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Abstract

We present an algorithm for finding shortest surface non-separating cycles in graphs
embedded on surfaces in O(g3/2V 3/2 log V + g5/2V 1/2) time, where V is the number of
vertices in the graph and g is the genus of the surface. If g = o(V 1/3−ε), this represents
a considerable improvement over previous results by Thomassen, and Erickson and Har-
Peled. We also give algorithms to find a shortest non-contractible cycle in O(gO(g)V 3/2)
time, which improves previous results for fixed genus.

This result can be applied for computing the (non-separating) face-width of embedded
graphs. Using similar ideas we provide the first near-linear running time algorithm for
computing the face-width of a graph embedded on the projective plane, and an algorithm
to find the face-width of embedded toroidal graphs in O(V 5/4 log V ) time.

1 Introduction

Cutting a surface for reducing its topological complexity is a common technique used in geomet-
ric computing and topological graph theory. Erickson and Har-Peled [9] discuss the relevance
of cutting a surface to get a topological disk in computer graphics. Colin de Verdière [5] de-
scribes applications that algorithmical problems involving curves on topological surfaces have
in other fields.

Many results in topological graph theory rely on the concept of face-width, sometimes
called representativity, which is a parameter that quantifies local planarity and density of
embeddings. The face-width is closely related to the edge-width, the minimum number of
vertices of any shortest non-contractible cycle of an embedded graph [20]. Among some relevant
applications, face-width plays a fundamental role in the graph minors theory of Robertson and
Seymour, and large face-width implies that there exists a collection of cycles that are far apart
from each other, and after cutting along them, a planar graph is obtained. By doing so,
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many computational problems for locally planar graphs on general surfaces can be reduced
to corresponding problems on planar graphs. See [20, Chapter 5] for further details. The
efficiency of algorithmical counterparts of several of these results passes through the efficient
computation of face-width.

The same can be said for the non-separating counterparts of the width parameters, where
the surface non-separating (i.e., nonzero-homologous) cycles are considered instead of non-
contractible ones. In this work, we focus on what may be considered the most natural problem
for graphs embedded on surfaces: finding a shortest non-contractible and a shortest surface
non-separating cycle. Our results give polynomial-time improvements over previous algorithms
for low-genus embeddings of graphs (in the non-separating case) or for embeddings of graphs
in a fixed surface (in the non-contractible case). In particular, we improve previous algorithms
for computing the face-width and the edge-width of embedded graphs. In our approach, we
reduce the problem to that of computing the distance between a few pairs of vertices, what
some authors have called the k-pairs shortest path problem.

1.1 Overview of the results

Let G be a graph with V vertices and E edges embedded on a (possibly non-orientable) surface
Σ of genus g, and with positive weights on the edges, representing edge-lengths. Our main
contributions are the following:

• We find a shortest surface non-separating cycle of G in O(g3/2V 3/2 log V + g5/2V 1/2)
time, or O(g3/2V 3/2) if g = O(V 1−ε) for some constant ε > 0. This result relies on a
characterization of the surface non-separating cycles given in Section 4. The algorithmical
implications of this characterization are described in Section 5.

• For any fixed surface, we find a shortest non-contractible cycle in O(V 3/2) time. This is
achieved by considering a small portion of the universal cover. See Section 6.

• We compute the non-separating face-width and edge-width of G in O(g3/2V 3/2+g5/2V 1/2)
time. For fixed surfaces, we can also compute the face-width and edge-width of G in
O(V 3/2) time. These are particular cases of the results mentioned in the previous para-
graphs where a log factor can be shaved off. See Section 7.

• For graphs embedded on the projective plane or the torus we can compute the face-width
in near-linear or O(V 5/4 log V ) time, respectively. This is described in Sections 7.2 and
7.3.

Although the general approach is common in all our results, the details are quite different
for each case. The overview of the technique is as follows. We find a set of generators either
for the first homology group (in the non-separating case) or the fundamental group (in the
non-contractible case) that is made of a few geodesic paths. It is then possible to show that
shortest cycles we are interested in (non-separating or non-contractible ones) intersect these
generators according to certain patterns, and this allows us to reduce the problem to computing
distances between pairs of vertices in associated graphs.

The paper is organized as follows. The remaining of this section describes the most relevant
related work, and in Section 2 we introduce the basic background. In Section 3 we describe
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results on the k-pairs distance problem that we use later on. The rest of the sections are as
described above; we conclude in Section 8.

1.2 Related previous work

Thomassen [23] was the first to give a polynomial time algorithm for finding a shortest non-
separating and a shortest non-contractible cycle in a graph on a surface; see also [20, Chapter 4].
Although Thomassen does not claim any specific running time, his algorithm tries a quadratic
number of cycles, and for each one it has to decide if it is non-separating or non-contractible.
This yields a rough estimate O(V (V + g)2) for its running time. More generally, his algorithm
can be used for computing in polynomial time a shortest cycle in any class C of cycles that
satisfy the so-called 3-path-condition: if u, v are vertices of G and P1, P2, P3 are internally
disjoint paths joining u and v, and if two of the three cycles Ci,j = Pi ∪ Pj (i 6= j) are not in
C, then also the third one is not in C. The class of one-sided cycles for embedded graphs is
another relevant family of cycles that satisfy the 3-path-condition.

Erickson and Har-Peled [9] considered the problem of computing a planarizing subgraph
of minimum length, that is, a subgraph C ⊆ G of minimum length such that Σ \ C is a
topological disk. They show that the problem is NP-hard when genus is not fixed, provide a
polynomial time algorithm for fixed surfaces, and provide efficient approximation algorithms.
More relevant for our work, they show that a shortest non-contractible (resp. non-separating)
loop through a fixed vertex can be computed in O(V log V + g) (resp. O((V + g) log V ))
time, and that a shortest non-contractible (resp. non-separating) cycle can be computed in
O(V 2 log V + V g) (resp. O(V (V + g) log V )) time. They also provide an algorithm that in
O(g(V + g) log V ) time finds a non-separating (or non-contractible) cycle whose length is at
most twice the length of a shortest one.

Several other algorithmical problems for graphs embedded on surfaces have been considered.
Colin de Verdière and Lazarus [7] considered the problem of finding a shortest cycle in a
given homotopy class, as well as a system of loops homotopic to a given one. Under some
realistic assumption on the edge-lengths, they provide polynomial time algorithms for both
problems. The same authors have also given polynomial time algorithms for finding optimal
pants decompositions [6].

Eppstein [8] discusses how to use the tree-cotree partition for dynamically maintaining
properties from a graph under several operations. For example, he can maintain the minimum
and maximum spanning tree under edge insertions, edge deletions, and edge reweightings.

Very recently, Erickson and Whittlesey [10] have shown that the greedy homotopy gener-
ators through a fixed basepoint determine a shortest set of loops generating the fundamen-
tal group. They can compute this optimal system of loops and represent it implicitly in
O((V + g) log V ) time; an explicit representation may need Θ(gV ) space. Other known re-
sults for curves embedded on topological surfaces include [2, 3, 18, 24]; see also [21, 22] and
references therein.

2 Background

We describe the topological and graph-theoretical background assumed through the paper.
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Topology. We consider surfaces Σ that are connected, compact, Hausdorff topological spaces
in which each point has a neighborhood that is homeomorphic to R

2. In particular, we only
consider surfaces without boundary. A loop is a continuous function of the circle S1 in Σ.
Two loops are homotopic if there is a continuous deformation of one onto the other, that is,
if there is a continuous function from the cylinder S1 × [0, 1] to Σ such that each boundary
of the cylinder is mapped to one of the loops. A loop is contractible if it is homotopic to a
constant (a loop whose image is a single point); otherwise it is non-contractible. A loop is
surface separating (or zero-homologous) if it can be expressed as the symmetric difference of
boundaries of topological disks embedded in Σ; otherwise it is non-separating. In particular,
any non-separating loop is a non-contractible loop. We refer to [13, Chapter 1] and to [20,
Chapter 4] for additional details.

Every graph, viewed as a 1-dimensional cell complex, determines a topological space and
we can speak of embeddings (continuous 1-1 maps) in surfaces. It is customary to consider
only 2-cell embeddings, in which every face (i.e., a connected component of the surface after we
remove the image of the graph) is homeomorphic to an open disk. Also in this paper we make
such a restriction and, henceforth, every embedding will be 2-cell. As shown in [20, Chapter
3], such embeddings admit a simple combinatorial description whose development is usually
attributed to Heffter, Edmonds, and Ringel. See also the next paragraph.

If G is a graph with V vertices, E edges, and is embedded in a surface Σ with F faces,
then Euler’s formula holds:

V − E + F = 2− g

where g is a nonnegative integer, called the (Euler) genus of Σ.
If Σ is orientable, then ḡ = 1

2g is also an integer, known as the genus of Σ. Since we will
meet the genus only in the O-notation, there will be no need to distinguish between g and ḡ.

Representation of embedded graphs. For computational purposes, an embedded graph
can be represented as described by Eppstein [8]. However, for our purposes, the Heffter-
Edmonds-Ringel representation will be used. It is enough to specify for each vertex v the
circular ordering of the edges emanating from v, where the ordering coincides with that on the
surface in a small disk neighbourhood of v. Additionally we need the signature λ(e) ∈ {+1,−1}
for each edge e ∈ E(G). The negative signature of e tells that the selected circular ordering
around vertices changes from clockwise to anti-clockwise when passing from one end of the
edge to the other. If the embedding is in an orientable surface, all the signatures can be made
positive, and there is no need to specify it. It is known that this representation uniquely
determines the embedding of G, up to homeomorphism. Knowing the circular ordering at each
vertex and the signatures, one can compute the set of facial walks in linear time. See [20,
Chapter 3] if more detail is needed.

We use V to denote the number of vertices in G, and g for the genus of the surface Σ. That
the graph G has Θ(V + g) edges follows from Euler’s formula and the fact that the number
of faces is at most 2

3E. Asymptotically, we may consider V + g as the measure of the size of
the input. Observe that this is different from the approach followed by some authors, where
n = V + E is used for the size of the graph.

We use the notation G C for the graph obtained by cutting the embedded graph G along
a cycle C. Each vertex v ∈ C gives rise to two vertices v′, v′′ in G C. If C is a two-sided
cycle, then it gives rise to two cycles C ′ and C ′′ in G C whose vertices are {v′ | v ∈ V (C)}
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and {v′′ | v ∈ V (C)}, respectively. If C is one-sided, then it gives rise to a cycle C ′ in
G C whose length is twice the length of C, in which each vertex v of C corresponds to two
diagonally opposite vertices v′, v′′ on C ′. Observe that if G is embedded in a surface Σ of Euler
genus g, then G C is naturally embedded in the surface obtained after cutting Σ along C and
then pasting disks to each of the boundaries that were created. The notation G C naturally
generalizes to G C, where C is a set of cycles.

Distances in graphs. In general, we consider simple graphs with non-negative edge-lengths,
that is, we have a function w : E → R

+ describing the length of the edges. In a graph G, a
walk is a sequence of vertices such that any two consecutive vertices are connected by an edge
in G; a path is a walk where all vertices are distinct; a loop is a walk where the first and last
vertex are the same; a cycle is a loop without repeated vertices; a segment is a subwalk. The
length of a walk is the sum of the weights of its edges, counted with multiplicity if they occur
on the walk more than once. Note that a shortest non-separating or non-contractible loop has
to be a cycle.

For two vertices u, v ∈ V (G), the distance in G, denoted dG(u, v), is the minimum length
of a path in G from u to v. A shortest-path tree from a vertex v is a tree T such that for any
vertex u we have dG(v, u) = dT (v, u). Since E = O(V +g), a shortest-path tree from any given
vertex can be computed in O(V log V + E) = O(V log V + g) time using Fibonacci heaps [12].
When g = O(V 1−ε) for any positive, fixed ε, then a shortest path tree can be constructed in
O(V ) time1.

In the special case that all the edge-lengths are equal to one, any breadth-first-search tree
is a shortest-path tree from the starting vertex, and can be computed in O(V + g) time.

Width of embeddings. The edge-width ew(G) (non-separating edge-width ew0(G)) of a
graph G embedded in a surface is defined as the minimum number of vertices in a non-
contractible (resp. surface non-separating) cycle. The face-width fw(G) (non-separating face-
width fw0(G)) is the smallest number k such that there exist facial walks W1, . . . ,Wk whose
union contains a non-contractible (resp. surface non-separating) cycle. Computing the (non-
separating) face-width is equivalent to computing the (non-separating) edge-width in the so-
called vertex-face incidence graph (see Section 7).

Model of computation We assume non-negative real edge-lengths, and our algorithms run
in the comparison based model of computation, that is, we only add and compare (sums of)
edge weights. For integer weights and word-RAM model of computation, some logarithmic
improvements may be possible. See the survey by Zwick [25] for a discussion.

3 k-pairs distance problem

Consider the k-pairs distance problem:

Given a graph G with positive edge-weights and k pairs (s1, t1), . . . , (sk, tk) of ver-
tices of G, compute the distances dG(si, ti) for i = 1, . . . , k.

1Eppstein [8] shows how to compute in linear time a separator S of size O(
√

gV ) = O(V 1−ε/2) for G such
that G − S is planar. The recursive subdivision that Henzinger et al. [14] require can then be obtained using
the division by Eppstein in the first level and then continue in each planar subpiece using their approach
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Djidjev [4] and Fakcharoenphol and Rao [11] (slightly improved by Klein [17] for non-
negative edge-lengths) describe data structures for shortest path queries in planar graphs. We
will need the following special case.

Lemma 1 For a planar graph of order V , the k-pairs distance problem can be solved in

(i) O(V 3/2 + k
√

V ) time, and in

(ii) O(V log2 V + k
√

V log2 V ) time.

Proof. For (i), use the data structure by Djidjev [4]: after O(V 3/2) time for preprocessing, a
distance query can be answered in O(

√
V ) time.

For (ii), use the data structure by Fakcharoenphol and Rao [11] with the quicker construc-
tion by Klein [17]: after O(V log2 V ) preprocessing time, a distance query can be answered in
O(
√

V log2 V ) time. �

For a graph G embedded on a surface of genus g, there exist a set S ⊂ V (G) of size O(
√

gV )
such that G−S is planar. It can be computed in time linear in the size of the graph [8]. Since
G− S is planar, we obtain the following result.

Lemma 2 Let G be a graph embedded on a surface of genus g. The k-pairs distance problem
can be solved in O(

√
gV (V log V + g + k)) time, and in O(

√
gV (V + k)) time if g = O(V 1−ε)

for some ε > 0.

Proof. We compute in O(V +g) time a vertex set S ⊂ V (G) of size O(
√

gV ) such that G−S is
a planar graph. Making a shortest path tree from each vertex s ∈ S, we compute all the values
dG(s, v) for s ∈ S, v ∈ V (G). Each shortest path tree takes O(V log V +V +g) = O(V log V +g)
time in general, and O(V ) time if g = O(V 1−ε). Therefore, we need O(

√
gV (V log V +g)) time

in total, or O(
√

gV V ) if g = O(V 1−ε).
We define the restricted distances

dS
G(si, ti) = min

s∈S
{dG(si, s) + dG(s, ti)}.

We can compute for each pair (si, ti) the value dS
G(si, ti) in O(

√
gV ) time, which is O(k

√
gV )

time for all pairs. So far, we have spent O(
√

gV (V log V + g + k)) time, or O(
√

gV (V + k)) if
g = O(V 1−ε).

If si and ti are in different components of G− S, it is clear that dG(si, ti) = dS
G(si, ti). On

the other hand, for a pair (si, ti) in the same connected component Gj of G− S we have

dG(si, ti) = min{dGj (si, ti), d
S
G(si, ti)}.

Let G1, . . . , Gt be the connected components of G−S. Let kj be the number of pairs (si, ti)
that are in component Gj and let Vj be the number of vertices of the graph Gj . Because each
Gj is planar, the values dGj (si, ti) for the kj pairs in the component Gj can be computed in

O(V
3/2
j + kj

√

Vj) time as shown in Lemma 1. Since each pair (si, ti) goes to at most one
component of G − S, we have

∑

kj ≤ k. Therefore, we can compute the distances using

O
(
∑

j(V
3/2
j + kj

√

Vj)
)

≤ O
(
∑

j V
3/2
j +

√
V

∑

j kj

)

≤ O(V 3/2 +
√

V k) time. This completes
the proof. �
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Figure 1: Left: a crossing without shared edges. Center and right: cycles with shared edges
and 4 crossings; we count crossings after contracting the common edges.

4 Separating vs. non-separating cycles

In this section we characterize the surface non-separating cycles using the concept of crossing;
see Figure 1. Let Q = u0u1 . . . uku0 and Q′ = v0v1 . . . vlv0 be cycles in the embedded graph G.
If Q,Q′ do not have any common edge, for each pair of common vertices ui = vj we count a
crossing if the edges ui−1ui, uiui+1 of Q and the edges vj−1vj, vjvj+1 of Q′ alternate in the local
rotation around ui = vj (where the indices are taken modulo k +1 and l +1, respectively); the
number of all crossings is denoted by cr(Q,Q′). If Q,Q′ are distinct and have a set of edges E′

in common, then cr(Q,Q′) is the number of crossings after contracting G along E′. If Q = Q′,
then we define cr(Q,Q′) = 0 if Q is two-sided, and cr(Q,Q′) = 1 if Q is one-sided; we do this
for consistency in later developments.

We introduce the concept of (Z2-)homology; see any textbook on algebraic topology for
a comprehensive treatment. A set of edges E′ is a 1-chain; it is a 1-cycle if each vertex has
even degree in E′; in particular, every cycle in the graph is a 1-cycle, and also the symmetric
difference of 1-cycles is a 1-cycle. The set of 1-cycles with the symmetric difference operation
+ is an Abelian group, denoted by C1(G). This group can also be viewed as a vector space
over Z2 and is henceforth called the cycle space of the graph G. If f is a closed walk in G,
the edges that appear an odd number of times in f form a 1-cycle. For convenience, we will
denote the 1-cycle corresponding to f by the same symbol f .

Two 1-chains E1, E2 are homologically equivalent if there is a family of facial walks f1, . . . , ft

of the embedded graph G such that E1 + f1 + · · · + ft = E2. Being homologically equivalent
is an equivalence relation compatible with the symmetric difference of sets. The 1-cycles that
are homologically equivalent to the empty set, form a subgroup B1(G) of C1(G). The quotient
group H1(G) = C1(G)/B1(G) is called the homology group of the embedded graph G.

A set L of 1-chains generates the homology group if for any loop l in G, there is a subset
L′ ⊂ L such that l is homologically equivalent with

∑

l′∈L′ l′. There are sets of generators
consisting of g 1-chains. It is known that any generating set of the fundamental group is also
a generating set of the homology group H1(G).

If L = {L1, . . . , Lg} is a set of 1-cycles that generate H1(G), then every Li (1 ≤ i ≤ g)
contains a cycle Qi such that the set Q = {Q1, . . . , Qg} generates H1(G). This follows from
the exchange property of bases of a vector space since H1(G) can also be viewed as a vector
space over Z2.

A cycle in G is surface non-separating if and only if it is homologically equivalent to the
empty set. We have the following characterization of non-separating cycles involving parity of
crossing numbers.
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Lemma 3 Let Q = {Q1, . . . , Qg} be a set of cycles that generate the homology group H1(G).
A cycle Q in G is surface non-separating if and only if there is some cycle Qi ∈ Q such that
Q and Qi cross an odd number of times, that is, cr(Q,Qi) ≡ 1 (mod 2).

Proof. Let f0, . . . , fr be the 1-cycles that correspond to the facial walks. Then f0 = f1+· · ·+fr

and Q∪{f1, . . . , fr} is a generating set of C1(G). If C is a 1-cycle, then C =
∑

j∈J Qj +
∑

i∈I fi.
We define crC(Q) as the modulo 2 value of

∑

j∈J

cr(Q,Qj) +
∑

i∈I

cr(Q, fi) ≡
∑

j∈J

cr(Q,Qj) mod 2.

It is easy to see that crC : C1(G)→ Z2 is a homomorphism. Since cr(Q, fi) = 0 for every facial
walk fi, crC determines also a homomorphism H1(G)→ Z2.

If Q is a surface separating cycle, then it corresponds to the trivial element of H1(G),
so every homomorphism maps it to 0. In particular, for every j, cr(Q,Qj) ≡ crQj(Q) ≡ 0
(mod 2).

Let Q be a non-separating cycle and consider G̃ = G Q. Take a vertex v ∈ V (Q), which
gives rise to two vertices v′, v′′ ∈ V (G̃). Since Q is non-separating, there is a simple path P
in G̃ connecting v′, v′′. The path P is a loop in G (not necessarily a cycle), but it contains a
cycle Q′ that crosses Q exactly once.

Since Q generates the homology group, there is a subset Q′ ⊂ Q such that the cycle Q′

and
∑

Qi∈Q′ Qi are homological. But then 1 ≡ crQ′(Q) ≡ ∑

Qi∈Q′ cr(Q,Qi) (mod 2), which
means that for some Qi ∈ Q′, it holds cr(Q,Qi) ≡ 1 (mod 2). �

5 Shortest non-separating cycle

We use the tree-cotree decomposition for embedded graphs introduced by Eppstein [8]. Let T
be a spanning tree of G rooted at x ∈ V (G). For any edge e = uv ∈ E(G) \ T , we denote by
loop(T, e) the closed walk in G obtained by following the path in T from x to u, the edge uv, and
the path in T from v to x; we use cycle(T, e) for the cycle obtained by removing the repeated
edges in loop(T, e). A subset of edges C ⊆ E(G) is a cotree of G if C∗ = {e∗ ∈ E(G∗) | e ∈ C}
is a spanning tree of the dual graph G∗. A tree-cotree partition of G is a triple (T,C,X)
of disjoint subsets of E(G) such that T forms a spanning tree of G, C is cotree of G, and
E(G) = T ∪ C ∪ X. Euler’s formula implies that if (T,C,X) is a tree-cotree partition, then
{loop(T, e) | e ∈ X} contains g loops and it generates the fundamental group of the surface;
see, e.g., [8]. As a consequence, {cycle(T, e) | e ∈ X} generates the homology group H1.

Let Tx be a shortest-path tree from vertex x ∈ V (G). Let us fix any tree-cotree partition
(Tx, Cx,Xx), and let Qx = {cycle(Tx, e) | e ∈ Xx}. For a cycle Q ∈ Qx, let QQ be the
set of cycles that cross Q an odd number of times. Since Qx generates the homology group,
Lemma 3 implies that

⋃

Q∈Qx
QQ is precisely the set of non-separating cycles. We will compute

a shortest cycle in QQ, for each Q ∈ Qx, and take the shortest cycle among all them; this will
be a shortest non-separating cycle.

We next show how to compute a shortest cycle in QQ for Q ∈ Qx. Firstly, we use that Tx

is a shortest-path tree to argue that we only need to consider cycles that intersect Q exactly
once; a similar idea is used by Erickson and Har-Peled [9] for their 2-approximation algorithm.
Secondly, we reduce the problem of finding a shortest cycle in QQ to an O(V )-pairs distance
problem. We describe the whole algorithm in pseudocode at the end of this section.
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Lemma 4 Among the shortest cycles in QQ, where Q ∈ Qx, there is one that crosses Q exactly
once.

Proof. Let Q0 be a shortest cycle in QQ for which the number Int(Q,Q0) of connected
components of Q∩Q0 is minimum. We claim that Int(Q,Q0) ≤ 2, and therefore cr(Q,Q0) = 1
because QQ is the set of cycles crossing Q an odd number of times, and each crossing is an
intersection.

Let e = u1u2 be the edge for which cycle(Tx, e) = Q, and assume for contradiction that
Int(Q,Q0) ≥ 3. Then, Int(Q0, P [x, u1]) ≥ 2 or Int(Q0, P [x, u2]) ≥ 2, where P [u, u′] denotes
the path in Tx from u to u′. We may assume that P [x, u1] ∩ Q0 has at least two connected
components. Let v, v′ be vertices from different components of Q0 ∩ Q that are consecutive
along P [x, u1], that is, it holds that Q0 ∩ P [v, v′] = {v, v′}. Consider the path P [v, v′] in Tx

between the vertices v, v′, and let P and P ′ be the segments of Q0 between v, v′. Observe
that by the way v, v′ were chosen, P [v, v′] does not intersect Q0 \ {v, v′}, and both the walk P
concatenated with P [v, v′] and the walk P ′ concatenated with P [v, v′] are indeed cycles.

Let Q′
0 be the cycle P concatenated with P [v, v′] and let Q′′

0 be the cycle P ′ concatenated
with P [v, v′]. Observe that length(P [v, v′]) is smaller or equal to length(P ) and to length(P ′)
because P [v, v′] is a shortest path. Therefore, length(Q′

0) and length(Q′′
0) are both at most

length(Q0). Moreover, cr(Q,Q′
0) + cr(Q,Q′′

0) = cr(Q,Q0) = 1 mod 2 and therefore it holds
that cr(Q,Q′

0) = 1 mod 2 or cr(Q,Q′
0) = 1 mod 2; assume that cr(Q,Q′

0) = 1 mod 2. Then
Q′

0 ∈ QQ. As shown above, length(Q′
0) ≤ length(Q0), and Int(Q′

0) < Int(Q0), which is a
contradiction. �

Lemma 5 For any Q ∈ Qx, we can compute a shortest cycle in QQ in O((V log V + g)
√

gV )
time, or O(V

√
gV ) time if g = O(V 1−ε).

Proof. Consider the graph G̃ = G Q, which is embedded in a surface of Euler genus g − 1
(if Q is a 1-sided curve in Σ) or g − 2 (if Q is 2-sided). Each vertex v on Q gives rise to two
copies v′, v′′ of v in G̃.

In G, a cycle that crosses Q exactly once (at vertex v, say) gives rise to a path in G̃ from v′ to
v′′ (and vice versa). Therefore, finding a shortest cycle in QQ is equivalent to finding a shortest
path in G̃ between pairs of the form (v′, v′′) with v on Q. In G̃, we have O(V ) pairs (v′, v′′)
with v on Q, and using Lemma 2 we can find a closest pair (v′0, v

′′
0 ) in O((V log V + g)

√
gV )

time, or O(V
√

gV ) if g = O(V 1−ε). We use a single source shortest path algorithm to find in
G̃ a shortest path from v′0 to v′′0 , and hence a shortest cycle in QQ. �

Theorem 6 Let G be a graph with V vertices embedded on a surface of genus g. We can find
a shortest surface non-separating cycle in O((gV log V + g2)

√
gV ) time, or O((gV )3/2) time if

g = O(V 1−ε).

Proof. Since
⋃

Q∈Qx
QQ is precisely the set of non-separating cycles, we find a shortest non-

separating cycle by using the previous lemma for each Q ∈ Qx, and taking the shortest among
them. The running time follows because Qx contains O(g) loops. �

Observe that the algorithm by Erickson and Har-Peled [9] outperforms our result for g =
Ω(V 1/3 log2/3 V ). Therefore, we can recap concluding that a shortest non-separating cycle can
be computed in O(min{(gV )3/2, V (V + g) log V }) time. We summarize the algorithm that we
have described.
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Algorithm Shortest Cycle Crossing Once(G,Q)
Input: An embedded graph G, a cycle Q
Output: A shortest cycle in G that crosses Q once
1. G̃← G Q; Π← {(v′, v′′) ∈ V (G̃)× V (G̃) | v ∈ Q};
2. find a pair (v′0, v

′′
0 ) ∈ Π such that dG̃(v′0, v

′′
0 ) = min(v′,v′′)∈Π dG̃(v′, v′′) using Lemma 2;

3. return a shortest path in G̃ from v′0 to v′′0 .

Algorithm Shortest Surface Non-Separating Cycle(G)
Input: An embedded graph G
Output: A shortest surface non-separating cycle
1. Fix x ∈ V (G) and compute a shortest-path tree Tx;
2. Compute a tree-cotree decomposition (Tx, Cx,Xx);
3. Qx ← {cycle(Tx, e) | e ∈ Xx};
4. for every cycle Q ∈ Qx

5. do Shortest Cycle Crossing Once(G,Q);
6. return the shortest cycle above.

6 Shortest non-contractible cycle

Like in the previous section, we consider a shortest-path tree Tx from vertex x ∈ V (G), and we
fix a tree-cotree partition (Tx, Cx,Xx). Consider the set of loops Lx = {loop(Tx, e) | e ∈ Xx},
which generates the fundamental group with base point x. By increasing the number of
vertices to O(gV ), we can assume that Lx consists of cycles (instead of loops) whose pairwise
intersection is x. This can be shown by slightly modifying G in such a way that Lx can be
transformed without harm; we give the precise modification in the proof of the following result.

Lemma 7 The problem is reduced to finding a shortest non-contractible cycle in an embedded
graph G̃ of O(gV ) vertices with a given set of cycles Qx such that: Qx generates the funda-
mental group with basepoint x, the pairwise intersection of cycles from Qx is only x, and each
cycle from Qx consists of two shortest paths from x plus an edge. This reduction can be done
in O(gV ) time.

Proof. Throughout this proof we assume that the given embedding is represented in such a
way that signatures of edges in Tx are all positive. For vertices u, u′ ∈ V (G), we use P [u, u′]
for the (unique) path in Tx from u to u′. For a loop l ∈ Lx, we define split(l) as the vertex v
on l such that the part that appears twice in l is equal to P [x, v]. In particular, split(l) = x if
and only if l is a cycle.

Our first goal is to change the graph G and the spanning tree Tx in such a way that the
loops in Lx will all become cycles whose pairwise intersection is only the vertex x. To achieve
this goal, we proceed as follows.

There is nothing to do if all loops in Tx are cycles. Otherwise, consider a non-simple loop
l0 in Lx whose repeated part P0 = P [x, split(l0)] is shortest. Let x = v0, v1, . . . , vk = split(l0)
be be the consecutive vertices on P0. Let vk+1 and v′k+1 be the neighbors of vk that are on the
loop l0 and are distinct from vk−1. Assume, moreover, that the edges of l0 around vk have local
rotation vk−1, vk+1, v

′
k+1 (see Figure 2). The edges incident with each vertex vi (1 ≤ i ≤ k)

that are not on the path v0, v1, . . . , vk+1 can be classified as those on the left or on the right
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x = v0

v1

vk−1

vk

vk+1
v′

k+1

e

x = v0

v1

vk−1

vk

vk+1
v′

k+1

e

v′

1

v′

k−1

v′

k

Figure 2: How to modify the graph such that a loop l0 = loop(Tx, e) ∈ Lx becomes a cycle.
The edges viv

′
i have length 0.

of that path. Now we replace the path x, v1, . . . , vk in G with two paths x, v1, . . . , vk and
x, v′1, . . . , v

′
k and add edges viv

′
i (1 ≤ i ≤ k) between them. All edges incident with vi that are

on the left of vi in G are now incident with vi, while those on the right are incident with v′i,
i = 1, . . . , k. In particular, the edge vkv

′
k+1 which is on the right of vk, is replaced by the edge

v′kv
′
k+1. See Figure 2. The edges that correspond to previous edges have the same length in

the new graph, while all new edges viv
′
i have length 0.

The new graph is naturally embedded in Σ as well. We replace the loop l0 in Lx by
the cycle v0, v1, . . . , vk, l0 \ P [v0, vk], v

′
k, v′k−1, . . . , v

′
1, v0. The rest of loops (or cycles) in Lx

remain the same except that their segment common with P0 is replaced with the correspond-
ing new segments. They keep being loops (or cycles) because we have chosen l0 such that
length(P [x, split(l0)]) is shortest among non-simple loops in Tx.

We repeat the procedure until Lx consists of only cycles; we need O(g) repetitions. Each
cycle in Lx may have two paths from x in common with other cycles. Consider a longest path
P that two cycles Q,Q′ ∈ Lx have in common. Using the same technique as above, we can
modify the graph and the cycles Q,Q′ in such a way that they share one path less; details are
similar and omitted. We keep repeating this step until any pair of cycles intersects only at
x. We have to repeat this step at most 2|Lx| = 2g times because, at each step, a new edge
adjacent to x that is used by some cycle is created. Therefore, the cycles in the resulting set
pairwise intersect only in vertex x.

Let G̃ be the final graph that is obtained and L̃x the final set of cycles. Observe that each
cycle in L̃x is composed of two shortest paths from x plus an edge. It is clear that a shortest
non-contractible cycle in G̃ corresponds to a shortest non-contractible cycle in the original
graph G, as well as shortest paths in G̃ correspond to shortest paths in G. The problem
reduces then to find a shortest non-contractible cycle in G̃. However, observe that the number
of vertices has increased; each step may add O(V ) vertices, and therefore G̃ consists of O(gV )
vertices. This reduction can easily be done in O(gV ) time. �

The problem that remains is to find a shortest non-contractible cycle in a graph G̃ with
O(gV ) vertices where we are given a set of cycles Qx that generate the fundamental group
with base point x and whose pairwise intersection is x. Moreover, each cycle of Qx consists of
two shortest paths from x plus an edge. Let Q∗ be the set of shortest non-contractible cycles
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in G̃. Using arguments similar to Lemma 4, we can show the following.

Lemma 8 There is a cycle Q ∈ Q∗ that crosses each cycle in Qx at most twice.

Proof. For each cycle Q ∈ Q∗, let Int(Q) = max{Int(Q,Q′) | Q′ ∈ Qx}, where Int(Q,Q′)
denotes the number of connected components of Q ∩Q′. Let Q0 be a cycle in Q∗ minimizing
Int(Q), that is, Int(Q0) = min{Int(Q) | Q ∈ Q∗}. We claim that Int(Q0) ≤ 2, and therefore
cr(Q′, Q0) ≤ 2 for all Q′ ∈ Qx because each crossing is an intersection. Indeed, we can assume
for contradiction that Int(Q0) ≥ 3; let Q1 ∈ Qx be a cycle such that Int(Q0, Q1) ≥ 3. We can
now use an argumentation as that in Lemma 4, but using the fact that non-contractible cycles
satisfy the 3-path property, instead of the argument with crC . Details are omitted. �

Consider the set D = Σ Qx and the corresponding graph GP = G̃ Qx. Since Qx is a set
of cycles that generate the fundamental group and they only intersect at x, it follows that D
is a topological disk, and GP is a planar graph. In GP , each cycle from Qx corresponds to two
paths on the boundary of D. We can glue an infinite number of copies of D to construct the
universal cover of Σ; see [13] for a reference on universal covers. However, because of Lemma 8,
we can find a shortest non-contractible cycle by constructing only a portion of this universal
cover. These are the main ideas to prove the following result; an algorithm is described below.

Theorem 9 Let G be a graph with V vertices embedded on a surface of genus g. We can
find a shortest non-contractible cycle in O(gO(g)V ) time plus the time needed to solve the
O(gO(g)V )-pairs distance problem in a planar graph of size O(gO(g)V ).

Proof. According to Lemma 7, we assume that G̃ has O(gV ) vertices and we are given a set of
cycles Qx that generate the fundamental group with base point x, whose pairwise intersection
is x, and such that each cycle of Qx consists of two shortest paths plus an edge. Moreover,
because of Lemma 8, there is a shortest non-contractible cycle crossing each cycle of Qx at
most twice.

Consider the topological disk D = Σ Qx and let U be the universal cover that is obtained
by gluing copies of D along the cycles in Qx. Let GU be the universal cover of the graph G̃
that is naturally embedded in U . The graph GU is an infinite planar graph, unless Σ is the
projective plane P

2, in which case GU is finite.
Let us fix a copy D0 of D, and let U0 be the portion of the universal cover U which

is reachable from D0 by visiting at most 2g different copies of D. Since each copy of D is
adjacent to 2|Qx| ≤ 2g copies of D, U0 consists of (2g)2g = gO(g) copies of D. The portion GU0

of the graph GU that is contained in U0 can be constructed in O(gO(g)gV ) = O(gO(g)V ) time.
We assign to the edges in GU0

the same weights they have in G.
A cycle is non-contractible if and only if its lift in U finishes in different copies of the

same vertex. Each time that we pass from a copy of D to another copy we must intersect a
cycle in Qx. Using the previous lemma, we conclude that there is a shortest non-contractible
cycle whose lift intersects at most 2|Qx| = O(g) copies of D. That is, there exists a shortest
non-contractible cycle in G whose lifting to U starts in D0 and is contained GU0

.
We can then find a shortest non-contractible cycle by computing, for each vertex v ∈ D0,

the distance in GU0
from the vertex v to all the other copies of v that are in GU0

. Each
vertex v ∈ D0 has O(gO(g)) copies in GU0

. Therefore, the problem reduces to computing the
shortest distance in GU0

between O(gO(g)V ) pairs of vertices. Since GU0
is a planar graph with

O(gO(g)V ) vertices, the result follows. �
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Corollary 10 Let G be a graph with V vertices embedded on a surface of genus g. A shortest
non-contractible cycle in G can be found in O(gO(g)V 3/2) time.

Proof. Combine the previous theorem with Lemma 1(i). �

Observe that, for a fixed surface, the running time of the algorithm is O(V 3/2). However,
for most values of g as a function of V (when g ≥ c log V

log log V for a certain constant c), the
near-quadratic time algorithm by Erickson and Har-Peled [9] is better. We summarize our
algorithm below.

Algorithm Shortest Non-Contractible Cycle(G)
Input: An embedded graph G
Output: A shortest non-contractible cycle in G
1. Fix x ∈ V (G) and compute shortest-path tree Tx;
2. Compute a tree-cotree decomposition (Tx, Cx,Xx);
3. Lx ← {loop(Tx, e) | e ∈ Xx};
4. Modify G such that the loops in Lx become cycles Qx whose pairwise intersection is equal

to x (use Lemma 7);
5. GP ← G Qx (GP is planar);
6. G ← O(gO(g)) copies of GP ;
7. Glue the graphs in G to construct GU0

, the portion of the universal cover of G reachable
from GP by crossing at most 2g boundaries of GP ;

8. Π← {(v, v′) | v ∈ GP , v′ a copy of v in distinct copy of GP };
9. find a pair (v0, v

′
0) ∈ Π such that dGU0

(v0, v
′
0) = min{dGU0

(v, v′) | (v, v′) ∈ Π} (use
Lemma 1);

10. return a shortest path in GU0
from v0 to v′0 (this is a cycle in G).

7 Edge-width and face-width

When edge-lengths are all equal to 1, shortest non-contractible and surface non-separating
cycles determine combinatorial width parameters (cf. [20, Chapter 5]). Since their computation
is of considerable interest in topological graph theory, it makes sense to consider this special
case in more details.

7.1 Arbitrary embedded graphs

We next recall the parameters measuring the width of embedded graphs that were introduced in
Section 2. The (non-separating) edge-width ew(G) (and ew0(G), respectively) of an embedded
graph G is the minimum number of vertices in a non-contractible (surface non-separating)
cycle. Therefore, the non-separating edge-width can be computed by setting w(e) = 1 for
all edges e in G and running the algorithms from previous sections. The (non-separating)
face-width fw(G) (and fw0(G), respectively) of an embedded graph is the minimum number of
faces that any non-contractible (surface non-separating) closed curve in the surface is going to
intersect.

For an embedded graph G, consider its vertex-face incidence graph Γ: a bipartite graph
whose vertices are faces and vertices of G, and there is an edge between face f and vertex v
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if and only if v is on the face f . (If v and f have multiple incidence, then Γ also has multiple
edges joining v and f .) It is easy to see that fw(G) = 1

2ew(Γ) and fw0(G) = 1
2ew0(Γ) [20]. The

construction of Γ takes linear time O(V + g) from an embedding of G.
Observe that, for this special case, a breadth-first-search tree is indeed a shortest-path

tree, and it can be computed in O(V + g) time, instead of O(V log V + g) that is required for
arbitrary lengths if the genus is high. This improves slightly the running time for this special
case.

Theorem 11 For a graph G embedded in a surface of genus g, the non-separating edge-width
and face-width can be computed in O(g3/2V 3/2+g5/2V 1/2) time. The edge-width and face-width
of G can be computed in O(gO(g)V 3/2) time.

It can happen that ew(G) = Ω(V ). The situation is different for the face-width fw(G)
for which there exist non-trivial bounds. Hutchinson [15] showed that the edge-width of a
triangulation in an orientable surface of genus g ≤ V is O(

√

V/g log g), and O(log g) if g > V ,
improving the previous bound of

√
2V by Albertson and Hutchinson [1]. A bound for general

surfaces that is comparable to the orientable case is proved below.

Theorem 12 Let G be a graph of order V embedded in a surface of genus g. Then fw(G) =
O(

√

V/g log g) if V ≥ g, and fw(G) = O(log g) if V < g.

Proof. The vertex-face incidence graph Γ has a natural embedding as a quadrangulation in
the same surface as G, that is, all facial walks consist of exactly four edges. Let T = Γ + E(G)
be the triangulation obtained from Γ by adding all edges of G in the quadrangular faces of Γ.
Then fw(G) = 1

2ew(Γ) ≤ ew(T ).
If the surface is orientable then the aforementioned result of Hutchinson shows that ew(T ) =

O(
√

|V (T )|/g log g) if |V (T )| ≥ g, and O(log g) if g > |V (T )|. Since |V (T )| = V + |F (G)| =
O(V + g), the first bound reduces to ew(T ) = O(

√

V/g log g). It is clear that this completes
the proof in the orientable case.

Let us now show that the bound of Hutchinson can be extended to nonorientable surfaces.
To show this, we form the orientable double cover DT of T which is also a triangulation and
its genus g̃ is less than 2g. Combinatorially, the orientable double cover DG is constructed as
follows: for each vertex v ∈ V (G) we place two vertices v, v′ in V (DG), for each edge uv ∈ E(G)
we place edges uv, u′v′ in E(DG) if the signature of uv is λ(uv) = +1, and edges uv′, u′v in
E(DG) if λ(uv) = −1; and the circular order of edges around vertices u, u′ ∈ V (DG) is the
same as around u ∈ V (G).

By [15], DT contains a noncontractible cycle C̃ of length O(
√

2V/(2g) log 2g) if V ≥ g, and
O(log 2g) if g > V . The projection C of C̃ to T is a closed walk in T which is noncontractible
because of the homotopy lifting property (cf. [19]). This walk contains a noncontractible cycle
of length at most |V (C̃)| = ew(DT ), so ew(T ) ≤ ew(DT ), which is what we were to prove. �

7.2 Face-width in the projective plane

For the special case when G is embedded in the projective plane P
2, we can improve the

running time for computing the face-width. The idea is to use an algorithm for computing the
edge-width whose running time depends on the value ew(G). This is achieved by combining
three ideas: an algorithm of Erickson and Har-Peled [9] to compute a non-contractible cycle
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which is at most twice as long as a shortest non-contractible cycle; a double cover of G which
is planar; and Lemma 1(ii) for distance queries on planar graphs. The result is as follows.

Lemma 13 Let G be a graph embedded in P
2. If ew(G) ≤ t, then we can compute ew(G) and

find a shortest non-contractible cycle in O(V log2 V + t
√

V log2 V ) time.

Proof. Since the sphere is the universal cover of the projective plane P
2, we can consider the

cover of G on the sphere, which is nothing else than the orientable double cover DG of the
embedding of G that was introduced in the proof of Theorem 12.

It is well-known that DG is a planar graph embedded on the sphere, and that it is a cover of
G. Moreover, a shortest non-contractible loop passing through a vertex v ∈ V (G) is equivalent
to a shortest path in DG between the vertices v and v′.

We can compute in O(V log V ) time a non-contractible cycle Q of G of length at most
2ew(G) ≤ 2t using the results of [9]. Actually, this can be done in O(V ) time by using a
breadth-first-search tree. Any non-contractible cycle in G has to intersect Q at some vertex.
In particular, every shortest non-contractible cycle intersects Q. By finding for each vertex
v ∈ V (Q) the distance between v and v′ in DG, we find a vertex v0 ∈ Q passing through a
shortest non-contractible loop. This requires to compute |Q| ≤ 2t pairs of distances in DG,
which using Lemma 1 takes O(V log2 V + t

√
V log2 V ) time in total.

Once we know a vertex v0 which is contained in a shortest non-contractible cycle, we can
use breadth-first-search in DG from the vertex v0 to find a shortest path from v0 to its couple
v′0 in DG. This gives a shortest non-contractible cycle in G. �

Like before, consider the vertex-face incidence graph Γ which can be constructed in linear
time. From the bounds in Section 7.1, we know that the edge-width of Γ is O(

√
V ). Therefore,

the problem reduces to that of computing the edge-width of a graph knowing a priori that
ew(Γ) = 2fw(G) = O(

√
V ). Using the previous lemma with t = O(

√
V ), we conclude the

following.

Theorem 14 Let G be a graph embedded in P
2. We can compute the face-width of G in

O(V log2 V ) time.

Juvan and Mohar [16] obtained a linear time algorithm for deciding if fw(G) ≤ k, where
k is a fixed constant. They needed the special case when k = 4 in an algorithm for testing
embeddability in the torus.

7.3 Face-width in the torus

We next describe an algorithm for computing the face-width for a graph G embedded on the
torus T. Consider the vertex-face incidence graph Γ; we will compute ew(Γ) = 2fw(G). Let us
observe that on a fixed surface, |V (Γ)| = Θ(V ).

We compute in O(V log V ) time a non-contractible cycle Q of Γ of length at most 2ew(Γ)
using the results of [9]. We know that |Q| = O(

√
V ) by the aforementioned result of Albertson

and Hutchinson [1]. See also Lemma 15 below.
Fix a vertex v0 ∈ V (Q) and find in O(V log V ) time a shortest non-contractible loop l from

v0. Let A be the non-contractible cycle obtained by removing the repeated edges from l. We
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know that A consists of two shortest paths from a vertex u0 ∈ V (Γ) plus an edge; u0 = v0 if l
was a cycle, and u0 6= v0 otherwise. Moreover |A| ≤ |l| ≤ |Q| = O(

√
V ).

The graph ΓA = Γ A is planar. Let v′, v′′ be the two copies of v ∈ A in ΓA. Consider the
O(
√

V ) pairs Π = {(v′, v′′) | v ∈ V (A)} and find a pair (v′1, v
′′
1 ) ∈ Π such that dΓA

(v′1, v
′′
1 ) =

min{dΓA
(v′, v′′) | (v′, v′′) ∈ Π} in O(V log2 V ) time using Lemma 1. Let Pv1

be a shortest path
in ΓA from v′1 to v′′1 , which is a non-contractible cycle B in Γ. The graph ΓB = Γ B is planar
as well.

We may assume that

|B| ≥
√

2

2
|A|. (1)

If not, then we repeat the above procedure by starting with B playing the role of the cycle Q.
Then we find new cycles A and B. If (1) is violated again, then the length of the new cycle B
would be strictly smaller than one half of the length of the former cycle A. This would imply
that |B| < ew(Γ), a contradiction.

Using Menger’s theorem for vertex-disjoint paths, we can prove the following bound.

Lemma 15 It holds that |A| · |B| = O(V ).

Proof. Let M be the maximum number of vertex-disjoint paths from A′ to A′′, the copies of A
in ΓA. By Menger’s theorem, M is equal to the cardinality of a minimum (A′, A′′)-separator S
in γA. Since ΓA is embedded in a cylinder with A′ and A′′ being the cycles on the boundary, the
separator S gives rise to a closed curve γ in the torus homotopic to A that intersects Γ precisely
in the vertices in S. Since Γ is a quadrangulation, the curve γ determines a non-contractible
cycle C in Γ of length at most 2|S| = 2M . In particular, M ≥ 1

2ew(Γ) ≥ 1
4 |A|.

Let R1, . . . , RM be disjoint (A′, A′′)-paths. Each Ri together with a segment on A′′ deter-
mines a path from a vertex v′ ∈ V (A′) to its mate v′′ in A′′ of length at most |Ri| + 1

2 |A|.
Consequently, |Ri|+ 1

2 |A| ≥ |B|. Since R1, . . . , RM are vertex disjoint and (1) holds, we get:

V ≥
M
∑

i=1

|Ri| ≥M(|B| − 1
2 |A|) ≥ 1

4 |A|(1 −
√

2
2 )|B|.

This completes the proof. �

Cycles A and B constructed above can be used for a fast computation of the face-width of
G.

Theorem 16 Let G be a graph embedded in the torus. We can compute the face-width of G
in O(V 5/4 log V ) time.

Proof. Every non-contractible cycle in the torus is surface non-separating. Since the cycles
A,B generate the fundamental group, Lemma 3 tells us that we can assume that a shortest
non-contractible cycle crosses either A or B an odd number of times.

Let us first assume that a shortest non-contractible cycle crosses A an odd number of times.
Since A is composed of two shortest paths (plus an edge), the argument used in the proof of
Lemma 4 shows that there is a shortest non-contractible cycle that crosses A exactly once. In
this case, B is a shortest non-contractible cycle, and we are done.
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Figure 3: Portion of the universal cover reachable by crossing at most twice A and none B.
We show some of the concepts uses in the proof.

Let us now consider the case where a shortest non-contractible cycle crosses B an odd
number of times. The argument used in Lemma 4 shows that we can assume that a shortest
non-contractible cycle crosses A at most twice. Let C be one such shortest non-contractible
cycle crossing B a minimum number of times and A at most twice. Then C crosses B exactly
once. To see this, consider two copies of ΓA = Γ A and glue them along one copy of A to
obtain the graph Γ̃. Since C crosses A at most twice, C has a lift to Γ̃. However, in each copy
of ΓA, the cycle C intersects B at most once because B is a shortest path from A′ to A′′, and
therefore C crosses B at most twice. Since we assume that C crosses B an odd number of
times, we conclude that they cross exactly once.

Let ΓB = Γ B. We distinguish two cases depending on the length of A:

• If |A| ≥ V 1/4 log V , then |B| = O(V 3/4/ log V ) because of Lemma 15. We compute the
distance from v′ to v′′ for any v ∈ B. Since ΓB is a planar graph and we have to compute
distances between |B| = O(V 3/4/ log V ) pairs, we use Lemma 1 to find in O(V 5/4 log V )
time a point v0 ∈ B that contains a shortest non-contractible cycle. From this, we easily
compute a shortest non-contractible cycle in Γ.

• If |A| < V 1/4 log V , we proceed as follows. Consider the topological disk D = T (A∪B),
make its copy D0, and construct the portion U0 of the universal cover reachable from
D0 by crossing A at most twice and without crossing B. This needs five copies of D; see
Figure 3. Let Γ0 be the cover of Γ naturally embedded in U0 by gluing copies of D.

In D0, let v′1, v
′
2, . . . , v

′
|B| be the consecutive vertices of one copy of B. The shortest cycle

we are seeking corresponds to a shortest path connecting v′i with some copy v′′i of v′i.

We make for each v′i a BFS(Γ0, v
′
i, |A| − 1), where BFS(Γ0, u, t) is a breadth first search

tree from vertex u in the graph Γ0 clipped at depth t, that is, only including vertices up
to depth t. If a shortest non-contractible cycle has length strictly smaller than |A|, then
its lift in Γ0 has to be contained in BFS(Γ0, v

′
i, |A| − 1) for some v′i ∈ B. Therefore, once

we have BFS(Γ0, v
′
i, |A| − 1) for all v′i ∈ B we can easily find a shortest non-contractible

cycle.

We claim that it takes O(V 5/4 log V ) time to construct the trees BFS(Γ0, v
′
i, |A| − 1)

for all i = 1, . . . , |B|. Observe that the proof of the claim will finish the proof of the
theorem. The proof is as follows. Define the sets Bk = {v′k+4i|A| | i = 0, . . . , ⌊|B|/4|A|⌋}
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Figure 4: A path of length l in Γ0 yields a path of length at most l + 2|A| in D0.

for k = 1, . . . , 4|A|; that is, Bk consists of v′k and each 4|A|-th vertex along B. Observe
that B \ ⋃

k Bk = {v′|B|−(|B| mod 4|A|), . . . , v
′
|B|−1} consists of O(|A|) = O(V 1/4 log V )

vertices. Therefore, the trees BFS(Γ0, u, |A| − 1) for u ∈ B \⋃

k Bk can be computed in
O(V 1/4 log V ) ·O(V ) = O(V 5/4 log V ) time.

If u′, v′ ∈ Bk, then d
Γ A

(u′, v′) ≥ 4|A| because B is a shortest path in Γ A. This implies

that dΓ0
(u′, v′) ≥ 2|A| because any shortest path of length l in Γ0 can be clipped by D0

to obtain a path of length at most l + 2|A|; see Figure 4. Therefore, if u′, v′ ∈ Bk, we
have BFS(Γ0, u

′, |A| − 1)∩ BFS(Γ0, v
′, |A| − 1) = ∅. Since for any fixed k, each edge of

Γ0 appears at most once in the trees {BFS(Γ0, u, |A| − 1) | u ∈ Bk}, we can compute
BFS(Γ0, u, |A| − 1) for all u ∈ Bk in O(n) time. The parameter k takes the values
1, . . . , 4|A| = O(V 1/4 log V ), and therefore we need O(V 1/4 log V ) ·O(V ) = O(V 5/4 log V )
time to compute BFS(Γ0, u, |A| − 1) for all u ∈ ⋃

k Bk. This finishes the proof of the
claim and of the theorem.

�

8 Conclusions

We have presented algorithms for finding shortest non-contractible and surface non-separating
cycles for graphs embedded on a surface. For a fixed surface, our algorithms run in O(V 3/2)
time, which is a considerable improvement over previous results. Our algorithms can be used
to compute the (non-separating) edge-width and the (non-separating) face-width of embedded
graphs.

Our algorithms work for undirected graphs with non-negative edge-lengths. Similar results
for directed graphs seem much harder because non-contractible or non-separating cycles do
not satisfy the 3-path-condition anymore. Finding shortest cycles with properties that do not
satisfy the 3-path-condition remains an elusive problem.

We have also given a near-linear running time algorithm for computing the face-width in
the projective plane; for the torus, we show how to compute the face-width in O(V 5/4 log V )
time. We feel that one of the most appealing open questions is finding near-linear running time
algorithms for computing the face-width of graphs embedded on a (possibly fixed) surface. Our
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approach when dealing with the projective plane and the torus does not seem to extend to
surfaces of higher genera.
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