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Abstract

When counting isomers with a given number of atoms one usually assumes
that we want to count (connected) molecules. In this note we present a method
that can be used for counting disconnected structures if counts of connected
structures are given. The method can be used also in the reverse direction. If
the numbers of all structures are known, the number of connected structures
can be readily determined.

1 Introduction

We assume that the reader is familiar with graph-theoretic language; for a reference,
see [8]. In order to present the problem addressed in this paper, we ask the following
simple question. What is the number of regular graphs of valence 1 on n vertices?
Let bn denote the number of such graphs. Clearly, the only connected regular graph
of valence 1 is K2, the complete graph on two vertices that consists of a single edge.
If we let an denote the number of connected regular graphs of valence 1 on n vertices,
then we have the following table:

n 0 1 2 3 4 5 6 7 8 9 10 . . .
an 0 0 1 0 0 0 0 0 0 0 0 . . .

It is not hard to see that the only regular 1-valent graphs are disjoint unions of
some number of K2-s. Hence

n 0 1 2 3 4 5 6 7 8 9 10 . . .
bn 1 0 1 0 1 0 1 0 1 0 1 . . .

Instead of writing the sequence an we can provide its generating function:

F (x) = a0 + a1x + a2x
2 + a3x

3 + . . . .

Similarly, we can define:

G(x) = b0 + b1x + b2x
2 + b3x

3 + . . . .

In our particular example we have

F (x) = x2

and
G(x) = 1 + x2 + x4 + x6 + · · · = 1/(1 − x2).
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There is a similar question for regular 2-valent graphs. The only connected ones
are the cycles. Hence:

n 0 1 2 3 4 5 6 7 8 9 10 . . .
an 0 0 0 1 1 1 1 1 1 1 1 . . .

and
F (x) = x3 + x4 + x5 + · · · = x3/(1 − x).

One has to think a bit before we can compile the table of all regular 2-valent graphs.

n 0 1 2 3 4 5 6 7 8 9 10 . . .
bn 1 0 0 1 1 1 2 2 3 4 5 . . .

It is not at all obvious what should the corresponding generating function G(x) look
like. In this paper we will show how to apply the theory of combinatorial species
for answering this question. The formula relating F (x) to G(x) is general and gives
a method of calculating bn if an is known and vice versa.

Long time ago we extended our computer system Vega [9] to handle similar
problems. We will present examples that will show how our method can be used to
obtain new enumeration results.

2 The Method

If F (x) is the generating function of the counting sequence of connected structures,
then the corresponding generating function G(x) of the counting sequence of all
structures is given by

G(x) = exp
∑
k≥1

F (xk)
k

(1)

(cf. [1, Eqn. 1.4.20]). Applying a variant of Möbius inversion to this formula it is
also possible to express F (x) in terms of G(x):

F (x) =
∑
k≥1

µ(k)
k

log G(xk) (2)

where µ denotes the well-known Möbius function (cf. [1, Eqn. 1.4.60]).

Now we give some examples.

Example 1 Let an be the number of connected regular 1-valent graphs on n ver-
tices and bn the number of all regular 1-valent graphs on n vertices. Then F (x) = x2

and

G(x) = exp
∑
k≥1

x2k

k
= exp(− log(1 − x2)) =

1
1 − x2

,

in agreement with our observation above.

Example 2 Let an be the number of connected regular 2-valent graphs on n
vertices and bn the number of all regular 2-valent graphs on n vertices. Then
F (x) = x3/(1 − x) and

G(x) = exp
∑
k≥1

x3k

k(1 − xk)
= 1 + x3 + x4 + x5 + 2x6 + 2x7 + 3x8 + 4x9 + 5x10 + · · ·

2



Example 3 Let an be the number of connected graphs on n vertices and bn the
number of all graphs on n vertices. Then

F (x) = x + x2 + 2x3 + 6x4 + 21x5 + 112x6 + 853x7

+ 11117x8 + 261080x9 + 11716571x10 + · · ·
(cf. [7, sequence A001349]) and

G(x) = exp
∑
k≥1

F (xk)/k

= 1 + x + 2x2 + 4x3 + 11x4 + 34x5 + 156x6 + 1044x7

+ 12346x8 + 274668x9 + 12005168x10 + · · ·
(cf. [7, sequence A000088]).

Example 4 The number of fullerene isomers is well known (cf. [7, sequence A007894]).
There is one on 20 atoms, none on 22 atoms, one on 24 atoms, etc. The values of
a20, a22, a24, . . . , a60 are

1, 0, 1, 1, 2, 3, 6, 6, 15, 17, 40, 45, 89, 116, 199, 271, 437, 580, 924, 1205, 1812, . . .

Thus there are 1812 non-isomorphic fullerenes on 60 atoms, one being the renowned
buckminster-fullerene. Using our method we can easily compute b60 = 1892.

It is now a simple matter to apply the method to a number of sequences that
were produced for connected structures. For instance, in [8] the initial numbers of
chemical trees

1, 1, 1, 1, 2, 3, 5, 9, 18, 35, 75, 159, 355, 802, 1858, 4347, 10359, 24894, . . .

are presented (cf. [7, sequence A000602]). The corresponding numbers of chemical
forests on n carbon atoms are easily computed using the same procedure.

Generically, bn is a polynomial in a1, a2, . . . , an and vice versa. Expanding the
right-hand side of (1) into power series we obtain the explicit formula

bn =
n∑

j=0

1
j!

∑
i1k1+···+ijkj=n

ai1 · · · aij

k1 · · ·kj

where the inner sum is taken over all j-tuples (i1, . . . , ij) and (k1, . . . , kj) of positive
integers whose dot product equals n. If we first differentiate (1) w.r.t. x, then expand
both sides into power series we obtain the recursive formula

bn =
1
n

n∑
k=1

bn−k

∑
j | k

jaj for n ≥ 1. (3)

Here we list the first five b’s as polynomials in the a’s:

b0 = 1,
b1 = a1,
b2 = (a1 + a2

1)/2 + a2,
b3 = (2a1 + 3a2

1 + a3
1)/6 + a1a2 + a3,

b4 = (6a1 + 11a2
1 + 6a3

1 + a4
1)/24 + (a2 + a1a2 + a2

1a2 + a2
2)/2 + a1a3 + a4.

In general, we always have bn = an + Bn(a1, a2, ..., an−1). All the coefficients of Bn

are non-negative, and the products aq
pa

s
r · · · have the property that pq+rs+· · · ≤ n.
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From (2) we obtain similarly

an =
∑
k |n

µ(k)
k

∑
(i1+···+ij)k=n

(−1)j+1

j
bi1 · · · bij

where the inner sum is taken over all j-tuples (i1, . . . , ij) of positive integers whose
sum equals n/k. From (3) we also obtain the recursive formula

an = bn − 1
n

⎛
⎜⎝

∑
j | n
j �=n

jaj +
n−1∑
k=1

bn−k

∑
j | k

jaj

⎞
⎟⎠ for n ≥ 1.

Here we list the first six a’s as polynomials in the b’s:

a0 = 0,
a1 = b1,
a2 = b2 − (b1 + b2

1)/2,
a3 = b3 − b1b2 − (b1 − b3

1)/3,
a4 = b4 − b1b3 + b2

1b2 − (b2 + b2
2)/2 + (b2

1 − b4
1)/4,

a5 = b5 − b1b4 + b2
1b3 + b1b

2
2 − b3

1b2 − b2b3 + (b5
1 − b1)/5.

Again we have an = bn −An(b1, b2, ..., bn−1), and the products aq
pa

s
r · · · in An have

the property that pq + rs + · · · ≤ n.

3 A Related Problem

Finally, let us turn to another problem. Let us start with a sequence an counting
connected objects of certain type on n elements. Assume that a disconnected object
on n elements can be formed by selecting k identical connected objects with m
elements where m · k = n. Let bn count the total number of elements. Then
bn =

∑
k|n ak and, by Möbius inversion, an =

∑
k|n µ(n/k)bk.

Example 5 Let an be the number of connected vertex-transitive graphs on n ver-
tices. Then bn is the total number of vertex-transitive graphs on n vertices.

Example 6 The generalized Petersen graph G(n, k) is a graph with vertex set

V (G(n, k)) = {u0, u1, . . . , un−1, v0, v1, . . . , vn−1}

and edge set

E(G(n, k)) = {uiui+1, uivi, vivi+k : i = 0, . . . , n − 1}.

Here subscripts are to be read modulo n. Note that G(n, k) is isomorphic to G(n, n−
k), and G(n, n/2) is not simple. Therefore, for n ≥ 3, we consider only graphs
G(n, k) where k < n/2.

Generalized Petersen graphs constitute a standard family of graphs which repre-
sents a generalization of the renowned Petersen graph G(5, 2). This important and
well-known family of graphs introduced in 1969 by Mark Watkins [10] possesses a
number of interesting properties. For example, G(n, r) is vertex transitive if and
only if n = 10, r = 2 or r2 ≡ ±1 (mod n). It is a Cayley graph if and only if r2 ≡ 1
(mod n). It is arc-transitive only in the following seven cases: (n, r) = (4, 1), (5, 2),
(8, 3), (10, 2), (10, 3), (12, 5), (24, 5). The family contains some very important
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(a) (b)

Figure 1: I-graphs I(15, 3, 5) (a) and I(15, 3, 6) (b). The former is connected and
the latter is not.

graphs, such as the n-prism G(n, 1), the Dürer graph G(6, 2), the Möbius-Kantor
graph G(8, 3), the dodecahedron G(10, 2), the Desargues graph G(10, 3), etc.

The generalized Petersen graphs form a special case of the so-called I-graphs,
see [6]. The I-graph I(n, j, k) is a graph with vertex set

V (I(n, j, k)) = {u0, u1, . . . , un−1, v0, v1, . . . , vn−1}

and edge set

E(I(n, j, k)) = {uiui+j , uivi, vivi+k : i = 0, . . . , n − 1}.

Since I(n, j, k) = I(n, k, j) we usually assume that j ≤ k. Clearly G(n, k) =
I(n, 1, k). Following the usual representation of these graphs where we draw vertices
ui on one circle and vertices vi on another concentric circle (with smaller radius),
we call ui and vi the vertices on the outer rim and the vertices on the inner rim,
respectively. The edges between the two rims are called spokes. The class of graphs
I(n, j, k) contains the class G(n, k). The I-graphs I(15, 3, 5) and I(15, 3, 6) are
depicted in Figure 1.

If an counts connected I-graphs then bn counts all I-graphs.

Example 7 There are only 7 arc-transitive I-graphs. They are the generalized
Petersen graphs G(4, 1), G(5, 2), G(8, 3), G(10, 2), G(10, 3), G(12, 5), G(24, 5). Hence

n 0 1 2 3 4 5 6 7 8 9 10 . . .
an 0 0 0 0 1 1 0 0 1 0 2 . . .

There are infinitely many arc-transitive I-graphs if we drop the condition of
connectivity.

n 0 1 2 3 4 5 6 7 8 9 10 . . .
bn 1 0 0 0 1 1 0 0 2 0 3 . . .

If we think of a and b as infinite column vectors a = (a1, a2, . . . )T etc., then
there is an infinite triangular 0-1 matrix M such that b = Ma.
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Clearly (M)nk = 1 if and only if k |n, and we have

b1 = a1,

b2 = a1 + a2,

b3 = a1 + a3,

b4 = a1 + a2 + a4, etc.

Let N be the inverse of M . Matrices M and N do not depend on a (or b). By
Möbius inversion, (N)nk = µ(n/k) if k |n, otherwise 0. Hence

a1 = b1,

a2 = −b1 + b2,

a3 = −b1 + b3,

a4 = −b2 + b4, etc.

4 Conclusion

The method explained in this paper has numerous applications not only in math-
ematics and computer science but also in chemistry. A possible application would
be to find connected particles from a mass spectrogram that presents also some
particle combinations.
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