
University of Ljubljana

Institute of Mathematics, Physics and Mechanics

Department of Mathematics

Jadranska 19, 1 111 Ljubljana, Slovenia

Preprint series, Vol. 44 (2006), 1012

INFINITE FAMILIES OF

CROSSING-CRITICAL GRAPHS

WITH PRESCRIBED AVERAGE

DEGREE AND CROSSING

NUMBER

Drago Bokal

ISSN 1318-4865

September 12, 2006

Ljubljana, September 12, 2006



Infinite families of crossing-critical graphs

with prescribed average degree and crossing number

Drago Bokal
†

Department of Mathematics
Institute of Mathematics, Physics, and Mechanics

Ljubljana, Slovenia

drago.bokal@imfm.uni-lj.si

LATEX-ed: July 27, 2006

Abstract

iráň constructed infinite families of k-crossing-critical graphs for every k ≥ 3 and
Kochol constructed such families of simple graphs for every k ≥ 2. Richter and Thomassen
argued that, for any given k ≥ 1 and r ≥ 6, there are only finitely many simple k-crossing-
critical graphs with minimum degree r. Salazar observed that the same argument implies
such a conclusion for simple k-crossing-critical graphs of prescribed average degree r > 6.
He established existence of infinite families of simple k-crossing-critical graphs with any
prescribed rational average degree r ∈ [4, 6) for infinitely many k and asked about their
existence for r ∈ (3, 4). The question was partially settled by Pinontoan and Richter,
who answered it positively for r ∈ (3 1

2
, 4).

The present contribution uses two new constructions of crossing critical simple graphs
along with the one developed by Pinontoan and Richter to unify these results and to
answer Salazar’s question by the following statement: for every rational number r ∈ (3, 6)
there exists an integer Nr, such that, for any k > Nr, there exists an infinite family of
simple 3-connected crossing-critical graphs with average degree r and crossing number
k. Moreover, a universal lower bound on k applies for rational numbers in any closed
interval I ⊂ (3, 6).

Keywords: crossing number, critical graph, crossing-critical graph, average degree, graph.

1 Introduction

Let cr(G) denote the crossing number of a graph G. A graph G is k-crossing-critical , if
cr(G) ≥ k and cr(G − e) < k for any edge e ∈ E(G). Note that unless stated otherwise,
all graphs in this paper are without vertices of degree two, as such vertices are trivial with
respect to crossing number. The graphs may contain multiple edges, but do not contain
loops. Besides that, the standard terminology from [5] is used.
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Crossing-critical graphs give insight into structural properties of the crossing number
invariant and have thus generated considerable interest. iráň introduced crossing-critical
edges and proved that any such edge e of a graph G with cr(G − e) ≤ 1 belongs to a
Kuratowsky subdivision in G [21]. Moreover, such a claim does not hold for edges with
cr(G − e) ≥ 5. In [22], iráň constructed the first infinite family of 3-connected k-crossing-
critical graphs for arbitrary given k ≥ 3. Kochol constructed the first infinite family of simple
3-connected k-crossing-critical graphs (k ≥ 2) in [11]. Richter and Thomassen proved that
cr(G) ≤ 5

2k + 16 for a k-crossing-critical graph G in [16]. They used this result to prove that
there are only finitely many simple k-crossing-critical graphs with minimum degree r for any
integers k ≥ 1 and r ≥ 6 and constructed an infinite family of simple 4-regular 4-connected
3-crossing-critical graphs and posed a question about existence of simple 5-regular k-crossing-
critical graphs. Salazar observed that their argument implies finiteness of the number of the
number of simple k-crossing critical graphs of average degree r for any rational r > 6 and
integer k > 0 [18]. Since the finiteness of the set of simple 3-regular k-crossing-critical graphs
can be established using Robertson-Seymour graph minor theory, it follows that the only
average degrees for which an infinite family of simple k-crossing-critical graphs could exist
are r ∈ (3, 6]. Salazar constructed an infinite family of simple k-crossing-critical graphs with
average degree r for any r ∈ [4, 6) and posed the following question:

Question 1 ([18]) Let r be a rational number in (3, 4). Does there exist an integer k and
an infinite family of (simple) graphs, each of which has average degree r and is k-crossing-
critical?

Question 1 was partially answered by Pinontoan and Richter [14]. They proposed con-
structing crossing-critical graphs from smaller pieces or tiles, and applied this idea to de-
sign infinite families of simple k-crossing-critical graphs for any prescribed average degree
r ∈ (31

2 , 4).
Besides the study of degrees in crossing-critical graphs, there are also some structural

results. Salazar improved the factor 5
2 in the bound of Richter and Thomassen to 2 for large

k-crossing-critical graphs [19] and for graphs of minimum degree four [20]. Hliněný proved
that there is a function f such that no k-crossing-critical graph contains a subdivision of
a binary tree of height f(k), which implies that the path-width of such a graph is at most
2f(k)+1 − 2. In particular, k− 1 ≤ f(k) ≤ 6(72 log2 k + 248)k3 [7, 8]. Existence of a bound on
the path-width of k-crossing-critical graphs was first conjectured by Geelen, Richter, Salazar,
and Thomas in [6], where they established a result implying a bound on the tree-width
of k-crossing-critical graphs. Hliněný defined crossed k-fences, which are k-crossing-critical
graphs, in [7]. Crossed k-fences from some particular family contain subdivisions of binary
trees of height k − 1 and thus have path-width at least 2k − 2.

Focus of the research on crossing-critical graphs was on 3-(edge)-connected crossing-
critical graphs. This condition eliminates vertices of degree two, which are trivial with respect
to the crossing number. But the condition is much stronger and its application has been jus-
tified only recently by a structural result of Leaños and Salazar in [12], stating that, for a
connected crossing-critical graph G with minimum degree at least three, there exists a col-
lection G1, . . . , Gm of 3-edge-connected crossing-critical graphs, each of which is contained
as a subdivision in G, and such that cr(G) =

∑m
i=1 cr(Gi).

Two new constructions of crossing-critical graphs are developed in this contribution. In
combination with the one of Pinontoan and Richter [14], they are applied to answer the
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question of Salazar by a result resembling those of iráň and Kochol: we show that there
exist infinite families of simple k-crossing-critical graphs with any prescribed average degree
r ∈ (3, 6), for any k greater than some lower bound Nr. This leaves average degree r = 6
as the only open case. Several steps are required for our proof. In Section 2, the theory of
tiles of Pinontoan and Richter is extended to yield effective lower bounds on the number of
tiles needed to imply the lower bounds on crossing number. Section 3 contains the first new
construction of k-crossing critical graphs, which yields infinite families of such graphs with
average degree arbitrarily close to three. The second new construction relies on a sufficient
condition that the zip product, studied in [1, 2], preserves criticality of the graphs involved.
This is established in Section 4. The main result is proved in Section 5 by combining the
results of the previous sections. Some further aspects of applying zip product in construction
of crossing-number critical graphs are discussed as the conclusion in Section 6.

2 Tiles

In this section, we present a variant of the theory of tiles developed by Pinontoan and Richter
[14]. In particular, we consider general sequences of not necessarily equal tiles, avoid the
condition that the tiles be connected, and allow forming double edges when joining tiles. Such
generalizations do not hinder the arguments of [14] and are useful in further investigations
of tiled graphs. We establish an effective bound on the number of tiles needed to imply
lower bounds on crossing numbers. Finally, we combine these improvements into a general
construction of crossing-critical graphs.

Let G be a graph and λ = (λ0, . . . , λl), ρ = (ρ0, . . . , ρr) two sequences of distinct vertices,
such that no vertex of G appears in both. The triple T = (G,λ, ρ) is called a tile. To simplify
the notation, we may sometimes use T in place of its graph G and we may consider sequences
λ and ρ as sets of vertices. For u, v ∈ λ or u, v ∈ ρ, we use u ≤ v or u ≥ v whenever u
precedes or succeeds v in the respective sequence.

A drawing of G in the unit square [0, 1] × [0, 1] that meets the boundary of the square
precisely in the vertices of the left wall λ, all drawn in {0} × [0, 1], and the right wall ρ, all
drawn in {1} × [0, 1], is a tile drawing of T if the sequence of decreasing y-coordinates of the
vertices of each λ and ρ respects the corresponding sequence λ or ρ. The tile crossing number
tcr(T ) of a tile T is the minimum number of crossings over all tile drawings of T .

Let T = (G,λ, ρ) and T ′ = (G′, λ′, ρ′) be two tiles. We say that T is compatible with T ′

if |ρ| = |λ′|. A tile T is cyclically-compatible if it is compatible with itself. A sequence of
tiles T = (T0, . . . , Tm) is compatible if Ti is compatible with Ti+1 for i = 0, . . . ,m − 1. It is
cyclically-compatible if it is compatible and Tm is compatible with T0. All sequences of tiles
are assumed to be compatible.

The join of two compatible tiles T and T ′ is defined as T ⊗ T ′ = (G ⊗ G′, λ, ρ′), where
G⊗G′ is the graph obtained from the disjoint union of G and G′ by identifying ρi with λ′

i for
i = 0, . . . , |ρ| − 1. This operation is associative, thus we can define the join of a compatible
sequence of tiles T = (T0, . . . , Tm) to be the tile ⊗T = T0 ⊗ T1 ⊗ . . . ⊗ Tm. Note that we
may produce multiple edges or vertices of degree two when joining tiles. We keep the double
edges, but remove the vertices of degree two by contracting one of the incident edges.
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For a cyclically-compatible tile T = (G,λ, ρ), we define its cyclization ◦T as the graph,
obtained from G by identifying λi with ρi for i = 0, . . . , |ρ| − 1. Similarly, we define the
cyclization of a cyclically-compatible sequence of tiles as ◦T = ◦(⊗T ).

Lemma 2 ([14]) Let T be a cyclically-compatible tile. Then, cr(◦T ) ≤ tcr(T ). Let T =
(T0, . . . , Tm) be a compatible sequence of tiles. Then, tcr(⊗T ) ≤

∑m
i=0 tcr(Ti).

For a sequence ω, let ω̄ denote the reversed sequence. For a tile T = (G,λ, ρ), let its
right-inverted tile T l be the tile (G,λ, ρ̄), its left-inverted tile lT be the tile (G, λ̄, ρ), and its
inverted tile be the tile lT l = (G, λ̄, ρ̄). The reversed tile of T is the tile T↔ = (G, ρ, λ).

Let T = (T0, . . . , Tm) be a sequence of tiles. A reversed sequence of T is the se-

quence T ↔ = (T↔
m , . . . , T↔

0 ). A twist of T is the sequence T l = (T0, . . . , Tm−1, T
l
m). Let

i ∈ {0, . . . ,m} be arbitrary. Then, an i-flip of T is the sequence T i = (T0, . . . , Ti−1, T
l
i ,

lTi+1, Ti+2, . . . , Tm), an i-cut of T is the sequence T /i = (Ti+1, . . . , Tm, T0, . . . , Ti−1), and an
i-shift of T is the sequence Ti = (Ti, . . . , Tm, T0, . . . , Ti+1). For the last two operations, cyclic
compatibility of T is required.

Two sequences of tiles T and T ′ of the same length m are equivalent if one can be obtained
from the other by a sequence of shifts, flips, and reversals. It is easy to see that the graphs
◦T and ◦T ′ are equal for equivalent cyclically-compatible sequences T and T ′ and thus have
the same crossing number.

We say that a tile T = (G,λ, ρ) is planar if tcr(T ) = 0 holds. It is connected if G is
connected. It is perfect if:

(p.i) |λ| = |ρ|,

(p.ii) both graphs G − λ and G − ρ are connected,

(p.iii) for every v ∈ λ or v ∈ ρ there is a path from v to a vertex in ρ (λ) in G internally
disjoint from λ (ρ), and

(p.iv) for every 0 ≤ i < j ≤ |λ| there is a pair of disjoint paths Pij and Pji in G, such that
Pij joins λi with ρi and Pji joins λj with ρj.

Note that perfect tiles are connected.

Lemma 3 ([14]) For a cyclically-compatible perfect planar tile T and a compatible sequence
T = (T0, . . . , Tm, T ), there exists n ∈ N, such that, for every k ≥ n, tcr((⊗T ) ⊗ (T k)) =
tcr((⊗T ) ⊗ (T n)).

Let T = (G,λ, ρ) be a tile and H a graph that contains G as a subgraph. The complement
of the tile T in H is the tile H−T = (H[(V (H)\V (G))∪λ∪ρ]−E(G), ρ, λ). We can consider
it as the edge complement of the subgraph G of H from which we remove all the vertices of
T not in its walls. Whenever ◦(T ⊗ (H − T )) = H, i.e. if the vertices of λ ∪ ρ separate G
from H −G, we say that T is a tile in H. Using this concept, the following lemma shows the
essence of perfect tiles.
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Lemma 4 Let T = (G,λ, ρ) be a perfect planar tile in a graph H, such that there exist two
disjoint connected subgraphs Gλ and Gρ of H contained in the same component of H−T and
with G ∩ Gλ = (λ, ∅), G ∩ Gρ = (ρ, ∅). If E(G) and either E(Gλ) or E(Gρ) are not crossed
in some drawing D of H, then the D-induced drawings of T and its complement H − T are
homeomorphic to tile drawings.

Proof. There is only one component of H − T containing the vertices of λ ∪ ρ, and as the
edges of other components do not cross G nor influence its induced drawing, we may assume
that H − T is that component and, in particular, it is connected.

Denote by DT the D-induced drawing of T , by T− the tile H − T , and by D− the D-
induced drawing of T−. As the edges of T are not crossed in D and T− is connected, there
is a face F of DT containing D−. The boundary of F contains all vertices of T ∩T− = λ∪ ρ.
Let W be the facial walk of F . No vertex of λ ∪ ρ appears twice in W : such a vertex would
be a cutvertex in the planar graph G. Then either G − λ or G − ρ would not be connected,
violating (p.ii), or some vertex in λ ∪ ρ would have no path to the opposite wall, as required
by (p.iii).

Let W ′ be the induced sequence of vertices of λ ∪ ρ in W . As the edges of Gλ or Gρ are
not crossed in D and T , Gλ, and Gρ are connected, the vertices of λ do not interlace with
the vertices of ρ in W ′. The ordering of λ in W ′ is the inverse ordering of ρ in W ′, since
the disjoint paths from (p.iv) do not cross in DT . The planarity and the connectedness of T
imply that whenever i < j < l or i > j > l, there is a path Q from Pjl to λi disjoint from
Plj . Q does not cross Plj in DT , thus W ′ = λρ̄ or W ′ = ρλ̄. The claim follows.

The above arguments were in [14] combined with Lemma 3 to demonstrate the following:

Theorem 5 ([14]) Let T be a perfect planar tile and let T̄k = T k ⊗T l⊗T k for k ≥ 1. Then
there exist integers n,N , such that cr(◦(T̄k)) = tcr(T̄n) for every k ≥ N .

We establish effective values of n and N from the above theorem:

Theorem 6 Let T = (T0, . . . , Tl, . . . , Tm) be a cyclically-compatible sequence of tiles. Assume
that, for some integer k ≥ 0, the following hold: m ≥ 4k − 2, tcr(⊗T /i) ≥ k, and the tile Ti

is a perfect planar tile, both for every i = 0, . . . ,m, i 6= l. Then, cr(◦T ) ≥ k.

Proof. We may assume k ≥ 1. Let G = ◦T and let D be an optimal drawing of G.
Assume that D has less than k crossings. Then there are at most 2k − 1 tiles in the set
S = {Ti | i = l or E(Ti) crossed in D}. The circular sequence T is by the tiles of S fragmented
into at most 2k − 1 segments. By the pigeon-hole principle, the set T \ S, which consists of
at least 2k tiles, contains two consecutive tiles TiTi+1. Assume for simplicity that i = 1, then
either T0 or T3 is distinct from Tl. Lemma 4 with (G,T1, T0, T2) or (G,T2, T1, T3) in place of
(H,T,Gλ, Gρ) establishes that the induced drawing D− of G − Tj is a tile drawing for some
j ∈ {1, 2}. Since D− contains all the crossings of D, this contradicts tcr(⊗(T /j)) ≥ k, and
the claim follows.

Corollary 7 Let T = (T0, . . . , Tl, . . . , Tm) be a cyclically-compatible sequence of tiles and
k = mini6=l tcr(⊗T /i). If m ≥ 4k − 2 and the tile Ti is a perfect planar tile for every
i = 0, . . . ,m, i 6= l, then cr(◦T ) = k.
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Proof. By Lemma 2 and the planarity of tiles, cr(◦T ) ≤ tcr((⊗T /i) ⊗ Ti) ≤ tcr(⊗T /i) for
any i 6= l, thus cr(◦T ) ≤ k. Theorem 6 establishes k as a lower bound and the claim follows.

A tile T is k-degenerate if it is perfect, planar, and tcr(T l−e) < k for any edge e ∈ E(T ).
A sequence of tiles T = (T0, . . . , Tm) is k-critical if the tile Ti is k-degenerate for every
i = 0, . . . ,m and mini6=m tcr(⊗(T l/i)) ≥ k. Note that tcr(T l) ≥ k for every tile T in a
k-critical sequence.

Corollary 8 Let T = (T0, . . . , Tm) be a k-critical sequence of tiles. Then, T = ⊗T is a
k-degenerate tile. If m ≥ 4k − 2 and T is cyclically-compatible, then ◦(T l) is a k-crossing-
critical graph.

Proof. Lemma 2 implies that T is a planar tile. By induction it is easy to show that
T is a perfect tile. Let e be an edge of T and let i be such that e ∈ Ti. The sequence

T ′ = (T0, . . . , Ti−1, T
l
i , lTi+1

l
, . . . , lT

l
m) is equivalent to T l. Lemma 2 establishes tcr(T l −

e) = tcr((⊗T ′) − e) ≤ tcr(T
l
i − e) < k, thus T is a k-degenerate tile.

Let T be cyclically-compatible. Then cr((◦T l)− e) < k for any edge e ∈ E(T ). Theorem
6 implies cr(◦(T l)) ≥ k for m ≥ 4k − 2. Thus, ◦(T l) is a k-crossing-critical graph.

The above results provide sufficient conditions for the crossing numbers of certain graphs
to be estimated in terms of the tile crossing numbers of their subgraphs. In what follows, we
develop some techniques to estimate the tile crossing number.

A general tool we employ for this purpose is the concept of a gadget . We do not define it
formally; a gadget can be any structure inside a tile T = (G,λ, ρ), which guarantees a certain
number of crossings in every tile drawing of T . Pinontoan and Richter used twisted pairs as
gadgets [14], and we present staircase strips. Some other possible gadgets are cloned vertices,
which were already used by Kochol [11], wheel gadgets, and others, which were studied in
[3].

In general, there can be many gadgets inside a single tile. Whenever they are edge disjoint,
the crossings they force in tile drawings are distinct. The following weakening of disjointness
enables us to prove stronger results. For clarity, we first state the condition in its set-theoretic
form.

Let A1, B1, A2, B2 be four sets. The unordered pairs {A1, B1} and {A2, B2} are coherent
if one of the sets Xi, X ∈ {A,B}, i ∈ {1, 2}, is disjoint from A3−i ∪ B3−i.

Lemma 9 Let {A,B} and {A′, B′} be two pairs of sets. If they are coherent and

a ∈ A, b ∈ B, a′ ∈ A′ and b′ ∈ B′, (2.1)

then the unordered pairs {a, b} and {a′, b′} are distinct. Conversely, if (2.1) implies dis-
tinctness of {a, b}, {a′, b′} for every quadruple a, b, a′, b′, then the pairs {A,B}, {A′, B′} are
coherent.

Proof. Suppose the pairs are not distinct, then either a = a′ and b = b′, or a = b′ and
b = a′. In both cases, every set has a member in the union of the other pair, and the pairs
are not coherent.
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For the converse, suppose the pairs would not be coherent. Then every set would contain
an element in the union of the opposite pair. Let x ∈ A ∩ A′, assuming the intersection is
not empty. If there is an element y ∈ B′ ∩B, then the quadruple a = x, b = y, a′ = x, b′ = y
satisfies (2.1) but does not form two distinct pairs. If B ∩ B′ is empty, then there must be
a′ ∈ B ∩ A′ and b′ ∈ B′ ∩ A. The quadruple a = a′, b = b′, a′, b′ satisfies (2.1). Assuming
x ∈ A ∩ B′, a similar analysis applies and the claim follows.

Lemma 9 has an immediate application to crossings: whenever the pairs of edges {ex, fx}
and {ey, fy} are distinct for two crossings x and y, the crossings x and y are distinct. Dis-
tinctness of crossings induced by two coherent pairs of sets of edges in a graph follows.

The notion of coherence can be generalized. Let {A1, . . . , Am} and {B1, . . . , Bn} be two
families of sets. They are coherent if the two pairs {Ai, Aj} and {Bk, Bl} are coherent for
every 0 ≤ i < j ≤ m, 0 ≤ k < l ≤ n.

A path P in G is a traversing path in a tile T = (G,λ, ρ) if there exist indices i(P ) ∈
{0, . . . , |λ| − 1} and j(P ) ∈ {0, . . . , |ρ| − 1} such that P is a path from λ(P ) = λi(P ) to
ρ(P ) = ρj(P ) and λ(P ), ρ(P ) are the only wall vertices that lie on P . An (unordered) pair
of disjoint traversing paths {P,Q} is aligned if i(P ) < i(Q) is equivalent to j(P ) < j(Q),
and twisted otherwise. Disjointness of the traversing paths in a twisted pair {P,Q} implies
that some edge of P must cross some edge of Q in any tile drawing of T . Two pairs {P,Q}
and {P ′, Q′} of traversing paths in T are coherent if {E(P ), E(Q)} and {E(P ′), E(Q′)} are
coherent. A family of pairwise coherent twisted (respectively, aligned) pairs of traversing
paths in a tile T is called a twisted (aligned) family in T .

Lemma 10 ([14]) Let F be a twisted family in a tile T . Then, tcr(T ) ≥ |F|.

Let a tile T be compatible with T ′ and let {P,Q} be a twisted pair of traversing paths
of T . An aligned pair {P ′, Q′} of traversing paths in T ′ extends {P,Q} to the right if
j(P ) = i(P ′), j(Q) = i(Q′). Then {PP ′, QQ′} is a twisted pair in T ⊗ T ′. For a twisted
family F in T , a right-extending family is an aligned family F ′ in T ′, for which there exists
a bijection e : F → F ′, such that the pair e({P,Q}) ∈ F ′ extends the pair {P,Q} on the
right. In this case, the family F ⊗e F

′ = {{PP ′, QQ′} | {P ′, Q′} = e({P,Q})} is a twisted
family in T ⊗ T ′. Extending to the left is defined similarly. Let T = (T0, . . . , Tl, . . . , Tm)
be a compatible sequence of tiles and Fl a twisted family in Tl. If, for i = l + 1, . . . ,m
(respectively, i = l − 1, . . . , 0), there exist aligned right- (left-) extending families Fi of
Fl ⊗ . . .⊗Fi−1 (Fi+1 ⊗ . . .⊗Fl−1), then Fl propagates to the right (left) in T . Fl propagates
in cyclically-compatible T if it propagates both to the left and to the right in every cut T /i,
i = 0, . . . ,m, i 6= l.

A twisted family F in a tile T saturates T if tcr(T ) = |F|, i.e. there exists a tile drawing
of T with |F| crossings. Clearly, all these crossings must be on the edges of pairs of paths in
F .

Corollary 11 Let T = (T0, . . . , Tl, . . . , Tm) be a cyclically-compatible sequence of tiles and
F a twisted family in Tl that propagates in T . If m ≥ 4|F| − 2 and the tile Ti is a perfect
planar tile for every i = 0, . . . ,m, i 6= l, then cr(◦T ) ≥ |F|. If F saturates Tl, then the
equality holds.
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(a) (b)

A
B
C

D
E
F
G

Pi

P1

Pi+1

Qi

Ri

Si

S2w+1

2w + 1 subtiles

Figure 1: (a) The tile Hw, w = 1. (b) An optimal tile drawing of H0.

Proof. As F propagates in T , Lemma 10 implies mini6=l tcr(⊗(T /i)) ≥ |F|. Theorem 6
establishes the claim.

Let Hw be a tile, which is for w = 1 presented in Figure 1 (a). It is constructed by joining
two subtiles, denoted by dashed edges, with a sequence of 2w + 1 subtiles, of which one is
drawn with thick edges. The left (right) wall vertices of Hw are colored black (white). Hw is
a perfect planar tile. Let H(w, s) = (Hw, . . . ,Hw) be a sequence of tiles of length s and let
H(w, s) = ◦(H(w, s)l) be the cyclization of its twist.

Proposition 12 The graph H(w, s) is a crossing-critical graph with crossing number k =
32w2 + 56w + 31 whenever s ≥ 4k − 1.

Proof. Using the traversing paths A, . . . , G of Hw depicted in Figure 1, we construct an

aligned family Hw of size k, cf. [3, 4]. The corresponding family H′
w in H

l
w is twisted and

propagates in H(w, s)l. Figure 1 (b) presents an optimal tile drawing of H0, its generalization

to w > 0 demonstrates that H′
w saturates H

l
w. The crossing number of H(w, s) is established

by Corollary 11.
The number of crossings can be decreased after removing any edge from the drawing in

Figure 1 (b). This also applies to the generalization of the drawing, thus Hw is a k-degenerate
tile. The propagation of the twisted family F ′ demonstrates tcr

(

⊗(H(w, s)l/i)
)

≥ k for any
i 6= s, thus H(w, s) is a k-critical sequence. Criticality of H(w, s) follows by Corollary 8.

3 Staircase strips in tiles

In this section, we study twisted staircase strips. Using these gadgets, we construct new
crossing-critical graphs with average degree close to three.
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u = u1 = u′
1 = u2 = v1

v = u′
n = v′n−1 = vn = v′n

s s′ s′′u′
2u3 = u′

3

u5 u′
5

un

v′1 v2 S2

vn−1

Figure 2: A general staircase strip in a tile. Leftmost and rightmost arrows indicate the
ordering of the wall vertices. Dashed edges are part of the tile but not of the staircase strip.

Let P = {P1, P2, . . . , Pn} be a sequence of traversing paths in a tile T with the property
λ(Pi) ≤ λ(Pj) and ρ(Pi) ≥ ρ(Pj) for i < j. Assume that they are pairwise disjoint, except for
the pairs P1, P2 and Pn−1, Pn, which may share vertices, but not edges. For u ∈ V (P1)∩V (P2)
and v ∈ V (Pn−1) ∩ V (Pn), we say that u is left of v (cf. Figure 2) if there exist internally
disjoint paths Qu and Qv from u to v such that:

(s.i) there exist vertices u1, u
′
1, . . . , un, u′

n that appear in this order on Qu,

(s.ii) there exist vertices v1, v
′
1, . . . , vn, v′n that appear in this order on Qv,

(s.iii) u = u1 = u′
1 = u2 = v1 and v = u′

n = v′n−1 = vn = v′n,

(s.iv) v′1, v2, v
′
2, u

′
2 6∈ P1 ∩ P2 and vn−1, un−1, u

′
n−1, un 6∈ Pn−1 ∩ Pn,

(s.v) for i = 1, . . . , n, Ri := uiPiu
′
i ⊆ Pi ∩ Qu, with equality for i 6= n − 1,

(s.vi) for i = 1, . . . , n, Si := viPiv
′
i ⊆ Pi ∩ Qv, with equality for i 6= 2,

(s.vii) Rn−1 = (Pn−1 ∩ Qu) − Rn and S2 = (P2 ∩ Qv) − S1,

(s.viii) if ′u, u′ ∈ P1 ∩ P2 are two vertices with v′1 ∈ ′uP1u
′, then v2 ∈ ′uP2u

′,

(s.ix) if ′v, v′ ∈ Pn−1 ∩ Pn are two vertices with un ∈ ′vPnv′, then u′
n−1 ∈ ′vPn−1v

′, and

(s.x) λ(Pi)uiu
′
iviv

′
iρ(Pi) lie in this order on Pi for i = 1, . . . , n.

Similarly, we define when u is right of v. We say that P forms a twisted staircase strip of width
n in the tile T if the vertex u is either left or right of the vertex v whenever u ∈ V (P1)∩V (P2)
and v ∈ V (Pn−1) ∩ V (Pn).

9



Vertex u in Figure 2 is left of v. The features establishing this fact are emphasized. The
subpaths u′

iQuui+1 and v′iQvvi+1 are, for i = 2, . . . , n− 1, internally disjoint from Pj by (s.v)
and (s.vi), for any j = 1, . . . , n, and their length is at least one. They are represented by solid
vertical edges in the figure. However, the length of Ri and Si, i = 1, . . . , n, may be zero; the
thick edges in the figure emphasize the instances when their length is positive. Solid edges
in Figure 2 are part of a twisted staircase strip, dashed edges are not. Note that the vertices
u and s are left of v and that the vertices s′ and s′′ are right of v.

Theorem 13 Let T be a tile and assume that P = {P1, P2, . . . , Pn} forms a twisted staircase
strip of width n in T . Then, tcr(T ) ≥

(

n
2

)

− 1.

Proof. If a wall vertex v in a tile T has degree d, then the tile crossing number of T is
not changed if d new neighbors v1, . . . , vd of degree one are attached to v and v is in its wall
replaced by v1, . . . , vd. Thus, we may assume that all paths in P have distinct startvertices
in λ and distinct endvertices in ρ.

Let D be any optimal tile drawing of T . By Lemma 10, there are at least
(

n
2

)

−2 crossings
in D, since the set F = {{Pi, Pj} | 1 ≤ i < j ≤ n}\{{P1, P2}, {Pn−1, Pn}} is a twisted family
in T . For {Pi, Pj} ∈ F , let Pi cross Pj at xi,j. In what follows, we contradict the assumption

xi,j are all the crossings of D. (3.2)

For i = 1, . . . , n, let Pi be oriented from λ(Pi) to ρ(Pi). The assumption (3.2) implies
that the induced drawing of every Pi is a simple curve. This curve splits the unit square
∆ = I × I containing D into two disjoint open disks, the lower disk ∆−

i bordering [0, 1]×{0}
and the upper disk ∆+

i bordering [0, 1] × {1}.
Claim 1: At xi,j, the path Pj crosses from ∆−

i into ∆+
i and the path Pi crosses from ∆+

j

into ∆−
j . This follows from i < j and the orientation of paths Pi and Pj .

As λ(P2) ∈ ∆−
1 and ρ(P2) ∈ ∆+

1 , there is a vertex u ∈ V (P1)∩V (P2) where P2 crosses P1

from ∆−
1 to ∆+

1 . Also, there is a vertex v ∈ V (Pn−1) ∩ V (Pn), such that Pn−1 crosses from
∆+

n into ∆−
n at v. Then Claim 1 holds for x1,2 = u and xn−1,n = v.

By symmetry, we may assume that u is left of v in T . Let Qu and Qv be the corresponding
paths in T . P2 enters ∆+

1 at u, and (3.2), (s.iii), (s.iv), and (s.v) imply u′
2 ∈ ∆+

1 . Similarly,
vn−1 ∈ ∆+

n by (3.2), (s.iii), (s.iv), and (s.vi).
Claim 2: If any point y of w′

iQw lies in ∆−
i for w ∈ {u, v} and i ∈ {1, . . . , n}, wi 6= un−1,

then the path Qw must at w′
i enter ∆−

i . If w 6= u or i 6= n − 1, the segment w′
iQwy does not

cross from ∆+
i to ∆−

i due to Claim 1, thus it must lie in ∆−
1 .

Claim 3: If there is a point y of Qwwi in ∆−
i for w ∈ {u, v} and i ∈ {1, . . . , n}, wi 6= v2,

then Qw must at wi leave ∆−
i . Otherwise, the segment yQwwi would contradict Claim 1 at

xji for some j < i.
Claim 4: For 3 ≤ i ≤ n, neither of ui, vi lies in ∆−

1 . Assume some ui ∈ ∆−
1 . As u′

2 ∈ ∆+
1 ,

the path Qu would contradict Claim 1 at x1,j for some j, 1 < j < i. Assume vi ∈ ∆−
1 . Due

to the orientation of Pi, (3.2), and (s.x), ui ∈ ∆−
1 , a contradiction.

Claim 5: For 1 ≤ i ≤ n−2, neither of u′
i, v

′
i lies in ∆−

n . Assume v′i ∈ ∆−
n . As vn−1 ∈ ∆+

n ,
the path Qv would contradict Claim 1 at xj,n for some j, i < j < n. To complete the proof,
observe that if u′

i ∈ ∆−
n then v′i ∈ ∆−

n by (3.2) and (s.x).
In what follows, we prove that the subdrawing of D induced by Qu∪Qv∪(

⋃

i Pi) contains
a new crossing, distinct from xi,j, which contradicts (3.2). We first simplify the subdrawing
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and obtain a drawing D′ in which for every i, j, 1 ≤ i < j ≤ n, the paths Pi and Pj share
precisely one point. We use the following steps:

• All vertices of P1 ∩ P2, Pn−1 ∩ Pn at which the two paths do not cross are split.

• As D is a tile drawing, there is an even number of crossing vertices in V (P1) ∩ V (P2)
preceding u on P1. For a consecutive pair x, y of such vertices, the paths P1 and P2

are uncrossed by rerouting xP1y along xP2y and vice versa. The vertices x and y are
split afterwards. The segments of Pn−1 and Pn following v are uncrossed in a similar
manner. By (s.i), (s.ii), (s.iii), and (s.x), the paths Qu and Qv are not affected.

• For any pair of vertices of S1 ∩ P2 − {u}, the paths P1 and P2 are uncrossed in the
same way. Due to (s.v), the vertex u′

2 is not on any of the two affected segments. Due
to (s.iv), (s.vi) and (s.viii), neither of the segments can contain v′1, v2 or v′2. Thus,
u′

2, v2, v
′
2 ∈ P2 and v′1 ∈ P1 after the uncrossing. As all the pairs can be uncrossed,

we may assume there is at most one crossing vertex in S1 ∩ P2 distinct from u. But
existence of such vertex implies by (s.viii) that v2 ∈ ∆−

1 , further implying by (s.vi) and
(s.vii) that v′2 ∈ ∆−

1 . By (3.2), the segment v′2Qvv3 does not cross P1, thus v3 lies in
∆−

1 , contradicting Claim 4.

• As in the previous step, the paths Pn−1 and Pn are uncrossed at any pair of vertices
of Rn ∩ Pn−1. Existence of a single remaining crossing vertex in Rn ∩ Pn−1 would by
(s.iv), (s.v), (s.vii), and (s.ix) imply u′

n−2 ∈ ∆−
n , violating Claim 5.

• As D′ is a tile drawing, there is an even number of crossing vertices in v′1P1 ∩ P2. By
(s.viii) and (s.x), uncrossing the paths P1, P2 as before does not affect Qv. Similarly,
uncrossing the paths Pn−1 and Pnun does not affect Qu due to (s.ix) and (s.x).

All crossings in thus obtained drawing D′ are also crossings of D, but some crossings of
P1 with Pi may have become crossings of P2 and Pi and vice versa. The same applies to
the pair (Pn−1, Pn). We replace the labels xi,j accordingly. Until the end of the proof, we
are concerned with the drawing D′ only. In the new drawing, Claim 2 holds for wi = un−1,
Claim 3 for wi = v2, Claim 4 for i = 2, and Claim 5 for i = n − 1.

Claim 6: For 1 ≤ i < j ≤ n, the subpath Ri of Qu does not cross the subpath Sj of

Qv at xi,j. Suppose it does and take the maximal such i. By Claim 1 and (s.x), uj and vj

lie in ∆−
i . Claim 2 implies that Qu and Qv enter ∆−

i at u′
i and v′i. Similarly, u′

i and v′i lie
in ∆−

j and Claim 3 implies that Qu and Qv leave ∆−
j at uj , vj. Thus, the segments u′

iQuuj

and v′iQvvj lie in the intersection ∆′ = ∆−
i ∩ ∆−

j . ∆′ is a disk as Pi and Pj do not self-cross
and cross each other only once. The vertices u′

i, v′i, uj, vj lie in this order on the boundary
of ∆′, so the segments must intersect in ∆′. This contradicts either the assumption (3.2) or
the maximality of i. Claim 6 follows.

Let γu denote the simplified path P1uQuvPn−1: whenever this path self-crosses, the circuit
is shortcut. Let γu

1 , γu
2 , and γu

3 be the (possibly empty) segments of γu corresponding to P1,
Qu, and Pn−1. Similarly, let γv denote the simplified path P2uQvvPn with the segments γv

1 ,
γv
2 , and γv

3 . Using the induced orientation of γu and γv, we define disks ∆+
u , ∆−

u , ∆+
v , and

∆−
v to be the respective lower and upper disks. The endvertices of γu and γv interlace in the

boundary of [0, 1] × [0, 1], thus these paths must cross at some crossing z = zi,j of segments

11



(a) (b)

Figure 3: (a) The tile S7. (b) A tile drawing of S7 with 20 crossings.

γu
i and γv

j . We contradict the assumption that z = xi,j for some i, j. Due to the definition
of γu and γv, there are nine possibilities for z:

(1) z = z1,1 = u is a touching of γu and γv.

(2) z = z1,2 = x1,i for some i > 2. Thus, vi ∈ ∆−
1 contradicts Claim 4.

(3) z = z1,3 = x1,n implies un ∈ ∆−
1 .

(4) z = z2,1 = xi,2 for some i > 2, then ui ∈ ∆−
1 .

(5) z = z2,2 = xi,j is a crossing of Si and Rj. Claim 6 implies that 1 ≤ i < j ≤ n. Choose
smallest such i and then smallest j. Qv starts in ∆−

u and since z is the first crossing
of Qv with γu (or one of the other eight cases would apply), Qv leaves ∆−

u and enters
∆+

u at z. As the orientation of γu is aligned with the orientation of Rj , Si leaves ∆−
j ,

which contradicts Claim 1.

(6) z = z2,3 = xi,n for some i < n, then u′
i ∈ ∆−

n , which contradicts Claim 5.

(7) z = z3,1 = x2,n−1 implies v′2 ∈ ∆−
n .

(8) z = z3,2 = xi,n−1 is the crossing of Pn−1 and Si, then v′i ∈ ∆−
n .

(9) z = z3,3 = v is a touching of γu and γv.

Thus, γu and γv must cross at a new crossing and the statement of the theorem follows.

The reader shall have no difficulty rigorously describing the tile Sn, n ≥ 3, an example of
which is for n = 7 presented in Figure 3 (a). A staircase tile of width n ≥ 3 is a tile obtained
from Sn by contracting some (possibly zero) thick edges of Sn. Such a tile is a perfect planar
tile. A staircase sequence of width n is a sequence of tiles of odd length in which staircase
tiles of width n alternate with inverted staircase tiles of width n. Any staircase sequence is
a cyclically-compatible sequence of tiles.

12



Proposition 14 Let T be a staircase sequence of width n and odd length m ≥ 4
(

n
2

)

− 5. The

graph G = ◦(T l) is a crossing-critical graph with cr(G) =
(

n
2

)

− 1.

Proof. A generalization of the drawing in Figure 3 demonstrates that tcr(Sn) ≤
(

n
2

)

−1. As

m is odd, the cut T l/i contains a twisted staircase strip of width n for any i = 0, . . . ,m− 1,
and Theorem 13 implies tcr(T l/i) ≥

(

n
2

)

− 1. Planarity of tiles Sn and Lemma 2 establish
equality and Corollary 7 implies cr(G) =

(

n
2

)

− 1.
After removing any edge from Sn, we can decrease the number of crossings in the drawing

in Figure 3 (b). Thus, Sn is a
((

n
2

)

− 1
)

-degenerate tile and T is a
((

n
2

)

− 1
)

-critical sequence;
the criticality of G follows by Corollary 8.

Let S′
n be the inverted tile Sn. Let Sn,m be the staircase sequence (Sn, S′

n, Sn, S′
n, . . . , Sn)

of odd length m ≥ 1 and S(n,m, c) the set of graphs obtained from ◦(S
l
n,m) by contracting

c thick edges in the tiles of Sn,m. These graphs almost settle Question 1:

Proposition 15 ([3, 4]) Let r = 3 + a
b

with 1 ≤ a < b. If a + b is odd, then, for n ≥

max
(

5b−a
2(b−a) ,

7a+b
4a

, 4
)

, m(t) = (2t + 1)(a + b), and c(t) = (2t + 1)((4n − 7)a − b), the family

Q(a, b, n) =
⋃∞

t=n2 S(n,m(t), c(t)) contains
((

n
2

)

− 1
)

-crossing-critical graphs with average
degree r.

Demanding the average degree of the graphs in S(m,n, c) to be r = 3 + a
b
, 1 ≤ a < b,

a + b even, forces m(t) to be an even number and the resulting graphs are no longer critical.

4 Zip product and criticality of graphs

Zip product is an operation on graphs or their drawings that was used in [1, 2] to establish
the crossing number of Cartesian products of several graphs with trees. For two graphs Gi

(i = 1, 2), their vertices vi of degree d not incident with multiple edges (we call such vertices
simple), and a bijection σ : N1 → N2 of the neighborhoods Ni of vi in Gi, the zip product
of the graphs G1 and G2 according to σ is the graph G1 ⊙σ G2, obtained from the disjoint
union of G1 − v1 and G2 − v2 after adding the edge uσ(u) for every u ∈ N1. We call σ a zip
function of the graphs. Let G1 v1

⊙v2
G2 denote the set of all pairwise nonisomorphic graphs,

obtained as a zip product G1 ⊙σ G2 for some bijection σ : N1 → N2.
A drawing Di of a graph Gi imposes a cyclic ordering of the edges incident with vi, which

defines a labeling πi : Ni → {1, . . . , d} up to a cyclic permutation. A zip function of the
drawings D1 and D2 at vertices v1 and v2 is σ : N1 → N2, σ = π−1

2 π1.

Lemma 16 ([1]) For i = 1, 2, let Di be an optimal drawing of Gi, let vi ∈ V (Gi) be a
simple vertex of degree d, and let σ be a zip function of D1 and D2 at v1 and v2. Then,
cr(G1 ⊙σ G2) ≤ cr(G1) + cr(G2).

Let v ∈ V (G) be a vertex of degree d in G. A bundle of v is a set B of d edge disjoint
paths from v to some vertex u ∈ V (G), u 6= v. Two bundles B1 and B2 of v are coherent if
the sets of edges E(B1) ∩ E(G − v) and E(B2) ∩ E(G − v) are disjoint.
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Lemma 17 ([2]) For i = 1, 2, let Gi be a graph, vi ∈ V (Gi) its simple vertex of degree d, and
Ni = NGi

(vi). Also assume that vi has two coherent bundles in Gi. Then, cr(G1 ⊙σ G2) ≥
cr(G1) + cr(G2) for any bijection σ : N1 → N2.

The following observations are useful in iterative applications of the zip product.

Lemma 18 Let G1 and G2 be disjoint graphs, vi ∈ V (Gi) simple, degGi
(vi) = d, and G ∈

G1 v1
⊙v2

G2.

(i) If v2 has a bundle in G2 and v ∈ V (G1) has k pairwise coherent bundles in G1, then v
has k pairwise coherent bundles in G.

(ii) If, for i = 1, 2, the graph Gi is ki-connected, ki ≥ 2, then G is k-connected for k =
min(k1, k2).

(iii) If, for i = 1, 2, the graph Gi is ki-edge-connected, ki ≥ 2, then G is k-edge-connected
for k = min(k1, k2).

Proof. (i): See [2].
(ii): Let S ⊆ V (G) be a separator of G. If S ⊆ V (Gi−vi), then, as G3−i−v3−i is nonempty

and (k3−i − 1)-connected, S is a separator in Gi and |S| ≥ k. Let Si = S ∩ V (Gi − vi) and
Si 6= ∅ for i = 1, 2. If Si∪{vi} is a separator in Gi for one of i = 1, 2, then |S| ≥ k. Otherwise,
the vertices of Gi − vi − S are all in the same component of G − S for both i = 1, 2, thus
|S| ≥ d ≥ k.

(iii): The argument is similar to (ii).

Let S ⊂ V (G) be a set and Γ ⊆ Aut(G) a group. We say that S is Γ-homogeneous in
G if any permutation π of S can be extended to an automorphism σ ∈ Γ. For S ⊆ V (G),
let Γ(S) be the pointwise stabilizer of S in Aut(G). We say that a vertex v ∈ V (G) has a
homogeneous neighborhood in G if NG(v) is Γ({v})-homogeneous in G.

If all the vertices in NG(v) have the same set of neighbors for a vertex v ∈ V (G), then v
has a homogeneous neighborhood G. Thus, every vertex of a complete or complete bipartite
graph K has such neighborhood in K.

Lemma 19 For i = 1, 2, let Gi be a graph with a simple vertex vi ∈ V (Gi) of degree d. If
d = 3 or v2 has a homogeneous neighborhood in G2, then cr(G) ≤ cr(G1) + cr(G2) for every
G ∈ G1 v1

⊙v2
G2.

Proof. Assume N1 = NG1
(v1), N2 = NG2

(v2), and let the zip function of G be σ : N1 →
N2. For i = 1, 2, let Di be an optimal drawing of Gi and let πi : Ni → Ni denote the
vertex rotation around vi in Di. For d > 3, there exists an automorphism ρ ∈ ΓG2

({v2})
with ρ/N2 = σπ1σ

−1π−1
2 . Applying ρ to D2 produces a drawing D′

2 with vertex rotation
ρπ2 = σπ1σ

−1 around v2. Since σ−1(ρπ2)
−1σπ1 = id, σ is a zip function of D1 and D′

2. If
d = 3, then σ is a zip fucntion of D1 and either D2 or its mirrored image D′

2. The claim
follows by Lemma 16.
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Lemma 20 For i = 1, 2, let Gi be a graph with a simple vertex vi ∈ V (Gi) of degree d.
Assume that v2 has a homogeneous neighborhood in G2. If, for some vertex v ∈ G1, v 6=
v1, its neighborhood N = NG1

(v) is ΓG1
({v, v1})-homogeneous, then v has a homogeneous

neighborhood in G ∈ G1 v1
⊙v2

G2.

Proof. Assume N1 = NG1
(v1), N2 = NG2

(v2), and let the zip function of G be σ : N1 →
N2. For a permutation π of N , there exists σ1 ∈ ΓG1

({v, v1}), such that σ1/N = π. Let
π1 = σ1/N1, and set π2 = σπ1σ

−1. As v2 has a homogeneous neighborhood, there exists an
automorphism σ2 ∈ ΓG2

(v2) with σ2/N2 = π2. It is easy to verify that a function Φ : G → G
with Φ/(Gi−vi) = σi/(Gi−vi) for i = 1, 2, is an automorphism of ΓG(v), for which Φ/N = π.
Thus, v has a homogeneous neighborhood in G.

Theorem 21 For i = 1, 2, let Gi be a ki-crossing-critical graph with a simple vertex vi ∈
V (Gi) of degree d. If d 6= 3, then let vi have a homogeneous neighborhood. If cr(G) ≥ k for
k = max {cr(Gi) + k3−i | i ∈ {1, 2}} and G ∈ G1 v1

⊙v2
G2, then G is k-crossing-critical.

Proof. Again, assume N1 = NG1
(v1), N2 = NG2

(v2), and let the zip function of G be
σ : N1 → N2. Let e ∈ E(G), and assume e ∈ E(G1 − v1). Let D1 be an optimal drawing
of G1 − e and D2 an optimal drawing of G2. We adjust D2 either using an appropriate
automorphism in ΓG2

({v2}) for d > 3 or mirroring for d = 3 similarly as in the proof of
Lemma 19 and combine D2 with D1 to produce a drawing of G− e with at most k crossings.
Similar arguments apply for e ∈ E(G2 − v2).

If e = vσ(v) for v ∈ N1, let D1 be an optimal drawing of G1 − vv1 and D2 an optimal
drawing of G2 − v2σ(v). If d = 3, we can clearly combine D1 and D2 into a drawing of G
with at most k crossings. Otherwise, let πi : Ni → Ni be the vertex rotation around vi in Di

and ρ ∈ ΓG2
({v2}) an automorphism of G2 with ρ/(N2 \ {σ(v)}) = σπ1σ

−1π−1
2 . The vertices

of N2 can be rearranged with ρ as in the proof of Lemma 19, thus G − e can be drawn with
at most k1 + k2 crossings.

Lemma 17 states that two coherent bundles at each vi are a sufficient condition for
cr(G) ≥ k in Theorem 21.

Argument of Theorem 21 has a generalization to (not necessarily critical) graphs that
have a special vertex cover. Let G be a graph and S = {v1, . . . , vt} ⊆ V (G). For each vi ∈ S,
let Gi be a graph and let ui ∈ V (Gi) be a simple vertex of degree d(ui) = d(vi) having two
coherent bundles in Gi. Let S := {(vi, Gi) | i ∈ {1, . . . , t}}. The family GS := Γt is defined
inductively as follows: Γ0 = {G}, and, for i = 1, . . . , t, let Γi :=

⋃

H∈Γi−1 H vi
⊙ui

Gi. Further,
let Si := S \ {(vi, Gi)}.

Theorem 22 Let G be a graph, S be its vertex cover consisting of simple vertices of de-
gree three each having two coherent bundles, and S be defined as above. If each graph
Gi is ki-crossing-critical for i = 1, . . . , t, then every Ḡ ∈ GS is k-crossing-critical for
k = max

{

cr(Ḡ) − cr(Gi) + ki | i ∈ {1, . . . , t}
}

and has crossing number cr(Ḡ) = cr(G) +
∑t

i=1 cr(Gi).

Proof. Iterative application of Lemmas 17, 18 (i), and 19 implies cr(Ḡ) = cr(G) +
∑t

i=1 cr(Gi). To establish criticality of Ḡ, let e ∈ E(GS) be an arbitrary edge and let
Ḡj ∈ GSj , j = 1, . . . , t, be the graph, such that Ḡ ∈ Ḡj vj

⊙uj
Gj .
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Figure 4: Graph with a vertex cover of cubic vertices each having two coherent bundles.

Case 1: Assume e ∈ E(Gj − vj) for some j ∈ {1, . . . , t}. Let D1 be an optimal drawing
of Ḡj with vj in the infinite face and let D2 be an optimal drawing of Gj − e with uj in the
infinite face. We can combine D1 − vj and D2 − uj into a drawing D of G − e. By Lemma
19, D has at most cr(G) + kj +

∑

i6=j cr(Gi) ≤ k crossings.
Case 2: Assume e 6∈ E(Gi − vi) for any i ∈ {1, . . . , t}. As S is a vertex cover in G, there

exists j ∈ {1, . . . , t}, such that e connects some neighbor x of uj ∈ V (Gj) with some neighbor
y of vj in Ḡj . Let e1 = vjy ∈ E(Ḡj), e2 = ujx ∈ E(Gj), and let D1 be an optimal drawing
of Ḡj − e1 with vj on the infinite face and D2 an optimal drawing of Gj − e2 with uj in the
infinite face. We can combine D1 − vj and D2 − uj into a drawing D of G − e. By Lemma
19, D has at most cr(G − e) + kj +

∑

i6=j cr(Gi) ≤ k crossings.

Leaños and Salazar established a decomposition of 2-connected crossing-critical graphs
into smaller 3-connected crossing-critical graphs in [12]. Theorem 22, in combination with
the graph in Figure 4, which has a vertex cover consisting of cubic vertices with two coherent
bundles but is not crossing-critical, suggests that a similar decomposition does not exist for
3-connected crossing-critical graphs.

For d, d′ ≥ 3, let Kd,d′ be a properly 2-colored complete bipartite graph: vertices of degree
d are colored black and vertices of degree d′ are colored white. For p ≥ 1, let the family
R(d, d′, p) consist of graphs with 2-colored vertices, obtained as follows: R(d, d′, 1) = {Kd,d′}
and R(d, d′, p) =

⋃

G∈R(d,d′,p−1) G v1
⊙v2

Kd,d′ , where v1 (respectively, v2) is a black vertex in

G (Kd,d′). If d = d′ = 3, we allow vi to be any vertex. We preserve the colors of vertices in
the zip product, thus the graphs in R(d, d′, p) are not properly colored for p ≥ 2.

Proposition 23 Let d, d′ ≥ 3. Then every graph G ∈ R(d, d′, p) is a simple 3-connected
crossing-critical graph with cr(G) = p cr(Kd,d′).

Proof. By induction on p and using Lemma 20, we show that all black vertices of G have
homogeneous neighborhoods. Iterative application of Lemmas 17, 18 (i), 19, and Theorem
21 establish the crossing number of G and its criticality.

Jaeger proved the following result:

Theorem 24 ([9]) Every 3-connected cubic graph with crossing number one has chromatic
index three.
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Graphs of the family R(3, 3, p) in a zip product with Petersen graph show that a similar
result cannot be obtained for any crossing number greater than one.

Proposition 25 ([3]) For k ≥ 2, there exist simple cubic 3-connected crossing-critical graphs
with crossing number k and with no 3-edge-coloring.

5 The main construction

Theorem 26 Let r ∈ (3, 6) be a rational number and k an integer. There exists a convex
continuous function f : (3, 6) → R

+ such that, for k ≥ f(r), there exists an infinite family of
simple 3-connected crossing-critical graphs with average degree r and crossing number k.

Proof. We present a constructive proof for

f(r) = 240 + 512
(6−r)2 + 224

6−r
+ 25

16(r−3)2 + 40
r−3 .

A sketch of the construction is as follows: The graphs are obtained as a zip product of
crossing-critical graphs from the families S and R, and of the graphs H, all defined above.
The graphs H allow average degree close to six and the graphs from S allow average degree
close to three. A disjoint union of two such graphs consisting of a proportional number of
tiles would have a fixed average degree and crossing number. The zip product compromises
the pattern needed for fixed average degree, for which we compensate with the graphs from
R. Their role is also to fine-tune the desired crossing number of the resulting graph.

More precisely, let Γ(n,m, c, w, s, p, q) be the family of graphs, constructed in the following
way: first we combine G1 ∈ S(n,m, c) and G2 = H(w, s) in the family Γ(n,m, c, w, s, 0, 0) =
⋃

G1,G2

⋃

v1,v2
G1 v1

⊙v2
G2. Further, we combine G1 ∈ Γ(n,m, c, w, s, 0, 0) and G2 ∈ R(3, 3, p)

in the family Γ(n,m, c, w, s, p, 0) =
⋃

G1,G2

⋃

v1,v2
G1 v1

⊙v2
G2. Finally, we combine the

graphs G1 ∈ Γ(n,m, c, w, s, p, 0) and G2 ∈ R(3, 5, q) in the family Γ(n,m, c, w, s, p, q) =
⋃

G1,G2

⋃

v1,v2
G1 v1

⊙v2
G2. In each case, vi ∈ V (Gi) is any vertex of degree three, as all such

vertices have two coherent bundles. Propositions 12, 14, and 23 imply that the graphs used
in construction are crossing-critical graphs whenever the following conditions are satisfied:

n ≥ 3, (5.3)

m = 2m′ + 1, (5.4)

m′ ≥ 2

(

n

2

)

, (5.5)

c ≥ 0, (5.6)

c ≤ 2m(n − 3), (5.7)

w ≥ 0, (5.8)

s ≥ 4(32w2 + 56w + 31), (5.9)

p ≥ 1, and (5.10)

q ≥ 1. (5.11)

Results in [10] establish cr(K3,5) = 4, thus Theorem 21 together with Lemmas 17, 18
(i), and 19 implies that subject to (5.3)–(5.11) the graphs in Γ(n,m, c, w, s, p, q) are crossing-
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critical with crossing number

k =

(

n

2

)

+ 32w2 + 56w + p + 4q + 30. (5.12)

Their average degree is

d̄ = 6 −
4(m′(6n − 11) + 3n + 3p + 3q + 4s − c − 7)

2m′(4n − 7) + 4n + 4sw + 9s + 4p + 6q − c − 9
. (5.13)

Using (5.12) we express p in terms of k and other parameters. We set s and m to be a
linear function of a new parameter t, which will determine the size of the resulting graph.
We substitute these values into (5.13). Using c we eliminate all the terms in the denominator
that are independent of t. Parameter q plays the same role in the numerator. Then t cancels
and we set the coefficients of the linear functions to yield the desired average degree. Finally,
parameters n, w, and the constant terms of the linear functions are selected to satisfy the
constraints (5.3)–(5.11). A more detailed analysis might produce a smaller lower bound f ,
but one constant term was selected to be zero to simplify the computations.

More precisely, let r = 3 + a
b
, 0 < a < 3b, and k ≥ f(r). Perform the following integer

divisions:

b = b′a + br,

b′ = 4b′′ + b′r,

4b = b̄(3b − a) + b̄r, and

k − b′′(b′′+5)
2 − 8b̄(4b̄ + 7) = k′(2b′′ + 5) + kr.

For some integer t set

n = b′′ + 4,

mt = 2t(27b − 9a − 4b̄r) − 2k′ + 3,

c = 2k′ − 12b′′ − 6kr − 33,

w = b̄,

st = 2t((4b′′ + 9)a − b),

p = k −
(

b′′(b′′+23)
2 + 8b̄(4b̄ + 7) + 4kr + 56

)

, and

q = 2b′′ + kr + 5.

The family Γ(a, b, k) =
⋃∞

t=k Γ(n,mt, c, w, st, p, q) is an infinite family of crossing-critical
graphs with average degree r and crossing number k. Verification of the constraints (5.3)–
(5.11) for any r ∈ (3, 6) and k ≥ f(r) requires some tedious computation that is omitted
here; an interested reader can find it in [4]. The function f is a sum of functions that are
convex on (3, 6) and thus itself convex. The graphs of Γ(a, b, k) are 3-connected by Lemma
18 (ii).

The convexity of the function f in Theorem 26 implies NI = max{f(r1), f(r2)} is a
universal lower bound on k for rational numbers within any closed interval I = [r1, r2] ⊆ (3, 6).
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Figure 5: Structure of known large k-crossing-critical graphs.

6 Structure of crossing-critical graphs

Oporowski has established that all large 2-crossing-critical graphs are obtained as cycliza-
tions of long sequences, composed out of copies of a small number of different tiles [13]. The
construction of crossing-critical graphs using zip product demonstrates that no such classi-
fication of tiles can exist for k ≥ 4: by a generalized zip product of a graph and a tile, as
proposed in [3], one can obtain an infinite sequence of k-degenerate tiles, all having the same
tile crossing number. These tiles in combination with corresponding perfect planar tiles yield
k-crossing-critical graphs.

For k large enough, one can obtain k-crossing-critical graphs from an arbitrary (not
necessarily critical) graph that has a vertex cover consisting of simple vertices of degree three
with two coherent bundles, cf. Theorem 22. Figure 5 sketches the described structure.

The following questions remain open regarding the degrees of vertices in k-crossing-critical
graphs:

Question 27 ([17]) Do there exist an integer k > 0 and an infinite family of (simple) 5-
regular 3-connected k-crossing-critical graphs?

Question 28 Do there exist an integer k > 0 and an infinite family of (simple) 3-connected
k-crossing-critical graphs of average degree six?

Arguments of [17] used to establish that, for k > 0, there exist only finitely many k-
crossing-critical graphs with minimum degree six extend to graphs with a bounded number
of vertices of degree smaller than six. Thus, we may assume that a family positively answering
Question 28 would contain graphs with arbitrarily many vertices of degree larger than six.
But only vertices of degrees three, four, or six appear arbitrarily often in the graphs of the
known infinite families of k-crossing-critical graphs. We thus propose the following question,
an answer to which would be a step in answering Questions 27 and 28.

Question 29 Does there exist an integer k > 0, such that, for every integer n, there exists
a 3-connected k-crossing-critical graph Gn with more than n vertices of degree distinct from
three, four and six?
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We can obtain arbitrarily large crossing-critical graphs with arbitrarily many vertices of
degree d, for any d, by applying the zip product to graphs K3,d, Kd,d, and the graphs from
the known infinite families. However, the crossing numbers of these graphs grow with the
number of such vertices.
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