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T -joins intersecting
small edge-cuts in graphs
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Abstract

In an earlier paper [3], we studied cycles in graphs that intersect all
edge-cuts of prescribed sizes. Passing to a more general setting, we examine
the existence of T -joins in grafts that intersect all edge-cuts whose size is in
a given set A ⊆ {1, 2, 3}. In particular, we characterize all the contraction-
minimal grafts admitting no T -joins that intersect all edge-cuts of size 1
and 2. We also show that every 3-edge-connected graft admits a T -join
intersecting all 3-edge-cuts.

1 Introduction

In [3], we investigated the existence of cycles intersecting each edge-cut whose
size is in a given set A of positive integers, and showed that this question is
related to several fundamental problems, including Tutte’s 4-flow conjecture and
the Dominating cycle conjecture. As in [3], we define an edge-cut (in short, cut)
to be an inclusionwise minimal set of edges whose removal increases the number
of components, and define a cycle as a (possibly disconnected) graph in which all
vertices have even degrees. Our graphs are undirected, loopless and may contain
multiple edges.

We now take up the above approach and generalize it by replacing cycles with
structures known as T -joins. A graft is a pair (G, T ) where G is a graph (possibly
with multiple edges but no loops) and T is a set of vertices of G such that |T | is
even. A T -join in a graft (G, T ) is a spanning subgraph H such that the vertices
whose degree in H is odd are precisely those in T . Note that if T = ∅, then
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T -joins are the cycles of G. A T -cut is an edge-cut C such that G \ C has more
components K with |T ∩ V (K)| odd than G does. If (G, T ) is a graft, then we
refer to T -joins simply as joins. This is not the case with cuts.

Given a set A ⊆ N (where N is the set of positive integers), when does a graft
(G, T ) possess a join intersecting all cuts C with |C| ∈ A (we call such a join
A-covering)? This is the question studied in the present paper for A ⊆ {1, 2, 3}.
It turns out that the situation is interesting even in this rather specific case.

The property of having an A-covering join is monotone with respect to natu-
rally defined edge contraction. In detail, let (G, T ) be a graft and e be an edge
with endvertices x and y. The contraction of e is the operation that identifies x
and y (preserving multiple edges but discarding loops) and whose action on the
set T is as follows. Let the new vertex corresponding to e be denoted by ve. In
the resulting graft (G′, T ′), the set T ′ is defined as

T ′ =

{
T \ {x, y} ∪ {ve} if precisely one of x and y belongs to T ,

T \ {x, y} otherwise.

It is easy to check that |T ′| is even, and hence that (G′, T ′) is a graft. If H is a
subgraph of G, then the contracted graft (G, T )/H is obtained by contracting all
the edges of H. Observe that the result is independent of the order in which the
edges are contracted.

Note that if (G, T ) has an A-covering join, then (G′, T ′) has a naturally ob-
tained A-covering join. This monotonicity property suggests that one may try to
characterize the grafts (G, T ) with no A-covering join such that (G, T ) is minimal
with respect to edge contraction. In the present paper, we determine these grafts
for A = {1, 2}. Before stating the result, we introduce names for the minimal
grafts. The symbols Kn and Km,n refer to complete graphs and complete bipar-
tite graphs, respectively. The grafts are shown in Figure 1; black dots represent
the vertices in T . Correspondingly, we sometimes speak of the vertices in T as
black, and of the other vertices as white.

• K2 = (K2, ∅), where K2 is the complete graph on two vertices,

• C4 = (C4, V ), where V is the vertex set of the 4-cycle C4,

• K2,2k+1 = (K2,2k+1, ∅), where k ≥ 1,

• K2,2k = (K2,2k, L), where k ≥ 1 and L is the set of vertices in the color class
of size 2.

Observe that none of the above grafts have a {1, 2}-covering join.
A graft (G1, T1) is contractible to another graft (G2, T2) if the latter can be

obtained from (G1, T1) by a (possibly void) series of edge contractions. We write
(G2, T2) � (G1, T1). Note that the relation � is transitive (in fact, a partial
order).
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(a) (b) (c) (d)

Figure 1: The minimal grafts (G, T ) with no {1, 2}-covering joins: (a) K2; (b) C4;
(c) K2,2k+1 (for k = 2); (d) K2,2k (for k = 3). The vertices in T are shown black.

Theorem 1.1. A graft (G, T ) has a {1, 2}-covering join if and only if it is not
contractible to any of the grafts K2, C4, K2,2k+1 and K2,2k, where k ≥ 1.

For {3}-covering joins, we have no characterization in the style of Theorem 1.1.
However, we proved the following:

Theorem 1.2. If (G, T ) is a graft and G is 3-edge-connected, then (G, T ) has a
{3}-covering join.

We decided to restrict our inquiry to A-covering joins with A ⊆ {1, 2, 3}.
However, most of the problems and conjectures in [3] involving A-covering cycles
(for other sets A) might have an extension to A-covering T -joins. As an example,
we mention the conjecture from [3] that every graph has an A-covering cycle
for A = {4, 5, 6, . . .}, which is an extension of the well-known Dominating cycle
conjecture [1].

We conclude this section with several definitions. Recall that we refer to
(inclusionwise minimal) edge-cuts simply as cuts. A cut is trivial if it consists of
all edges incident with a vertex. For a graft (G, T ), a subgraph of G is T -odd if
it contains an odd number of vertices in T ; otherwise, it is T -even.

2 Cuts of size 1 and 2

In this section, we prove a characterization of the grafts admitting {1, 2}-covering
joins. The corresponding result for {1}-covering and {2}-covering joins is also
easy to derive; it is given below as Proposition 2.2.

The following lemma is well known:

Lemma 2.1. A graft (G, T ) contains a join if and only if each of its components
is T -even.

Proof. Necessity follows from the fact that the number of odd degree vertices
in any graph is even. We prove sufficiency. Consider a component K of G and
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choose an arbitrary partition PK of the vertices in T ∩V (K) into pairs. For each
pair {x, y} ∈ PK , choose a path Pxy joining x to y. Let JK be the symmetric
difference of edge sets of the paths Pxy over all pairs {x, y} ∈ PK . It is routine
to check that the union of the sets PK over all components K is the edge set of
a join in (G, T ). 2

The main theorem of this section was stated already in Section 1:

Theorem 1.1. A graft (G, T ) has a {1, 2}-covering join if and only if it is not
contractible to any of the grafts K2, C4, K2,2k+1 and K2,2k where k ≥ 1.

Proof. Let (G, T ) be a counterexample with |E(G)| as small as possible. Through-
out the proof, we freely use the fact that no graft (G′, T ′) � (G, T ) is contractible
to any of the obstructions.

Claim 1. The graph G is 2-edge-connected.

Let e = x1x2 be a bridge in G. For i ∈ {1, 2}, let Hi be the component of G \ e
containing xi. Since K2 6� (G, T ), each Hi is T -odd. Thus, if we set Ti to be
the symmetric difference of T ∩ V (Hi) and {xi}, each (Hi, Ti) is a graft. Note
that (Hi, Ti) � (G, T ) and hence (Hi, Ti) is not contractible to any obstructions.
By the minimality of (G, T ), each (Hi, Ti) has a {1, 2}-covering join Ji. Clearly,
J1 ∪ J2 ∪ {e} is a join in (G, T ) with the same property.

Claim 2. For every nontrivial 2-cut C in G, each component of G \C is T -odd.

Assume that C is a 2-cut contradicting the claim. Let the components of G \ C
be denoted by H1 and H2. Since C is nontrivial, both (G, T )/H1 and (G, T )/H2

have fewer edges than (G, T ) does. By the minimality of (G, T ), we can find a
{1, 2}-covering join Ji in (G, T )/Hi (i = 1, 2). For i = 1, 2, let vi denote the
vertex obtained by contracting all of Hi in (G, T )/Hi. Our assumption implies
that the vertex vi in each (G, T )/Hi is white, and so Ji must use both edges
incident with vi. It follows that J1 and J2 may be combined to produce a join J
in (G, T ).

We claim that J is {1, 2}-covering. If not, then G contains a 2-cut C ′ not
intersected by J . If both edges of C ′ are contained in some Hi (in H1, say), then
C ′ is a 2-cut in G/H2, a contradiction since C ′ would have been intersected by J1.
Consequently, each of H1 and H2 contain one edge of C ′. Let the four components
of G \ (C ∪C ′) be denoted by A1, . . . , A4. For each i = 1, . . . , 4, exactly one edge
of the join J leaves Ai. This shows that the degree sum Di =

∑
x∈Ai dJ(x) is odd,

since the edges with both ends in Ai do not change the parity of Di. On the other
hand, Di has the same parity as the number of black vertices in Ai, since the
modulo 2 contribution of a vertex to Di is 0 or 1 according to whether the vertex
is white or black, respectively. In summary, the number of black vertices in each
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Ai is odd. But this implies that (G, T ) can be contracted to C4, a contradiction.
We conclude that J is {1, 2}-covering as required.

We proceed with the proof of Theorem 1.1. Let (G′, T ′) be the graft obtained
by suppressing all white vertices of degree 2 in G and removing any resulting
loops. Notice that T ′ = T . Let R be the set of all edges of G′ that are not
present in G (i.e., the edges created by the suppression).

Claim 3. The set R can be extended to a join in (G′, T ′).

Form a graft (G′′, T ′′) by removing, one by one, each edge in R and inverting the
colors of its endvertices. (Thus, the color of a vertex will change precisely when
it is incident with an odd number of edges in R.) Clearly, it suffices to show that
(G′′, T ′′) has a join. By Lemma 2.1, it suffices to show that each component of
G′′ is T ′′-even.

Let K be a T ′′-odd component of G′′. Let x be the number of edges of R with
precisely one endvertex in K and let y = |T ′ ∩ V (K)|. Since K is T ′′-odd, x+ y
is an odd number.

Enumerate the components of G′′ \ V (K) as L1, . . . , Lt. For i = 1, . . . , t, let
xi denote the number of edges in R between K and Li, and let yi = |T ′ ∩ V (Li)|.
Note that xi sum up to x, and the sum of all yi has the same parity as y.
Consequently, there is some j such that xj + yj is odd.

Let S ⊆ V (G) be the set of degree 2 vertices corresponding to the edges of R
joining K to Lj. Let G1 and G2 be the two components of G \ S. Contracting
each of G1 and G2 to a single vertex, we obtain the graph K2,xj . As a graft, this
is (for k = bxj/2c) K2,2k if xj is even, or K2,2k+1 if xj is odd. In either case, we
obtain a contradiction.

The proof of Theorem 1.1 can now be finished. Using Claim 3, we find a
join J ′ ⊇ R in G′. Let J be the set of edges of G corresponding to those in
J ′ (in particular, for each edge of R, take all of the corresponding edges in G).
Claim 2 implies that every 2-cut C, such that the sides of C (components of
G \ C) are T -even, is trivial. By the construction, J intersects each such 2-cut.
Furthermore, J automatically intersects each 2-cut with T -odd sides since such
a cut is a T -cut. By Claim 1, G has no bridges, so J is a {1, 2}-covering join in
(G, T ). The proof is complete. 2

Theorem 1.1 deals with {1, 2}-covering joins. It is easy to modify the proof
to the case of {1}-covering and {2}-covering joins:

Proposition 2.2. (i) A graft (G, T ) has a {1}-covering join if and only if it
is not contractible to K2.

(ii) A graft (G, T ) has a {2}-covering join if and only if it is not contractible to
any of the grafts C4, K2,2k+1 and K2,2k, where k ≥ 1.
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Figure 2: Two minimal grafts with no {3}-covering joins.

3 Cuts of size 3

As mentioned in Section 1, for {3}-covering joins, we have no characterization
similar to that proved for A-covering joins with A = {1}, A = {2} or A = {1, 2}.
We only have two examples of minimal grafts with no {3}-covering joins; these
are shown in Figure 2.

Although a complete characterization remains an open problem, we prove
that 3-edge-connected grafts do admit {3}-covering joins. The proof is based on
a nice relation to the T -path packing problem in cubic graphs.

Let G be a graph and e1, e2 ∈ E(G) two edges incident with a vertex z of
degree dG(z) ≥ 4. Assume that the endvertices of each ei (i = 1, 2) are z and vi.
To split off e1 and e2 from z, remove e1 and e2 and add a new vertex v′ adjacent
to v1 and v2. The resulting graph is denoted by G(e1, e2). We let λG(x, y) denote
the maximum number of edge-disjoint paths joining vertices x and y of the graph
G. The following is a well-known theorem of Mader [4]:

Theorem 3.1 (Mader). Let G be a graph and z ∈ V (G) a vertex such that
d(z) ≥ 4, z has at least 2 distinct neighbors and it is not a cut-vertex of G. There
are two edges e1, e2 incident with z such that for every x, y ∈ V (G) \ {z},

λG(e1,e2)(x, y) = λG(x, y).

Given a graph H, let S(H) be the graph obtained from H by suppressing all
degree 2 vertices and removing the resulting loops (if any). To any set F ⊆ E(H),
there naturally corresponds a set S(F ) ⊆ E(S(H)). To get S(F ), replace every
edge in F that is incident with a degree 2 vertex w by the edge created by
suppressing w; if the new edge is a loop, delete it from S(F ).

The following lemma is a corollary of Mader’s theorem:

Lemma 3.2. Let G be a 3-edge-connected graph and z ∈ V (G) a vertex such
that d(z) ≥ 4, z has at least two distinct neighbors and it is not a cut-vertex of
G. There are edges e1, e2 incident with z such that the graph G− = S(G(e1, e2))
is 3-edge-connected. Moreover, if C is a 3-cut in G, then S(C) is a 3-cut in G−.

Proof. Let e1 and e2 be edges satisfying the conclusion of Theorem 3.1. We
begin with the first assertion. Note that if d(z) = 4, then V (G−) = V (G) \ {z}
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and the claim follows from Theorem 3.1. Hence, we may assume that d(z) ≥ 5.
It must be shown that for all x ∈ V (G) \ {z},

λG−(x, z) ≥ 3. (1)

Thus, let x ∈ V (G) \ {z} and assume, for the sake of a contradiction, that (1) is
violated. By Menger’s theorem, there is a set F ⊂ E(G−) such that |F | ≤ 2 and
x, z are in different components of G−\F . Since z is incident with at least 3 edges
in G−, there is an edge e∗ ∈ E(G−) with endvertices z and y such that e∗ /∈ F .
Clearly, z and y are in the same component K of G− \F . Since λG−(x, y) ≥ 3, x
is also in K. Thus, x and z are in the same component of G−\F , a contradiction.

To prove the second assertion of the lemma, assume that C is a 3-cut in G.
Observe that the graph G− \S(C) is disconnected, which implies that |S(C)| = 3
as G− is 3-edge-connected. By the same token, S(C) is a minimal set of edges
disconnecting G−. Thus, S(C) is a 3-cut. 2

In a graft (G, T ), a T -path is any path with both ends in T . A T -path covering
is a system of vertex-disjoint T -paths spanning T . The proof of Theorem 1.2
makes use of the following result on T -path coverings, proved in [2]:

Theorem 3.3. Suppose that G is a k-regular k-edge-connected graph, where k ≥
2, and (G, T ) is a graft. Then every edge of G is contained in a T -path covering.

The main theorem of this section was already stated in Section 1:

Theorem 1.2. If (G, T ) is a graft and G is 3-edge-connected, then (G, T ) has a
{3}-covering join.

Proof. We first show that it suffices to prove the theorem for cubic graphs. If
G is not cubic, then by repeated use of Lemma 3.2, we produce a graft (G′, T ′),
where G′ is 3-edge-connected and cubic. Lemma 3.2 also implies that any 3-cut
in G is also a 3-cut in G′. It follows that by reversing the splitting process (i.e.,
contracting the edges created by the splitting), we turn any {3}-covering join J ′

in (G′, T ′) into a {3}-covering join in (G, T ). Thus, G may be assumed to be
cubic as claimed.

We prove the following stronger assertion:

Claim 1. If (G, T ) is a graft, G is 3-edge-connected and cubic, and e, e′ ∈ E(G)
are edges incident with a vertex v /∈ T , then (G, T ) has a {3}-covering join
containing e and e′.

We proceed by induction on the order of G. Assume that G has a nontrivial
3-cut F that is not a T -cut. Denoting the components of G \ E(F ) by C1, C2,
let (Gi, Ti) be the graft resulting from (G, T ) by contracting C3−i (i = 1, 2) to
a vertex c3−i. Note that since F is not a T -cut, both c1 and c2 are white. The
cut F is a matching, for otherwise we would obtain a 2-cut in G. Consequently,
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exactly one of G1 and G2 (say, G1) contains both e and e′. Applying the inductive
hypothesis to G1, we find a {3}-covering join J1. Since the vertex c2 is of degree
3 and c2 /∈ T1, the join J1 contains exactly 2 edges (say, f and f ′) incident with
c2. Using the inductive hypothesis on G2, we find a {3}-covering join in (G2, T2)
containing the two edges (incident with c1) that correspond to f and f ′. Since J1

and J2 agree on the edges corresponding to F , we may combine them to obtain
a (clearly {3}-covering) join in (G, T ).

We may thus assume that every 3-cut of G is either trivial or a T -cut. Since
a T -cut is automatically intersected by any T -join, it is sufficient to find a join J
in (G, T ) such that e, e′ ∈ E(J) and every vertex of G is incident with an edge
of J (let us call such a join suitable). Assuming for the moment that we have
found a suitable join J , let us set J̄ = G \ E(J) and T̄ = V (G) \ T . Observe
that the degree in J̄ of a vertex x ∈ V (G) is 1 if x ∈ T̄ , and 0 or 2 otherwise.
Hence, J̄ is a T̄ -path covering. Moreover, since v ∈ T̄ , J̄ contains the third edge
e′′ incident with v. Conversely, any T̄ -path covering containing e′′ determines a
suitable join in (G, T ). However, the existence of a T̄ -path covering containing
e′′ is guaranteed by Theorem 3.3 (applied to T̄ in place of T ). This concludes the
proof of Claim 1 as well as that of Theorem 1.2. 2
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[3] T. Kaiser and R. Škrekovski, Cycles intersecting edge-cuts of specified sizes,
submitted.

[4] W. Mader, A reduction method for edge-connectivity in graphs, Ann. Dis-
crete Math. 3 (1978), 145–164.

8


