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DEFORMATIONS OF STEIN STRUCTURES
AND EXTENSIONS OF HOLOMORPHIC MAPPINGS

FRANC FORSTNERIC & MARKO SLAPAR

ABSTRACT. Let X be a Stein manifold, A a closed complex subvariety of X, Y
a complex manifold and f: X — Y a continuous map such that fl4: A =Y
is holomorphic. After a homotopic deformation of the Stein structure outside
a neighborhood of A in X we find a holomorphic map f: X — Y which agrees
with f on A and is homotopic to f relative to A. When dim¢ X = 2 we must
also change the C*° structure on X\A.

1. INTRODUCTION

A classical theorem of H. Cartan asserts that every holomorphic function on
a closed complex subvariety of a Stein manifold (or a Stein space) X extends to
a holomorphic function on X. (For the theory of Stein manifolds see [13] and
[17].) The analogous extension property fails in general for mappings X — Y
to more general complex manifolds, unless the target manifold Y enjoys a certain
holomorphic flexibility property introduced in [4] and [5]. Indeed, if Y is Kobayashi
hyperbolic then the extension property fails if A contains more than one point due
to Kobayashi distance decreasing property of holomorphic maps [18].

In this paper we show that the situation is completely different if we allow homo-
topic deformations of the Stein structure (and of the underlying smooth structure
when dim¢ X = 2) in the complement of the given subvariety. The following is a
simplified version of theorem 3.1 in §3 below.

Theorem 1.1. Let X be a Stein manifold with dimc X # 2 and let A C X be
a closed complex subvariety. Given a continuous map f: X — Y to a complex
manifold Y such that f|4: A =Y is holomorphic, there is a homotopy (Ji, ft)ie[0,1]
consisting of integrable complex structures J; on X and continuous maps fy: X =Y
satisfying

(i) Jo is the initial complex structure on X, J; = Jo in a neighborhood of A
for each t € [0,1], and Jy is a Stein structure on X ;
(i) fo=17, fila = fla for every t € [0,1], and f1: X = Y is Jy-holomorphic.

This theorem is a relative version (with interpolation on a complex subvariety) of
theorem 1.1 in [7] to the effect that every continuous map f: X — Y from a Stein
manifold (X, J) of complex dimension # 2 to a complex manifold Y is homotopic

to map f: X — Y which is holomorphic with respect to a homotopic to J Stein
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2 FRANC FORSTNERIC & MARKO SLAPAR

structure J on X. In the exceptional case dimg X = 2 (when X is a Stein surface)
the analogous conclusion holds after changing the underlying smooth structure on
X; see theorem 4.1 in §4 for the corresponding interpolation theorem.

The first author proved in [5] that for every complex manifold Y, the conclusion
of theorem 1.1 holds for all data (X, A, f) and without changing the Stein structure
on X if and only if Y satisfies the convex approzimation property (CAP), introduced
in [4], to the effect that every holomorphic map K — Y from a compact convex
set K C C" is a uniform limit of entire maps C* — Y. Among the conditions
implying CAP we mention complex homogeneity and, more generally, the existence
of a finite dominating family of holomorphic sprays. For a discussion of this subject
and many further examples see [6].

It is possible to realize a Stein structure J; satisfying the conclusion of theorem
1.1 as a Stein domain © C X which contains the subvariety A and is diffeotopic to
X relative to A. Here is a precise result; for A = () this is theorem 1.2 in [7].

Theorem 1.2. Let X be a Stein manifold with dim¢ X # 2 and let A C X be
a closed complex subvariety. Given a continuous map f: X — Y to a complex
manifold Y such that fla: A =Y is holomorphic, there exist a Stein domain Q C
X containing A, a holomorphic map f: Q =Y, and a diffeomorphism h: X — Q
which is diffeotopic to idx by a diffeotopy that is fized on a neighborhood A, such
that the map foh: X =Y is homotopic to f relative to A.

Theorem 1.1 is an immediate consequence of theorem 1.2. Indeed, let hy: X —
ht(X) C X be a diffeotopy satisfying ho = idx, h1 = h: X — , and such that h;
is the identity map in a neighborhood of A for each ¢ € [0, 1]. Let J; = hy(J) denote
the (unique) complex structure on X satisfying dh; o J; = J o dh; on TX. The
homotopy {J; }+c[0,1] then satisfies theorem 1.1 (i), and the map f; := foh: X 5 Y
is Ji-holomorphic and satisfies part (ii) of theorem 1.1.

Remark 1.3. A Stein structure J; satisfying the conclusion of theorem 1.1 will in
general depend on the initial map f. However, as in [7] we can choose the same J;
for all maps in a given family depending continuously on a parameter belonging to
a compact Hausdorff space. We shall not formally state this more general version
of theorem 1.1, but the reader will have no difficulty seeing how this is done by
applying the parametric version of the main tools as in [7]. The analogous remark
applies to theorem 1.2 in which the Stein domain 2 C X can be chosen the same
for all maps in a compact family.

Theorems 1.1 and 1.2 are proved in §3 after we develop the main analytic ingre-
dients in §2. In §4 we discuss the analogous result for Stein surfaces (dim¢ X = 2).

2. THE MAIN LEMMA

An almost complex structure on an even dimensional smooth manifold X is a
smooth endomorphism J € Endg(T M) satisfying J?2 = —Id. Such J gives rise
to the conjugate differential d°, defined on functions by (d°p,v) = —(dp, Jv) for
v € TX, and the Levi form operator dd°. The structure J is integrable if every
point of X admits an open neighborhood U C X and a J-holomorphic coordinate
map of maximal rank z = (zy,...,2,): U = C" (n = }dimg X), i.e., satisfying
dz o J = idz; for a necessary and sufficient integrability condition see [21].
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We assume familiarity with standard complex analytic notions such as (strong)
plurisubharmonicity and (strong) pseudoconvexity (see [13], [17]). Since we shall
deal with several different (almost) complex structures, we shall write J-holomorphic,
J-Stein, strongly J-plurisubharmonic, strongly J-pseudoconvex, etc., whenever a
confusion might arise.

If (X, J) is a Stein manifold and K C L C X, with K compact, we shall say that
K is J-holomorphically conver in L if for every p € L\K there is a J-holomorphic
function on (a neighborhood of) L such that |f(p)| > sup,cx |f(x)|. When this
holds with L = X we say that K is H(X, J)-convex.

The following lemma is the main ingredient in the proof of theorems 1.1 and 1.2.

Lemma 2.1. Let (X, Jx) be a Stein manifold with dim¢ X =n # 2. Letp: X - R
be a smooth strongly plurisubharmonic exhaustion function, let ¢’ < ¢ be regular
values of p, K = {z € X: p(z) < '}, and L = {z € X: p(z) < c}. Let A be a
closed complex subvariety of X. Assume that J is an almost complex structure on
X which is integrable in an open neighborhood U C X of AU K, it agrees with Jx
in a neighborhood of A, and K is a strongly J-pseudoconver domain with J-Stein
interior. Let Y be a complex manifold with a distance function dy induced by a
Riemannian metric.

Given a continuous map f: X — Y which is J-holomorphic in a neighborhood
of K and such that fla: A = Y is holomorphic, there exists for every e > 0 a
homotopy of pairs (Ji, ft) (t € [0,1]), where J; is an almost complex structure on
X and fi: X =Y is a continuous map, satisfying the following:

(i) Ji agrees with Jy = J in a neighborhood of AU K for all t € [0,1],

(ii) Jy is integrable in a neighborhood of AU L,

(iii) L is a strongly Ji-pseudoconver domain with Ji-Stein interior and K is
J1-holomorphically conver in L,

(iv) fo=f and fi|a = f|a for each t € [0,1],

(v) for everyt € [0,1] the map f; is J-holomorphic in a neighborhood of K and
satisfies sup,cx dy (fi(z), f(z)) <€, and

(vi) the map f1: X = Y is Ji-holomorphic in a neighborhood of L.

If J is integrable on X then all structures J; (t € [0,1]) can be chosen integrable.

The situation is illustrated on fig. 1: J is integrable in U D AU K (shown with
the dashed line), f|4 is holomorphic with respect to the complex structure induced
by Jx, and f is J-holomorphic in a neighborhood of K. The pair (Ji, f1) enjoys
the analogous properties on the larger set L.

Proof. We may assume that K = {p < —1} and L = {p < 0}.

The set K, being strongly J-pseudoconvex with a J-Stein interior, admits a basis
of J-Stein neighborhoods. Also, since K is Jx-holomorphically convex in X and
J = Jx in a neighborhood of A, it follows that A N K is holomorphically convex
in A with respect to the complex structure on A induced by J. Theorem 2.1 in
[5], applied to the set AU K in the complex manifold (U, J|r), shows that A U K
admits a fundamental basis of open J-Stein neighborhoods V; C U such that K
is J-holomorphically convex in Vj. Replacing U by such a neighborhood we shall
assume that U is J-Stein and K is H(U, J)-convex.
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FIGURE 1. The main lemma.

Theorem 3.1 in the same paper [5] furnishes a J-holomorphic map f': U’ — Y in
an open neighborhood U’ C U of AU K such that f'|4 = f|a, f'|k is uniformly as
close as desired to f|k, and f' is homotopic to f by a homotopy which is fixed on A
and consists of maps that are holomorphic in a neighborhood of K and uniformly
closeto f on K. (The size of U’ depends on the desired rate of approximation of f|x
by f'|k .) Using this homotopy we can patch f' with f outside a suitably chosen
neighborhood of A U K without changing f’ sufficiently close to AU K. Replacing
f by this new map f’ and shrinking the neighborhood U D AUK we may therefore
assume that the map f: X — Y is J-holomorphic in a J-Stein domain U D AUK.

Let ¢1, ..., 9, be Jx-holomorphic functions on X such that
A={ze X: g (z)=0,...,9.(x) =0}.
We may assume that 37_, |g;]* < 1 on K. For every § > 0 the function

.
05 =+ 1)+ 5105 (Yoo
j=1
is strongly Jx-plurisubharmonic on X, ¢s < 0 on K, and A = {¢s = —o0}. A
generic choice of § insures that £5 = {z € L: ¢5(z) = 0} is a smooth strongly
Jx-pseudoconvex hypersurface intersecting bL transversely.

We wish to smoothen the corner of the set {z € L: ¢5(x) < 0} along X5 NbL so
that the new domain will have J-Stein interior and smooth strongly J-pseudoconvex
boundary. Let 75 = rmaxz(p,¢s), where rmaz denotes a regularized maximum
function (see lemma 5 in [2]). The function 75 is smooth and strongly Jx-pluri-
subharmonic on X (since rmaz preserves this property), it equals p near A (since
¢5la = —o0), and equals ¢s on {x € L: ¢5 > 0} (since p < 0 on L). The set
Es; = {z € L: 75(z) < 0} has smooth strongly Jx-pseudoconvex boundary which
coincides with bL in a neighborhood of ANbL, and it coincides with X5 in {p < ¢}
for some ¢ < 0 close to 0. (The set Ej is shown as Dy in fig. 2 below.) We have
K C IntEjs for every § > 0. As § decreases to 0, Es shrinks down to K U(ANL).

We claim that for a sufficiently small 6 > 0 the set Es has J-Stein interior
and strongly J-pseudoconvex boundary bEj. Since Ej is contained in the J-Stein
manifold U, it suffices to verify the latter property; the first one will then follow
from the general theory. Recall that J = Jx in an open set V' O A. The part
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of bEs which belongs to V is strongly J-pseudoconvex since J = Jx in V. The
remaining part bEs N (L\V) converges to bK\V in the C* topology as § decreases
to 0 as is seen from the definition of ¢s. Since bK is strongly J-pseudoconvex by
the assumption, it follows that bEs\V is also such provided that 6 > 0 is chosen
sufficiently small. This establishes the claim.

We now fix a § > 0 satisfying the above requirements and drop the § from our
notation; thus 7 = 75 and E5 = E. For t € [0, 1] we set

pe=1—-t)T+tp, Dy={z € X:pz) <0}

The function p;, being a convex combination of two strongly Jx-plurisubharmonic
functions pg = 7 and p; = p, is itself strongly Jx-plurisubharmonic. The sets
D, are strongly Jx-pseudoconvex with smooth boundaries, except at points where
dpy =0. We have E = Dy C Dy C Dy = L for every t € [0,1]; as t increases from 0
to 1, Dy monotonically increases from Dg to Dy = L (fig. 2).

FIGURE 2. The sets Dy = {p; < 0}.

Our next goal is to show that the domain L = D; can be obtained (up to a
diffeomorphism) from the domain Dy by attaching handles of indices < n. To this
end we investigate the singular points of the hypersurfaces bD; = {p; = 0} for
t € [0,1]. By the construction, all these boundaries coincide on {p = 0,7 = 0} =
bL N bDy which is a relative neighborhood of A NbL in bL. Since the boundaries
bDy = {r = 0} and bL = {p = 0} are smooth, all nonsmooth points of bD, are
contained in the open set Q = {p < 0, 7 > 0} = IntL\Dy. The defining equation
of D;NQis 7 < t(7 — p) and, after dividing by 7 — p > 0,

Dtﬂﬂz{xeﬂ:a(x)=%<t}.

The critical point equation do = 0 is equivalent to

(t — p)dr — 7(dt — dp) = Tdp — pdT = 0.
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Generic choices of p and 7 insure that these equations have at most finitely many
solutions p1,...,pm € Q, all nondegenerate (Morse) and belonging to pairwise
distinct level sets of o, and there are no solution on bf). A calculation gives the
following relationship between the Levi forms of these functions at a critical point
p; of o:

(7(03) = p(81))* Lo (ps) = T(0) L0 (05) — p(0}) £+ (p;).
(In local holomorphic coordinates z = (z1,...,2,) at p, and with w € C*, we
have £, (p)-w = 37—, az‘?—gzk(p)wjﬁk, and L, (p) > 0 means that this expression
is positive for every w # 0.) Since 7(p;) > 0, —p(p;) > 0 and the functions 7
and o are strongly plurisubharmonic, we obtain £, (p;) > 0. It follows that the
Morse index of ¢ at p; is < n = dim¢ X. (If not, the R-linear subspace of T}, X
corresponding to all negative eigenvalues of the real Hessian of o at p; would have
real dimension at least m + 1 and hence would contain a complex line A C T, X;
the restriction of £, (p;) to this line would therefore be negative, a contradiction.)

Choose numbers tp = 0 < t; < t2 < ... < t,, = 1 which are regular values
of o] such that ¢ has exactly one critical point p; € Q with t;_1 < p(p;) < ¢;
for j =1,2,...,m. Let k; denote the Morse index of o at p;; we have seen that
k;j < n for all j. By Morse theory [20] the domain Dy, is diffeomorphic to a smooth
handlebody obtained by attaching a handle of index k; to Dy;_, and smoothing the
corners (fig. 3).

core M

FIGURE 3. A handlebody D.

Recall that a k-handle attached to a compact smoothly bounded domain D C X
is a diffeomorphic image of Ay x Ag,_; C RF x R2*»~% where Aj denotes the
closed unit ball in R¥. The set bAg x Ag,_p = S¥1 x As,_; gets attached to
bD, the image of Ay x {0}?"~* is called the core disc (or simply the core) of the
handle, and the union of D with the handle, suitably smoothed at the corners, is a
handlebody D shown on fig. 3. (In practice one often glues a handle to a thickening
of D.) The Morse theory [20] tells us that every smooth manifold is obtained by
successive gluing of handles, i.e., it admits a handlebody decomposition.

We are now ready to complete the proof of lemma 2.1. Define Wy := Dy. By
what has been said, Dy, is diffeomorphic to a handlebody W; C X obtained by
attaching to Wy a handle of index k;. Since W) is strongly J-pseudoconvex and
k; < n # 2, Eliashberg’s results from [3] show that the core disc M of the handle



DEFORMATIONS OF STEIN STRUCTURES 7

can be chosen J-totally real in X and such that its boundary sphere bM is a J-
Legendrian (complex tangential) submanifold of bWy. (See lemma 3.1 in [7] for
further details of this construction. It is here that the hypothesis dim¢ X # 2 is
needed; in the exceptional case dim¢ X # 2 and k; = 2 it is in general impossible
to find an embedded totally real core disc M for the 2-handle as shown by the gauge
theory; see [3], [10] and [7]. We shall discuss this in §4 below.)

After a small homotopic deformation of J in a neighborhood of the core disc
M away from Wy we can make J integrable near Wy U M, and the handlebody
W1 (a thickening of Wy U M) can be chosen such that bW, is smooth strongly J-
pseudoconvex, IntW; is J-Stein, and Wy is J-holomorphically convex in W;. If the
complex structure J is already integrable on X then the same can be accomplished
without a homotopic correction of J as was shown in [3] and [7].

In addition, lemma 5.1 in [7] shows that we can choose W; sufficiently thin
around Wy U M such that there exists a map g;: X — Y which is J-holomorphic
in a neighborhood of W; and satisfies the following properties:

(a) SUPgew, dy (f(m),gl(w)) < %7

(b) gila = fla,

(c) g1 is homotopic to f by a homotopy {g:}+cjo,1] consisting of maps defined
near W; which agree with f on A, they are holomorphic in a neighborhood

of Wy, and each of them is ;--close to f on Wj.

To obtain the interpolation conditions in (b) and (c) (which are not included
in lemma 5.1 in [7]) the reader should observe that the proof of that lemma relies
on theorem 3.2 in [5], p. 1924, which includes interpolation of the given map on a
complex subvariety.

Using the homotopy {g:} we can patch all these maps with f outside a certain
neighborhood of Wy in order to get a homotopy of global maps X — Y.

We now proceed to the next set D;,. By the same argument as above, Dy, is
diffeomorphic to a handlebody obtained from Dy, by attaching a handle of index k.
As Dy, is diffeomorphic to Wy, Dy, is also diffeomorphic to a handlebody W C Dy,
obtained by attaching a handle of index k2 to W;. By repeating the above argu-
ments we modify J near the core (J-totally real) disc of the handle and then choose
W, to be strongly J-pseudoconvex, with J-Stein interior, and such that W; is J-
holomorphically convex in Ws. After shrinking W> around the union of W; with the
core of the handle we also get a map g»: X — Y which is holomorphic in a neigh-
borhood of W, it agrees with f on A, it satisfies sup,cw, dy (92(),91(2)) < £,
and is homotopic to g1 by a homotopy {g:}:+c[1,2) Which is fixed on A, holomorphic
near W; and uniformly .*-close to g1 on W;.

Continuing inductively we obtain after m steps a a handlebody W,,, C L which is
diffeomorphic to L, with an almost complex structure J (homotopic to the original
one) which is integrable in a neighborhood of Wy, such that W, is strongly J-
pseudoconvex with J-Stein interior; we also obtain a map g¢,,: X — Y which is
J-holomorphic in a neighborhood of W,,, it agrees with f on A, and it satisfies
SUp,ep, dy (f(2), gm(x)) < e. Furthermore, there is a homotopy of maps X — Y
from f to g, which is fixed on A, each map in the family is holomorphic in a
neighborhood of Do and uniformly e-close to f on Dg (and hence on K).

Our construction of the handlebodies W1, ..., W,, insures that there is a dif-
feomorphism h: X — X such that h(L) = W,, and h is diffeotopic to idx by a
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diffeotopy that is fixed in an open neighborhood of A U K. (We may even insure
that h(Dtj) = Wj for ] = 0, 1, .. .,m.)

Let J, = h*(J) (i-e., dhoJy = Jodh) and f; = g, o h: X — Y. The almost
complex structure J; is integrable in a neighborhood of AU L (since J is integrable
near Wp,), and J; coincides with J (and hence with Jx) near the subvariety A (since
h is the identity near A). If {hs}4c[0,1) is a diffeotopy on X from ho = idx to hy = h
which is fixed near A then J; = h}(J) is a homotopy of almost complex structures
which is fixed in a neighborhood of A and connects Jo = J to Jy. If J is integrable on
X then so is J; for every t € [0, 1] since conjugation by a diffeomorphism preserves
integrability. This verifies properties (i) and (ii) in lemma 2.1.

By the construction the set L = h=1(W,,) is strongly J;-pseudoconvex and has
J1-Stein interior (since W, enjoys these properties with respect to the structure
J). Since W; was chosen J-holomorphically convex in W4, for j =0,1,...,m—1
and K is J-holomorphically convex in U and hence in Wy, we see that K is J-

holomorphically convex in W,,,; hence K is Ji-holomorhically convex in L and (iii)
holds.

The map fi = gm o h™': X — Y is Ji-holomorphic in a neighborhood of L
(since gy, is J-holomorphic in a neighborhood of W,,, = h(L)), so (vi) holds. By the
construction we also have sup,¢ g dy (f(2), f1(z)) < e. A homotopy from f = f,
to fi satisfying properties (iv) and (v) is obtained by combining the individual
homotopies obtained in the construction. This completes the proof. O

Remark 2.2. H. Hamm proved in [14] and [15] that for every n-dimensional Stein
space X and closed complex subvariety A C X the pair (X, A) is homotopically
equivalent to a relative CW complex of dimension < n = dim¢ X. (The absolute
version with A = (J is a well known theorem of Lefshetz [19], Abraham and Fraenkel
[1] and Milnor [20].) In his proof Hamm used Morse theory for manifolds with
boundary. The essential step is the following (see [15], pp. 2-5):

Assume that X is an n-dimensional Stein space, A C X is a closed complex
subvariety and X\ A is regular (without singularities). Let K C L be sublevel sets
of a real analytic, strongly plurisubharmonic Morse exhaustion function on X. Then
(ANL)UK admits a thickening D C L such that AU L is obtained from AUD by
attaching handles of index < n.

The geometric device in the proof of our lemma 2.1 (using the family of domains
D, which increase from Dy to D; = L) accomplishes this step by only using the
classical Morse theory for manifolds without boundary.

3. PROOF OF THEOREMS 1.1 AND 1.2

Theorem 1.1 follows from the following more precise result.

Theorem 3.1. Let (X, Jx) be a Stein manifold with dim¢ X # 2, let K C X be a
compact H(X, Jx)-convexr subset with smooth strongly Jx-pseudoconvex boundary,
and let A C X be a closed complex subvariety of X. Assume that J is an almost
complex structure on X which is integrable in an open neighborhood of AU K, it
agrees with Jx in a neighborhood of A, and such that K is a strongly J-pseudoconvex
with J-Stein interior. Let Y be a complex manifold with a distance function dy
induced by a Riemannian metric.
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Given a continuous map f: X — Y which is J-holomorphic in a neighborhood
of K and such that fla: A — Y is holomorphic, there exists for every e > 0 a
homotopy of pairs (Ji, ft) (t € [0,1]), where Jy is an almost complex structure on
X and fi: X =Y is a continuous map, satisfying the following:

(i) Jo = J, and J; agrees with J in a neighborhood of AUK for everyt € [0,1],
(i) the structure Jy is integrable Stein on X and K is H(X, J1)-convez,

(i) fo=f, and fula = f|a for everyt € [0,1],

(iv) for each t € [0,1] the map f; is J-holomorphic in a neighborhood of K and

satisfies sup,c g dy (f:(z), f(z)) <€, and
(v) the map f1: X =Y is Ji-holomorphic.

If J is integrable on X then J; can be chosen integrable for every t € [0,1].

We emphasize that the almost complex structure J on X is not assumed to be
integrable except near A U K, and it need not be homotopic to Jx.

Theorem 1.1 corresponds to the special case K = () and J = Jx in theorem 3.1.

Proof. Choose a smooth strongly Jx -plurisubharmonic exhaustion function p: X —
R such that K = {z € X: p(z) <0} and dp # 0 on bK = {p = 0}. (Such p exists
since K is strongly Jx-pseudoconvex and H (X, Jx)-convex.)

Choose a sequence ¢g = 0 < ¢1 < c2... consisting of regular values of p, with
lim; o0 ¢j = +00. Let K; = {z € X: p(z) < ¢;}. Set fo = f and Jo = J. Applying
lemma 2.1 we inductively construct sequences of maps f;: X — Y and of almost
complex structures J; satisfying the following for j = 1,2,...:

(a) J; is integrable in a neighborhood of AU K, it agrees with Jx in a neigh-
borhood of A, and it agrees with J;_; in a neighborhood of K;_,
(b) Kj is strongly J;-pseudoconvex with J;-Stein interior, and K;_; is Jj-
holomorphically convex in Kj,
(c) there is a homotopy of almost complex structures J;, (s € [0,1]), with
Jjo = Jj—1 and J; 1 = J;, which is fixed in a neighborhood of AU K;_;,
(d) the map f;: X — Y is J;-holomorphic in a neighborhood of K; and f;|4 =
fla, and
(e) there is a homotopy f;s: X =Y (s € [0,1]) which is fixed on A such that
fi0 = fi—1, fj,1 = f;, and for every s € [0,1] the map f; ; is J;-holomorphic
in a neighborhood of K;_; and satisfies
sup dy (fj,s(2), fi—1(z)) <279 e
zeK;_1
Indeed, assuming that we have already constructed the above sequences up to
j — 1, it suffices to apply lemma 2.1 with K = K;_1, L =K, f = fj_1, J = Jj_1,
and € replaced by 277 !e to get the next complex structure .J; and the next map
f; satisfying the stated properties.
Condition (a) insures that J = lim;_, J; is an integrable complex structure on
X which agrees with J in a neighborhood of AUK'. Note that X is exhausted by the
sequence of strongly J-pseudoconvex domains K; with J-Stein interior. Property
(b) implies that K; is H(X, j)—convex for j = 0,1,2,... and hence the manifold
(X, J) is Stein. By combining the individual homotopies furnished by (c) we obtain

a homotopy of almost complex structures on X which connects J to J and is fixed
in a neighborhood of AU K.
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Properties (d) and (e) insure that the sequence f;: X — Y converges uniformly
on compacts in X to a j—holomorphic map f = lim;j_, fj: X — Y satisfying
fla = f|a and Sup, ek dy (f(m), f(z)) < e. Furthermore, condition (e) implies that
the homotopies f; s (s € [0,1],7 =1,2,...) can be assembled into a homotopy from
f to fwhich is fixed on A, holomorphic on K, and e-close to f on K.

Changing the notation so that J is denoted J; and f is denoted f; we obtain
the conclusion of theorem 3.1. a

Remark 3.2. The Stein structure Jx on X was used in the above proof only
to insure that for every j = 1,2,... there is a thickening D;_; C K of the set
K;_1U(ANKj) such that AUK; is obtained (up to a diffeomorphism) by attaching
handles of index < dim¢ X to AUD;_4. (In the proof of lemma 2.1 this was shown
using the notation K; = L, K; 1 = K and Dj 1 = Dy.) This leads to a proof of
theorem 1.1 under the weaker conditions that (X, J) is an almost complex manifold
of real dimension 2n # 4 such that J is integrable in a neighborhood of a closed
Stein subvariety A C X, and X is exhausted by an increasing sequence of compact
strongly J-pseudoconvex domains Ko C Ki C ... C Uj2,K; = X such that every
pair (AU K;, AU K;_1) satisfies the above topological condition.

Proof of theorem 1.2. We shall use the same tools as in the proof of theorem
3.1, but will change the induction procedure. Unlike in theorem 3.1, the complex
structure on X will be unchanged during the entire proof.

Let Ko C K1 C--- CUZ(K; = X be an exhaustion of X by compact, smoothly
bounded, strongly pseudoconvex sets as in the proof of theorem 3.1. Set fo = f.
We shall assume that fq is holomorphic in a neighborhood of Ky (choosing Ky =
if so desired.) Let dy be a distance function on Y.

Given an € > 0 we shall inductively construct a sequence of compact, smoothly
bounded, strongly pseudoconvex sets d = O_; C Oy C O; C ... C X, a sequence of
smooth diffeomorphisms h;: X — X, and a sequence of maps f;: X — Y satisfying
the following properties for j =1,2,...:

(i) h;(K;) = Oj, and h; is diffeotopic to h;_1 by a diffeotopy which is fixed in

a neighborhood of AU K;_;,

(i) O;—1 is holomorphically convex in O;,

(ili) f; is holomorphic in an open neighborhood of O; and satisfies fj|4 = f|a,
(iv) there is a homotopy fjs: X — Y (s € [0,1]) such that f;o = f;_1,
fix = fj, the homotopy is fixed on A, each map f; is holomorphic in

a neighborhood of O;_1, and

sup dY(fj,s(m)afjfl(x)) < 2_j_167 s € [07 1]
z€0j-1

We begin by setting Op = Ko, ho = idx and fo s = fo for all s € [0,1]. Suppose
inductively that we have already constructed our sequences up to an index j € Z;
thus the map f;: X — Y is holomorphic on A and in an open neighborhood of O;.
Property (i) implies that h; equals the identity map in a neighborhood of AU K.
Hence O; N A = K; N A, and this set is holomorphically convex in A since K; is
H(X)-convex. The set Oj, being strongly pseudoconvex, admits a basis of open
Stein (strongly pseudoconvex) neighborhoods in X. In this situation theorem 3.1
in [5] applies and furnishes a map f;: X — Y which is holomorphic in an open
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neighborhood V; D AUQO; and which approximates f; as close as desired uniformly
on O;. Replacing f; by f]’- we may therefore assume that f; is holomorphic in an
open set V; D AU O;.

Applying lemma 2.1 with f = f;, K = K; and L = K we find a compact
domain D; C Kj, with strongly pseudoconvex boundary (denoted Dy in lemma
2.1) such that (AN Kj41) UK; C D;, K;y; is obtained from D; by attaching
finitely many handles of index < n = dim¢ X, and h;(D;) C V;. The last inclusion
is trivially satisfied in a neighborhood of A where h; coincides with the identity
map, while outside this neighborhood D; can be chosen as close as desired to Kj;
since h;(K;) = O; C V}, the inclusion follows.

Set O} = h;(D;). If the above approximations were chosen sufficiently close
then O;- is a compact set with smooth strongly pseudoconvex boundary (since bO;
coincides with bD; near the subvariety A, and elsewhere b0} is C*°-close to the
strongly pseudoconvex hypersurface h;(bK;) = bO;). Note that O; is holomorphi-
cally convex in O;- provided that D; is chosen in a sufficiently small neighborhood
of (AN Kj11) UK. Applying the diffecomorphism h; to the above sets we see that
h;(Kj+1) is diffeomorphic to a handlebody O, obtained from O} = h;(D;) by
attaching finitely many handles of index < n.

We now proceed as in the proof of theorem 3.1. By Lemma 5.1 in [7] the above
handles can be chosen such that the resulting handlebody O;41 has smooth strongly
pseudoconvex boundary, O;- is holomorphically convex in O;41, and there is a map
fi+1: X = Y which is holomorphic in a neighborhood of Oj.1, it agrees with
fj on A, and sup,co, dy (fi+1(z), fi(z)) < 2777 2¢. The same lemma provides a
homotopy from f; to f;41 satisfying property (iv) for the index j + 1.

Since Oj41 is constructed from O;- by using the topological data provided by
the pair D; C K1 and all handles used in the construction of O;41 are contained
in X\A, there exists a diffeomorphism g;: X — X which maps h;(K;41) onto
Oj+1 and which is diffeotopic to idx by a diffeotopy which is fixed (equal the
identity map) in a neighborhood of AU O}. The map hji1 = gjoh;: X — X is
a diffeomorphism of X which maps K;;, onto O;41 and is diffeotopic to h; by a
diffeotopy which is fixed near AU K;. The induction may now continue.

Properties (i)—(iv) insure that 2 = U32,0; C X is a Stein domain which contains
AU Ky, the sequence f; converges uniformly on compacts in ) to a holomorphic
map f = lim;j_, fj: @ —= Y satisfying fla = f|a and sup, g, dy (f(:v),f(x)) <e.
Also, there is a homotopy of maps 2 — Y from f|g to f which is holomorphic
on Ky and e-close to fo on Ky. Property (i) also gives a diffeomorphism h =
limj o hj: X — h(X) = Q which is diffeotopic to idx and equals the identity
map in a neighborhood of A. It follows that the map f~o h: X — Y is homotopic
to f, thereby completing the proof of theorem 1.2.

4. THE CASE dim¢c X = 2

The proof of lemma 2.1 (and hence of theorems 1.1 and 1.2) breaks down when X
is a Stein surface (dim¢ X = 2), the reason being that a certain framing obstruction
may arise when trying to attach a 2-handle with an embedded, totally real core disc,
attached along a Legendrian knot to a given strongly pseudoconvex boundary in
X. This obstruction in the proof has been pointed out by Eliashberg [3], and it was
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subsequently confirmed by results of the Seiberg-Witten theory that it cannot be
removed in general. In particular, there exist smooth, orientable, almost complex
4-manifolds (X, J) with a handlebody decomposition without handles of index > 2
which do not admit any Stein structure; perhaps the simplest such example is
the manifold X = $2 x R2 = CP! x C. (Many other examples can be found in
[10].) A precise obstruction for the existence of a Stein structure is provided by
the generalized adjunction inequality which states that for every closed, orientable,
smoothly embedded 2-surface S in a Stein manifold X, with the only exception of
a null-homologous 2-sphere, we have

[S]? + le1 (X)- 8] < =x(S).

(See Chapter 11 in [12], or [23], for a proof, references to the original papers and
further results.)

On the other hand, Gompf proved that there always exist exotic Stein structures
on any such 4-manifold X [10], [11]. More precisely, given a smooth, almost com-
plex 4-manifold (X, J) with a Morse exhaustion function without critical points of
Morse index > 2, there exist a Stein surface (X', J') and an orientation preserving
homeomorphism h: X — X' such that the class determined by the almost complex
structure J' via h agrees with the class of J (see [10]).

Keeping the same hypotheses on (X, J), the authors have shown in §7 of [7]
that for any continuous map f: X — Y to a complex manifold Y, a Stein surface
(X', J") and a homeomorphism h: X — X' in Gompf’s theorem can be chosen
such that there exists a J'-holomorphic map f': X' — Y with the property that
the map f = f'oh: X — Y is homotopic to f. If in addition the almost complex
structure J on X is integrable (not necessarily Stein), one can realize such (X', J')
as an open J-Stein domain @ C X which is homeomorphic to X (theorem 1.2 in
[7]; without considering mappings this is again due to Gompf [11]).

The constructions in [10], [11] and [7] use kinky discs and Casson handles at
every place where a framing obstruction arises in the construction, together with
the famous result of Freedman to the effect that a Casson handle is homeomorphic
to a standard index two handle Ay x Ay C R* [§], [9]. By using the same tools,
together with the methods explained in this paper, one can prove the following
interpolation theorem which is the analogue of theorem 1.2 in the case dim¢ X = 2.

Theorem 4.1. Let X be a Stein surface and A C X a closed complex subvariety.
Given a continuous map f: X = Y to a complexr manifoldY such that fla: A=Y
is holomorphic, there exist a Stein domain Q C X containing A, a holomorphic
map f: Q =Y, and an orientation preserving homeomorphism h: X — Q which
is homeotopic to idx by a homeotopy that is fived on a neighborhood A, such that
the map foh: X =Y is homotopic to [ relative to A.

This is proved by modifying the proof of theorem 1.2 in §3 above, where the
necessary modification is explained in details in the proof of theorem 1.2 in [7] (p.
32 in §7 of [7]). To avoid unnecessary repetitions we shall indicate the essential
point of this modification and refer the reader to [7] for further details.

Let J denote the Stein structure on X. We assume the notation used in the
proof of theorem 1.2 in §3 above. In that proof it is explained how one obtains a
strongly pseudoconvex handlebody O,: by attaching handles of index < n to a
strongly pseudoconvex domain Oj. Each of the handles must have an embedded
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totally real core disc, attached to the previous strongly pseudoconvex hypersurface
along a Legendrian knot; this enables us to choose the next handlebody to be
strongly pseudoconvex, and to approximate the holomorphic map by a map which
is holomorphic on a neighborhood of the new (larger) handlebody.

When dim¢ X = 2, a framing problem may arise for handles of index 2, and a
required totally real core disc M does not exist in general. As explained in [7] (and
before that in [10]), the problem can be resolved by choosing an embedded core disc
M which is attached to the given strongly pseudoconvex domain W C X along a
Legendrian knot bM C bW, and then adding finitely many (positive) kinks to M.
More precisely, we remove from M finitely many small pairwise disjoint discs and
glue along each of the resulting circles an immersed disc with one positive double
point. (Fig. 4, borrowed from [7], shows a kink with a trivializing disc A which will
be attached at the next step in order to cancel the superfluous loop at the double
point p. A model kink used in [7] is provided by an explicit immersed Lagrangian
sphere in C? due to Weinstein [24].)

kink

FIGURE 4. A kinky disc M with a trivializing 2-cell A

As explained in [7], kinking the core disc sufficiently many times gives an im-
mersed disc which can be deformed to a totally real immersed disc M’ C X \IntW,
attached to bW along a Legendrian knot bM' C bW. It is then possible to find a
thin strongly pseudoconvex neighborhood W' € X of W U M’ and a holomorphic
map W' — Y which approximates the given initial map f: X — Y uniformly on
W (see [7]). The manifold W' does not have the correct topology (it is not even
homeomorphic to the domain obtained by attaching to W a standard handle with
an embedded core disc). The problem is corrected in the next stage of the con-
struction by attaching to W' a trivializing 2-disc A at each of the kinky points
in order to cancel the extra loop. Unfortunately the framing obstruction arises at
this disc as well, requiring us to place another kink on A which will require a new
trivializing disc, etc. The ensuing procedure is always infinite, it can be carried out
in a small neighborhood of the initial kinky point in M, and (the good point!) it
converges to an attached Casson handle which is homeomorphic to the standard
2-handle Ay x Ay (Freedman [8], [9]). Performing this construction inside the Stein
manifold X gives a Stein domain 2 C X which is homeomorphic, but in general
not diffeomorphic to X due to the presence of Casson handles. A more precise
description of this construction can be found in [7] (and also in [11] if one is not
interested in holomorphic maps). To insure that 2 contains the given subvariety
A C X we follow the proof of theorem 1.2 with these modifications.
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