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Abstract. The unit distance graph R is the graph with vertex set R2 in which two vertices
(points in the plane) are adjacent if and only if they are at Euclidean distance 1. We prove that
the circular chromatic number of R is at least 4, thus “tightening” the known lower bound on the
chromatic number of R.

Key words. graph colouring, circular colouring, unit distance graph

AMS subject classifications. 05C15, 05C10, 05C62

1. Introduction. The unit distance graph R is defined to be the graph with
vertex set R2 in which two vertices (points in the plane) are adjacent if and only
if they are at Euclidean distance 1. Every subgraph of R is also said to be a unit
distance graph. It is known that (cf. [1, 2])

4 6 χ(R) 6 7,

and that (cf. [3, pp. 59–65])

32
9

6 χf (R) 6 4.36.

Here χ(R) and χf (R) denote the chromatic number and the fractional chromatic
number of R, respectively. In this paper we study the circular chromatic number of
the unit distance graph R.

Let r > 2, a, b ∈ [0, r), and a 6 b. We define the circular distance of a and b,
denoted by δ(a, b) = δr(a, b), to be min{b−a, r+a−b}. One may identify the interval
[0, r) with a circle Cr with perimeter r and then δ(a, b) will be the distance between
a and b in Cr.

If a, b ∈ [0, r) (or equivalently a, b ∈ Cr), we define the circular interval from a to
b, denoted [a, b], as follows (see Figure 1.1):

[a, b] =

{
{x | a 6 x 6 b} if a 6 b,
{x | 0 6 x 6 b or a 6 x < r} if a > b.

An r-circular colouring of a graph G, is a function c : V (G) → Cr such that for
every edge xy in G, δ(c(x), c(y)) > 1. The circular chromatic number of G, denoted
by χc(G), is

χc(G) = inf{r | G admits an r-circular colouring}.

It is well known [4] that for every graph G, χf (G) 6 χc(G) 6 χ(G). For the unit
distance graph R, these inequalities give

32
9

6 χf (R) 6 χc(R) 6 χ(R) 6 7.
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Fig. 1.1. Circular intervals (clockwise direction is the positive direction)
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Fig. 2.1. The unit distance graph Ha,b

We improve the lower bound for χc(R) to 4. We give two proofs of this result. The
second one is constructive and gives a construction of finite unit distance graphs with
circular chromatic number arbitrarily close to 4.

2. Proof. Let a and b be two points in the plane and let d(a, b) denote the
Euclidean distance between a and b. If d(a, b) =

√
3, then we may find points x and y

in the plane such that the subgraph of R induced on the set {a, b, x, y} is isomorphic
to the graph H obtained by deleting one edge from K4 (see Figure 2.1). We denote
this unit distance graph by Ha,b. On the other hand, it is easy to see that in any
embedding of H as a unit distance graph in the plane, the Euclidean distance between
the two vertices of degree 2 in H is

√
3.

Lemma 2.1. Let 0 < ε < 1 and a, b ∈ R2 with d(a, b) =
√

3. Let c be a (3 + ε)-
circular colouring of Ha,b. Then δ(c(a), c(b)) 6 ε.

Proof. Without loss of generality, we may assume c(a) = 0. Since a, x, y form a
triangle in Ha,b, we have c(x) ∈ [1, 1 + ε] and c(y) ∈ [2, 2 + ε] up to symmetry. On
the other hand, b is adjacent to both x and y. Thus

c(b) ∈ [c(x) + 1, c(x)− 1] ∩ [c(y) + 1, c(y)− 1]
⊆ [2, ε] ∩ [−ε, 1 + ε]
= [−ε, ε].

The last equality is true since 1 + ε < 2.
Theorem 2.2. χc(R) > 4.
Proof. Suppose that c is a (3 + ε)-circular colouring of R where 0 6 ε < 1. Let

µ = sup{δ(c(a), c(b)) | a, b ∈ R2 and d(a, b) =
√

3}.

By Lemma 2.1, µ 6 ε. By the definition of µ, for every 0 < µ′ < µ, there exist points
a and b at distance

√
3 in the plane such that δ(c(a), c(b)) > µ′. Consider the graph
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Ha,b as in Figure 2.1. Without loss of generality we may assume

0 = c(a) 6 c(b) < c(x) < c(y) 6 2 + ε.

Since 3 + ε < 4, we have

δ(c(a), c(x)) = c(x) = δ(c(a), c(b)) + δ(c(b), c(x)) > µ′ + 1.

On the other hand since a and x are at distance 1, there exists a point z which is at
distance

√
3 from both a and x. Therefore

1 6 δ(c(a), c(x)) 6 δ(c(a), c(z)) + δ(c(z), c(x)) 6 2µ.

Hence 1 + µ′ < 2µ and since this is true for every µ′ < µ, we have µ > 1. This is a
contradiction since µ 6 ε < 1.

3. A constructive proof. The graph G0 = K2 is obviously a unit distance
graph. In our construction of graphs Gn (n > 0) we distinguish two vertices in each
of them. To emphasize the distinguished vertices x and y of Gn, we write Gx,y

n . We
identify subgraphs of R with their geometric representation given by their vertex set.

For n > 0, the graph Gn+1 is constructed recursively from four copies of Gn. Let
S = V (Gx,y

n ) ⊆ R2. Let us rotate the set S in the plane about the point x, so that
the image y′ of y under this rotation is at distance 1 from y. Let S′ be the image of
S under this rotation. Let T be the set of all points in S ∪ S′ and their reflections
across the line yy′. In particular let z ∈ T be the reflection of x across the line yy′.
We define Gx,z

n+1 to be the subgraph of R induced on T . This construction is depicted
in Figure 3.1.

Gn

Gn

Gn

Gn

x

y

y′

z

Fig. 3.1. Construction of Gn+1 from Gn

Lemma 3.1. For every n > 1, χc(Gn) > 4 − 21−n. Moreover, for every r =
4 − 21−n + ε with 0 6 ε < 21−n, and every circular r-colouring c of Gx,z

n , we have
δ(c(x), c(z)) 6 2n−1ε.

Proof. We use induction on n. The case n = 1 is proved in Lemma 2.1. Let
n > 1 and Gx,z

n+1 be as shown in Figure 3.1. Let r = 4− 21−n + ε for some ε > 0 and
let c be a circular r-colouring of Gn+1. Without loss of generality we may assume
that c(x) = 0. By the induction hypothesis, δ(0, c(y)) and δ(0, c(y′)) are both at
most 2n−1ε. Hence δ(c(y), c(y′)) 6 2nε. On the other hand, since y and y′ are
adjacent in Gn+1, we have δ(c(y)), c(y′)) > 1. Therefore ε > 2−n and we have
χc(Gn+1) > 4− 21−n + 2−n = 4− 2−n.

Now let r = 4− 2−n + ε for some 0 6 ε < 2−n, and let c be a circular r-colouring
of Gn+1 with c(x) = 0. Note that r = 4 − 21−n + ε′ with ε′ = 2−n + ε < 21−n. Byi
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the induction hypothesis, δ(0, c(y)), δ(0, c(y′)), δ(c(z), c(y)) and δ(c(z), c(y′)) are all
at most 2n−1ε′ < 1. Therefore we have

c(y), c(y′) ∈ [−2n−1ε′, 2n−1ε′]

and

c(z) ∈ [c(y)− 2n−1ε′, c(y) + 2n−1ε′] ∩ [c(y′)− 2n−1ε′, c(y′) + 2n−1ε′].

Since δ(c(y), c(y′)) > 1, one of c(y) and c(y′), say c(y), is in the circular interval
[−2n−1ε′, 2n−1ε′ − 1], and c(y′) ∈ [−2n−1ε′ + 1, 2n−1ε′]. Therefore

[c(y)− 2n−1ε′, c(y) + 2n−1ε′] ⊆ [−2nε′, 2nε′ − 1] = [−2nε′, 2nε]

and

[c(y′)− 2n−1ε′, c(y′) + 2n−1ε′] ⊆ [−2nε′ + 1, 2nε′] = [−2nε, 2nε′].

Finally, since ε′ < 21−n, we have 2nε′ < r − 2nε′. Hence

c(z) ∈ [−2nε′, 2nε] ∩ [−2nε, 2nε′] = [−2nε, 2nε].

This completes the induction step.
Let us observe that, when constructing Gn+1 from four copies of Gn, it may

happen that vertices in distinct copies of Gn correspond to the same points in the
plane. Additionally, it may happen that some edges between vertices in distinct copies
of Gn are introduced. We may define in the same way a sequence of abstract graphs
Hn, where none of these two issues occur. Clearly χc(Gn) > χc(Hn), but we cannot
argue equality in general. The proof of Lemma 3.1 applied to the graphs Hn gives
slightly more:

Theorem 3.2. For every n > 0, χc(Hn) = 4− 21−n.
Proof. The cases n = 0, 1 are trivial. Let n > 1 and let Hn+1 be as in Figure 3.1.

Let r = 4 − 2−n = 4 − 21−n + 2n. By the proof of Lemma 3.1, Hx,y
n admits a

circular r-colouring c1 with c1(x) = 0 and c1(y) = 1
2 . Similarly the graphs Hx,y′

n ,
Hy,z

n and Hy′,z
n admit circular r-colourings c2, c3 and c4, respectively, with c2(x) = 0,

c2(y′) = c4(y′) = − 1
2 , c3(y) = 1

2 , and c3(z) = c4(z) = 0. Now a circular r-colouring c
of Hn+1 can be obtained by combining the partial colourings c1, c2, c3, c4.

The construction of this section gives an infinite subgraph of R with circular
chromatic number at least 4. It remains open whether or not R has a finite subgraph
with the same property.
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