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SOLVING FOUR-DIMENSIONAL SURGERY PROBLEMS
USING CONTROLLED THEORY

FRIEDRICH HEGENBARTH AND DUSAN REPOVS

ABSTRACT. In this paper the controlled surgery sequence of Ranicki, Pedersen and
Quinn is applied to solve surgery problems in dimension four when the fundamental
group is not known to be good. Our examples concern free nonabelian fundamental
groups, surface fundamental groups, and special knot groups. Using results from our
earlier paper (joint with Spaggiari) we state a general result from which our examples
follow.

§ 1. INTRODUCTION

A surgery problem is written as a diagram

b
vy — §

! l

where M™ is an n—manifold, v, the stable normal bundle of an embedding M™ C
R+ (I large), an I-bundle ¢ over an n—dimensional Poincaré complex X (in the
sense of Wall [Wal]), a degree 1-map f and a bundle map b : vy — £ over f (being
fiberwise an isomorphism). We assume that M™ is a closed topological manifold of
dimension n.

There is an obvious notion of normal bordism between such surgery problems.
Disjoint union defines a sum of equivalence classes. Thus defined bordism group
is denoted ,,(X,¢). Further, vy, and ¢ are topological R'-bundles. If we take
the "union” of all Q,(X,¢) with respect to all possible R'-bundles ¢ over X we
get a set which is in bijective correspondence with [X,G/TOP]. This bijective
correspondence is not canonical. It depends on fixing a specific surgery problem,
or equivalently a TOP reduction of the Spivak normal fibration over X (see [Wal],
§10). So we have this correspondence if there is at least one surgery problem whose
target is X.
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2 FRIEDRICH HEGENBARTH AND DUSAN REPOVS

For any surgery problem (f,b) as described above there is a well-defined surgery
obstruction in the Wall group O(f,b) € L, (71(X)) such that: O(f,b) = 0if (f,b)
is normally cobordant to

VM%S

Lo

N 9 . X
where g is a simple homotopy equivalence. In the case n > 5 this is a necessary and
sufficient condition. If n > 5 and ©(f,b) = 0 then a normal cobordism between

(f,b) and (g, ¢) is constructed by a sequence of surgeries.
The surgery obstruction O(f,b) € L, (m1(X)) defines a map

O : [X,G/TOP| — Ly (1 (X)).

The Wall group depends only on the fundamental group of X, and the orientation
character w : m (X) — {%1}, which we shall ignore.
For n > 5 surgery theory is expressed as an exact sequence:

S(X) X, G/TOP] > Ly (m1 (X))

where S(X) is the structure set. An element of S(X) is represented by a simple
homotopy equivalence h : M — X, and h : M — X is equivalent to A’ : M’ — X
if there is a homeomorphism ¢ : M’ — M such that h o ¢ is homotopic to h'. The
map 7) associates to every (simple) homotopy equivalence its normal invariant: Let
h=! : X — M denote a homotopy inverse of h : M — X, ¢ = (h=1)*(vp). Note
that h*(€) = (h=' o h)*(vas) = var. Then nlh: M — X] is the surgery problem

var 2 RA(E) — €

! l

M X
where h is the canonical map. The surgery sequence can be extended to the left by
a map L,+1(m (X)) — S(X). This will not be a subject of our paper.

It is not known if in dimension n = 4 the sequence exists in the general situation.
By Freedman’s result it holds for Poincaré 4—complexes with ”good” fundamental
groups (see [Fre|, [FreQui], [FreTeil], [FreTei2], [KruQui]). However, there is a
controlled surgery sequence in dimension 4 (see [PedQuiRan]). We will explain
it in more detail in §3. The surgery obstruction group of this sequence not only
depends on 71 (X) but also on the topology of the space X, more precisely — on
the control map p : X — B which must satisfy the UV '-property. The UV~
property is not an invariant of the homotopy type of X. Given X, there may exist
a homotopy equivalent Poincaré complex Y, for which one can construct a good
UV'-map Y — B. Therefore we have to transform our original surgery problem

VML)S

l !

MTL X’TL
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into a surgery problem with target Y without changing the surgery obstruction
O(f,b). This is well-known, in fact it follows from the formula for the surgery
obstruction of a composition of normal maps (see [Wal], Chapter 17H, Lemma 2;
[Ranl], Proposition 43; or [Jon], p. 322). Since this issue is basic in dimension 4
(on p. 264 of [Wal] it is stated that "This is clearly a basic result which should
have been treated earlier in this book.”), we will give a proof (different from the
proofs cited above) in §2.

In §4 we will construct examples of UV !-maps which in §5 will be used to state
and prove the main results of this paper.

§ 2. INVARIANCE OF SURGERY OBSTRUCTIONS UNDER HOMOTOPY EQUIVALENCE

We are only interested in 4-dimensional surgery, so we can restrict the discussion
to n = 2k. Let the surgery problem be given

VM—b—>§

g |

f

MY —— X7

Let Y™ be another n—Poincaré complex and h : X — Y be a (simple) homotopy
equivalence. Our goal is to use h to transform it into a surgery problem

c
Vnpyy — 1}

l !

M —2 .y,

(9 = h o f and the bundle map ¢ has yet to be defined) so that O(g,c) = O(f,b)
under the identification L, (71(Y)) < L, (7m1(X)), induced by h, : w1 (X) — m (V).

Let us assume that f is k-connected. Then [mr11(f), \,v] € Ly, (m (Xj) repre-
sents 6(f,b), where

A g1 (f) X Trpa (f) — A = Z[m (X)]

p Ter1(f) = A fa—(=1)ka | acay = Qk

are the intersection and self-intersection forms. The operation @ denotes the canon-
ical anti-involution of A. To define ¢ : vj; — 1 we choose a homotopy inverse
h~!':Y — X and homotopies

H:XxI—Xofh 'ohandlIdy,

G:YxI—Y of hoh™! and Idy.

Let n = (h=1)*(€) and ¢ : vy — 1 be the composition vy ig = h*(n) ln, where
h is the canonical bundle map and the isomorphism & = h*(n) is induced by the
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isomorphism H*(§) = £ x I being the identiy for ¢ = 0 (i.e., Hi (&) = £ x 0,
H{(§) = (h ' oh)*(§) = h*(n)). Then

v x T 24, e T o) T

! ! !

Mx1 I xxI " x
is a normal cobordism between

b b

vy — & vy — = h*(n)
| [ o] |
M - x ML x

hence the surgery obstructions coincide. Therefore we can assume that & = h*(n)
and ¢ : vy — 7 is the composition ¢ = hob. Since h : X — Y is a simple homotopy
equivalence, the homomorphism

hy : g1 (f) — mps1(ho f)

is an isomorphism respecting the preferred bases and intersection forms. So the
only difference can appear in the self-intersection forms p : mr11(f) — Qr and
M’ : Wk+1(f) = 7T1~c+1(h © f) — Qk-

However, in order to define the surgery obstructions we first have to make surgery
below the middle dimension. In that range surgeries use framed embeddings SP x
D" P — M, and these are defined using b : vy; — &. So different bundle maps
can produce different A—modules 741 (f). Moreover, the self intersection form y is
defined representing elements x € w11 (f) by framed immersions of type

Sk« DF G——> M

| l

Dkl x Db ——— X

These framed immersions are defined using b : v); — £. This goes as follows: Let
x € mp+1(f) be represented by

s —2 > M v
“ [
prit £ x £

We can assume that p < n — 2. Embedd M™ C R™*, [ large, hence

TM@VMZ&,‘RLIZ.



SOLVING FOUR-DIMENSIONAL SURGERY PROBLEMS 5

Then we have ¢*(Tar) @ ¢* (V) = €% = 750 @ sgil_p in a canonical way. But

from diagram (x*) we get an isomorphism ¢*(vp7) = ¥*(€)]s» = €k,. Together this
gives a fiberwise isomorphism

Tsp @ e"TITP ——— Ty 6955\4

! l

Sp L SN
which can be uniquely destabilized to

Top e P —— T

! !

Sp %
because p <n —2 (so m,(BO(n)) — mp(B0O)). By the Hifliger—Hirsch theorem this

defines an immersion S x D"™P & M unique up to regular homotopy.
It is now clear that we obtain the same regular immersion S? x D" ~P 9 M using
diagram

SP Ld M VM
1 b
(") ppr+i ¥ X £

>
>

These completes the proof that ©(f,b) = O(h o f,¢), i.e. composition with a
homotopy equivalence X — Y defines a surgery problem with target ¥ and same
surgery obstruction.

If O(f,b) = 0 there exists a preferred A-base {e1,...,er, f1,..., fr} (after stabi-
lization) such that A(e;, f;) = dij, AM(z,y) =0, for all other z,y € {e1,...,er, f1,..., fr},
and p(e;) = p(fi) = 0,4 =1,...,r. Using the Whitney trick (k > 3), the regular
homotopy class of immersion S* x D* s M of any e; contains an embedding on
which surgeries are performed to obtain a homotopy equivalence.

§ 3. CONTROLLED SURGERY THEORY

In this section we will describe the controlled surgery sequence of Pedersen-
Quinn-Ranicki (see [PedQuiRan]). Its advantage is that it holds in dimension 4.
Then we explain how it can be used to solve 4-dimensional surgery problems.

The Wall groups of the trivial group are

Z n=0(4)
L,({1})=<¢ Zy n=2(4)
0 nodd.
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There is a 4—periodic Q-spectrum L such that 7, (L) = L,, (see [Quil], [Nic] or
[Ran2] for an algebraic approach). L-homology of a space B can be computed
using an Atiyah-Hirzebruch spectral sequence:

qu = Hp(B,m4(L)) = Hpyq(B,L).

The space B will be the control space, and it has to be a compact metric ANR
space of finite dimension. Hence it is homotopy equivalent to a finite complex
(following by the Borsuk conjecture proved by West [Wes|). To calculate H, (B, L)
we can therefore assume that B is a finite complex. In fact, taking a regular
neighborhood in some R! we may assume that B is a triangulated manifold. An
n—cycle x representing an element [z] € H,(B, L) is a family of surgery problems

bs
v, —— &

I

fo

M, —— X,

o a simplex in B, and dim M, = n—dim o, together with a reference map X, — o*
(o* the dual cell of o). The cycle condition and the fact that B is a manifold implies
that one can paste these together to a global surgery problem

b
vy — &

.

M —1 . x B

over B. With this notations one can define the assembly map
A: H,(B,L) — L,(m(B))

by A([z]) = image of O(f,b) € L,(m (X)) — L,(m(B)) (see [Nic], Ch. 3 and
[Ran2], Ch. 12).

Let us suppose that we have a map p : X — B from an n—Poincaré complex in
B. By a theorem of Cohen (see [Coh]), p can be assumed to be transverse to any
0%, 0 € B. Let X, = p !(c*). Suppose that given any normal degree 1 map

b
vy — ¢

Lo

MLX

such that p o f is transverse regular for any * C B. We get from it a family = of
surgery problems

b
Ny, ——— 50

o |
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where o is a simplex in B, and a map X, — ¢*. Note that dim M, = n — |o| =
dim X,. This defines a map

©p : [X,G/TOP| — H,(B,L).

The construction shows that if p, : 71(X) — m1(B) is an isomorphism then AcOp =
O so for a given [f,b] € [X, G/TOP)] the element ©5([f,b]) € H,(B,L) is a stronger
obstruction than O([f, b]).

If O([f,b]) = 0 then surgery can be completed to get homotopy equivalences for
each individual surgery problem z(o), if n > 5. This is because Og([f,b]) = 0
is equivalent to: z(o) normally bounds a surgery problem y(o) over o* for any
simplex ¢ C B. This also works for n = 4 if the fundamental groups are good for
all (o). The family {y(c) | ¢ C B} can be assembled to give a normal surgery

problem
UN —_— 5

! !

Nt X

which bounds (f, b).
Suppose Op([f,b]) = 0 € H,(B,L). We assume that p : X — B satisfies

m1(X) p—jm (B). Instead of trying to glue together the traces of the individual

surgery problems on z (o), one does small controlled surgeries on the global problem
(f,b), so that they perhaps can be considered as a surgery over some 0. Completing
controlled surgeries leads to a controlled surgery obstruction group L, (B,p,¢,?).
Of course, if this obstruction vanishes we get also a controlled (simple) homotopy
equivalence (using the controlled Hurewicz-Whitehead theorem).

Then there exists the assembly map Ay, : H,(B,L) — L,(B,p,&,0) defined
by Yamasaki [Yaml], and it can be proved that it is an isomorphism for suitable
g,0. This was done recently by Pedersen-Quinn-Ranicki (see [PedQuiRan]). An
alternative approach was given by Ferry [Fer]. The proofs are given under the
hypothesis that p : X — B is UV (or UV'(§)) for a sufficiently small d, i.e. the
local surgery problems x(o) all have trivial fundamental group. This also makes
it possible in dimension 4 by work of Quinn. The general case, where the local
fundamental group is nontrivial, or even nonconstant remains unsettled (cf. [Yam?2]
for difficulties given in the general case).

Before we state the result of [PedQuiRan] we recall the definition of a UV !-map.

Definition. A continuous map p: X — B, B a metric space with metric d, is said
to be a UV(§)-map, § > 0, if every commutative diagram of continuous maps

[

K —2 s B

where K is a 2—complex and Ky C K a subcomplex, can be completed by a : K —
X such that @|k, = ag and d(pa(u), a(u)) < 6, for any v € K. A UV'-map is a
UV1(8)-map for any 6 > 0.
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This is the definition used in controlled topology and algebra. There is another
aspect of UV '-maps useful for the application which will be explained in §4.

Remark. The UV'(§)-property of p depends strongly on the topology and metric
of the space B. Changes of B we made before, in order to define geometrically
the assembly map, disturb it. Doing controlled surgery, one has to stick to the
UV1(d)-map. There is also a spectral definition of the assembly map given, for
instance, in [Ran2], §12.

Theorem 3.1. (e—d—surgery sequence [PedQuiRan]) Let B be a finite dimensional
compact metric ANR and n > 4. Then there exist eg > 0, depending on B and
n, such that for all ¢ > 0 with 0 < € < g¢, there exists 6 > 0 with the following
property:

If X™ is a (closed) n—manifold, p : X — B is a UV(8)-map, then the following
controlled surgery sequence 1s exact:

Hn-l—l(BaL) - 5,5(X7p) l[Xv G/TOP]@_';Hn(BaL)

Here S, 5(X,p) are equivalence classes of (M, g), M a closed n—manifold, ¢ :
M — X a d~homotopy equivalence over p : X — B (i.e., there exists a homotopy
inverse ¢g~! : X — M and homotopies H : M xI — M and G : X x I — X between
g togand Idy, gog~! and Idx such that {d(p circf o H(z,t)) |t € I} C B and
{d(po G(y,t)) |t € I} C B have diameter < § for any x € M, y € X respectively).
Two elements (M, g), (M’', g’) are equivalent if there is a homeomorphism h : M —

M’ such that
h e
N
X

is e-commutative over p : X — B (i.e., for any « € M, d(pg(z),pg’h(x)) < €).

This relation is reflexive and symmetric. It is part of the theorem that it is also
transitive.

It should be remarked that the proof given in [PedQuiRan]| holds also when X™
is a 0—Poincaré complex with a sufficiently small §. In particular, it holds when X"
is a generalized n—manifold. The map H,1(B,L) — [X,G/TOP] is a controlled
version of Wall’s realization of surgery obstruction. Under the assumptions of
the theorem it is clear that we have the following commutative diagram (we now
consider only n = 4)

M

S.s(X) —1— [X,G/TOP] —22— L,(B,L)

! H [

S(X) —'— [X,G/TOP] —2— Li(m(B))

The left vertical map is just forgetting €, 4.
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This leads to the following program: Given a 4-dimensional surgery problem

b
vy —— ¢

l !

with surgery obstruction O, construct B (as in the theorem) and a map p: X — B
such that

(1) pis UV and

(2) Ap is injective.
Then surgery on (f,b) can be completed to get a J—homotopy equivalence over B.
Note the two extreme cases:

(8) p: X — {+},

(b) p=1d: X — X,
where in (a) p (in general) is not UV! and in (b) Ap is (in general) not injective.
So B has to sit "well-balanced” between {*} and X.

We will give examples in §4. For a general manifold X* no construction for
such p : X — B is in sight. At this point we have to mention that Frank Quinn
has an approach to solve a generic 4-dimension surgery problem over a Poincaré
4—complex X with vanishing total surgery obstruction [Qui2].

§ 4. EXAMPLES OF UV!-MAPS

The examples given here are not particulary difficult, but using results of [CavHeg],
[CavHegRep] and [HegRepSpal, they lead to interesting results. First we will de-
scribe an alternative aspect of UV '-maps. A subset A C X has the UV '-property
if for each neighborhood U of A there is a neighborhood V' of A such that V C U,
w1 (V) — 71 (U) is zero for any point in V, and any two points z,y € V can be joint
by an arc in U. The following theorem is a special case of the approximate lifting
theorem (see [Dav], p. 126).

Theorem 4.1. Suppose X is a metric space and G is an upper semicontinuous
UVt—decomposition of X (i.e. each member A € G is a UV!'-subset). Let B =
X/G, and p: X — B the projection. Then p is a UV -map.

As corollaries we immediately obtain the following:
Lemma 4.2. Let M™ be an n—manifold which is homeomorphic to a connected

sum M7#M3. If h: M — M#M> is a homeomorphism, then the composition

p: ML MM, S My v M,
is UVY, where c is the collapsing map and n > 3.

Proof. The inverse images of c are single points or S*~!, so gives a UV decompo-
sition. [J

Lemma 4.3. Suppose M is homeomorphic to conected sum My# Mo with w1 (Ms) =
{1}. If h : M — My#M> is a homeomorphism then p : MlMl#MgiMl 18
UV, where c is the collapsing map.

Proof. As above. [
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Lemma 4.4. Letp: X — B be a fibration between manifolds with simply connected
fibers. Then p is UV,

Proof. We may choose tubular neighborhoods of the fibers to see that {p~1(b) | b €
B} is a UV'-decomposition. [

Since a compositions of UV '-maps is again a UV map we get in particular:

Lemma 4.5. Let M* be homeomorphic to (# S! x S®)#M’, 7y(M') = {1}. Then
1

the composition p

M D45 x S3)#M' S 4 5 x 535y 51 x 5 Y gl
1 1

is UVY. Here c1, ¢y, c3 are the obvious collapsing and projecting maps.

For the next example, consider a given finitely presented group m realized as
fundamental group of a 2-complex K. One can embed K into R® (in general into
R™ n > 5) and take the boundary of a regular neighborhood N of K. Then N is a
4-manifold (in general a (n —1)-manifold) and the neighborhood retraction defines
amapp: N —- K =B.

Lemma 4.6. Suppose that 7 is the fundamental group of the complement of a torus
knot. Then the construction described above gives a UV'-map p: N — K = B.

Proof. We apply Theorem 3.1 and show that the inverse images of points are well
embedded 2-spheres. So let k be a torus knot of type (k,1). The torus divides S3

into solid tori T and T*, and k C TNT* = St x SL. Let M = SS\J%(k), where
N (k) is a small tubular neighborhood around k C S3. The spine of M consists of
subcomplexes S C T and S* C T* which intersect in a circle in TNT* = S! x S!
parallel to the knot k.

If we look at slices of the solid tori 7" and T, the pictures of S and S*, respec-
tively are as in the Figure 1 below (where we take (k,l) = (3,2), i.e. the trefoil
knot)

Figure 1

If c: M — SUS* = B is the collapsing map, then for b € S, ¢~ 1(b) is a wedge
of a finite number of segments intersecting in k (the dotted segments). Similarly
for b* € S*.

We now consider the embedding B C R® given by B C M C S® C S2 x D! C
R* C R®. So the boundary of a regular neighborhood of B C R® is (M x D?) =
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OM x D?> UM x &D? = X and the neighborhood collapsing map is the composition
of the projection M x D? " M followed by ¢, that is

p=com|x:X — B.

Then it can be fairly easily seen that p—1(b) is a PL 2-sphere, hence p is a UV~
map. [

§ 5. RESULTS
Krushkal and Lee proved the following

Theorem 5.1. see [Krulee|] Let X be a 4-dimensional Poincaré complex with
free nonabelian fundamental group, and assume that the intersection form on X is
extended from the integers. Let f : M — X be a degree one normal map, where M
is a closed 4—manifold. Then vanishing of the Wall obstruction implies that f is
normally bordant to a (simple) homotopy equivalence.

This is remarkable because the Disk theorem is supposed to be false for such
fundamental groups (see [FreTeil]).

Proof. This result can be very well understood using controlled surgery together
with results from [CavHeg]: Since the intersection form \ : Ha(X, A) x Ho(X,A) —
A, A = Z[r1(X)], is extended from the intersection form Ho(X,Z) x Ho(X,Z) — Z,
Theorem 1 of [CavHeg| implies that X is (simple) homotopy equivalent to YV =

(# 5" x SHEM, with m (M) = {1}. O
1

Transform the surgery problem to one with target Y and surgery obstruction
zero (as explained in §2). Then there is a UV! map p: Y — (1/5’1 = B, by Lemma
475?

The proof now follows by the well-known fact that A : Hy(B,IL) = Ly(m1(B))

(see [Cap]).

Theorem 5.2. Let X be spin Poincaré 4-complex and suppose it has the fun-
damental group of a closed oriented aspherical surface. Let us assume that the
A—intersection form is extended from the Z—intersection form (as in Theorem 5.1).
Then any degree 1 normal map f : M — X with vanishing Wall obstruction is
normally bordant to a (simple) homotopy equivalence.

Proof. Tt follows from Theorem 4.6 of [CavHegRep| that X is (simple) homotopy
equivalent to F'x S2# M’ =Y, F being the aspherical surface with 71 (X) = m(F),
m1(M") = {1}. As before we transform the surgery problem to one over ¥ and
observe that p: Y 2 F x 2 5 F=Bis UV!.

It follows from [Cap|, Theorem 18 (using the spectral sequence H,(B,L,) =

H,o(B,L)), that A : Hy(B,L) > Ly(m(B)) O
From Lemma 4.6 we obtain

Theorem 5.3. Let X be the manifold constructed as boundary of a reqular neigh-
borhood in R® of the 2—complex defined by the fundamental group of the complement
of a torus knot. Then any surgery problem with target X and vanishing Wall ob-
struction is normally bordant to a (simple) homotopy equivalence.
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Proof. Let B be the spine and p : X — B the UV!-map of Lemma 4.6. It is well
known that B is an aspherical space with H,(B) = Z for p = 0,1 and trivial other-

wise. The Atiyah-Hirzebruch spectral sequence implies A : Hy(B, L) =L (m(B)). O

A more general result can be obtained using the following fact proved in [HegRepSpa|
(Theorem A): Let X be a connected closed oriented 4-manifold with fundamental
group to be infinite. Suppose G C Ho(X, A) is a A—submodule such that:

(i) G is A-free and the adjoint of the A-intersection pairing induces G — G* =

Homy (G, A);
(i) either (a) H?(Bm,A) =0 or (b) Ha(X,A)/q is A-trivial;
(iii) the restriction of the A—intersection form to G is extended from the Z—intersection
form.
Then X is (simple) homotopy equivalent to B#M’, where B is a Poincaré 4-
complex, my M’ = {1}, M’ a 4—manifold with Hy(M', 7Z) %A = (. Applying the

controlled surgery sequence one gets:

Theorem 5.4. Suppose that X, G C Ho(X, A) satisfy the hypotheses above. Then
there is eg > 0 such that for any 0 < € < g¢ there is § > 0 with

H5(B,L) — S.5(X) — [X,G/TOP] — Hy(B,L)

18 exact, where p : X — B is given by Lemma 4.5.

Remark. Theorems 5.1 and 5.2 above are special cases of Theorem 5.4. In Theorem
5.1 we are in case (ii)(a) and the case (ii)(b) applies to Theorem 5.2. In both cases
we have AB : H4(B,]L) :L4(7T1).
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