm−1
1 in

Gm−1, etc., until finally concluding that c1 = c0
1 ∼k c0

2 = c2 in G0 = G.

Theorem 4.4 combined with Proposition 2.1(a) and the aforementioned
result of Meyniel [8] yield:

Corollary 4.5 Let G be a planar graph and k > χ(G) and integer. Then
Kc(G, k) = 1.

A planar graph G may have 4-colorings which are not K-equivalent.
However, if G is “almost 3-colorable”, this is not likely to happen.

Problem 4.6 Suppose that G is a 4-critical planar graph. Is it possible that
G has two 4-colorings that are not K-equivalent to each other?

5 Some further open problems

In the preceding sections, we have exposed several open problems about K-
equivalence of graph colorings. Two further questions are presented below.

Meyniel [9] proved that a graph, in which every odd cycle of length 5 or
more has at least two chords, is perfect. He conjectured that for every such
graph G and every integer k ≥ χ(G), Kc(G, k) = 1. He proved that every
k-coloring of G is K-equivalent to some χ(G)-coloring. The last property
does not hold for arbitrary perfect graphs.

Let G be a triangulation of some orientable surface, and let c be a 4-
coloring of G. Let t+1 be the number of facial 3-cycles whose coloring (in the
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clockwise order around the face) is 234, and let t−1 be the number of facial
3-cycles whose coloring is 432. Let d(c) = |t+1 − t−1 |. The number d(c) turns
out to be invariant on permutations of the colors, and it is called the degree
of the coloring c [4]. The degree, in particular its parity has been studied
by Tutte who also observed that this is Kempe invariant, i.e., all colorings
within the same K-class have the same parity.

One can also define two colorings to be close if they have at least one
color class in common. Two colorings are similar if there is a sequence of
colorings, starting with one and ending with the other, such that any two
consecutive colorings in this sequence are close. The parity of the degree
is constant on close colorings. It is not difficult to find triangulations of
the plane with two similarity classes of 4-colorings. However, in all such
examples known, colorings in different similarity classes have different parity
of the degree. Tutte [13] asked if it is possible to have non-similar 4-colorings
of a planar triangulation whose degrees have the same parity.
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