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Abstract

Let Γ denote a bipartite Q-polynomial distance-regular graph with vertex set
X, diameter d ≥ 3 and valency k ≥ 3. Let RX denote the vector space over R
consisting of column vectors with entries in R and rows indexed by X. For z ∈ X,
let ẑ denote the vector in RX with a 1 in the z-coordinate, and 0 in all other
coordinates. Fix x, y ∈ X such that ∂(x, y) = 2, where ∂ denotes path-length
distance. For 0 ≤ i, j ≤ d we define wij =

∑
ẑ, where the sum is over all z ∈ X

such that ∂(x, z) = i and ∂(y, z) = j. We define W = span{wij | 0 ≤ i, j ≤ d}. In
this paper we consider the space MW = span{mw | m ∈ M,w ∈ W}, where M is
the Bose-Mesner algebra of Γ. We observe MW is the minimal A-invariant subspace
of RX which contains W , where A is the adjacency matrix of Γ. We display a basis
for MW that is orthogonal with respect to the dot product. We give the action of A
on this basis. We show that the dimension of MW is 3d− 3 if Γ is 2-homogeneous,
3d − 1 if Γ is the antipodal quotient of the 2d-cube, and 4d − 4 otherwise. We
obtain our main result using Terwilliger’s “balanced set” characterization of the
Q-polynomial property.

1 Introduction

This paper is part of an ongoing effort to understand and classify the Q-polynomial bipar-
tite distance-regular graphs [3]–[8]. We briefly summarize what is done so far. Throughout
this introduction let Γ denote a Q-polynomial bipartite distance-regular graph with ver-
tex set X, diameter d ≥ 3 and valency k ≥ 3 (see Section 2 for formal definitions). In
[3] Caughman found the possible Q-polynomial orderings of the eigenvalues of Γ. In [4]
he determined the irreducible modules for the Terwilliger algebra of Γ. In [5] he showed
that if d ≥ 4 and Γ is the quotient of an antipodal distance-regular graph, then Γ is the
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quotient of the 2d-cube. In [6], [8] he considers the intersection numbers of Γ. It is known
that, except for some special cases, these intersection numbers are determined by d and
two complex scalars q and s∗ [4, Lemma 15.1, Lemma 15.3]. In [6] he showed that q and
s∗ are real for d ≥ 4 and in [8] he showed s∗ = 0 for d ≥ 12. In [7] he showed that with
respect to any vertex, the distance-2 graph induced on the last subconstituent of Γ is
distance-regular and Q-polynomial. See [2], [9]–[14], [16]–[18] for related topics.

In the present paper we obtain the following results about Γ. To state the results we
use the following notation. Let RX denote the vector space over R consisting of column
vectors with entries in R and rows indexed by X. For z ∈ X, let ẑ denote the vector
in RX with a 1 in the z-coordinate, and 0 in all other coordinates. We view RX as a
Euclidean space with inner product 〈u, v〉 = utv (u, v ∈ RX), where t denotes transpose.

Fix x, y ∈ X such that ∂(x, y) = 2, where ∂ denotes path-length distance. For 0 ≤ i, j ≤ d
we define a vector wij =

∑
ẑ, where the sum is over all z ∈ X such that ∂(x, z) = i and

∂(y, z) = j. We define W = span{wij | 0 ≤ i, j ≤ d} and MW = span{mw | m ∈ M, w ∈
W}, where M denotes the Bose-Mesner algebra of Γ. We observe MW is the minimal
A-invariant subspace of RX that contains W , where A is the adjacency matrix of Γ. Our
results are as follows.

We give an orthogonal basis for MW . We compute the action of A on this basis. We
express the coefficients involved in terms of the intersection numbers of Γ and the dual
eigenvalues for the given Q-polynomial structure. We show that the dimension of MW is
3d−3 if Γ is 2-homogeneous, 3d−1 if Γ is the antipodal quotient of the 2d-cube, and 4d−4
otherwise. We obtain our main result using Terwilliger’s “balanced set” characterization
of the Q-polynomial property. We remark that if Γ has intersection number c2 = 1 then
the results of this paper essentially follow from [19].

Our paper is organized as follows. In Sections 2–4 we give a brief introduction to the
theory of distance-regular graphs. In Section 5 we define a certain partition of the vertex
set of Γ. In Section 6 we use this partition to define the vectors wij and derive some of
their properties. In Section 7 we define certain vectors that give an orthogonal basis of
MW . In Sections 8–10 we study the action of A on this basis. In Section 11 we give more
detailed information about this basis.

2 Preliminaries

In this section we review some definitions and basic results concerning distance-regular
graphs. See the book of Brouwer, Cohen and Neumaier [1] for more background informa-
tion.

Throughout this paper, Γ = (X, R) will denote a finite, undirected, connected graph,
without loops or multiple edges, with vertex set X, edge set R, path-length distance
function ∂, and diameter d := max{∂(x, y)|x, y ∈ X}. For a vertex x ∈ X define Γi(x) to
be the set of vertices at distance i from x. We abbreviate Γ(x) := Γ1(x). Let k denote a
nonnegative integer. Then Γ is said to be regular with valency k, whenever |Γ(x)| = k for
all x ∈ X. We say Γ is distance-regular, whenever for all integers h, i, j (0 ≤ h, i, j ≤ d),
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and all x, y ∈ X with ∂(x, y) = h, the number

ph
ij := |{z | z ∈ X, ∂(x, z) = i, ∂(y, z) = j}|

is independent of x, y. The constants ph
ij (0 ≤ h, i, j ≤ d) are known as the intersection

numbers of Γ. From now on we assume Γ is distance-regular. It is well known that the
intersection numbers of Γ satisfy ph

ij = ph
ji (0 ≤ h, i, j ≤ d). For convenience, set ci :=

pi
1i−1 (1 ≤ i ≤ d), ai := pi

1i (0 ≤ i ≤ d), bi := pi
1i+1 (0 ≤ i ≤ d − 1), ki := p0

ii (0 ≤ i ≤ d),
and c0 = bd = 0. We observe Γ is regular with valency k = b0, and that a0 = 0, c1 = 1.
Moreover,

ci + ai + bi = k (0 ≤ i ≤ d). (1)

By [1, p. 127],

ki =
b0b1 · · · bi−1

c1c2 · · · ci

(0 ≤ i ≤ d) and khp
h
ij = kjp

j
ih (0 ≤ h, i, j ≤ d). (2)

In the following lemma we cite some well known facts about the intersection numbers.

Lemma 2.1 ([1, p. 127, Lemma 4.1.7]) Let Γ denote a distance-regular graph with diam-
eter d ≥ 3. Then for all integers h, i, j (0 ≤ h, i, j ≤ d) the following (i), (ii) hold.

(i) If one of h, i, j is greater than the sum of the other two, then ph
ij = 0.

(ii) If one of h, i, j is equal to the sum of the other two, then ph
ij 6= 0.

Let MatX(R) denote the R-algebra of matrices with entries in R, whose rows and
columns are indexed by X. For each integer i (0 ≤ i ≤ d) let Ai denote the matrix in
MatX(R) with x, y entry

(Ai)xy =


1 if ∂(x, y) = i

(x, y ∈ X).
0 if ∂(x, y) 6= i

We refer to Ai as the i-th distance matrix of Γ. Let I and J denote the identity and the
all ones matrix of MatX(R), respectively. Then

A0 = I, (3)

A0 + A1 + · · ·+ Ad = J, (4)

At
i = Ai (0 ≤ i ≤ d), (5)

AiAj =
d∑

h=0

ph
ijAh (0 ≤ i, j ≤ d). (6)

By (3), (5) and (6), the matrices A0, A1, . . . , Ad form the basis for a commutative semi-
simple R-algebra M , known as the Bose-Mesner algebra of Γ. By [15, Theorem 12.2.1],
the algebra M has a second basis E0, E1, . . . , Ed such that

E0 = |X|−1J, (7)

E0 + E1 + · · ·+ Ed = I, (8)

Et
i = Ei (0 ≤ i ≤ d), (9)

EiEj = δijEi (0 ≤ i, j ≤ d). (10)
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The matrices E0, E1, . . . , Ed are known as the primitive idempotents of Γ, and E0 is
the trivial idempotent. Set A := A1, and define the real numbers θi (0 ≤ i ≤ d) by

A =
d∑

i=0

θiEi.

Then AEi = EiA = θiEi (0 ≤ i ≤ d), and θ0 = k. The scalars θ0, θ1, . . . , θd are distinct
[1, p. 128]; they are known as the eigenvalues of Γ. For 0 ≤ i ≤ d we say the eigenvalue
θi is associated with the primitive idempotent Ei.

Let E denote a primitive idempotent of Γ and let θ denote the associated eigenvalue. We
define the real numbers θ∗i (0 ≤ i ≤ d) by

E = |X|−1

d∑
i=0

θ∗i Ai.

We call the sequence θ∗0, θ
∗
1, . . . , θ

∗
d the dual eigenvalue sequence associated with θ, E. The

sequence is trivial whenever E = E0 (in which case θ∗0 = θ∗1 = · · · = θ∗d = 1). For
convenience we let θ∗−1 = θ∗d+1 = 0.

Let RX denote the vector space over R consisting of column vectors with entries in
R and rows indexed by X. We observe MatX(R) acts on RX by left multiplication. For
z ∈ X, let ẑ denote the vector in RX with a 1 in the z-coordinate, and 0 in all other
coordinates. We view RX as a Euclidean space with inner product

〈u, v〉 = utv (u, v ∈ RX),

where t denotes transpose. Adopting this point of view we find {ẑ | z ∈ X} is an
orthonormal basis for RX .

In the following lemma, we cite a well known result about primitive idempotents and
dual eigenvalue sequences.

Lemma 2.2 ([21, Lemma 1.1]) Let Γ denote a distance-regular graph with diameter d ≥
3. Pick any primitive idempotent E of Γ and let θ∗0, θ

∗
1, . . . , θ

∗
d denote the associated dual

eigenvalue sequence. Then the following (i), (ii) hold.

(i) For all x, y ∈ X,

〈Ex̂, Eŷ〉 = |X|−1θ∗i , where i = ∂(x, y).

(ii) The intersection numbers of Γ satisfy

ciθ
∗
i−1 + aiθ

∗
i + biθ

∗
i+1 = θθ∗i (0 ≤ i ≤ d),

and θ∗0 = rank E.
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3 The Q-polynomial property

In this section we recall the Q-polynomial property. Let Γ = (X, R) denote a distance-
regular graph with diameter d ≥ 3. The Krein parameters qh

ij (0 ≤ h, i, j ≤ d) of Γ are
defined by

Ei ◦ Ej = |X|−1

d∑
h=0

qh
ijEh (0 ≤ i, j ≤ d),

where ◦ denotes entrywise multiplication. We say Γ is Q-polynomial (with respect to
the given ordering E0, E1, . . . , Ed of the primitive idempotents), whenever for all distinct
integers i, j (0 ≤ i, j ≤ d),

q1
ij 6= 0 if and only if |i− j| = 1.

Let E denote a nontrivial primitive idempotent of Γ. We say Γ is Q-polynomial with respect
to E whenever there exists an ordering E0, E1 = E, . . . , Ed of the primitive idempotents of
Γ, with respect to which Γ is Q-polynomial. We have the following useful lemmas about
the Q-polynomial property.

Lemma 3.1 ([1, Theorem 8.1.1]) Let Γ denote a distance-regular graph with diameter
d ≥ 3. Let E denote a nontrivial primitive idempotent of Γ and let θ∗0, θ

∗
1, . . . , θ

∗
d denote

the corresponding dual eigenvalue sequence. Suppose Γ is Q-polynomial with respect to E.
Then θ∗0, θ

∗
1, . . . , θ

∗
d are mutually distinct.

Lemma 3.2 ([21, Theorem 3.3]) Let Γ denote a distance-regular graph with diameter
d ≥ 3. Let E denote a nontrivial primitive idempotent of Γ and let θ∗0, θ

∗
1, . . . , θ

∗
d denote

the corresponding dual eigenvalue sequence. Then the following (i), (ii) are equivalent.

(i) Γ is Q-polynomial with respect to E.

(ii) θ∗0 6= θ∗i (1 ≤ i ≤ d); also for all integers h, i, j (1 ≤ h ≤ d), (0 ≤ i, j ≤ d) and for
all vertices x, y ∈ X with ∂(x, y) = h,∑

z∈X
∂(x,z)=i
∂(y,z)=j

Eẑ −
∑
z∈X

∂(x,z)=j
∂(y,z)=i

Eẑ ∈ span {Ex̂− Eŷ}.

Suppose (i), (ii) hold. Then for all integers h, i, j (1 ≤ h ≤ d), (0 ≤ i, j ≤ d) and for all
x, y ∈ X such that ∂(x, y) = h,∑

z∈X
∂(x,z)=i
∂(y,z)=j

Eẑ −
∑
z∈X

∂(x,z)=j
∂(y,z)=i

Eẑ = ph
ij

θ∗i − θ∗j
θ∗0 − θ∗h

(Ex̂− Eŷ).
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4 The bipartite case

Let Γ denote a distance-regular graph. Recall Γ is bipartite whenever ai = 0 for 0 ≤ i ≤ d.
For the rest of this paper we assume Γ is bipartite. In order to avoid trivialities we assume
the valency k ≥ 3. In this section we recall some basic formula. Setting ai = 0 in (1) we
find

bi + ci = k (0 ≤ i ≤ d). (11)

The following two lemmas will be useful.

Lemma 4.1 Let Γ denote a bipartite distance-regular graph with diameter d ≥ 3 and
valency k ≥ 3. Then the following (i)–(iv) hold.

(i) p1
i,i−1 = p1

i−1,i = kici/k (1 ≤ i ≤ d);

(ii) p2
i,i−2 = p2

i−2,i = kici−1ci/(k(k − 1)) (2 ≤ i ≤ d);

(iii) p2
ii = ki(ci(bi−1 − 1) + bi(ci+1 − 1))/(k(k − 1)) (1 ≤ i ≤ d− 1);

(iv) p2
dd = kd(bd−1 − 1)/(k − 1).

Proof. (i), (ii) Immediate from [1, Lemma 4.1.7] and since b1 = k − 1.

(iii) By [1, p. 127, Equation (10)] and ai = 0 (0 ≤ i ≤ d), we obtain bi−1p
1
i−1,i+ci+1p

1
i,i+1 =

ki + (k − 1)p2
ii. The result now follows from (i) above and (2).

(iv) We observe p2
dd = kd − p2

d,d−2. The result now follows from (ii) above, cd = k and
(11).

Lemma 4.2 Let Γ denote a bipartite distance-regular graph with diameter d ≥ 3 and
valency k ≥ 3. Then the following (i)–(iv) hold.

(i) p2
i,i−2 6= 0 , p2

i−2,i 6= 0 (2 ≤ i ≤ d);

(ii) p2
00 = 0 and p2

ii 6= 0 (1 ≤ i ≤ d− 1);

(iii) p2
dd = 0 if and only if bd−1 = 1;

(iv) p2
ij = 0 if |i− j| 6∈ {0, 2} (0 ≤ i, j ≤ d).

Proof. (i) Immediate from Lemma 4.1(ii).

(ii) It is clear that p2
00 = 0. Suppose there exists an integer i (1 ≤ i ≤ d − 1) such that

p2
ii = 0. Then bi−1 = ci+1 = 1 by Lemma 4.1(iii). Recall bi−1 ≥ bi and ci+1 ≥ ci by [1,

Prop. 4.1.6(i)], implying bi = ci = 1. But now k = 2 in view of (11), a contradiction.

(iii) Immediate from Lemma 4.1(iv).

(iv) If |i− j| ≥ 3, then p2
ij = 0 by Lemma 2.1(i). If |i− j| = 1, then p2

ij = 0; otherwise Γ
has a cycle of odd length, contradicting our assumption that Γ is bipartite.
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5 The subsets Di
j

Let Γ = (X, R) denote a bipartite distance-regular graph with diameter d ≥ 3 and valency
k ≥ 3. In this section we define a certain partition of X that we will find useful.

Definition 5.1 Let Γ = (X, R) denote a bipartite distance-regular graph with diameter
d ≥ 3 and valency k ≥ 3. Fix vertices x, y ∈ X such that ∂(x, y) = 2. For all integers i, j
we define Di

j = Di
j(x, y) by

Di
j = {z ∈ X | ∂(x, z) = i and ∂(y, z) = j}.

We observe Di
j = ∅ unless 0 ≤ i, j ≤ d. In the following two lemmas we derive some

properties of the sets Di
j.

Lemma 5.2 With reference to Definition 5.1, the following (i), (ii) hold for 0 ≤ i, j ≤ d.

(i) |Di
j| = p2

ij;

(ii) Di
j = ∅ if and only if p2

ij = 0.

Proof. (i) Immediate from the definition of p2
ij and Di

j.

(ii) Immediate from (i) above.

Lemma 5.3 With reference to Definition 5.1, the following (i)–(iii) hold for v ∈ D1
1.

(i) For 1 ≤ i ≤ d− 1 and u ∈ Di−1
i+1 ∪Di+1

i−1 we have ∂(u, v) = i.

(ii) For 1 ≤ i ≤ d− 1 and u ∈ Di
i we have ∂(u, v) ∈ {i− 1, i + 1}.

(iii) For u ∈ Dd
d we have ∂(u, v) = d− 1.

Proof. (i) Assume u ∈ Di−1
i+1. Then ∂(x, u) = i− 1 and ∂(y, u) = i + 1. The result now

follows from the triangle inequality. If u ∈ Di+1
i−1 the proof is similar.

(ii) Observe ∂(u, v) ∈ {i − 1, i, i + 1} by the triangle inequality, and ∂(u, v) 6= i since
ai = 0.
(iii) Similar to the proof of (ii) above.

The following lemma will be useful.

Lemma 5.4 ([9, Lemma 15]) With reference to Definition 5.1, the following (i)–(iii) hold.

(i) For 1 ≤ i ≤ d− 1, each z ∈ Di−1
i+1 (resp. Di+1

i−1) is adjacent to

(a) precisely ci−1 vertices in Di−2
i (resp. Di

i−2),
(b) precisely bi+1 vertices in Di

i+2 (resp. Di+2
i ),

(c) precisely bi−1 − bi+1 vertices in Di
i,

and no other vertices in X.
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(ii) For 1 ≤ i ≤ d− 1, each z ∈ Di
i is adjacent to

(a) precisely |Γ(z) ∩Di−1
i−1| vertices in Di−1

i−1,
(b) precisely ci − |Γ(z) ∩Di−1

i−1| vertices in Di−1
i+1,

(c) precisely ci − |Γ(z) ∩Di−1
i−1| vertices in Di+1

i−1,
(d) precisely k − 2ci + |Γ(z) ∩Di−1

i−1| vertices in Di+1
i+1,

and no other vertices in X.

(iii) Each z ∈ Dd
d is adjacent to precisely k vertices in Dd−1

d−1, and no other vertices in X.

6 The vectors wij, w
+
ii and w−

ii

Let Γ = (X, R) denote a bipartite distance-regular graph with diameter d ≥ 3 and valency
k ≥ 3. In this section we define certain vectors in RX that are associated with the sets
Di

j from Definition 5.1.

Definition 6.1 Let Γ = (X, R) denote a bipartite distance-regular graph with diameter
d ≥ 3 and valency k ≥ 3. Fix vertices x, y ∈ X such that ∂(x, y) = 2. With reference to
Definition 5.1, for all integers i, j we define a vector wij = wij(x, y) by

wij =
∑
z∈Di

j

ẑ.

Observe wij = 0 unless 0 ≤ i, j ≤ d. We define

W = span{wij | 0 ≤ i, j ≤ d}.

The following two lemmas follow immediately from Definition 6.1 and Lemma 5.2.

Lemma 6.2 With reference to Definition 6.1, the following (i), (ii) hold for 0 ≤ i, j ≤ d.

(i) ‖wij‖2 = p2
ij;

(ii) wij = 0 if and only if p2
ij = 0.

Lemma 6.3 With reference to Definition 6.1, the vectors {wij | 0 ≤ i, j ≤ d, p2
ij 6= 0}

form an orthogonal basis for W .

We now define a subspace W⊥ of RX .

Definition 6.4 With reference to Definition 6.1, consider the subspace

MW = span{mw | m ∈ M, w ∈ W},

where M is the Bose-Mesner algebra of Γ. We observe MW is the minimal A-invariant
subspace of RX that contains W , where A is the adjacency matrix of Γ. We let W⊥ denote
the orthogonal complement of W in MW . We observe

MW = W + W⊥ (orthogonal direct sum).
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Our goal is to give an orthogonal basis for MW , in the case where Γ is Q-polynomial.
In light of Lemma 6.3 it suffices to give an orthogonal basis for W⊥. Towards this purpose
we make a definition.

Definition 6.5 Let Γ = (X,R) denote a bipartite distance-regular graph with diameter
d ≥ 3 and valency k ≥ 3. Fix vertices x, y ∈ X such that ∂(x, y) = 2. With reference to
Definition 5.1, for an integer i we define vectors w+

ii = w+
ii (x, y) and w−

ii = w−
ii (x, y) by

w+
ii =

∑
z∈Di

i

|Γi−1(z) ∩D1
1| ẑ, w−

ii =
∑
z∈Di

i

|Γ(z) ∩Di−1
i−1| ẑ.

We observe w+
ii = w−

ii = 0 unless 1 ≤ i ≤ d. Furthermore, w+
11 = w11, w−

11 = 0,
w+

dd = c2wdd, w−
dd = kwdd, and w+

22 = w−
22.

In the next two sections we will consider the following situation.

Definition 6.6 Let Γ = (X, R) denote a bipartite distance-regular graph with diameter
d ≥ 3, valency k ≥ 3 and adjacency matrix A. Fix vertices x, y ∈ X such that ∂(x, y) = 2.
Let the vectors wij, w

+
ii , w

−
ii be as in Definitions 6.1 and 6.5. Let the subspaces W , W⊥ be

as in Definitions 6.1 and 6.4.

7 The vectors w̃ii

With reference to Definition 6.6, in this section we define some vectors that will give an
orthogonal basis for W⊥ when Γ is Q-polynomial. We will need the following lemma.

Lemma 7.1 With reference to Definition 6.6, the following (i), (ii) hold for 2 ≤ i ≤ d−1.

(i) 〈w+
ii , wii〉 = kici(bi−1 − 1)/k2;

(ii) ‖w+
ii‖2 = kici(c2(bi−1 − 1)− (c2 − 1)bi)/k2.

Proof. (i) Observe that 〈w+
ii , wii〉 =

∑
z∈Di

i
|Γi−1(z) ∩ D1

1|. Hence 〈w+
ii , wii〉 is equal

to the number of ordered pairs (v, z), where v ∈ D1
1, z ∈ Di

i, and ∂(v, z) = i − 1. In
order to find this number, we fix v ∈ D1

1 and observe |Γi(x) ∩ Γi−1(v)| = p1
i,i−1. By

Lemma 5.3 we find Di
i−2 is contained in Γi(x) ∩ Γi−1(v), and Γi(x) ∩ Γi−1(v) is contained

in Di
i−2 ∪Di

i. Therefore, Di
i ∩ Γi−1(v) =

(
Γi(x)∩ Γi−1(v)

)
\Di

i−2. Since |Di
i−2| = p2

i,i−2 by
Lemma 5.2(i), we have |Di

i ∩ Γi−1(v)| = p1
i,i−1 − p2

i,i−2. Finally, since |D1
1| = c2, we have

〈w+
ii , wii〉 = c2(p

1
i,i−1−p2

i,i−2). The result now follows from Lemma 4.1(i),(ii) and from (2),
(11).

(ii) Observe that

‖w+
ii‖2 =

∑
z∈Di

i

|Γi−1(z)∩D1
1|2 =

∑
z∈Di

i

|Γi−1(z)∩D1
1|+

∑
z∈Di

i

|Γi−1(z)∩D1
1|(|Γi−1(z)∩D1

1|−1).

By (i) above,
∑

z∈Di
i
|Γi−1(z) ∩ D1

1| = 〈w+
ii , wii〉 = kici(bi−1 − 1)/k2. Furthermore, the

number
∑

z∈Di
i
|Γi−1(z)∩D1

1|(|Γi−1(z)∩D1
1| − 1) is equal to the number of ordered triples

9



(v1, v2, z), where v1, v2 ∈ D1
1, v1 6= v2, z ∈ Di

i, and ∂(v1, z) = ∂(v2, z) = i − 1. In order
to find this number we fix v1, v2 ∈ D1

1, v1 6= v2. From the proof of (i) above we find
|Di

i ∩ Γi−1(v1)| = p1
i,i−1 − p2

i,i−2. By Lemma 5.3 we find Γi−1(v1) ∩ Γi+1(v2) is contained
in Di

i, and that |Γi−1(v1) ∩ Γi+1(v2)| = p2
i+1,i−1. Therefore, |Di

i ∩ Γi−1(v1) ∩ Γi−1(v2)| =
p1

i,i−1 − p2
i,i−2 − p2

i+1,i−1. Finally, we can choose v1, v2 ∈ D1
1, v1 6= v2, in c2(c2 − 1) different

ways, implying
∑

z∈Di
i
|Γi−1(z)∩D1

1|(|Γi−1(z)∩D1
1|−1) = c2(c2−1)(p1

i,i−1−p2
i,i−2−p2

i+1,i−1).
Hence we have

‖w+
ii‖2 =

kici(bi−1 − 1)

k2

+ c2(c2 − 1)(p1
i,i−1 − p2

i,i−2 − p2
i+1,i−1).

The result now follows from Lemma 4.1(i),(ii) and (2).

Definition 7.2 With reference to Definition 6.6, for 2 ≤ i ≤ d− 1 we define

w̃ii = w+
ii − λiwii,

where

λi =
kici(bi−1 − 1)

k2p2
ii

.

Definition 7.3 With reference to Definition 6.6, for 2 ≤ i ≤ d− 1 we define

∆i = (bi−1 − 1)(ci+1 − 1)− (c2 − 1)pi
2i.

We now prove that the vectors wii and w̃ii (2 ≤ i ≤ d− 1) are orthogonal.

Lemma 7.4 With reference to Definitions 6.6, 7.2 and 7.3, the following (i), (ii) hold for
2 ≤ i ≤ d− 1.

(i) 〈w̃ii, wii〉 = 0;

(ii) ‖w̃ii‖2 = kibici∆i/(k2p
i
2i).

Proof. (i) In the expression 〈w̃ii, wii〉 eliminate w̃ii using Definition 7.2 and evaluate the
result using Lemma 6.2(i) and Lemma 7.1(i).

(ii) By Definition 7.2 and (i) above we have

‖w̃ii‖2 = 〈w̃ii, w
+
ii − λiwii〉 = 〈w̃ii, w

+
ii 〉 = ‖w+

ii‖2 − λi〈wii, w
+
ii 〉.

The result now follows from Lemma 7.1, Lemma 4.1(iii) and (2).

Lemma 7.5 With reference to Definitions 6.6, 7.2 and 7.3, the following (i)–(iii) are
equivalent for 2 ≤ i ≤ d− 1.

(i) The vectors w+
ii and wii are linearly dependent;

(ii) w̃ii = 0;

(iii) ∆i = 0.

Proof. (i) → (ii) Observe wii and w̃ii are linearly dependent in view of Definition 7.2.
The result now follows from Lemma 7.4(i) and since wii 6= 0.

(ii) → (i) Immediate from Definition 7.2.

(ii) ↔ (iii) Immediate from Lemma 7.4(ii).
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8 The action - part I

With reference to Definition 6.6, in this section we compute the images of the vectors
wij, w

+
ii , w

−
ii under the action of A.

Lemma 8.1 With reference to Definition 6.6, the following (i), (ii) hold.

(i) Aw02 = w13 + w11,
Awi−1,i+1 = biwi−2,i + ciwi,i+2 + ciwii − w−

ii (2 ≤ i ≤ d− 2),
Awd−2,d = bd−1wd−3,d−1 + cd−1wd−1,d−1 − w−

d−1,d−1.

(ii) Aw20 = w31 + w11,
Awi+1,i−1 = biwi,i−2 + ciwi+2,i + ciwii − w−

ii (2 ≤ i ≤ d− 2),
Awd,d−2 = bd−1wd−1,d−3 + cd−1wd−1,d−1 − w−

d−1,d−1.

Proof. (i) For z ∈ X and for each equation we show that the z-coordinate of both sides
agree. For the first equation this is routinely checked, so consider the second equation.
By Definition 6.5, the z-coordinate of w−

ii is |Γ(z) ∩Di−1
i−1| if z ∈ Di

i, and 0 if z 6∈ Di
i. For

0 ≤ r, s ≤ d the z-coordinate of wrs is 1 if z ∈ Dr
s, and 0 if z 6∈ Dr

s. The z-coordinate
of Awi−1,i+1 is |Γ(z) ∩ Di−1

i+1|. Moreover, by Lemma 5.4 we find |Γ(z) ∩ Di−1
i+1| = bi if

z ∈ Di−2
i , |Γ(z) ∩Di−1

i+1| = ci if z ∈ Di
i+2, |Γ(z) ∩Di−1

i+1| = ci − |Γ(z) ∩Di−1
i−1| if z ∈ Di

i, and
|Γ(z)∩Di−1

i+1| = 0 for all other z ∈ X. By these comments, the z-coordinate of both sides
agree. This proves the second equation and the third equation is similarly obtained.

(ii) Similar to the proof of (i) above.

Lemma 8.2 With reference to Definition 6.6, the following equations hold:
Aw11 = c2(w02 + w20) + w−

22,
Aw22 = (b1 − b3)(w13 + w31) + (k − 2)w11 + w−

33,
Awii = (bi−1 − bi+1)(wi−1,i+1 + wi+1,i−1) + (k − 2ci−1)wi−1,i−1 + w−

i−1,i−1 + w−
i+1,i+1

(3 ≤ i ≤ d− 1),
Awdd = (k − 2cd−1)wd−1,d−1 + w−

d−1,d−1.

Proof. For z ∈ X and for each equation we show that the z-coordinate of both sides
agree. Consider the third equation. By Definition 6.5, for 1 ≤ r ≤ d the z-coordinate of
w−

rr is |Γ(z)∩Dr−1
r−1| if z ∈ Dr

r , and 0 if z 6∈ Dr
r . For 0 ≤ r, s ≤ d the z-coordinate of wrs is

1 if z ∈ Dr
s, and 0 if z 6∈ Dr

s. The z-coordinate of Awii is |Γ(z) ∩Di
i|. By Lemma 5.4 we

find |Γ(z) ∩Di
i| = bi−1 − bi+1 if z ∈ Di−1

i+1 ∪Di+1
i−1, |Γ(z) ∩Di

i| = k − 2ci−1 + |Γ(z) ∩Di−2
i−2|

if z ∈ Di−1
i−1, and |Γ(z) ∩ Di

i| = 0 for all other z ∈ X \ Di+1
i+1. By these comments, the

z-coordinate of both sides agree. This proves the third equation and the other equations
are similarly obtained.

Lemma 8.3 With reference to Definition 6.6, the following equations hold:
Aw+

22 = c2(c2 − 1)(w13 + w31) + (b2 + c2(c2 − 2))w11 + c2w
+
33,

Aw+
ii = c2(ci − ci−1)(wi−1,i+1 + wi+1,i−1) + c2(ci − 2ci−1)wi−1,i−1 + biw

+
i−1,i−1 +

c2w
−
i−1,i−1 + ciw

+
i+1,i+1 (3 ≤ i ≤ d− 1).

11



Proof. For z ∈ X and for each equation we show that the z-coordinate of both sides
agree. Consider the second equation. By Definition 6.5, the z-coordinate of w−

i−1,i−1 is

|Γ(z) ∩ Di−2
i−2| if z ∈ Di−1

i−1, and 0 if z 6∈ Di−1
i−1. Similarly, by Definition 6.5, for 1 ≤ r ≤ d

the z-coordinate of w+
rr is |Γr−1(z) ∩D1

1| if z ∈ Dr
r , and 0 if z 6∈ Dr

r . For 0 ≤ r, s ≤ d the
z-coordinate of wrs is 1 if z ∈ Dr

s, and 0 if z 6∈ Dr
s. The z-coordinate of Aw+

ii is∑
v∈Γ(z)∩Di

i

|Γi−1(v) ∩D1
1| =

∑
u∈D1

1

|Γi−1(u) ∩ Γ(z) ∩Di
i|. (12)

Observe that if Γ(z) ∩ Di
i 6= ∅ then z ∈ Di+1

i−1 ∪ Di−1
i+1 ∪ Di−1

i−1 ∪ Di+1
i+1. In view of this we

split the argument into four cases: z ∈ Di+1
i−1, z ∈ Di−1

i+1, z ∈ Di−1
i−1, and z ∈ Di+1

i+1.

First assume z ∈ Di+1
i−1. Recall |D1

1| = c2 and pick any u ∈ D1
1. Observe that, by Lemma

5.3(i),(ii), Γi−1(u)∩Γ(z) is contained in Di
i−2∪Di

i, and ∂(u, z) = i. Hence |Γi−1(u)∩Γ(z)| =
ci. By Lemma 5.4(i), z has exactly ci−1 neighbours in Di

i−2. Furthermore, each of these
neighbours is at distance i − 1 from u by Lemma 5.3(i). Thus |Γi−1(u) ∩ Γ(z) ∩ Di

i| =
ci − ci−1. By these comments and (12) we find the z-coordinate of Aw+

ii is c2(ci − ci−1).

Next assume z ∈ Di−1
i+1. Interchanging x, y in the previous case we routinely find the

z-coordinate of Aw+
ii is c2(ci − ci−1).

Next assume z ∈ Di+1
i+1. For u ∈ D1

1, if |Γi−1(u) ∩ Γ(z) ∩Di
i| 6= 0, then ∂(u, z) = i. In this

case we have, by Lemma 5.3, |Γi−1(u) ∩ Γ(z) ∩Di
i| = |Γi−1(u) ∩ Γ(z)| = ci. Therefore,∑

u∈D1
1

|Γi−1(u) ∩ Γ(z) ∩Di
i| =

∑
u∈D1

1∩Γi(z)

ci = ci|Γi(z) ∩D1
1|. (13)

By these comments and (12), (13), the z-coordinate of Aw+
ii is ci|Γi(z) ∩D1

1|.
Finally, assume z ∈ Di−1

i−1. Let u ∈ D1
1 and observe that ∂(u, z) ∈ {i − 2, i} by Lemma

5.3(ii). We now evaluate |Γi−1(u) ∩ Γ(z) ∩Di
i|. If u is at distance i− 2 from z, then, by

Lemma 5.4(ii),

|Γi−1(u) ∩ Γ(z) ∩Di
i| = |Γ(z) ∩Di

i| = k − 2ci−1 + |Γ(z) ∩Di−2
i−2|. (14)

If u is at distance i from z, then |Γi−1(u) ∩ Γ(z)| = ci. Observe that, by Lemmas 5.3 and
5.4(ii), |Γi−1(u)∩Γ(z)∩Di−2

i−2| = |Γ(z)∩Di−2
i−2| and |Γi−1(u)∩Γ(z)∩Di−2

i | = ci−1−|Γ(z)∩
Di−2

i−2|. Hence
|Γi−1(u) ∩ Γ(z) ∩Di

i| = ci + |Γ(z) ∩Di−2
i−2| − 2ci−1. (15)

We now evaluate the z-coordinate of Aw+
ii . Observe there are |Γi−2(z) ∩ D1

1| vertices in
D1

1 which are at distance i− 2 from z. The other c2 − |Γi−2(z)∩D1
1| vertices from D1

1 are
at distance i from z by Lemma 5.3(ii). Thus, by (12), (14) and (15), the z-coordinate of
Aw+

ii is

|Γi−2(z)∩D1
1|

(
k−2ci−1 + |Γ(z)∩Di−2

i−2|
)
+

(
c2−|Γi−2(z)∩D1

1|
)(

ci + |Γ(z)∩Di−2
i−2|−2ci−1

)
=

bi|Γi−2(z) ∩D1
1|+ c2|Γ(z) ∩Di−2

i−2|+ c2(ci − 2ci−1).

By these comments, the z-coordinate of both sides agree. This proves the second equation
and the first equation is similarly obtained.
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9 Dependencies

With reference to Definition 6.6, in this section we show that if Γ is Q-polynomial, then
the vectors wii, w

+
ii and w−

ii are linearly dependent for 2 ≤ i ≤ d− 1.

Theorem 9.1 With reference to Definition 6.6, assume Γ is Q-polynomial with respect
to a primitive idempotent E. Let θ∗0, θ

∗
1, . . . , θ

∗
d denote the corresponding dual eigenvalue

sequence. Then for 2 ≤ i ≤ d− 1 we have

w−
ii = αiwii + βiw

+
ii ,

where

αi = ci

(θ∗0 − θ∗i )(θ
∗
3 − θ∗i+1)− (θ∗1 − θ∗i−1)(θ

∗
2 − θ∗i )

(θ∗0 − θ∗i )(θ
∗
i−1 − θ∗i+1)

and βi =
θ∗1 − θ∗3

θ∗i−1 − θ∗i+1

.

Proof. Observe that the denominators of the above expressions are nonzero by Lemma
3.1. The result holds for i = 2 since α2 = 0, β2 = 1, and since w−

22 = w+
22 by Definition

6.5. Next assume 3 ≤ i ≤ d− 1 and pick a vertex v ∈ Di
i. By Lemma 3.2, we find∑

z∈X
∂(x,z)=1

∂(v,z)=i−1

Eẑ −
∑
z∈X

∂(x,z)=i−1
∂(v,z)=1

Eẑ = ci

θ∗1 − θ∗i−1

θ∗0 − θ∗i
(Ex̂− Ev̂). (16)

To finish the proof take the inner product of (16) with Eŷ and evaluate the result using
Lemma 2.2(i).

For the rest of this paper we will consider the following situation.

Definition 9.2 Let Γ = (X,R) denote a bipartite distance-regular graph with diameter
d ≥ 3, valency k ≥ 3 and adjacency matrix A. Assume Γ is Q-polynomial with respect to
a primitive idempotent E, and let θ∗0, θ

∗
1, . . . , θ

∗
d denote the corresponding dual eigenvalue

sequence. Fix vertices x, y ∈ X such that ∂(x, y) = 2. Let the vectors wij, w
+
ii , w

−
ii , w̃ii be

as in Definitions 6.1, 6.5 and 7.2. Let the subspaces W and W⊥ be as in Definitions 6.1
and 6.4. Let the scalars ∆i, αi and βi be as in Definition 7.3 and Theorem 9.1.

10 The action - part II

With reference to Definition 9.2, in this section we obtain the action of A on the vectors
wij, w+

ii and w̃ii for the case in which Γ is Q-polynomial. We will use Theorem 9.1.

Lemma 10.1 With reference to Definition 9.2, the following (i)–(iv) hold.

(i) Aw02 = w13 + w11,
Awi−1,i+1 = biwi−2,i + ciwi,i+2 + (ci − αi)wii − βiw

+
ii (2 ≤ i ≤ d− 2),

Awd−2,d = bd−1wd−3,d−1 + (cd−1 − αd−1)wd−1,d−1 − βd−1w
+
d−1,d−1.

13



(ii) Aw20 = w31 + w11,
Awi+1,i−1 = biwi,i−2 + ciwi+2,i + (ci − αi)wii − βiw

+
ii (2 ≤ i ≤ d− 2),

Awd,d−2 = bd−1wd−1,d−3 + (cd−1 − αd−1)wd−1,d−1 − βd−1w
+
d−1,d−1.

(iii) Aw11 = c2(w02 + w20) + α2w22 + β2w
+
22,

Aw22 = (b1 − b3)(w13 + w31) + (k − 2)w11 + α3w33 + β3w
+
33,

Awii = (bi−1 − bi+1)(wi−1,i+1 + wi+1,i−1) + (k − 2ci−1 + αi−1)wi−1,i−1 +
βi−1w

+
i−1,i−1 + αi+1wi+1,i+1 + βi+1w

+
i+1,i+1 (3 ≤ i ≤ d− 2),

Awd−1,d−1 = bd−2(wd−2,d + wd,d−2) + (k − 2cd−2 + αd−2)wd−2,d−2 +
βd−2w

+
d−2,d−2 + kwdd,

Awdd = (k − 2cd−1 + αd−1)wd−1,d−1 + βd−1w
+
d−1,d−1.

(iv) Aw+
22 = c2(c2 − 1)(w13 + w31) + (b2 + c2(c2 − 2))w11 + c2w

+
33,

Aw+
ii = c2(ci − ci−1)(wi−1,i+1 + wi+1,i−1) + c2(ci − 2ci−1 + αi−1)wi−1,i−1 +

(bi + c2βi−1)w
+
i−1,i−1 + ciw

+
i+1,i+1 (3 ≤ i ≤ d− 1).

Proof. Immediate from Lemma 8.1, Lemma 8.2, Lemma 8.3 and Theorem 9.1, and since
w−

dd = kwdd.

Theorem 10.2 With reference to Definition 9.2, the following (i)–(iv) hold.

(i) Aw02 = w13 + w11,
Awi−1,i+1 = biwi−2,i + ciwi,i+2 + (ci − αi − βiλi)wii − βiw̃ii (2 ≤ i ≤ d− 2),
Awd−2,d = bd−1wd−3,d−1 + (cd−1 − αd−1 − βd−1λd−1)wd−1,d−1 − βd−1w̃d−1,d−1.

(ii) Aw20 = w31 + w11,
Awi+1,i−1 = biwi,i−2 + ciwi+2,i + (ci − αi − βiλi)wii − βiw̃ii (2 ≤ i ≤ d− 2),
Awd,d−2 = bd−1wd−1,d−3 + (cd−1 − αd−1 − βd−1λd−1)wd−1,d−1 − βd−1w̃d−1,d−1.

(iii) Aw11 = c2(w02 + w20) + (α2 + β2λ2)w22 + β2w̃22,
Aw22 = (b1 − b3)(w13 + w31) + (k − 2)w11 + (α3 + β3λ3)w33 + β3w̃33,
Awii = (bi−1 − bi+1)(wi−1,i+1 + wi+1,i−1) + (k − 2ci−1 + αi−1 + βi−1λi−1)wi−1,i−1 +

βi−1w̃i−1,i−1 + (αi+1 + βi+1λi+1)wi+1,i+1 + βi+1w̃i+1,i+1 (3 ≤ i ≤ d− 2),
Awd−1,d−1 = bd−2(wd−2,d + wd,d−2) + (k − 2cd−2 + αd−2 + βd−2λd−2)wd−2,d−2 +

βd−2w̃d−2,d−2 + kwdd,
Awdd = (k − 2cd−1 + αd−1 + βd−1λd−1)wd−1,d−1 + βd−1w̃d−1,d−1.

(iv) Aw̃22 =
(
c2(c2 − 1)− λ2(b1 − b3)

)
(w13 + w31) +

(
b2 + c2(c2 − 2)− λ2(k − 2)

)
w11 +(

c2λ3 − λ2(α3 + β3λ3)
)
w33 + (c2 − λ2β3)w̃33,

Aw̃ii =
(
c2(ci − ci−1)− λi(bi−1 − bi+1)

)
(wi−1,i+1 + wi+1,i−1) +(

λi−1(bi + c2βi−1) + c2(ci − 2ci−1 + αi−1)−
λi(k − 2ci−1 + αi−1 + βi−1λi−1)

)
wi−1,i−1 +

(bi + c2βi−1 − λiβi−1)w̃i−1,i−1 +(
ciλi+1−λi(αi+1 +βi+1λi+1)

)
wi+1,i+1 + (ci−λiβi+1)w̃i+1,i+1 (3 ≤ i ≤ d−2),

Aw̃d−1,d−1 =
(
c2(cd−1 − cd−2)− λd−1bd−2

)
(wd−2,d + wd,d−2) +(

λd−2(bd−1 + c2βd−2) + c2(cd−1 − 2cd−2 + αd−2)−
λd−1(k − 2cd−2 + αd−2 + βd−2λd−2)

)
wd−2,d−2 +

(bd−1 + c2βd−2 − λd−1βd−2)w̃d−2,d−2 +
(
cd−1c2 − kλd−1

)
wdd.
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Proof. Immediate from Lemma 10.1 and Definition 7.2.

We have the following important result.

Corollary 10.3 With reference to Definition 9.2, the vectors {w̃ii | 2 ≤ i ≤ d− 1, ∆i 6=
0} form an orthogonal basis for W⊥.

Proof. Let W ′ = span{w̃ii | 2 ≤ i ≤ d − 1, ∆i 6= 0}. We show W⊥ = W ′. We first
show W⊥ ⊆ W ′. By Theorem 10.2, the subspace W + W ′ is A-invariant. Since MW is
the minimal A-invariant subspace that contains W , we have MW ⊆ W +W ′. Recall W⊥

is the orthogonal complement of W in MW . By construction W and W ′ are orthogonal,
so W ′ is the orthogonal complement of W in W + W ′ By these comments W⊥ ⊆ W ′.

Next we show W ′ ⊆ W⊥. Since MW is A-invariant and βi 6= 0 (2 ≤ i ≤ d−1) by Lemma
3.1, we have w̃ii ∈ MW (2 ≤ i ≤ d− 1) by Theorem 10.2(i). But now Lemma 7.4 implies
w̃ii ∈ W⊥ for 2 ≤ i ≤ d− 1, and hence W ′ ⊆ W⊥. Now W⊥ = W ′ and the result follows.

11 A basis for MW

With reference to Definition 9.2, in Lemma 6.3 and Corollary 10.3 we gave an orthogonal
basis for W and W⊥, respectively. In this section we give more detailed information about
these bases. We will consider three cases. In order to describe these cases we recall a
definition.

With reference to Definition 9.2, Γ is said to be 2-homogeneous in the sense of Nomura
[20] whenever for all integers i (2 ≤ i ≤ d − 1) and for all x, y, z ∈ X with ∂(x, y) = 2,
∂(x, z) = ∂(y, z) = i, the number |D1

1(x, y) ∩ Γi−1(z)| is independent of x, y, z. By [9,
Theorem 17] we find Γ is 2-homogeneous if and only if (i) for all x, y ∈ X such that
∂(x, y) = 2, the partition of X given by Definition 5.1 is equitable [15, Section 5.1]; and
(ii) the corresponding parameters of this partition do not depend on x, y.

We use the following lemma.

Lemma 11.1 With reference to Definition 9.2, the following (i)–(iii) hold.

(i) Assume Γ is 2-homogeneous. Then ∆i = 0 for 2 ≤ i ≤ d− 1 and p2
dd = 0.

(ii) Assume Γ is the antipodal quotient of the 2d-cube. Then ∆i = 0 for 2 ≤ i ≤ d − 2
and ∆d−1 6= 0, p2

dd 6= 0.

(iii) Assume Γ is neither 2-homogeneous nor the antipodal quotient of the 2d-cube. Then
∆i 6= 0 for 2 ≤ i ≤ d− 1 and p2

dd 6= 0.

Proof. (i) By [9, Theorem 13], ∆i = 0 for 2 ≤ i ≤ d− 1. Furthermore, by [9, Theorem
42], Γ is an antipodal 2-cover. Hence bd−1 = 1, so p2

dd = 0 by Lemma 4.2(iii).

(ii) The intersection numbers of the antipodal quotient of the 2d-cube are given in [1, p.
264]. The result now follows straightforward from Definition 7.3 and Lemma 4.2(iii).
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(iii) First assume d = 3. Using Definition 7.3 and Lemma 4.1(iii) we find ∆2 = b2(b2 −
1)/c2. By [9, Theorem 13] and since Γ is not 2-homogeneous we find ∆2 6= 0, implying
b2 6= 1. Combining this with Lemma 4.1(iv) we find p2

33 6= 0, and the result follows.

Next assume d ≥ 4. Observe that Γ is not the d-cube, since the d-cube is 2-homogeneous.
By [8, Lemma 3.2, Lemma 3.3], there exist q, s∗ ∈ R such that

|q| > 1, s∗qi 6= 1 (2 ≤ i ≤ 2d + 1), (17)

ci =
h(qi − 1)(1− s∗qd+i+1)

1− s∗q2i+1
, bi =

h(qd − qi)(1− s∗qi+1)

1− s∗q2i+1
(1 ≤ i ≤ d− 1), (18)

k = cd = h(qd − 1), (19)

where

h =
1− s∗q3

(q − 1)(1− s∗qd+2)
.

By direct computation we obtain

bd−1 − 1 =
(qd−1 − 1)(1− s∗qd+1)(1 + s∗qd+1)

(1− s∗q2d−1)(1− s∗qd+2)
. (20)

Similarly, by (18) and (19), we obtain also

∆i =
q2(qi−1 − 1)(qi − 1)(1− s∗qi+1)(1− s∗qi+2)(1− s∗q3)(1− s∗q2d+1)(1 + s∗qd+1)

(q2 − 1)(1− s∗q2i−1)(1− s∗q2i+3)(1− s∗qd+2)2(1− s∗qd+3)
.

(21)
Assume for a moment ∆i = 0 for 2 ≤ i ≤ d − 1. Then, by [9, Theorem 13] and by
the definition of the 2-homogeneous property, Γ is 2-homogeneous. Hence there exists
i (2 ≤ i ≤ d− 1) such that ∆i 6= 0. Therefore, 1 + s∗qd+1 6= 0 by (21). But now, by (17)
and (21), we have ∆i 6= 0 for 2 ≤ i ≤ d−1. Finally, by (17) and (20), bd−1−1 6= 0. Using
Lemma 4.2(iii) we find p2

dd 6= 0. This completes the proof.

In what follows we treat the three cases of Lemma 11.1 separately.

Theorem 11.2 With reference to Definition 9.2, assume Γ is 2-homogeneous. Then the
following (i),(ii) hold.

(i) The vectors {wi−1,i+1, wi+1,i−1, wii | 1 ≤ i ≤ d− 1} form an orthogonal basis for W .

(ii) W⊥ = 0.

Proof. (i) The result follows from Lemmas 11.1(i), 6.2(ii), 4.2 and 6.3.

(ii) The result follows from Lemmas 11.1(i) and 7.5, and Corollary 10.3.

Corollary 11.3 With reference to Definition 9.2, assume Γ is 2-homogeneous. Then the
following (i)–(iii) hold.

(i) The dimension of W is 3d− 3.

(ii) The dimension of W⊥ is 0.
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(iii) The dimension of MW is 3d− 3.

Proof. Immediate from Theorem 11.2 and since W⊥ is the orthogonal complement of
W in MW .

We now look at the case when Γ is the antipodal quotient of the 2d-cube.

Theorem 11.4 With reference to Definition 9.2, assume Γ is the antipodal quotient of
the 2d-cube. Then the following (i),(ii) hold.

(i) The vectors {wi−1,i+1, wi+1,i−1 | 1 ≤ i ≤ d − 1} and {wii | 1 ≤ i ≤ d} form an
orthogonal basis for W .

(ii) The vector w̃d−1,d−1 forms an orthogonal basis for W⊥.

Proof. (i) The result follows from Lemmas 11.1(ii), 6.2(ii), 4.2 and 6.3.

(ii) The result follows from Lemmas 11.1(ii) and 7.5, and Corollary 10.3.

Corollary 11.5 With reference to Definition 9.2, assume Γ is the antipodal quotient of
the 2d-cube. Then the following (i)–(iii) hold.

(i) The dimension of W is 3d− 2.

(ii) The dimension of W⊥ is 1.

(iii) The dimension of MW is 3d− 1.

Proof. Immediate from Theorem 11.4 and since W⊥ is the orthogonal complement of
W in MW .

Finally, let us consider the case when Γ is neither 2-homogeneous nor the antipodal
quotient of the 2d-cube.

Theorem 11.6 With reference to Definition 9.2, assume Γ is neither 2-homogeneous nor
the antipodal quotient of the 2d-cube. Then the following (i),(ii) hold.

(i) The vectors {wi−1,i+1, wi+1,i−1 | 1 ≤ i ≤ d − 1} and {wii | 1 ≤ i ≤ d} form an
orthogonal basis for W .

(ii) The vectors {w̃ii | 2 ≤ i ≤ d− 1} form an orthogonal basis for W⊥.

Proof. (i) The result follows from Lemmas 11.1(iii), 6.2(ii), 4.2 and 6.3.

(ii) The result follows from Lemmas 11.1(iii) and 7.5, and Corollary 10.3.

Corollary 11.7 With reference to Definition 9.2, assume Γ is neither 2-homogeneous
nor the antipodal quotient of the 2d-cube. Then the following (i)–(iii) hold.

(i) The dimension of W is 3d− 2.

(ii) The dimension of W⊥ is d− 2.

(iii) The dimension of MW is 4d− 4.

Proof. Immediate from Theorem 11.6 and since W⊥ is the orthogonal complement of
W in MW .
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