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Abstract

A compactum K C R? is said to be basically embedded in R? if for
each continuous function f: K — R there exist continuous functions
g,h: R — R such that f(z,y) = g(z) + h(y) for each point (z,y) € K.
We give a new proof of the fact that if K C R? does not contain
any triple of points forming two orthogonal segments parallel to the
coordinate axes, we say F(K) = (), then the embedding of K in R?
is basic. The original proof uses a reduction to linear operators and
non-trivial results of functional analysis. Our proof is elementary and
constructive.

We approximate f by g+h on a neighbourhood of K, which imitates
the property E(K) = (), using a certain labeled graph representing the
properties of the neighbourhood.

Keywords: Basic embedding; Kolmogorov theorem on representation
of functions.

MSC 2000: 54C30, 54C25.

1 Introduction

In solving Hilbert’s 13th problem, Kolmogorov [Kol57, Kol56] and Arnold
[Arn57, Arn59] proved that the m-dimensional unit cube I™ can be em-
bedded into the 2n + 1-dimensional Euclidean space, 1 (I") C R?"*! in
such a way that for every continuous real-valued function f on ¢(I") C
R2+L 0 f € C(3(I™)), there exist functions g1,...,g2,11 € C(R) such that
f((IIl, . ,x2n+1) = gl((III) + ...+ 92n+1(x2n+1)a for all (:El, . ,(I,‘Qn_|_1) €
P(I") C R?"FL We say that the embedding 1" C R?"*1! is basic.
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Ostrand [Ost65] showed that every n-dimensional compact metric space
is basically embeddable in R?"*!  thus generalizing in a way the classi-
cal Nobeling-Menger embedding theorem [HW41] which, when restricted to
compact spaces, states that every n-dimensional compact space is embed-
dable into R?"*!. The parameter 2n + 1 in the embedding theorem can
not be improved because there are n-dimensional compacta which can not
be embedded into R?" ([Flo35]). Sternfeld [Ste85] showed that the param-
eter 2n 4+ 1 in the basic embedding theorem is the best possible in a much
stronger sense: if a compactum is basically embeddable into R?"*! then its
dimension is at most n, for n > 1. Basic embeddability into the real line R!
is trivially equivalent to embeddability. The remaining problem of establish-
ing when a compactum is basically embeddable into R? was raised already
by Arnold [Arn58], and a characterisation was given by Sternfeld [Ste89]:

Theorem 1.1. For a compactum K C R? the following conditions are equiv-
alent:

(B) The embedding K C R? is basic.

(E) Let p and q denote the two projections, p(z,y) = = and q(z,y) =y,
and let

E(K) ={(z,y) € K| card(p '(z) N K) > 2 and card (¢ '(y) N K) > 2}.
Then E"(K) = E(E(...E(K)...)) =0 for some n.

Using the geometric description (F), Skopenkov [Sko95] gave a charac-
terisation of Peano continua basically embeddable into the plane by means
of forbidden subsets, which resembles Kuratowski’s characterisation of pla-
nar graphs. When restricted to finite graphs it says that a graph is basically
embeddable into the plane if and only if it does not contain a subset homeo-
morphic to any of the following: a circle a pentod and a cross with branched
ends. In a similar way Kurlin [Kur00] characterized finite graphs basically
embeddable into R x T;,, with T}, a star with n-rays.

The proof of (F) < (B) in [Ste89] is not direct, but uses a reduction
to linear operators and advanced results of functional analysis. Therefore
it would be desirable to find a straightforward, constructive proof, which
would consequently provide an elementary proof of Skopenkov’s characteri-
sation. An elementary proof of (B) = (£) was given in [MKT03]. Given a
compactum K C R? with E"(K) # § for every n € N, the authors gave a
construction of a function f € C(K) not expressible in the form f =g+ h
with g,h € C(R).

Let K C R? be such that E"(K) = ) for some n. If K is a finite graph
and f € C(K) then, using the E(K) operation, it is possible to construct
the functions g an h with f = g + h, see [Zs]. However, if K is an arbitrary
compactum then no construction of functions g and h is known, even if
E(K) = 0. In this paper we present such a construction provided that



E(K) = . Despite the restriction E(K) = ), we hope that the the proof
can be generalized for sets K with E™(K) = () for any n.

Theorem 1.2. Let K C R? be compact and let E(K) = 0. Then for every
f € C(K) functions g,h € C(R) such that f(z,y) = g(z) + h(y) for all
(z,y) € K can be constructed.

Functions p,q:R? — R will denote the two orthogonal projections:
p(z,y) =z, q(z,y) = y. By saying that two subsets of R? are p-intersecting,
p-disjoint, p-equal or that one is a p-subset of the other, we shall mean that
the relation holds for their p-projections. We shall also use these expressions
when one of the sets is a subset of R, then we shall consider it as a subset
of the z-axis. Similarly for q.

In R? we shall consider the maximum metric. The distance of two sets
X, X' C R is defined by dist (X, X') = inf{|z — 2'|;z € X,z' € X'}. The
diameter of a bounded nonempty set X in R or R? is denoted by diam X.
The closure of a set X is denoted by X, the interior by Int X. In the
space C'(X) of continuous real valued functions on X we shall consider the
supremum norm denoted by ||f||, for f € C(X).

We say that a uniformly continuous function f € C(R?) is (6, €)-uniformly
continuous if |(z,y) — (2',y")| < ¢ implies |f(z,y) — f(2',y")] < ¢, for all
(z,1), (&) € R2.

By a maximal (minimal) subset with a certain property we shall mean
maximal (minimal) with respect to inclusion.

Convention. Throughout the text we fix a compactum K C R? with E(K) =
0, f € C(K), € > 0 and d such that the function f is (30, €/2)-uniformly

continuous.

In this example we show a construction of functions g, h with f =g+ h
on a set L with E(L) = (). Its analogy works for all graphs G C R?, with
E™(G) = 0, for some n € N, see [Zs]. We also demonstrate why it can not
be generalized for arbitrary compacta K, even if E(K) = ().

Ezample 1.3. Let a set L C R? be formed by the four points (1,—1) (1,1),
(—1,-3), (—1,3) and the following segments, which converge to them, with
i=0,1,2,... (see Figure 1):

[(1_M—L’1+H%)’(l_4i12’1+ii2)]
[(l_ﬁ’_l_iil)’(l_ﬁ’_l_w;”
[(—1+ﬁ,—3+iil),(—1+4i—13,—3+2_i2)]
[(_1+4i—i4’3_ii1)’(_1+4i—i5’3_iiQ)]
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Figure 1: Set L
Thus E(L) = (). For any set K C R? define
Dp(K) := {(z,y) € K|card(p™'(z)NK) > 2} (1.1)
DuA(K) = K — Dg(K) (1.2)

thus Dp(L) := {(1,1),(1,-1),(=1,-3),(—1,3)}. The property E(K) =0 is
equivalent to saying that the restrictions p|D4(K) and ¢|Dg(K) are 1-to-1,
in other words:

diam (p~'(z) N K) = 0,

y
diam (L (y) N K) = 0, V(z,y) € Dy(K). (1.3)

To express f as g+ h on L let

1. g :== 0 on p(Dp(L)) and h := f on q(Dp(L)), i.e. g(1) = =
O(h() ): f(1,1), h(=1) = f(1,-1), h(3) = f(-1,3), (—3) =

2. extend h continuously from ¢(Dg(L)) to ¢(L) = [-3,—1] U[1, 3] and
let g := f — h on p(Dy(L)).

Finally extend g, h from p(L) and ¢(L) to R.

However if we started by letting g := f,h := 0 on D 4(L) which, unlike
Dp(L), is not compact then continuity would imply g = f,h = 0 on Dg(L),
which is impossible.

In general both the sets D4(K), Dp(K) may be non-compact. Our
approach for finding g, h is described bellow. O

The idea is to find g and kA which are arbitrarily near to a given f, that is
to find g and h with ||f —g—h|| < e on K for any € > 0 (see Proposition 1.4).



A compactum K C R? with E(K) =0, f € C(K) and € > 0 is fixed. The set
K is covered by a certain finite family of sets called ‘squares’ (Section 2) with
properties that mimic E(K) = (). Their size is such that the change of f on
each one of them is bounded by €/4. Then, if g, h € C(R) are such that each
of these sets contains a point (z,y) with |f(z,y) — g(z) — h(y)| < €/4, while
the change of g and h on every set is bounded by €/4, then the functions g
and h are as desired, ||f —g — h|| <e.

To encode the e-change requirement and to find g and h, a labeled graph
(Section 3) is constructed. The functions g and h will be defined in the
graph vertices which are points of K, labeled by the values of f. The edges
and their labels contain information on how much the functions g and h can
change from one vertex to the next.

Then (Theorem 3.4) it is proved that if the functions g and h are defined
on the graph vertices so that g + h approximates f and the conditions
imposed by the labels on the edges are satisfied, then they can be extended
to R so that the sum g + h approximates f on K.

In Sections 4 and 5 it is shown that if certain local transformations of the
graph are applied then, provided that the size of the squares is small enough,
the resulting graph allows to define functions g and h. Finally (Section 6)
functions g and h for such a graph are constructed.

The approximation approach is justified by the following statement:

Proposition 1.4. [Rud91] Let K C R? be compact, and let f € C(K) be
any function. If for every e > 0 there exist functions ge, he € C(R) such that

I|f = (9e + he)|| <€, on K
lgell < HIFN and bl < KIIf]l, on K

then there exist functions g,h € C(R) such that

f(z,y) =g(z) +h(y), (z,y) €K
llgll < kNIl and [R]] < K||f]l, on K

In particular it follows that K is basically embedded in R?.

The constructive elementary proof can be found in [Rud91], Theorem
4.13, (b) = (c), with T(f) = g + h.
2 Squares

We shall introduce the special closed sets, called squares, that imitate the
property F(K) = (.



Definition 2.1. A product [a,d'] x [b,0'] € R? with nonempty interior
(a,a’) x (b,b') C R? is said to be an A-square if

(a,a') x R — (a,a') x (b,0') N K = 0.

It is said to be a B-square if

R x (0,0) — (a,d) x (b,0) N K = 0.

Lemma 2.2. Let (z,y) € DA(K) (i.e. p Y(z) N K = {x}, see (1.2)). Then
for every interval y € (b,b') C R there exists an interval z € (a,a’) C R such

that [a,a'] x [b,b] is an A-square. Moreover there exists an interval (u,u’),
(a,a') C (u,u') such that (u,u') X R — (u,u') x (b,b') N K = (.

Proof. Assume that for some point (z,y) € K and for some interval y €
(b,b') there does not exist any interval =z € (a,a’) with [a,a’] x [b,V/] an
A-square. Then for every n € N there exists a point (z",y") in

(1/n,1/n) x R — (1/n,1/n) x (b,) N K.

Since K is compact, there is a convergent subsequence with the limit
(z'm M) € K. We have z'™ = z and 3™ € {z} x R — {z} x (b,¥/) so
y # y"™. The second part of the statement follows from the first one by a
similar argument. O

Since E(K) = 0, for points (z,y) € Dp(K) = K — D4(K) we have
q (y) N K = {y}, see (1.3). Thus a statement analogous to Lemma 2.2
holds, yielding B-squares.

Let K be covered by A and B-squares. Since their interiors are nonempty
and K is compact, there exists a finite minimal subcover

maA mp
K C UAiUUBi:AUB.
i=1 i=1

Throughout the text we shall frequently define and prove some properties
for one type of squares (A or B) and one of the projections (p or ¢). If
not stated otherwise we shall use such properties also with A, B and p, ¢
replaced.

The squares mimic the property E(K) = () in the following way (compare
with (1.3)):

diam {p~'(z) N K} < p, for every (z,y) € A
diam {¢~'(y) N K} < p, for every (x,y) € B

where 4 is a bound on the diameters of the squares.
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Figure 3: Adjusting the cover

Example 2.3. A cover by A and B-squares for the set L is drawn on Figure 2
(A*, B' do not have any meaning in this stage). The B-squares are the
shaded, the A-squares are not shaded. Any cover of the set L contains
exactly four B-squares, and a number of A-squares. Each of the four B-
squares is intersected by an A-square. ]

The minimality of the cover implies that no square is p-contained in an
A-square or g-contained in a B-square

p(C)) £ p(4;) and  q(Cj) € q(B;) (2.4)

for any C' € {A,B} and any i,j. Namely p(C;) C p(4;) is impossible
because by Definition 2.1 of A-squares the part of C; not contained in A; is
empty in K, i.e. (C;—A;)NK = (), thus the square C; would be unnecessary
in the cover which is minimal, see Figure 3, left.

It has a refinement | J;™4 A; U U5 B; with the following properties

Lemma 2.4. Let U:ri’*i AL U U:ri’ﬁ B! be a cover of K by A and B-squares.



if AinAj =0 then p(A;) Np(A;) =0 (2.5)
if BiN Bj =0 then q(B;) Nq(B;) =0 )
if AiNBj # 0 then A;NB;NK #0. (2.6)

for every 1, 7.

Proof. 1f AjNA’; = () then by definition A;ﬂp_lp(A;)ﬂK = (). By Lemma 2.2
there exists an open interval I;; O p(Aj) with A; Np (L) N K = 0, see
Figure 3, middle. If A{ N AL # 0, let I;; := 0.

If AiNBj, # 0 and A;NB,NK = 0 then AiNg~'q(B,)NK = 0. Since K
is compact, similarly as in Lemma 2.2, it follows that there exists an open
interval Ji, D q(B},) with A, Ng~'(Jix) N K = 0, see Figure 3, right. For
other pairs of squares let J;;, := ().

Let

Ai::A;_(U Uq zk

for all 7. If A; N K = () then remove the square A; from the cover. Similarly
for B-squares. O

By a cover by A and B-squares we shall mean a minimal one with the
properties from Lemma, 2.4.

Ezample 2.5. Assume that the diameters of the squares covering L are
bounded by p < 6 and that f € C(L) is (26, €)-uniformly continuous. We de-
fine the function g on p(A) = p(|J 4;), which is the union of several intervals,
and h on g(A), which is the union of two intervals, so that || f —(g+h)|| < Ge.
Similarly g, h may be defined on B. This construction gives an idea of how
Theorem 1.3 is proved.

i. Define h as a continuous function on ¢(A) so that |h(y) — h(y')] < €
for (z,y), («',y') € A; U A; with A; N A; # 0.

The points (z;,y;) € A; for which the A-squares were constructed are in
D4(L) (see (1.2)) thus z; # x; for i # j.

ii. Let g(z;) = f(zi,yi) — h(y;), for all i, and on p(A) extend g as a
piecewise linear function, which is constant on the ends of the intervals
forming p(A).

Note that this construction corresponds to (2) in Example 1.3. O

To define a function A fulfilling the condition (i) from the example above

we define: For a cover by A and B-squares fix a maximal family of ¢-disjoint
A-squares £4 = {Al,... Ala} Al <, A? <, ... <, Al (define C <, C'



if max ¢(C) < ming(C")) with the property that there does not exist any
A-square A such that

g(A)Nq(A) #0 and g(A™")Ng(A) #0 (2.7)

for any i = 1,...,l4 — 1. If a function h defined on g(A) is such that its
change on the g-projection of each square form £, is bounded by € and it is
constant elswhere, then it fulfills condition (i) from the example above, i.e.
its change over the g-projection of any A-square is bounded by e.

Definition 2.6. The union A := [J;.; 4; of a family of A-squares is said
to be an A-component if q(|J,.; Ai) is an interval and {A4;};cs is a maximal
family with this property.

el

Ezample 2.7. For the cover of L fix £4 = {A',...  A*} and € = {B!, B?}.
The cover consists of two A-components which are above each other, and of
two B-components, one on the right side and one on the left side formed by
two squares each. O

For a cover by A and B-squares the A-components are determined uni-
quely. It follows directly from the definition that ¢(A)Ng(A") = 0, while (2.5)
implies p(A) Np(A") = 0, for every two A-components A, A’. Also note that
every A-component contains at least one square from & 4.

Lemma 2.8. Let K be covered by A and B-squares, whose diameters are
bounded by p. Let [a,a'] C R%, a' —a > 6u be a closed interval which is q-
contained in some A-component A.Then [a,a’] g-contains at least one square
from E4.

Proof. Let [a,a’] be as in the statement but let on the contrary ¢(A?) Z [a, a']
for every A* € £4. Then q(A%) N[a+ u,a’ — ] = 0, for every A* € £4. Thus
if g(A) N q(A%) # 0 for some A-square A, then q(A) N [a + 2u,a’ — 2u] = 0.
But the interval [a + 2u,a’ — 2p], whose length is at least 2u, is g-contained
in an A-component, thus it g-contains at least one A-square, which could
have been added to £4. Contradiction with maximality. O

3 Graph

Let us have f € C(K), a cover of K by A and B-squares, K C |J"4 A; U
U2% B;, whose diameters are bounded by p, and the families £4 =
{A')... Ala} and € = {B',...,B!5}.

We shall construct a graph I' = I'(u) with vertices V(') that are points
in K, and two types of edges E4(T") and Eg(T") called A-edges and B-edges,
respectively. Values will be assigned to both the vertices and the edges.

For every i,j such that A; N B;j # () choose exactly one point in the set
A; N Bj N K which is nonempty according to (2.6). The resulting points



are the vertices V(T') of the graph. Assign the value f(u,v) to each vertex
(u,v).

To construct A-edges E4(T"), order the vertices (u;,v;) lexicographically
in ascending order, starting with the y-coordinate. This ordering shall be
called the y-ordering. If two consecutive vertices (u;,v;), (uit1,vi+1) lie in
the same A-component, i.e. if [v;,v;41] C ¢(A), then connect them by an
A-edge e; = {(ui,vi), (Uit1,vit1)}-

The property of I' that with this ordering of vertices every path consist-
ing of A-edges, called A-path, connects vertices (U, Vm), (Um+1, Vmt1)s « - -
(Unyvn), m < n, vy, < ... < vy, shall be called the y-ordering property of
A-edges. A path 7y in I' is a connected subgraph with two vertices of degree
1 and the rest of the vertices of degree 2, or the trivial path consisting of
one vertex.

Assign non-negative values z(e;) to the A-edges in the following way. For
every edge e; = {(u;,v;), (4jt+1,vi+1)} such that v; = vy let z(e;) := 0. Let
e; € E4(T') be an edge with no value assigned to it, and let M := {4 € £4 |
g(Int A) Ng(e) # 0}. Let z(e;) := card (M) e. For every edge e; such that
q(ej) Ng(Int A) # 0 for some A € M, let z(ej) := 0.

The construction of B edges and the assigned values z(e) is analogous.

Edges e = {(ui,v;), (wir1,vi41)} with u; = ujpq or v; = v will be
called vertical or horizontal, respectively.

Instead of (u,v) € V(I'), e € E4(I') U EB(T"), e € Ea(y) U Eg(7), etc.
we shall sometimes write (u,v) €', e € T', e € v, etc.

The diameters or distances of edges or paths, or their p or ¢ projections
are defined as diameters or distances of the the vertices of the edges or paths.

Example 3.1. The graph for the cover of L from Figure 2 is drawn on Fig-
ure 4. The lower A-edge e? = {(@,b), (a,b)} is ¢-intersected by two squares
Al, A? from £y, thus z(e?) = 2¢, similarly z(e’A) = 2¢. Each of the two
B-edges €8 = {(a,b), (c,d)},e'® = {(@,b), (¢,d)} is p-intersected by exactly
one square from Eg, thus z(e?) = z(¢'”) = €. Every cover of L contains
four B-squares forming two B-components and some A-squares forming two
A-components, see Example 2.3. Thus the structure of the graph is allways
the same, only the labels may change. The labels of the two B-edges are all-
ways equal to € and the labels of the A-edges increase as the squares become
smaller (Lemma 2.8, see also Lemma 4.1). O

Remark 3.2. Note that if I' contains a pair of vertices (u,v) € ANBNK,
(u',v) € AANB'NK, u # u then since q(A) Ng(A’) # 0, the squares belong
to the same A-component. Thus (u,v) and (u',v) are connected by an A-
path . The construction is such that v consists of horizontal edges and so
> ecy #(€) = 0. Analogously for vertices (u,v), (u,v") with v # v'.

Definition 3.3. Consider I' = I'(z) as an abstract graph, i.e. with no
embedding of vertices. Let values g(u) and h(v) be given for every vertex

10



Figure 4: Graph for L

(u,v) of T'. Denote |Agh| = |h(v) — h(v")], |Aeg| = |g(u) — g(u')| for edges
e = {(u,v),(u',v")}. We say that the functions ¢ and h are a-good with
respect to I', a > 0 if

L |f(u,v) — g(u) — h(v)| < «, for every vertex (u,v)
2. |Ach| < z(e) for every A-edge e
3. |Aeg| < z(e') for every B-edge €.

Because properties (2), (3) are independednt of «, we shall sometimes
say that g, h are good with respect to some edge.

If T is considered in the way it was constructed, that is with V' (T') C R?,
then functions g, h which are a-good with respect to the abstract represen-
tation are well-defined as functions on p(V (T")), ¢(V(T')) C R, respectively.
Namely by Remark 3.2 every pair of vertices (u,v), (u',v), u # u' is con-
nected by a 0-valued A-path . Thus since g is a-good with respect to T,
the value of g in both the vertices is the same. Similarly for (u,v), (u,v'),

v#£

Theorem 3.4. Let f € C(K). Let 6 > 0 be such that f is (20, €)-uniformly
continuous. Let functions g and h be a-good, with o = 4e, with respect to a
graph T' = T'(0). Then they can be extended to continuous functions on R,
such that

1. ||f = (g + h)|| <100e on K

2. max{]|gllw. [|Allx} < 1711+ llglle + [|A]]r-

Proof. Assuming that the functions g and h are given on the vertices of the
graph I' = T'(0), we shall describe their extension to R. We shall start by

11



extending h to ¢(A) and g to p(B), then we shall extend g to p(A) and h
to ¢(B).

Esxtension of h to q(A) and g to p(B). Temporarily denote h := h
on ¢(V(I')). As the A-components forming A are g-disjoint, it suffices to
describe the construction on one A-component A.

In case A contains no graph vertex, let h := 0 on ¢(A). Let A contain y-
ordered vertices {(u;,v;)};" |, as in the construction of A-edges of I'. Denote
q(A) := [d,d']. On [d,v] and [v,,,d'] and on every [v;,v;11] with h(v;) =
h(viy1), let h be constant.

For every i such that h(v;y1) — h(v;) = B # 0 do the following. Let for
example ¢ = 1 and denote e; := {(u1,v1), (u2,v2)}. Since h is a-good with
respect to I', we have |3| < z(e1). From the graph construction we know that
z(e1) = le, where the interval [v1, v2] = g(eq) is ¢g-intersected by the interiors
of at least [ squares from &£ 4, for example {A', ..., A'}, we have A' <p .- <p
A, (see (2.7). Denote the endpoints of the g-projections of these squares in
[v1,v9] by b := min{q(A?) N [v1,v]} and B := max{q(A’) N [v1,vs]}. Let

p

R(Y) = Ro) + (j ~ 1) and 7 ::E(bj“):h(vl)—kj?

for every j. Extend h as a piecewise linear function on [vy, vg].

If a square B; does not intersect A, then Lemma 2.2 implies that there
exists an open neighborhood V; of B; such that AN K N¢~'(V;) = 0. For
squares Bj with B;j N A # () let V; := (). Denote Vg := [J;*5} V;. Thus

ANKng ' (vp)=0. (3.8)

Let h:=h on q(A) — Vg.
Since h was extended linearly between the values given in the graph
vertices we have

1Pl geay—vs < I|P]Ir- (3.9)

Let us show
|h(y) - h’(y,)| S €, (xay)v ($17y,) € AZ NK (310)

for every i. First note that if (z,v), (¢/,y') € A; N K, then y,y & Vp, thus
the values h(y) and h(y') are defined. The function h is nonconstant only
on the g-projections of the squares from £4. On each the difference between
any two values of h is bounded by e. By definition there is at most one
square A7 € £4 such that (A7) Nq(4;) # 0.

The following will be needed for the extension of h to ¢q(B):

Ih(y) — h(y)| <26, y,y" € q(A;UA;j) —Vp (3.11)

for every i,j with A; N A; # 0. The reason is similar as before, in this case
there are at most two squares from £4 that g-intersects the union A4; U A;.
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The extension of g to p(B) is analogous to the extension of h to q(A).
Again the function g is defined on p(B) — Uy, where U4 is defined similarly
as Vg, i.e. it is formed by the neighborhoods U; of the squares A; with
A;NB =0, and BNK Ng~'(U4) = 0. Thus analogies of (3.9), (3.10), (3.11)
hold.

Extension of g to p(A) and h to ¢(B). The function g is already defined
on p(B) — Uy, here only the definition on p(A) N p(B) — Uy is of interest.
We shall extend it to p(A).

Let us show first that the set p(A) N p(B) — U4 is formed by closed
intervals containing the p-projections of the graph vertices. Namely since
Uy is formed by the neighborhoods U; of A-squares A; with A;NB = (), we
have

p(A) (p(B) — s = p( | A1) 1 p(B) — U
i€lp

where Ip := {i | A;NB # 0}. Each A;, i € Ip p-contains a graph vertex.
On the other hand /4 contains no graph vertices, as they are all contained
in BN K, see (3.8). The difference p(A4) — p(A’) is an interval for any pair
of A-squares A, A’ (see 2.4). Thus p(A) — U4 and also p(A) Np(B) — Uy, is
an interval. Therefore each set p(4;) Np(B) —Ua, i € Ip is a closed interval
containing a graph vertex.

If a square A;, does not contain a graph vertex, i.e. A;; NB = (), then
p(A;,) C Ua so the function g is not defined in any point of p(4;,). For every
such square A;, choose a point (z;,,¥;,) in the set [A4;, — p_lp(UZ-;l,éi0 AN
K, which is nonempty because the cover by A and B-squares is minimal.
Thus the p-projections of these points are pairwise different. Since they are
contained in A N K, none of them belongs to ¢~!'(Vp), see (3.8), so the
function A is defined in them. Let g(z;,) := f(%iy, ¥iy) — h(yi,) in each such
point. In combination with (3.9) we have

19(zio) | < {IFI1 + [1allga)-vs < [LFIT+[[R]]r- (3.12)
We write A; <, A; for two A-squares if
minp(A4;) < minp(A4;) and maxp(A4;) < maxp(4;).

From (2.4) it easily follows that <, defines a linear ordering on A-squares, so
order them A; <, ... <, Ay, ,. Moreover (2.5) implies that if A; N A;11 =0
then A; <p Aigq.

The set p(A) may consist of several intervals of the form p(A4; U A; 41 U
... UA;y ) with 4,1 <, A; and A4 <p Aiyj+1. Each of them contains a
subset, consisting of one or more of the chosen points (z;,,yi,) or intervals
forming p(B) — U4, on which g is defined. On each such interval [a,a’]
extend g as a piecewise linear function, which is constant on both, possibly
trivial, segments between the left-most given value of g in [a, d'] and a, and
the right-most given value of ¢ in [a,a'] and a'.
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Thus in combination with the analogy of (3.9) for g on p(B) and (3.12)
we have

gllpavsy-us < [IFI1+ Hglle + (1]l (3.13)

Let us show
lg(z) — g(a")| < 13e 4 6a, (z,y),(¢",y) € AiNK (3.14)

for all 4.

Order the set of graph vertices and the newly chosen points (z;,, y;,) lex-
icographically, in ascending order starting with the z-coordinate and denote
the resulting sequence {(z;,y;)};- Every A-square contains one or more of
the points (z;, y;)-

Consider some (z;,v;), (Zi+1,yi+1) that lie in two intersecting, or the
same A-square. For simplicity let (x;,v;) € Ai, (ziv1,yiv1) € Aip1. We
shall compute an upper bound on |g(z) — g(=z;)| for x € [x;,z;+1]. Let for
example g(z:) < g(z141)

Because the diameters of the squares are bounded by ¢, we have |(z;, y;) —
(it1,Yi+1)|] < 26, therefore by the assumption that f is (26, €)-uniformly
continuous | f(z;, yi) — f(Zi+1,¥i+1)| < €. Since the functions g, h are a-good
with respect to I' and f = g + h in the chosen points which are not graph
vertices, we have |f(zg,yr) — g(zr) — h(yk)| < «, for all k. By (3.11) we
have |h(y;) — h(yi+1)| < 2¢. Thus

9(zi) — g(zit1)] < 3e + 2a. (3.15)

If both (z;,y;) and (z;41,yi+1) are graph vertices then [z;, z;11]Np(B) —
Vp is formed by two intervals [z;, zj], [z}, 1, zi11], j < 2}, (we have z} =
xj, .y in case [z;,z;41] C p(B) — Vp). By (2.4), if a B-square p-intersects
the union A; U A;11, then it p-contains the minimum or the maximum of
p(A; U Aj11). Thus at most two of all B-squares p-intersecting [z, z;+1] C
p(Ai U Ajy1) are in Ep, so the difference between two values of g in [z;, z}]
or in [z}, ;,®;11] is bounded by 2¢. On the interval [z}, ] ], if it is non-
trivial, the extension is linear. Thus g(z) € [g(zi) — 2¢, g(zi+1) + 2¢] and in
particular |g(z) — g(z;)| < |g(z;) — g(zit1)| +2€ for z € [z, z;+1]. If only one
or none of the points (x;,y;), (zi+1,vi+1) is a graph vertex, the situation is
even simpler and the same inequalities hold. So in combination with (3.15):

lg(z) — g(x;)| < 5e+2a, = € [mi,xi41]. (3.16)

To prove (3.14) let (z,y), (z',y') € AiNK, z < z'. Let z € [z;,zj41] and
2’ € [k, Tj+kt1], k > 1. The points (j11,y;+41) and (z4x,yj+x) may be
identical or they lie in the same A-square. Thus by (3.15) we have |g(z ;1) —
9(zj41)| < 3e+2a. If the two points zj,z;11 (likewise for z; p, x4 441) lie
in two A-squares A;_i, A; that do not intersect, i.e. A;_; <, A;, then
on the intervals [zj, maxp(A;_1)] and [minp(A;),zj41] the function g was
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extended constantly from p(A)Np(B)—U4 to p(A). Thus similarly as before
lg(x) — g(z;)| < 2¢e. Otherwise we have (3.16). Therefore (3.14) holds.

The extension of h to ¢(B) is similar to the extension of g to p(A), so
analogies of (3.13) and (3.14) hold.

Eztension of functions g and h to R. The function ¢ is defined on the
closed set (p(A) U p(B)) —Us. Since K C (p~'p(A) Up~!p(B)) — Uy, by
extending g to R its values on p(K) do not change. We extend the function
h, too.

The functions g, h are such that |g(z) — g(z')| < 13€ + 6 and |h(y) —
h(y")] < 13e + 6« for all (z,y), (¢',y') € C;N K, C € {A, B}, for all i, see
(3.10), (3.14). Because the diameters of the squares are bounded by ¢ and
f is (24, €)-uniformly continuous, we have |f(z,y) — f(2',y')| < ¢, for all
such (z,y), (z',y"). Moreover in each C; N K, there is a point (z,y), which
is a graph vertex or one of the points chosen for A and B-squares, with
|f(z,y) —g(xz) —h(y)| < a. Thus (1) of the theorem holds. And (3.9), (3.13)
imply point (2) of the theorem. O

4 Adjusted graph

Lemma 4.1. Lety be an A-path in I' = I'(u) with 3. 2(e) < ke for some
k € N. Then
diam q(7y) < 6ku (4.17)

Proof. Assume the y-ordering of the vertices {(u;,v;)}; of I'. If v = (u;, v;),
(Wit1,Vig1),-. ., (uj,v5), 4 < jis an A-path, then by definition v; < ... <w;
and all its vertices lie in one A-component. If diamg(y) = viy; — v; > 6kp
then by Lemma 2.8 the interval [v;,v;; ;] contains at least k squares from
Ea, 80 Yo 2(€) > ke O

The following example shows that functions g, h that are 0-good with
respect to a given graph I'() do not allways exist. It also shows the solution
for the particular set L.

Ezample 4.2. Consider the graph for the set L from Figure 4 and let f €
C(L) be such that f(a,b) = f(¢,d) =0, f(a@,b) = f(c,d) = 10. Let e = 1.
Functions g, h that are 0-good with respect to this graph do not exist. The
obstacle for their definition are combinations of pairs of adjecent edges of
different A and B-type, whose labels are smaller that the difference of the
function f between their ends: z(e) < |A.f|; here it is any pair of adjecent
edges.

We consider a sequence I'(1/i), ¢ € N of graphs for the set L. The
structure of every I'(1/i) is the same (see Example 3.1): the endpoints of
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the A-edges et = {(ai, b;), (@i, b;)} (similarly for e’iA) in the graphs I'(1/7)
converge to the pair (1, —1),(—1,—3) € L. Thus we may assume

diamg(e) > 1,  for all 4.
So by Lemma 4.1 the labels z(ef') are increasing:
z(ef') = 00, as i — oo.

On other hand the endpoints of the B-edges e? = {(a;, b;), (¢;,d;)} (similarly
¢'P) converge to the pair (1,—1),(1,1) € L so the diameters of their p-
projections converge to zero:

diamp(ef) = 0, as i — oo.

And the labels remain the same

2(eP)=¢,  foralli.
Thus for some i adjecent edges in I'(1/7) with z(e) < |Af| dissapear, as
on Figure 5. Hence it is possible to define 0-good functions g, h by g := 0,
h := f in the graph vertices. Note that this definition is similar to that in
Example 1.3, where g and h on L were defined using the sets D4 (L), Dp(L).
]

|Ag(e”)|<1

Figure 5: Definition of g, h

The essential idea from the example is this. Let I'(1/i) be a sequence of
graphs for some compactum K with F(K) = (). Let e, e C T'(1/i) be two

1771
sequences of A and B-edges with the following properties:

z2(ef'), 2(ef) <k (4.18)
diamp(e) > w >0 and diamg(e?) > w > 0. (4.19)
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Then their ends converge to the endpoints of a non-trivial vertical segment
et = [(a1,b1), (a2,b1)], la1 — az| > w > 0, and a non-trivial horizontal
segment e? = [(c1,d;)(c1,dz)], |dy — da| > w > 0. Since E(K) # () we have
c1 7é a1,a2 and by 7é di,do. In other words dist ({bl},{dl,dQ}) > B >0,

dist ({¢1},{a1,a2}) > B > 0, for some > 0. Therefore we may assume
dist (p(ef'), p(ef)) > B/2 and dist (q(e]'), q(e)) > /2

for all 3.

Thus the obstacle for defining ¢ and A which can not be eliminated
even with decreasing square size are A-edges et C I'(1/i) (or analogously
B-edges) with small label

2(ef) < |0 I < 2If1| =
and such that the diameter of their p-projection is not bounded from bellow
diamp(e!) = 0, i — oo.

Because their labels are bounded by 2||f||, Lemma 4.1 implies that the
diamater of their g-projection is approaching zero: diam q(ef‘) -0, 71—
0o. Hence their diameter is arbitrarily small: diam ef‘ < 9, for ¢+ > 4. Since
we are assuming that f is (36, €¢/2)-uniformly continuous its change over one
such edge is thus bounded by e: |A_a f| <€, 4 > ip. In Theorem 3.4 functions
g, h should be only o = 4e-good with respect to I'. This allows us to define
them also when such small edges are present, as in the example bellow.

Ezample 4.3. Let M be the closure of the union of a sequence {L;}$°,,
Ly = L of smaller and smaller images of the set L converging to the two
points (%, —%), (%, %), as on Figure 6.

Let M' be formed by two points (—1,5) and (1,7) and segments similar
to those in the set L that converge to them and lie outside p~'(L):

3 1 3 1
1— - 1— -
I 12 +1° z‘+1)’( 12z'+2’7 i+2)]
3 1 3 1
-1 —). (-1 )
[( +12i+4’5+i+1)’( +127I+5’5+i+2)]

Let the set N consist of the sets M and M’ and the closure of copies of
M’ which converge to the point (%, 12).

The set Dp(N) is thus formed by vertical triples of points, represented
by filled balls on Figure 6. In any cover, each triple of points from Dp(N) is
covered by three p-intersecting B-squares forming a B-component, thus each
B-component contains exactly one square from £p. Therefore the B-edges
in a graph for any cover of N form paths of length 2, with edges labeled 0,

€. Figure 7 shows two graphs, the right one is for smaller square size, it is
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(1,3) o~

Figure 6: Set N

‘finer’. The obstacle for defining 0-good functions g, h are for example the
cycles E,F,I,H in the left graph on Figure 7, and the cycle E', F', H', I
on the right one. Similar cycles may appear with any size of the squares.

Let for example e =1 and f(F) = —1, f(F) =0, f(I) =10, f(H) = 11.
Functions g, h which are 2e-good with respect to the graph may be defined
in the vertices of the cycle E, F, I, H in the following way, see Figure 8:

g(F) + h(F) =0+ 10 = f(F)

g(I) + (1) = g(F) + h(I) =0+ 0= f(I)

g(H) +h(H) = g(H) + h(I) = =1+ 0= f(H)
g(E) + h(E) = g(H) + h(F) = -1+ 10 = f(E) — 2

O

To encode the possibility of g+ h being «a-different from f, we shall apply
certain local transformations to I' and obtain the adjusted graph TB4, with
V(I'B4) C V(T'). We shall define g, h in the vertices of the adjusted graph
so that f = g + h (Theorem 6.2) and then extend this definition to the
vertices of I' so that ||f — (g+h)|| < 4e (Theorem 4.5). The transformations
are done in two steps. First we construct the graph T'B by contracting
certain well chosen zero-valued B-edges whose ¢-projection is bounded by
0, increasing the values of the A-edges whose endpoints have thus moved,
and adding certian A-edges. Secondly we construct the graph T'B4 from I'B
by contracting some short zero-valued A-edges, increasing the values of the
B-edges whose endpoints have moved and adding some B-edges, in a similar
manner. Let us illustrate the idea on the previous example.

Example 4.4. Assume that EF is the only zero-edge in the left graph on
Figure 7, whose diameter is bounded by §. We contract it (see left graph in
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Figure 7: The graphs for N

Figure 9): The value of the new A-edge DF obtained from the A-edge DE
is z(DF) = z(DE). The B-edges HE, BE are replaced by new B-edges
HF, BF with values z(HF') = z(HE) + €, 2(BF) = z(BE) + €. In this
process the information that the difference of the values of g in H and B is
bounded by z(HE) + z(BFE) is lost. Therefore we add an added edge BH
with the value z(BH) = z(HE) + z(BE).

Finally the right graph on Figure 9 shows a 0-good assignment of g, h in
the vertices of the adjusted graph. This assignment may be extended to the

one from Figure 8. Details are in Theorem 4.5.
O

Let us give the construction of the adjusted graph I'?4 = I'B4(4) ob-
tained from I'® = I'B (1) which is obtained from I" = I'(1). To construct the
graph I'? from I' and show its properties, we need the following properties
of edges of I', which we know are true:

1. the z-ordering property of the 0-valued B-edges
2. the y-ordering property of A-edges

3. if v is a 0-valued B-path then diamp(y) < 6u (i.e. Lemma 4.1 for
0-valued B-edges)

4. Lemma 4.1 for A-edges

To construct I'4(y) and show its properties we shall need the same
properties of edges of I'® with A, B and p, ¢ replaced.

19



0...(0,0)
_1...(-1,0)/.
A

11...(-1,10)

) 10...(0,10)
P

Figure 8: The graph for N and assignement of values

Assume the z-ordering of the endpoints {(z;,y;)}i>1 of the 0-valued B-
edges of T", see property (1). To avoid confusion, vertices in general will be
denoted by {(u;,v;)}i>1, while the vertices which are the endpoints of the 0-
valued B-edges (or A-edges) will be denoted by {(xi, ;) }i>1 € {(ui,vi)}i>1,
as here.

For (z;,y;) € V(I) let %z y:) = (wi,vi) ... (zj,y5), i < j be the
maximal, possibly trivial, O-valued B-path with

diam q(’be(:L“z-, yi)) < 4. (4.20)

By property (3) we have

diam p(v" (wi,yi)) = @ — =i < 6p. (4.21)

Let HP(z;,y;) be the subgraph of T' generated by the vertices of
Y (zi,y;). Define a subset WP = {(z;,,yi,)}k>1 of V(') in the follow-
ing way. Let 79 = 0, jo = 0. For every & > 0 let ¢; the smallest number
such that iy > ix_; and the path v¢°(z;,,v;,) = (Tiy, Yiy) - - - (T, y5,) 18
nontrivial.

The construction of I'? is as follows. Delete all edges of H? (u,v) and
map all vertices of H? (u,v) to (u,v), for all (u,v) € W5.

Replace every edge e = {(u',v),(w",0")} of T with (u”,0") €
V(HB(w,)) for some (w,v) € WB, and (u',v') not in any V(HB (u,v)),
(u,v) € W5 by the edge "% = {(u',v'), (u,)}, called new, of the same A
or B-type. If ™" is an A-edge, let

z(e™) = z(e) + €
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Figure 9: Adjusted graph for N

if €% is a B-edge, let

z(e") 1= z(e).

Replace every edge e = {(u/,v),(u",v")} of T with (u',v") €
V(HB(u,v)) and (u",v") € V(HB(@,v)) for some (u,v), (@,v) € WE by the
edge " = {(u,v), (u,v)}, likewise called new, of the same A or B-type.
If €™ is an A-edge, let

z(e™) := z(e) + 2,

if €™ is a B-edge, let

new)

z(e = z(e).

Other edges of I" are kept unchanged.

Assume the y-ordering of the vertices of I', see property (2). For every,
possibly trivial, A-path v = (tm,vm) .- (Un, V), Vm < ... < vy, in T' which
is maximal with respect to the property that each vertex (u;,v;) is moved
to a vertex (u';,v';), m < i < n add the following A-edges, called added to
rb.

For every pair (u';,v';) # (v',v';), 7 —1 > 2 add the A-edge

e = {(ui',vi"), (u;',v;")}
with the value
Z(eadd) — Z(ei) + Z(ei-i—l) +...+ Z(e]’_l) + 2e.

Since the vertex (um—1,vm—1) is not in the path ~, either e,_1 =
{(Um—1,Vm-1), (Un,v,)} is not an A-edge of I', or if it is then the vertex
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(Um—1,vm—1) was not moved. In the latter case, for every vertex (u';,v';),
m < j <n with (upm—1,vm-1) # (4'j,7';) add the A-edge

etdd — {(um—1,vm-1), (uj,’vjl)}
with the value
2(eM) = z(em—1) + 2(em) + ... + 2(ej_1) + €.

Likewise for the vertex (1, Vn41)-
In addition, if both e,,_1, e, are A-edges of I then add the A-edge

eadd = {(Umflavmfl)a (un+17v”+1)}
with the value
2(e") = z(em 1) + z(em) + ... + z(en).

If more A-edges that we have constructed should connect two vertices,
keep only the one with the smallest value z(e).
Summarizing, for every A-edge e = {(um', vm'), (un',v,’)} in TP there ex-

ist two, possibly trivial, O-valued B-paths ~7Z(e) = (um,vm)...
(@', 0'm), V8 (€) = (un,vn) - . (un',0n") in T, 9P (€) € HP (um, vm), 75 (€) C
H?(un,v,), and a nontrivial A-path ~%(e) = (tm,vm)...

(tn,vy) in I'. We shall write

e =7 (e) Urt(e) Uns (e).

If there is no reason for confusion, we shall simply write e = yF U~y4 U~Z.
Of course none of the edges of 77 are in I'®. If e is a new or an added edge
then none of the edges of ¥ are in I'P either.

If both paths 7 are trivial, then e is either an edge of 'NI'Z or it is an
added edge. Otherwise it is an added or a new edge. In case e is a new edge,
the path v consists of a single edge, the one from which e was obtained.

If we let w := 0 in case both the paths yiB are trivial, w := 1 in case
exactly one of them is trivial, and w := 2 in case both are nontrivial, then

z(e) = Z z(e') + we. (4.22)

e'evi(e)

In particular the edge e is 0-valued if and only if both the subpaths fle
are trivial and }-. ¢ a () z(e') = 0. Hence evidently properties (1), (3) hold
for A-edges in I'P.

Clearly V(I'B) C V(T).

Let us show that the properties (2), (4) hold for B-edges of I'5.

Assume the z-ordering of the vertices of I'. Note, that this does not
correspond to any of the properties (1) — (4) of I, thus an analogy of this
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argument will hold only for the O-values A-edges of T'B4, see property (1).
For every subgraph H” (u;,v;), (u;,v;) € WP, generated by the the 0-valued
B-path v“°(u;,v;) = (u,v;) ... (uj,v;), i < j there exist at most two B-
edges not in this path with one or both endpoints in H?”(u;,v;), namely
ei—1 = {(ui—1,vi—1), (uj,v;)} and e; = {(uj,v;), (ujt1,vj41)}, and we have
(wim1,vi-1), (w1, v541) & H (ug, v;).

Hence for every B-edge e = {(u;,v;), (Un,vn)}, i < n of I'P there exists
one, possibly trivial, 0-valued B-path (Z(e) = (g, v5) ...
(unflavnfl) in I, IBB(e) C HB(uiavi)a and the B-edge e = {(unflavnfl)a
(tn,vn)} in T’ from which e was obtained. We shall write

e=pP)ue

or simply e = B8 Ue'. By definition e is a new B-edge in I'? if and only
if 3B(e) is nontrivial. Otherwise e is an edge of ' NT'® and e = ¢’. Thus
properties (2), (4) are satisfied for B-edges of I'B.

Since we have shown that the properties of edges in I'? corresponding
to properties (1)—(4) are fulfilled, the graph I'®4 may be constructed from
I'® analogously as I'® was constructed form I

As we have already mentioned, the substantial difference concerns the
last argument. That is only the O-valued A-edges e of I'B4 are of the form
e = p4(e) Ue!, A-edges e of P4 in general are of the form

e = Be)Ue U(e).

Obviously if I'® contains two vertices (u,v), (u,v’), v # v’ then they are
connected by a vertical, therefore 0-valued B-path in I' (see Remark 3.2),
which is also a 0-valued path in I'Z, because of property (1). If I'? contians
vertices (u,v), (u',v), u # u’ then they are connected by a 0-valued hori-
zontal A-path 7 in I'. Assume all vertices of v were moved, then there is
a 0-valued added edge {(u,v), (u,v")}. If not all vertices of v were moved,
consider the subpaths of v (of course they are horizontal) with all vertices
moved. Therefore Remark 3.2 applies also for I'®. Similarly for I'B4.

Theorem 4.5. Let f € C(K) be (6, ¢€)-uniformly continuous. There ezists
p > 0 such that if TBA = TBA(4) (or TB = T'B(u)) is the graph obtained
from TB =TB(u) (T =T(u)), then functions g and h that are a-good with
respect to TBA (T'B) can be extended to functions that are o + 2e-good with
respect to TP (T') and

lgllf = llgllrea + € and [|h]|f < ||h||lpza

(llglle < llgllrs and ||h]lr = [|Allrs + ).

Proof. Let us show the part of the statement about the extension from
V(T'B) to V(I'). The transition from V(I'B4) to V(I'P) is analogous. The
requierement on p will be stated bellow.
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For every graph HB (u,v), (u,v) € WP let g(u') := g(u) for all (u',v') €
H?(u,v). This assignment is thus good with respect to all B-edges of T'.
The function A will be defined in such a way that it is good with respect
to the A-edges of I and
Ih(v') — h(v)] < e (4.23)

for all (v/,v") € HB (u,v), for all (u,v) € WE.

Such assignment is « + 2e-good with respect to I'. Namely by (4.20)
and (4.21) we have diam ¢(H? (u,v)) < § and diam p(H?(u,v)) < 6p. Thus
(u',v") € HP (u,v) implies |(v/,v") — (u,v)| < §, provided that 6u < §. Since
f is (26, €)-uniformly continuous it implies |f(u,v) — f(u',v")] < e. So

|f (', v") = g(u') = h(v")]
|f(u,0") = g(u) = h(")| <
|[f(u', ") = g(u) = h(v)| +€ <
|f (u,0) = g(u) —h(v)] + 26 <

So let us describe the extension of the function A from V(I'B) to V(T).
Assume the y-ordering of the vertices of I Consider an A-path v =
(UmyVm) - - (Un,vy), m < m, in T' which is maximal with respect to the
property that each vertex (u;,v;) is moved to a vertex (u';,v';), m <i < n,
as in the construction of the added edges. Let both ey, 1, e, be A-edges of ",
the cases when one or both are not A-edges of I' is simpler. The function A is
defined in the vertices (um—1,Vm—1), (Wm, V' m), -« (W0, v'n), (Uni1,0n41) C
V(I'B) C V(TI'). We shall define it in the vertices (um,vm),. .., (Un, Vn).

Formally denote (u'j,v';) = (uj,v;) and let h(v}) = h(v;), for j =
m—1,n+1. Let ¢y =1if i =m,...,.nand a; =0if s =m—1,n+ 1.

The required (4.23) holds if and only if h(v;) belongs to the interval

2e + a.

I; == [h(v)) — e, h(v)) + €],

t=m-—1,...,n+ 1.
On the other hand the values of h(v;) will be good with respect to the
edges of v if and only if

[h(v3) = h(vis)] < 2(es), (4.24)

t=m—1,...,n.
If for all 2 < 57 we have

dist (Ii,Ij) < z(ez) + Z(6i+1) + ...+ 2(6];1) (4.25)

then there exist values h(v;) € I; such that (4.24) holds.
So take I;, I;, ¢ < j and assume without loss of generality that max I; <
min /;. Thus (4.25) holds if and only if

min [; — max I; = h(vj) — aje — h(v;) — e < z(e;) + z(eiy1) +. ..+ z(ej-1).
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The vertices (u';,v';), (u'j,v';) are connected by an added A-edge thus
h(v;-) — h(v;) < z(e;) + z(€it1) + - .- + z(ej—1) + aie + aje,
which yields (4.25).
Obviously ||g||r = ||gllrs and [[h]|r < [|hllrs + €. O
5 Properties of the adjusted graph.

In the process of construction however, we have lost the property stated in
Lemma 4.1. We have only the following statement (naturally 3||f|| can be
replaced by any positive number):

Lemma 5.1. For every a > 0 there exists ;> 0 such that
if z(e) <3||f|| then either diamp(e) <a or diamg(e) < «

for every edge e in TBA(p).

Proof. Let us start by showing this property for A-edges of I'B.
Let e = yB(e) Uy (e) UvZ(e) be an A-edge of T (u) with z(e) < 3|f]].
We have z(e') < z(e) < 3||f||- Let k = [3||f||/€]. By property (4)

we have

e'eyale)

diam g(v*(e)) < 6kp.
Since the paths vZ(e) are 0-valued, by property (3) we have

diamp(v/’ (e)) < 6u,

i=1,2.

Thus with decreasing u, the paths fle (e) converge to vertical segments,
and the paths y*(e) converge to horizontal segments, for A-edges e in I'? (1)
with z(e) < 3||f||. If in contrast with the statement there exists ag such
that for every u there exists an A-edge e, € I'®(u) with z(e,) < 3| f||
and diamp(e,) > ag and diamg(e,) > ap then the endpoints of the paths
corresponding to the edges e, converge to an array of length at least 2 in
K.

Since we only used properties (1)—(4), analogous arguments apply for
B-edges of T'PA (1) with z(e) < 3||f]|.

Let e = {1 Ue’ U B4 be an A-edge of I'P4 (1) which does not belong to
IBA(u) NTB(u). Since ¢ is an A-edge in I'? with z(e’) < z(e) < 3||f||, by
the above, one of the projections of ¢’ is arbitrarily small with decreasing p.
By (3) for H4, we have diam ¢(B;*) < 6y, i = 1,2. Therefore the statement
of the lemma for A-edges of T'B4 is obtained by the same argument as before,
showing that if the contrary holds, then there is an array of length 2 in K.

U

25



The functions ¢ and h can be defined consistently on T'B4. In order to
do so, we distinguish three types of edges.

Definition 5.2. Define the following subgraphs of I'%4(y)
o I'V consists of edges with z(e) > |Acf| + €/2, called neutral
o T'He consists of A-edges with z(e) < |Acf| + €/2, called horizontal
o TVt consists of B-edges with z(e) < |Acf| + €/2, called vertical

Proposition 5.3. Let f be (30,€/2)-uniformly continuous. There ezists
p > 0 such that if e € THe C TBA(u) is a horizontal edge then

diamp(efl) > ¢

and if eV € TVP C T'BA(1) is a vertical edge then there exists a point (u,v) €
K such that
uw€pe) and diamg(e) U {v} >4, (5.26)

where by p(e¥’) we mean the closed interval given by the p-projections of the
endpoints of eyy. Moreover for all o > 0 there exists p > 0 such that

diamg(e) < a and diamp(e") < a. (5.27)

Proof. Let e = e be horizontal edge of P4 = T'BA(4), i.e. it is an A-edge
with
z(e) < |Aef| +€/2. (5.28)

Let e = 8{' Ue' U B, ¢ =P Uy U~L. Let us show

diam ¢(B{") + diam ¢(v?) + diam ¢(y*) + diam g(y?) + diam ¢(33') < 30
(5.29)
for small enough pu.
By the analogy of (4.21)

diam ¢(87') < 6,7 =1,2.
By the way of construction
diamg(y7) <46, i=1,2.

(5.28) in particular implies

Y #(e") < 2(e) = z(e) < 3|

e'Eya

Thus by the analogy of property (4) if we let &k = [3||f]|/€] then

diam g(y*) < 6kp.
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So if 12p 4 6kp < 4, then (5.29) holds.
Let us show that
diamp(e) < 4§ (5.30)

leads to a contradiction. Namely diamp(e) < § together with (5.29) implies
diame < 36.
Thus since f is (36, €/2)-uniformly continuous, (5.28) is
z(e) < |Acf| +€/2 <e.

Since the values z(e) are integer multiples of ¢, this implies

Assume the y-ordering of the endpoints of the 0-valued A-edges of I'B.
As we have mentioned, if e € T'BP4 is a 0-valued A-edge, then e = 4 U ¢/

and BA Ue' = (xlayl) N (x]ay]) u {(x]ay])a (xj+layj+1)}a 1 < .7
If e is a new edge of I'®4, that is the path $4 is non-trivial, g4 C
Ca(g;,y;) and since the edge €’ was not deleted

e & vz, i)

On the other hand 84 U ¢’ is a 0-valued A-path and

v

diamp(84 U ¢') = diamp(e) < 6 (5.31)

thus by definition
¢ € Y7 (mi, i),
Contradiction.

If e is an edge of T N T'B4 then the path A4 is trivial, that is the
vertex (z;,y;) is not in any H A Thus if k is the maximal index with
YO 2, yk) = 2k, uk) - - - (1, m1), (2, yx) € WA and k < j, then [ < j. But
then since z(e’) = 0 and diam p(e’) < diamp(e) < 0 the construction is such
that (z;,y;) should have been the next vertex in W#. Contradiction.

(5.27) for the edges of I'"/% thus follows from Lemma 5.1.

Let e = €' be a vertical edge of T'B4, i.e. it is a B-edge with (5.28).
Analogously as (5.29) it can be proved that

diam p(e) < 34, (5.32)

for small enough p.
Let us show that
diamg(e) <6 (5.33)

implies the existence of the point (u,v) € K with (5.26).
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Let e = v{* UyB U4, By (5.33) and (5.32) we have diame < 3§ which
as before implies
z(e) = 0.

Therefore in particular both the paths 'yZA are trivial and

Z z(e") = z(e) =0

e''cyp

S0
z(") =0

for each €’ € 3.

With the z-ordering of the vertices of the 0-valued B-edges of I' (prop-
erty (1)) we have v2 = (2, ui)... (zj,y5), i < 4, z; < ... < zj, e =
{(zi, 1), (4, y5)}-

Similarly as (5.30) leads to a contradiction, here diamg(ex) = |yx —
yr+1| < d leads to a contradiction so

diamg(eg) > 0

for all k = ia s 7j - ]-7 €k = {($k7yk)7 ($k+17yk+1)} € ’YB'
Thus in particular

diamgq(e) U {yix1} > |yi — yip1| > 0

and z;41 € p(e) = [zj,z;]. Hence (u,v) = (ziy1,yit1) € K is the desired
point (recall that all vertices are points in K).

It can be easily seen that (5.26) holds for the edges of I'V?. Namely
for edges e = €V € T'V? with diamgq(e) > ¢ the statement follows from
Lemma 5.1. As we have seen, for edges e = ¢V =y UyP Uvs' € I'V? with
diam g(e) < § we have z(e) = 0 so the paths v/* are trivial, and the path v?
is 0-valued, so by property (4) for B-edges in I'® we have

diam p(e) = diamp(v?) < 6p.
U

Proposition 5.4. There exists > 0 such that for the subgraphs I'V? THe,
N C TBA(1) we have

p(V(LV") Np(V (D7) =

wa
g(V(TV®)) ng(V(THe)) =0 (5.34)

and if a path v in TN connects a vertez in TVPNTN to a vertex in THoNTN
then

> ze) =D |AfI+ IS (5.35)

ecy ecy
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Proof. Let us show first that there exist § > 0, p > 0 such that
dist (p(e"),p(e®)) > B and dist (¢(e"),q(e")) > (5.36)

for any pair of edges ¢ € TV? and e € T'H? thus in particular (5.34) is
true.

For each a = 1/n choose py, from Proposition 5.3. If (5.36) does not hold,
then for each 8 = 1/n, n € N there exist edges el € T7%(u,), el TV (uy),
el = {(an,by), (al,, b))}, eV = {(cn,dyn), (c,,d,)} and a point (z,,y,) € K
such that

Tn Ep(GX)

la, —al,| >d and |b, — 0| <1/n and

len — | <1/n and |d, —y,| >0 and

(dist (p(e) p(e}) < 1m0 dist(a(el),q(el)) < 1/n).

Thus with n — oo these points converge to an array of length 2 in K.
Fix the 8 and p we have found. Let v be a path as in the statement. By
Definition 5.2 we have z(e) > |A.f| + €/2 for edges e from I'V. Thus

D a(e) =) AL+ Ee/2 (5.37)
ecy ecy

where k is the number of edges that v consists of.

If v contains an edge e with z(e) > 3||f|| and we obtain (5.35) so let
consist of edges with z(e) < 3||f||- By Lemma 5.1 the diameter of one of
their projections converges to 0 with decreasing p. On the other hand, (5.36)
implies that diam p(y) > 8 and diam ¢(v) > . Thus if with decreasing u the
number £ of edges on such paths v did not increase, then v would converge
to an array of length at least 2 in K. Since £ — oo as p — 0, the statement
follows from (5.37), since it suffices to have ke/2 > || f]|. O

6 Construction of functions ¢ and h on the ad-
justed graph.

Remark 6.1. Any of the assignments

g(u) :== f(u,v) —k and h(v):=k
for all (u,v) € TN or

g(u) ==k and h(v):= f(u,v) —k

for all (u,v) € I'V, with any k € R is 0-good with respect to I'V.
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Theorem 6.2. Let u be as before, and let f € C(K) be (39, €/2)-uniformly
continuous. There exist functions g and h that are 0-good with respect to
the abstract representation of a graph TBA = TBA(4) and with ||g|| < ||f]|,

AL < [1F1]-

Proof. The representation of the graph I'B4 is abstract, thus the indices of
vertices do not suggest any ordering.

Recall that TB4 =TV yTN UTHe (Definition 5.2), and Proposition 5.4
implies TVt N THe = ¢,

If TBA =TV let g := 0, h := f on V(I'B4), this assignment is 0-good
with respect to I'®4 = 'V, see Remark 6.1. The norms are as required.

Assume I'BA £ TN Let

g:=0, h:=fonV(I).

Since I'V'? consists of B-edges, this assignment is 0-good with respect to I'V?,
This assignment is also good with respect to the edges of T'V connecting
vertices that belong to the intersection 'V N T'V? (Remark 6.1). We shall

define an assignment of values h(v) for vertices (u,v) in TV — 'V with

h(v) € [0, f(u,v)] if f(u,v) >0

h(v) € [f(u,v),0] if f(u,v) <O. (6.38)

Without mentioning it explicitly, if we define h(v) in some vertex (u,v), we
let g(u) := f(u,v) — h(v), which yields g(u) € [0, f(u,v)] if f(u,v) > 0 and
g(u) € [f(u,v),0] if f(u,v) < 0. In particular such assignment is 0-good
with respect to the vertices of I'V.

On I''* we wish to have ¢ = f, h = 0. Since T'H#® consists of A-edges,
such assignment is 0-good with respect to I'7¢.

Let I‘ﬂ\_f and I'N be the subgraphs of I'"V induced by vertices (u,v) with
flu,v) >0 and f(u,v) < 0, respectively. We shall describe the assignment
of values on Ff . The assignment on I'"V is analogous.

The subgraph Ff may consist of several connected components.

For every component H let

h:=0,g:=fon H,if HNTV? = ). (6.39)

By Remark 6.1 this assignment is 0-good with respect to H.
Let H be a component with HNTV? # (). For every path v = (uy,v1)...
(U, V) in H with (ug,v1) € HNTV? and (uy,,vpn) € H —TV? let

hy o= flur,0) + > Af = 2(e;) (6.40)
i€l i=1

where e; = {(us, vi), (uir1,vig1)}, Dif = f(Uig1,vig1) — f(us,v;) and the

edges e;, © € Ip are the B-edges of v. From all such paths v leading to a
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vertex (u,v) = (Um, V) let Y™ (u,v) be one of those with

h,ymaz (u,'u)

= mvax h.

Let H™** be the subgraph of H generated by these chosen paths, we
have V(H™*) = V(H). Evidently we may assume that for every vertex
(u,v) € V(H) = V(H™) there is exactly one path in H™** leading from
V(HNTY?) to (u,v). In other words if the vertices of V(H NTV?) =
V(H™® 0TVt are identified to one, then H™ is a tree.

With Y% (u,,, vm) = (41,01) - .. (U, V), (ur,v1) € HNTVP the unique
path in H™% leading to a vertex (t,,v;,) let

h(vm) = max{hvmam(um’vm), 0} (641)

Let us show that this assignment is good with respect to the edges of
H™ Consider an edge €1 = {(tm—1,Vm-1), (Um,vm)} of H™* that is
it is an edge on the path 4™ (u,,, v,,). Assume that both values h(vy,—1)
and h(v,,) are nonzero.

If e,—1 is a B-edge then

h(vm—1) — h(vm) = z(em—1)-

Moreover if A(vpy,—1) < f(tum—1,vm—1) then since e,,_1 is a neutral edge we
have |z(em—1)| > |Am—1f] + €¢/2 (Definition 5.2) thus

h(vm) h(Umfl) - Z(emfl) <
fWm—1,9m-1) = f(um,vm) + f(um,vm) — z(em-1) <

f(uma 'Um)

VARVAN|

(6.42)
If e;,—1 is an A-edge then

h(Umfl) - h(vm) =Dy f+ z(emfl)

g(umfl)_g(um) = f(umfla'Umfl)_f(umaUm)_h(vmfl)"i_h(vm) = _z(emfl)-

Here h(vpm-1) < f(tm—1,vm—1) also implies
h(“m) = h(vmfl) + f(umavm) - f(umflavmfl) - z(emfl) <
< F(tmyVm) = 2(em-1) < f(tmy V). (6.43)

If one or both of h(vy,), h(v,—1) are equal to 0, the computations are
similar. Thus these values are good with respect to the edge e, 1.

Since each path ™% starts with a vertex (ui,v;) € V(I'V) we have
h(vi) = f(u1,v1) so h(vi) < f(u1,v1) and thus (6.43) and (6.42) imply
h(v) € [0, f(u,v)] for all (u,v) € V(H), see (6.38).

It is easy to see that such values are good with respect to the rest of
the edges of H too. Namely let e = {(u/,v'), (u,v)} ¢ H™*, let it be for

31



example an A-edge, if it is a B-edge, the computations are analogous. We
have h(v) = hy, v = ¥ (u,v) and h(v') = hy, v = 4™ (u/,v') and
e € v,y C H™*. The path v Ue leads to (u,v) so

h(v) > hyie = h(v') — 2(e).

Similarl
’ h(v") > h(v) — z(e).

Thus |h(v) — h(v')| < z(e).
In this way we define h on all Ff .
With this definition

h=0on T} NTHe

Namely if (u,v) is a vertex in T NTH% and it lies in a subgraph H with
HNTV® = () then by definition, i.e. (6.39), we have h(v) = 0.

If (u,v) lies in a subgraph H with H NTV? % () then (see (6.40),(6.41))
h(v) = max{hymaz(yy),0}. We have

h’ym”(u,v) < ||f|| + Z |Aef| - Zz(en)a

ecy™aeT (u,v) ecy

max ( FVb

therefore since ~y u,v) is a path in I'V connecting a vertex and from

I'He by Proposition 5.4 we have

dzlen) 2N+ D AS

ecy eEy™aT (u,v)

Hence
7" (u, v) < 0.

Similarly we define g and h that are 0-good with respect to 'V and with
h=0on TN NrHe
Trivially g and h are good with respect to the rest of the edges of 'V,
i.e. those connecting I'Y and I'Y. Namely if e = {(u,v), (v/,v')} in TV is
an edge with (u,v) € T'Y and (v/,v') € T¥, ie. f(u,v) >0 and f(u',v') <0
then by (6.38)
0 < g(u) —g(u) < f(u,v) — f(u',0),
0 < h(v) — h(v') < f(u,v) — f(u',0").

Since e is a neutral edge, z(e) > |A.f|+ € which shows that these values are
good with respect to e whether it is an A-edge or a B-edge.
Let g := f, h := 0 on I’ — "N Ags we have already mentioned, since
I'He consists of A-edges, this assignment is 0-good with respect to I'7¢.
Obviously [[h[| < | f]| and [lg]| < [[f]]- 0
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7 Proof of Theorem 1.2.

Proof. (of Theorem 1.2) Let K C R? with E(K) = () be a compact set,
let f € C(K) be given. To show that f can be expressed as f = g + h, it
suffices to find functions g. and h. that are e-close to f and their norms are
bounded by 4||f||, for every e (Proposition 1.4).

Let 0 be such that f is (36, €/2)-uniformly continuous.

Let 41 be as in Theorem 6.2 and also p < 6. Construct I'() and T'P4(y).
Using Theorem 6.2 construct functions g,h defined on V(I'B4) that are
0-good with respect to I'4 and

max{|lg||psa, ||hllpsa} < |If]]-

Using Theorem 4.5 extend them to functions defined on V(T") that are
4e-good with respect to I' and

max{llg||r, [[A]lr} < (I +e.

Using Theorem 3.4, with o = 4e (we have p < 0), extend them to R in
such a way that

If = (g + R)|| < 27€ + 11 - 4e = 100e

and
max{||gg, [|hllr} < |[fI] +2[|f]] + 2e < 4] f]].

Thanks

We would like to thank DuSan Repovs and Arkadyi Skopenkov for the mo-
tivation of this paper.
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