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Abstract. Using the topologist sine curve we present a new func-
torial construction of cone-like spaces, starting in the category of
all path-connected topological spaces with a base point and con-
tinuous maps, and ending in the subcategory of all simply con-
nected spaces. If one starts by a noncontractible n-dimensional
Peano continuum, then our construction yields a simply connected
noncontractible n+1-dimensional cell-like Peano continuum. In
particular, starting with the circle S1, one gets a 2-dimensional
simply connected noncontractible cell-like Peano continuum.

1. Introduction

It is well known that all cell-like polyhedra are contractible. Griffiths
[4] constructed a 2-dimensional nonsimply connected cell-like Peano
continuum: Let H1 be the 1-dimensional Hawaiian earrings with the
base point θ at which H1 is not locally simply connected. Let Y =
C(H1) be the cone on the Hawaiian earrings. Then H1 can be con-
sidered as the base of the cone C(H1) and θ as its base point. The
Griffiths space is then defined as the bouquet of two copies of Y with
respect to the point θ.

A generalization of the Griffiths example is similar – instead of the 1-
dimensional one considers the 2-dimensional Hawaiian earrings, i.e. the
subspace H2 of the 3-dimensional Euclidean space, H2 = {(x0, x1, x2) ∈
R

3| (x0−1/k)2 +x2
1 +x2

2 = (1/k)2, k ∈ N} [3]. It is easy to see that one
gets a 3-dimensional noncontractible simply connected cell-like Peano
continuum (cf. [1], Example (17.7))

The purpose of the present paper is to construct a functor SC(−,−)
from the category of all path connected spaces with a base point and
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continuous mappings, to the subcategory of all simply connected cell-
like spaces with a base point. The following are our main results:

Theorem 1.1. For every path connected space Z, the space SC(Z) is
simply-connected.

Theorem 1.2. For every noncontractible space Z, the space SC(Z) is
noncontractible.

Let Z be a compact metrizable space. When Z is a Peano con-
tinuum, then SC(Z, z0) is also a Peano continuum, and when Z is
an n-dimensional noncontractible space for n ≥ 1, then the space
SC(Z, z0) is (n + 1)-dimensional and noncontractible. When Z is fi-
nite dimensional, SC(Z, z0) is cell-like. In particular, for Z = S1 we
get a 2-dimensional noncontractible simply connected cell-like Peano
continuum SC(Z, z0).

2. Preliminaries

For any two points a and b in the plane R
2 we denote by [a, b] the lin-

ear segment connecting these points. In the case when a, b ∈ R
1 ⊂ R

2

we shall additionally assume that a < b. The interval (a, b) is a segment
without end points. In a similar way, the half-open intervals [a, b) and
(a, b] are defined. The unit segment [0, 1] ⊂ R

1 will be denoted by I. To
avoid confusion between an open interval and an element of the square
I×I, we shall write (a; b) for the latter, where a, b ∈ I. Our construction
is based on the piecewise linear topologist sine curve T in the plane.
Let An = (1/n; 0), Bn = (1/n; 1), for n ∈ N = {1, 2, 3, . . .}, A = (0; 0),
B = (0; 1) be the points of the plane R

2. Let L2n−1 = [An, Bn] and
L2n = [Bn, An+1]. The space T is the subspace of I

2 defined as the
union of all segments Ln and L = {0} × I.

Let Z be any space with a base point z0. Then the base set of
SC(Z, z0) is the quotient set of T×Z ∪ I

2 obtained by the identification
of the points (s, z0) ∈ T × Z with s ∈ T ⊂ I

2 and by the identification
of each set {s} × Z with a one-point set {s} if s ∈ L. There is a
natural projection p : SC(Z, z0) → I

2. To p there corresponds a pair of
functions p1 and p2 such that p(z) = (p1(z); p2(z)). For z = (x; y) ∈ T
with x > 0, the set p−1(z) is denoted by Zz, which is homeomorphic
to Z, and for y ∈ I the set p−1

2 ({y}) is denoted by My. Let Oε(z, Z) =
p−1(Uε(z)), where Uε(z) is the open ε-ball with the center at z ∈ I × I

with respect to the standard metric.
The topology of SC(Z, z0) coincides with the quotient topology at

each point outside L. A basic neighborhood of a point z = (0; y) ∈ L is
of the form Oε(z, Z). Therefore, SC(Z, z0) has the quotient topology
when Z is compact.
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Obviously, SC(−, −) is a functor from the category of topologi-
cal spaces with a base point to itself. The space SC(Z, z0) is path-
connected, path-connected and locally connected, finite-dimensional or
metrizable if Z is path connected, path-connected and locally con-
nected, finite-dimensional or metrizable, respectively. In particular,
SC(Z, z0) is a Peano continuum if Z is a Peano continuum.

A path in X is a continuous mapping of the segment [a, b] ⊂ R
1 to X.

We say that two paths are homotopic if they are defined on the same
domain and are homotopic with respect to their ends. The composition
of two paths f : [a, b] → X and g : [b, c] → X with f(b) = g(b) is a
path h : [a, c] → X which is defined as follows:

h(t) =

{
f(t) if a ≤ t ≤ b
g(t) if b ≤ t ≤ c.

Let f : [a, b] → X and g : [c, d] → X be paths. We write f ∼= g
when f(a + (b − a)t) = g(c + (d − c)t) for each t ∈ I and define f as
f(t) = f(a+ b− t) for a ≤ t ≤ b.

A loop with the base point x0 in a space X is a path f : [a, b] → X
for which f(a) = f(b) = x0. The product of two loops is defined in the
standard way. The constant mapping to {x0} is denoted by cx0.

Let f : [a, b] → X be a path, c any point in [a, b] and α any loop
with the base point at f(c). The modification of the path along a loop
α : I → X is the path g : [a, b] → X which is defined fora segment
[t1, t2] ⊂ [a, b], c ∈ [t1, t2] as follows:

g(s) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

f ((s− a)(c− a)/(t1 − a) + a) if a ≤ s ≤ t1

α((s− t1)/(t2 − t1)) if t1 ≤ s ≤ t2

f ((b− s)(b− c)/(b− t2) + b) if t2 ≤ s ≤ b.

The definition of the modification of path depends on the segment
[t1, t2], however all such paths are homotopy equivalent. (For simplicity
of the definition we suppose that the domain of a loop α is I, but we
shall use a variant of the modification for loops with arbitrary domains
in the sequel.)

A homotopy connecting injective mapping with the constant one is
called a contraction. We shall denote a mapping and its restrictions by
the same symbol. Whenever possible we shall use the symbol SC(Z)
instead of SC(Z, z0).

In the remaining part of this section we show that the shape type of
SC(Z) is that of the one-point space. To see this let U be an open cover
of SC(Z). Then there exist U1, · · · , Un ∈ U such that {0}×I ⊆ ⋃n

i=1 Ui
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and hence we have ε > 0 such that p−1([0, ε] × I) ⊆ ⋃n
i=1 Ui. On the

other hand we have a strong deformation retraction from SC(Z) to
p−1([0, ε]× I), since p−1([ε, 1]× I∩T ) is a strong deformation retract of
p−1([ε, 1]× I) and p−1([ε, 1]× I ∩ T ) is homeomorphic to I ×Z. These
imply the conclusion.

The preservations of compactness and finite-dimensionality by the
functor SC are proved similarly and those of path-connectivity and
local path-connectivity are proved easily. Hence SC(Z) is cell-like when
Z is a finite dimensional compact metric space [6, 7].

3. Proof of Theorem 1.1

Lemma 3.1. Let A be a strong deformation retract of X and let α :
[0, 1] → X be a path with the end points α(0) and α(1) in A. Then
there exists a path α′ : [0, 1] → A ⊂ X which is homotopic to α.

Proof. The assertion of the lemma follows directly from the definition
of the strong deformation retraction. �

Lemma 3.2. Let X be any space and α any path in X × I with the
end points α(0) = (α1(0), α2(0)) ∈ X×{0} and α(1) ∈ X×{1}. Then
there exists a special path α′ in X × I homotopic to α and such that
Im(α′) ⊂ {α1(0)} × I ∪X × {1}.
Proof. Let H : I× I → X × I be the homotopy which is defined by the
following formula:

H(s, t) =

{
(α1(0), 2s) if 0 ≤ s ≤ t/2

(α1(
2s− t

2 − t
), (1 − t)α2(

2s− t

2 − t
) + t) if t/2 ≤ s ≤ 1.

Obviously, H(s, 0) = α(s) and Im(H(−, 1)) ⊂ {α1(0)}× I∪X ×{1}
so H is the desired homotopy connecting α and α′ = H(−, 1). �

The path α′|[0, 1/2] is called the linear part and α′|[1/2, 1] is called the
residual part of the path α′.

In the following lemmata we use the symbols of Bn, ZBn , Uε(Bn),
Oδ(Bn, Z) and M0 which were defined in Section 2.

Lemma 3.3. Let f : I → SC(Z) be a path. Then for every n ∈ N

and every ε > 0 there exist a path fn,ε : I → SC(Z) and a homotopy
Hn,ε : I

2 → SC(Z) such that:

(1) Hn,ε(s, 0) = f(s), Hn,ε(s, 1) = fn,ε(s);
(2) Im(fn,ε) ∩ ZBn = ∅; and
(3) Hn,ε(s, t) = f(s) if f(s) /∈ Oε(Bn, Z).
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Proof. Let δ be a number such that 0 < δ < ε and Uδ(Bn) ∩ T =
Uδ(Bn) ∩ (Ln ∪ Ln+1).

Since f−1(ZBn) is a compact subset of f−1(Oδ(Bn, Z)), there exists
a finite set of pairwise disjoint segments {[ak, bk] : k ∈ Kn} which cover
f−1(ZBn) in f−1(Oδ(Bn, Z)) and whose end points lie outside f−1(ZBn).
Using the modifications of paths along loops we can assume without
loss of generality that end points of all paths lie on T . For given k ∈ Kn

consider the path f : [ak, bk] → Oδ(Bn, Z). Since p−1(Uδ(Bn) ∩ T ) is
a strong deformation retract of Oδ(Bn, Z), the path f is homotopic to
the path fn,k : [ak, bk] → p−1(Uδ(Bn) ∩ T ) ⊂ Oδ(Bn, Z) due to Lemma
3.1.

The space p−1(Uδ(Bn) ∩ T ) is naturally homeomorphic to the prod-
uct of space Z and the interval. The product Z × ([f(ak), Bn] ∪
[Bn, f(bk)]) is a strong deformation retract of p−1(Uδ(Bn)∩ T ). There-
fore the path f : [ak, bk] → Oδ(Bn, Z) is homotopic to a path in
Z × ([f(ak), Bn] ∪ [Bn, f(bk)]), again by Lemma 3.1. By Lemma 3.2,
the path f : [ak, bk] → Oδ(Bn, Z) is homotopic to a special path the
linear part of which lies in Ln ∪ Ln+1 and the residual part of which
does not intersect ZBn. The linear part can be slightly deformed in
I × I to [f(ak), f(bk)], which does not contain the point Bn. Since the
index k is arbitrary and the number of the segments {[ak, bk] : k ∈ Kn}
is finite we get the desired mapping fn,ε. �

Next lemma is a direct consequence of Lemma 3.3:

Lemma 3.4. A loop in SC(Z) with the base point in M0 is homotopic
to a loop in SC(Z) \ ⋃

n∈N
ZBn.

Lemma 3.5. M0 is a strong deformation retract of SC(Z)\⋃
n∈N

ZBn.

Proof. The deformation D : (SC(Z) \ ⋃
n∈N

ZBn) × I → SC(Z) \⋃
n∈N

ZBn is defined by the piecewise linear mapping (linear on every
triangle AnBnAn+1 and An+1Bn+1Bn) which maps half-open intervals
[An, Bn) and [An+1, Bn) to the points An and An+1, respectively (see
Figure 1).

Since the spaces ZBn have been deleted, D is well-defined and con-
tinuous. �

We get the following from Lemmata 3.4 and 3.5 :

Lemma 3.6. Let f be a loop in SC(Z) whose base point is in M0.
Then f is homotopic to a loop in M0.

Before we show the simple connectivity of SC(Z), we exhibit a ho-
motopy from the canonical winding to the constant, in case when Z is
the circle in Figure 2. To generalize this simple procedure I, II, III, we
need to describe it more precisely.
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For a loop α in Z with base point z0 and a point u ∈ T , let αu be a
loop in Zu induced naturally from the homeomorphism between Z and
Zu, i.e. αu(t) = (u, α(t)) and particularly base point of αu is u.

We call β : [a, b] → SC(Z) as a basic loop at An, if there exists a
loop α in Z with base point z0 such that

(a) β(a) = β(b) = A, β((2a+ b)/3) = β((a+ b)/2) = An;
(b) β|[a,(2a+b)/3] and β|[(a+b)/2,b] are linear mappings;
(c) β|[(2a+b)/3,(a+b)/2]

∼= αAn.

Lemma 3.7. A basic loop β : [0, 1] → SC(Z) at An is homotopic to
the constant mapping B in the subspace p−1([A,An] × I).

Proof. We modify β to γ0 so that

(1) γ0(0) = β(0) = A, γ0|[1/3,1] = β|[1/3,1];
(2) γ0|[1/(4k+1),1/(4k)]

∼= αAn+k
and γ0|[1/(4k+3),1/(4k+2)]

∼= αAn+k
for

k ≥ 1;
(3) γ0|[1/4k,1/(4k−1)] is a linear mapping and γ0|[1/(4k+2),1/(4k+1)] is con-

stant for k ≥ 1.

It is easy to see that γ0 is homotopic to β in p−1([0, 1/n] × {0}). This
homotopy corresponds to the procedure I in Figure 2. Next we describe
the homotopy corresponding to the procedure II in Figure 2 according
to the above classification (1)− (3). Let En,t be a point ((t+ n)/((n+
1)n); t) on L2n and Fn,t be a point (1/n; t) on L2n−1. We define H :
I× I → p−1([0, 1/n]× I) so that H(s, 0) = γ0(s) and the following kold:

(1) Let H(0, t) = (0; t), H(s, t) = (2(1 − s)/n; t) for s ∈ [1/2, 1] and
H(−, t)|[1/3,1/2]

∼= α(1/n;t).
(2) H(−, t)|[1/(4k+1),1/4k]

∼= αEn+k−1,t
andH(−, t)|[1/(4k+3),1/(4k+2)]

∼= αFn+k,t
.

(3) H(1/(4k+2), t) = Fn+k,t, H(1/(4k+1), t) = H(1/(4k), t) = En+k−1,t

and H(−, t)|[1/4k,1/(4k−1)] and H(−, t)|[1/(4k+2),1/(4k+1)] are linear map-
pings.

Then H is continuous and is a homotopy. Let γ1 = H(−, 1). Notice
that γ1|[1/(4k+1),1/(4k−2)]

∼= αBn+k−1
cBn+k−1

αBn+k−1
and γ1|[1/(4k+2),1/(4k+1)]

is a linear mapping onto [Bn+k, Bn+k−1] and γ1|[1/2,1] is a linear mapping
onto [Bn, B].

Then it is easy to see that γ1 is null-homotopic in p−1([0, 1/n]×{1}),
which corresponds to the procedure III in Figure 2. �

We now proceed with the proof of Theorem 1.1: by Lemma 3.6,
we start from a loop f : [0, 1] → M0 with base point A. Moreover,
since Am’s are isolated points, are connected by intervals in I × {0}
and converge to A, we may assume having a disjoint family of open
intervals (an, bn) (n < ν), where ν ≤ ω, such that each f |[an,bn] is a
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basic loop at some Am and
⋃

n<ν(an, bn) is dense in I. Then f(s) = A
for s /∈ ⋃

n<ν(an, bn).
We observe that the procedure II in the proof of Lemma 3.7 can

be performed uniformly for f |[an,bn]’s. Then we obtain a homotopy
from f to a loop in M1 which consists of possibly infinitely many null-
homotopic loops. Since the homotopies which correspond to the pro-
cedure III converge to B, we have a homotopy from f to the constant
mapping B. By a standard method, i.e. extending the domain [0, 1]
into both directions and adding a path from A to B, we have a homo-
topy from f to the constant mapping A with respect to their ends. �

4. Proof of Theorem 1.2

We shall show that SC(Z) is noncontractible for every noncon-
tractible space Z. Let SCn(Z) be the subspace of SC(Z) defined as
p−1(L2n−1 ∪ L2n ∪ L2n+1).

Definition 4.1. A mapping f : SCn(Z) → SC(Z) is said to be flat if
p2(f(z1)) = p2(f(z2)), whenever p2(z1) = p2(z2) for z1, z2 ∈ SCn(Z).
A homotopy H : SCn(Z) × I → SC(Z) is said to be flat if for every t,
the mapping H(−, t) is flat.

Lemma 4.2. Let n ∈ N and H : SCn(Z) × I → SC(Z) be a mapping
such that for every y ∈ I and t ∈ I, the set p2(H(My, t)) does not
simultaneously contain both points 0 and 1 and that both H(−, 0) and
H(−, 1) are flat mappings. Then there exists a flat homotopy from
H(−, 0) to H(−, 1).

Proof. Fix numbers y and t. Let A(y, t) and B(y, t) be the minimum
and the maximum of the function p2(H(−, t)) : My → I, respectively.
Let

C(y, t) =
A(y, t)

1 + A(y, t) − B(y, t)
.

Consider the subset I × [A(y, t), B(y, t)]. Let ϕ be its piecewise linear
retraction to the interval I×{C(y, t)}, which is defined by the mappings
of vertices (see Figure 1): ϕ(Bn,0) = C2n−1, ϕ(Bn1) = C2n, ϕ(An+10) =
C2n, ϕ(An,1) = C2n−1. If A(y, t) = 0 or B(y, t) = 1, then C(y, t) = 0 or
C(y, t) = 1 and An,0 = An,1 = An or Bn,0 = Bn,1 = Bn, respectively
and the mapping ϕ is correctly defined.

Let ψy,t be the natural retraction of p−1(I × [A(y, t), B(y, t)]) to
p−1(I × {C(y, t)}) generated by ϕ. Define now the homotopy H ′ :
SCn(Z) × I → SC(Z) by H ′(z, t) = ψ(p2(z),t)(H(z, t)). It is easy to
check that p2(H

′(z, t)) = C(p2(z), t) and H ′ is a flat homotopy which
is a contraction. �



8 KATSUYA EDA, UMED H. KARIMOV, AND DUŠAN REPOVŠ

To prove the following Lemma 4.4 we introduce a notion to investi-
gate flat homotopy.

For s ∈ (0, 1) and t ∈ I, we define a property P (s, t) of H as follows:

H(Ms ∩ SCn(Z), t) ⊆ p−1(I× (0, 1)) and the restriction
of H(−, t) to Ms ∩ SCn(Z) is homotopic to the identity
mapping on Ms ∩ SCn(Z) in p−1(I × (0, 1)).

We remark that by the flatness of H , if H(Ms ∩ SCn(Z), t) ⊆ p−1(I ×
(0, 1)), then there is a neighborhood U of (s; t) such that H(Ms′ ∩
SCn(Z), t′) ⊆ p−1(I × (0, 1)) for any (s′; t′) ∈ U .

Lemma 4.3. Let Z be a non-contractible space and H : SCn(Z)× I →
SC(Z) a flat homotopy. If H(M0 ∩ SCn(Z), t0) < 1, then there exists
a neighborhood U of (0, t0) such that H does not satisfy P (s, t) for
any (s; t) ∈ U with s > 0. A similar statement holds for H(M1 ∩
SCn(Z), t0).

Proof. We have a neighborhood U of (0, t0) such thatH(Ms∩SCn(Z), t) ⊆
p−1(I × (0, 1)) for any (s; t) ∈ U . We fix (s; t) ∈ U with s > 0. Let
P2n+1, P2n, P2n−1 be the intersection of I × {s} and L2n+1, L2n, L2n−1

respectively and I2n = [P2n+1, P2n] and I2n−1 = [P2n, P2n−1]. Then
we have Ms ∩ SCn(Z) = ZP2n+1 ∪ I2n ∪ ZP2n ∪ I2n−1 ∪ ZP2n−1 . Since
H(−, t) maps

⋃
u∈[P2n+1,An+1]∪[An+1,P2n] Zu into p−1(I × (0, 1)), the re-

striction of H(−, t) to ZP2n+1 ∪ I2n ∪ ZP2n is homotopic to a map
f : ZP2n+1 ∪ I2n ∪ ZP2n → I2n ∪ ZP2n in p−1(I × (0, 1)).

Since Ms is a strong deformation retract of p−1(I × (0, 1)) similarly
as in Lemma 3.5, ZP2n+1 ∪I2n∪ZP2n is a retract of p−1(I× (0, 1)). Since
Z is not contractible, the identity mapping on ZP2n+1 ∪ I2n ∪ ZP2n is
not homotopic to any map f : ZP2n+1 ∪ I2n ∪ ZP2n → I2n ∪ ZP2n in
p−1(I × (0, 1)), which implies the conclusion.

In case of H(M1, t0) we use ZP2n ∪ I2n−1 ∪ ZP2n−1 and argue at a
neighborhood of Bn and obtain a similar conclusion. �

Lemma 4.4. Let Z be a noncontractible space. If H : SCn(Z) × I →
SC(Z) is a flat homotopy such that H(u, 0) = u for every u ∈ SC(Z),
then H(−, 1) is not a constant mapping.

Proof. To show this by contradiction, suppose that H(−, 1) is a con-
stant mapping. Consider the line Ln ∪Ln+1 ∪Ln+2 and the circle with
some base point s0 ∈ S1. Let d : [0, 1] → S1 be a winding with base
point s0, i.e. both d|[0,1) and d|(0,1] are bijective continuous mappings
with d(0) = d(1) = s0.



NONCONTRACTIBLE SIMPLY CONNECTED CELL-LIKE CONTINUA 9

We define a homotopy H∗ : S1 × I → S1 as follows:

H∗(u, t) =

{
d−1(u), if u �= s0 and P (d−1(u), t) holds;

s0, otherwise.

We have a contradiction with the fact H∗(s, 0) = s and that S1 is not
contractible, if H∗ is a homotopy (compare with [2]). Hence it suffices
to verify the continuity of H∗.

If u �= s0 and P (d−1(u), t) holds, the continuity at (u, t) is clear.
Otherwise, u �= s0 but P (d−1(u), t) does not hold, or u = s0.
(Case 1) u �= s0: If p2 ◦H(Md−1(u), t) = 0 or 1, then the continuity at
(u, t) follows from that of H . Otherwise, since H(−, t) maps Md−1(u) ∩
SCn(Z) continuously with respect to u and t, the restriction of H(−, t)
to Md−1(u) ∩ SCn(Z) is not homotopic to the identity on Md−1(u) ∩
SCn(Z) in p−1(I× (0, 1)), i.e. H∗ takes the value s0 in a neighborhood
of (u, t).
(Case 2) u = s0: If both of p2 ◦H(M0, t) and p2 ◦H(M1, t) are equal
to {0} or {1}, the continuity at (u, t) follows from that of H . The
remaining case is when 0 < p2 ◦H(M0, t) < 1 or 0 < p2 ◦H(M1, t) < 1.
In this case the continuity follows from Lemma 4.3 and that of H . �

We now proceed with proof of Theorem 1.2: suppose that SC(Y )
were a contractible space. Then there would exist a contraction H :
SC(Z) × I → SC(Z). By the compactness of {0} × I and since every
continuous mapping is uniformly continuous on a compactset, there
would exist ε > 0 such that the diameter of the image of any ε−set
(set with diameter less then ε) would be less than 1. Let n be a number
such that 1/n < ε. By Lemma 4.2 we may then assume that H is a
flat contraction. However, this contradicts Lemma 4.4. �

The space SC(S1) is simply connected and it follows by the Mayer-
Vietoris exact sequence for the singular homology thatHn(SC(S1)) = 0
for n �= 2. The following question remains open:

Question 4.5. Is H2(SC(S1)) = 0?
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