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3-facial colouring of plane graphs

Freceric Havet Jean-8bastien Serehi  Riste Skrekovski

Abstract

A plane graph ig-facially k-colourable if its vertices can be coloured wkicolours
such that any two distinct vertices on a facial segment of length at mast coloured
differently. We prove that every plane grapiBi$acially 11-colourable. As a consequence,
we derive that everg-connected plane graph with maximum face-size at mastyclically
11-colourable. These two bounds are for one off from those that are proposed(By-thk)-
Conjecture and the Cyclic Conjecture.

1 Introduction

The concept of facial colourings, introduced in [11], extends the well-known concept of cyclic
colourings. Afacial segmenof a plane grapl@ is a sequence of vertices in the order obtained
when traversing a part of the boundary of a face. [Bmgthof a facial segment is its number of
edges. Two verticegs andv of G are/-facially adjacentif there exists a facial segment of length
at most/ between them. Ari-facial colouringof G is a function which assigns a colour to each
vertex of G such that any two distindt-facially adjacent vertices are assigned distinct colours.
A graph admitting arf-facial colouring withk colours is called-facially k-colourable

The following conjecture, calle@? + 1)-Conjecture, is proposed in [11]:

Conjecture 1 (Kral’, Madaras and ékrekovski). Every plane graph i¢-facially colourable
with 3¢+ 1 colours.

Observe that the bound offered by Conjecture 1 is tight: as shown by Figure 1, for every
¢ > 1, there exists a plane graph which is idacially 3/-colourable.

Conjecture 1 can be considered as a counterpaftfizial colouring of the following famous
conjecture by Ore and Plummer [12] concerning the cyclic colouring. A plane @saptsaid
to becyclically k-colourable if it admits a vertex colouring witlk colours such that any pair of
vertices incident to a same face are assigned distinct colours.
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Figure 1: The plane grapB, = (V,E): each thread represents a path of lengtfihe graphG,
is not ¢-facially 3/-colourable: every two vertices afdfacially adjacent, therefore aryfacial
colouring must usé/| = 3¢+ 1 colours.

Conjecture 2 (Ore and Plummer). Every plane graph is cyclicall%%*J -colourable, wheré\*
denotes the size of a biggest faceof

Note that Conjecture 1 implies Conjecture 2 for odd valueA™f The best known result
towards Conjecture 2 has been obtained by Sanders and Zhao [15], who proved th%i@éqmd

Denote byf:(x) the minimum number of colours needed to cyclically colour every plane
graph of maximum face size The value off¢(x) is known forx € {3,4}: fc(3) =4 (the problem
of finding f¢(3) being equivalent to the Four Colour Theorem proved in [1]) d¢d) = 6
(see [3, 5]). Itis also known thdt(5) € {7,8} and fc(6) < 10[6], and thatf(7) < 12[4].
Conjecture 1 is trivially true fo¥ = 0, and is equivalent to the Four Colour Theorem for
¢ =1. Itis open for all other values df As noted in [11], if Conjecture 1 were true o= 2, it
would have several interesting corollaries. Besides giving the exact valigés5opf(which would
then bey), it would allow to decrease from6to 14 (by applying a method from [11]) the upper
bound on the number of colours needed-diagonally colour every plane quadrangulation (for
more details on this problem, consult [9, 13, 14, 11]). It would also imply Wegner’s conjecture
on 2-distance colourings (i.e. colourings of squares of graphs) restricted to plane cubic graphs
since colourings of the square of a plane cubic graph are precis@iatsal colourings (refer
to [10, Problem 2.18] for more details on Wegner’s conjecture).
Let f;(¢) be the minimum number of colours neededtfacially colour every plane graph.
Clearly, fe(2¢+ 1) < f¢(¢). So far, no value of is known for which this inequality is strict. The
following problem is offered in [11].

Problem 1. Is it true that, for every integet > 1, fo(20+ 1) = f1(¢)?

Another conjecture that should be maybe mentioned is the so-&fH€dnjecture proposed
in [7], stating that every plane triangle-free graph/4facially 3/-colourable. Similarly as the
(3¢+ 1)-Conjecture, if this conjecture were true, then its bound would be tight and it would have
several interesting corollaries (see [7] for more details).

It is proved in [11] that every plane graph has/afacial colouring using at mos{tl—szj +2
colours (and this bound is decreasedlbfpor ¢ € {2,4}). So, in particular, every plane graph
has a3-facial 12-colouring. In this paper, we improve this last result by proving the following
theorem.



Theorem 1. Every plane graph i8-facially 11-colourable.

To prove this result, we shall suppose that it is false. In Section 2, we will exhibit some
properties of a minimal graph (regarding the number of vertices) which contradicts Theorem 1.
Relying on these properties, we will use the Discharging Method in Section 3 to obtain a contra-
diction.

2 Properties of (3,11)-minimal graphs

Let us start this section by introducing some definitions. A vertex of degj(gespectively at
leastd, respectively at mod) is said to be al-vertex(respectively g > d)-vertex respectively
a (< d)-vertey. The notion of al-face(respectively g < d)-face respectively 4> d)-face) is
defined analogously regarding the size of a face/Avathis a path of lengti.

Two faces aredjacent or neighbouring if they share a common edge.5face isbadif it
is incident to at least fous-vertices. It is said to beery-badif it is incident to five3-vertices.

If uandv are3-facially adjacent, them is called a3-facial neighbour ofv. The set of all
3-facial neighbours o¥ is denoted by\3(v). The3-facial degreeof v, denoted byleg(v), is the
cardinality of the sef\z(v). A vertex isdangerousf it has degree and it is incident to a face of
size three or four. /8-vertex issafeif it is not dangerous, i.e. it is not incident to & 4)-face.

Let G = (V,E) be a plane graph, and C V. Denote byG3[U] the graph with vertex setl
such thatxy is an edge irG3|[ U] if and only if x andy are 3-facially adjacent vertices i. If
cis a partial colouring of5 andu an uncoloured vertex db, we denote by ¢(u) (or justL(u))
the set{x € {1,2,...,11} : forall ve Az(u),c(v) # x}. The graphGsz[U] is L-colourableif
there exists a proper vertex colouring of the vertice&glft/] such that for every € U holds
c(u) € L(u). 5

The next two results are used bydfr Madaras and&krekovski [11]:

Lemma 1. Letv be a vertex whose incident faces in a plane gr&péwe f1, f5,..., fg. Then

deg(v) < <_imin(]fi],7)> —2d,

where|fi| denotes the size of the fage

Suppose that Theorem 1 is false(311)-minimal graphG is a plane graph which is not
3-facially 11-colourable, withV (G)| + |E(G)| as small as possible.

Lemma 2. LetG be a(3,11)-minimal graph. Then,
(i) Gis2-connected,
(i) G has no separating cycle of length at m@st

(iii) G contains no adjacent;-face andf,-face withfy + f, < 9;



(iv) G has no vertex whos&facial degree is less thahl. In particular, the minimum degree
of G is at least three; and

(v) G contains no edgav separating twq > 4)-faces withdeg(u) < 11anddeg(v) < 12

In the remaining of this section, we give additional local structural propertig$,dfl)-
minimal graphs.

Lemma 3. LetG be a(3,11)-minimal graph. Suppose thatandw are two adjacenB-vertices
of G, both incident to a samg-face and a samé-face. Then the size of the third face incident
towis at least7.

Proof. By contradiction, suppose that the size of the last face incidentisoat most6. Then,
according to Lemma 1, we infer thaleg(v) < 12 and deg(w) < 11, but this contradicts
Lemma 2v). O

A reducible configuratios a (plane) graph that cannot be an induced subgrapli®fla)-
minimal graph. The usual method to prove that a configuration is reducible is the following: first,
we suppose that @, 11)-minimal graphG contains a prescribed induced subgr&phThen we
contract some subgraph,Ho, ..., Hx of H. Mostly, we havek < 2. This yields a proper
minor G’ of G, which by the minimality ofG admits a3-facial 11-colouringc’. The goal is to
derive fromc’ a 3-facial 11-colouringc of G, which would give a contradiction. To do so, each
non-contracted vertex of G keeps its colouc/(v). Let h; be the vertex of5’' created by the
contraction of the vertices ¢f;: some vertices off; are assigned the colodf(h;) (in doing so,
we must take care that these vertices are3faicially adjacent inG). Last, we show that the
remaining uncoloured vertices can also be coloured.

In other words, we show that the gra@g[ U] is L-colourable, where for eaahe U, L(u) is
the list of the colours which are assigned to no verte@tu) \ U (defined in Section 1) and
is the set of uncoloured vertices. In most of the cases, the verticBswif be greedily coloured.

In all figures of the paper, the following conventions are used: a triangle repres8nts a
vertex, a square representd-gertex and a circle may be any kind of vertex whose degree is at
least the maximum between three and the one it has in the figure. The edges of each subgraph
H; are drawn in bold, and the circled vertices are the vertice®lef {u,u,...}. A dashed
edge between two vertices indicates a path of length at least one between those two vertices.
An (in)equality written in a bounded region denotes a face whose size achieves the (in)equality.
Last, vertices which are assigned the coldih;) are denoted by, w, t if a unique subgraph is
contracted or by, x, for i = 1 andy,, y» for i = 2 if two subgraphs are contracted.

Lemma 4. Configurations in Figures 2, 3 and 4 are reducible.

Proof. LetH be an induced subgraph &t We shall suppose thét is isomorphic to one of the
configurations stated and derive a way to constri&tacial 11-colouring ofG, a contradiction.
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Figure 2: Reducible configurations (L1)—(L9).



L1. Suppose thaH is isomorphic to the configuration (L1) of Figure 2. DenoteHbythe
subgraph induced by the bold edges. Contract the verticelg,dhereby creating a new vertex
h;. By minimality of G, let ¢’ be a3-facial 11-colouring of the obtained graph. Assign to
each vertex not in H; the colourc’(x), and to each of,w;t the colourc’(h;). Observe that
no two vertices among,w,t are 3-facially adjacent inG, otherwise there would be @ 7)-
separating cycle is, thereby contradicting Lemmgi2). According to Lemma 1deg(u;) <
15, degs(ui) < 141if i € {2,3} anddeg(ui) < 11if i € {4,5}. Note that any two vertices of
U = {uy,uy,...,us} are3-facially adjacent, that i&3]U| ~ Ks. Hence, the number of coloured
3-facial neighbours ofi; is at mostl1, i.e. |A3(u1) \ {u2, U3, us,us}| > 11. Moreover, at least two
of them are assigned the same colour, nameindw. Therefore,|L(u1)| > 1. Fori € {2,3},
the vertexu; has at mostLO coloured3-facial neighbours. Furthermore, at least t@acial
neighbours ofi, are identically coloured, namely andt. Thus,|L(uz)| > 2. Now, observe that
at least thre8-facial neighbours ofiz are coloured the same, namely andt. Hence|L(us)| >

3. Fori € {4,5}, the vertexy; has at most coloured3-facial neighbours. Thu$l-(us)| > 4, and
because at least twfacial neighbours ofis are identically colouredy andt), |L(us)| > 5. So,
the graphGs[U] is greedilyL-colourable, according to the ordering, up, uz, us, Us. This allows
us to extend to a3-facial 11-colouring ofG.

L2. Suppose thaH is isomorphic to the configuration (L2) of Figure 2. L&tbe a3-facial
11-colouring of the minor of5 obtained by contracting the bold edges into a single védrieket
c(x) = c/(x) for every vertexx # h;. Definec(v) = c¢(w) = c¢(t) = c/(hy). The obtained colouring

is still 3-facial since no two vertices amongw,t are3-facially adjacent inG by Lemma Zii).
Note thatGz[ U] ~ Ks. In particular, each vertex; has four uncoloure8-facial neighbours. By
Lemma 1deg(u) < 15deg(u) < 14if i € {2,3} anddeg(uj) < 11if i € {4,5}. Moreover,
each ofu; anduy has at least tw@&-facial neighbours coloured the same; tar these vertices
arew,t and forup they arew,v. So, there exists at least one colour which is assigned to no vertex
of Az(u;) and at least two colours assigned to no vertef@fu,). Also, uz has at least three
3-facial neighbours coloured the same, namagly andt, hence at least three colours are as-
signed to no vertex al\z(uz). Therefore|L(uy)| > 1,|L(uz)| > 2 and|L(u3)| > 3. Furthermore,
|IL(ug)| > 4 and|L(us)| > 5 becausev andt are both3-facial neighbours ofis. So G3[U] is
L-colourable, and hend® is 3-facially 11-colourable.

L3. Suppose thdt isisomorphic to the configuration (L3) of Figure 2. Contract the bold edges
into a new vertexh;, and letc’ be a3-facial 11-colouring of the obtained graph. This colouring
can be extended to &facial 11-colouringc of G as follows: first, letc(v) = c(w) = c(t) =
c/(h1). Note that no two of these vertices candéacially adjacent inG without contradicting
Lemma Zii). By Lemma 1,deg(u1) < 14, degy(uz) < 13 and fori € {3,4}, deg(u) < 12,
Observe thatG3[U| ~ K4. Moreover, each ofiy, uy,uz has a set of tw@-facial neighbours
coloured byc'(h;). These sets arpw,t}, {w,v} and{v,t} for u;,u, andus, respectively. Thus,
|IL(u1)| > 1, |L(uz)| > 2and|L(u3z)| > 3. Also|L(us)| > 4 becauseis has at least three identically
coloured3-facial neighbours, namelyw andt. Hence G3| U] is L-colourable, s&s is 3-facially
11-colourable.



L4. Letc be a3-facial 11-colouring of the graph obtained by contracting the bold edges into
a new vertexh;. Definec(x) = c/(x) if x ¢ {v,w,uz,uz} andc(v) = c(w) = ¢/(h;). Observe that

v andw cannot be3-facially adjacent inG sinceG has no small separating cycle according to
Lemma Zii). By Lemma 1,deg(u;) < 12 anddeg(uz) < 11. Furthermore, botlu; andup
have two3-facial neighbours identically coloured, namefyandw. Moreover,u; andu, are
3-facially adjacent, hencig(uy)| > 1 and|L(uz)| > 2. Thereforec can be extended to&facial
11-colouring ofG.

L5. First, observe that sind@is a plane graph, ¥ € A3(t) thenV' ¢ Az(t’). So, by symmetry,
we may assume thatandt are not3-facially adjacent inG. Now, contract the bold edges into
a new vertexh;. Again, denote by’ a 3-facial 11-colouring of the obtained graph, and define
to be equal t&' on all vertices oV (G) \ {v,w,t,us, Uz, U3, Us}. Letc(v) = c(w) = c(t) = c/(hy).
Note that the partial colouringis still 3-facial due to the above assumption. The gré&ghtl] is
isomorphic toKy4, and according to Lemma @leg(ui) < 12foralli € {1,2,3,4}. Moreover, for

i € {2,3}, the vertexy; has at least tw8-facial neigbhours that are coloured the same, namely
andw. Last, the vertexiy has at least three su@facial neighbours, namely, w, t. Therefore,
IL(u1)| > 2, |[L(u)| > 3forie {2,3} and|L(us)| > 4. So,G3[U] is L-colourable, and hendd

is 3-facially 11-colourable.

L6. The same remark as in the previous configuration allows us to assumedh&g(v).

Again, the graph obtained by contracting the bold edges into a new Jgri@mits a3-facial

11-colouringc’. As before, define &-facial 11-colouringc of the graph induced by (G) \ U.

Then, for every € {1,2,3,4},deg(ui) < 12andG3|U| ~ K4. Thus,|L(u1)| > 2and|L(up)| > 2.

Remark thatus has at least two identically colourédfacial neighbours, namely andw, so
|L(uz)| > 3. Last, the vertexis has at least three such neighbours, hehey)| > 4. Therefore,
the graphGz[ U] is L-colourable, and so the graghadmits a3-facial 11-colouring.

L7. LetH; be the pathjususxo, Hp the pathy;upusuryo andc’ a3-facial colouring of the graph
obtained fromG by contracting each path; into a vertexh;. Notice thatc'(hy) # c/(hy). For
everyv ¢V (H;) UV (Hz), letc(v) = c/(v). Observe that; andx, cannot be-facially adjacentin
G, otherwiseG would have a separatings 7)-cycle, contradicting Lemma(Ei ). Note that the
same holds foy; andys; therefore defining(x;) = c(x2) = ¢/(h1) andc(y1) = c(y2) = c/(hy)
yields a partiaB-facial 11-colouring ofG, sincec(hy) # ¢/(hy). It remains to colour the vertices
of U = {ug,uy,...,us}. Note thatG3|U| ~ Ks. According to Lemma @i), deg;(u;) < 15and
deg(u) < 12if i > 2. The number of coloure8-facial neighbours ofiy, i.e. its number oB-
facial neighbours iV (G) \ {uz,us, us,Us}, is at mostl1 because eadh with i > 2 is a3-facial
neighbour ofu;. Furthermorey; has two3-facial neighbours coloured with the same colour,
namelyx; andxz. Hence|L(uz)| > 1. The vertexu; has four uncoloure@-facial neighbours, so
IL(uz)| > 3. Fori € {3,4}, the vertexu; has at least tw8-facial neighbours coloured the same,
namelyxy,xo for uz, andys,y for us, so|L(u;)| > 4. Finally, observe thatls has two pairs of
identically coloured3-facial neighbours; the first pair being, x> and the secongh,y,. Thus,
IL(us)| > 5, hence the grapB3| U] is L-colourable, which yields a contradiction.
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Figure 3: Reducible configurations (L10)—(L16).



L8. We contract the bold edges into a new vettgxtake a3-facial 11-colouring of the graph
obtained, and define&facial 11-colouringc of V(G) \ U as usual. By Lemma Heg(u;) < 15
if i € {1,2}, degy(u;) <12if i € {3,4,5} anddeg;(us) < 11. Moreover,G3|U| ~ Ks. Asv,w and
t are coloured the same, afdw} C Az(y;) fori € {2,5}, {w,t} C Az(ug) and{v,t} C Az(us),
we obtain|L(u;)| > i for everyi € {1,2,3,4,5,6}. Thus, the graplts|[U] is L-colourable, and
henceG admits a3-facial 11-colouring.

L9. We contract the bold edges into a new vertex, tal®facial 11-colouring of the graph
obtained, and define&facial 11-colouring ofV (G) \ U as usual. TherGs[U] ~ K,. Moreover,
deg(u1) < 12anddeg(uz) < 11. Furthermore{v,w} C Az(u;) fori € {1,2}. Thus, we infer
IL(u)| >ifori e {1,2}. ThereforeGz[U] is L-colourable.

L10. We contract the bold edges into a new vertex, tal@efacial 11-colouring of the graph
obtained, and define&facial 11-colouring ofV (G) \ U as usual. TherGz[U] ~ K4. Moreover,
degy(u1) < 13, degy(u2) < 12 anddegs(uj) < 11fori € {3,4}. Furthermore{v,w} C Az(u;)
fori e {1,4}. Thus, we infefL(u;)| > 2fori € {1,2}, and|L(u;)| > i for i € {3,4}. Therefore,
G3[U] is L-colourable.

L11. We contract the bold edges into a new vettgxtake a3-facial 11-colouring of the graph
obtained, and define&facial 11-colouringc of V(G) \ U as usual. By Lemma Heg(up) <15
anddeg(ui) < 11if i € {2,3,4,5}. Moreover,G3[U] ~ Ks. AsVv andw are coloured the same,
and{v,w} C A5(u;) fori € {1,4,5}, we obtainL(u1)| > 1, |L(u)| > 4if i € {2,3} and|L(u;)| > 5

if i € {4,5}. Thus, the grapi®s|[U] is L-colourable, and hend®d admits a3-facial 11-colouring.

L12. Letc be a3-facial 11-colouring of the grapl&’ obtained by contracting the bold edges
into a new vertexh;. Definec(x) = ¢/(x) for every vertexx € V(G) NV(G'), and letc(v) =
c(w) = c'(hy). By Lemma 1,degy(u;) < 15fori € {1,2} anddeg(u) < 11fori € {3,4,5}.
Moreover,G3[ U] ~ Kg. Hence,|L(u1)| > 1 and|L(u)| > i for i € {3,4,5}. Asvandw are
coloured the same, afd,w} C Az(u;) fori € {2,6}, we infer thatL(uy)| > 2 and|L(ug)| > 6.
Thus, the graple is 3-facially 11-colourable.

L13. Let us define the partid-facial 11-colouringc as always, regarding the bold edges and
the verticess andw. From Lemma 1 we gedeg(u;) < 15, degs(ui) < 12fori € {2,3,4} and
deg(us) < 11 Moreover, sincesz[U] ~ Ks and {v,w} C Az(u;) for i € {1,4,5}, we obtain
IL(up)| > 1, |L(u)| > 3 fori e {2,3}, |L(us)| > 4 and|L(us)| > 5. Therefore,G3[U] is L-
colourable.

L14. Define the partiaB-facial 11-colouringc as usual, regarding the bold edges and the ver-
ticesvandw. By Lemma 1deg(u;) < 15anddeg(u;) < 11fori € {2,3,4,5}. Moreover, since
G3[U] ~ Ks and{v,w} C Az(u;) fori € {1,5}, we obtain|L(uz)| > 1, |L(uj)| > 4fori € {2,3,4}
and|L(us)| > 5. Therefore G3[U] is L-colourable.



L15. Let us define the partid-facial 11-colouringc as always, regarding the bold edges and
the verticesy andw. Again, G3[U| ~ Ks. From Lemma 1 we geteg(up) < 15anddeg(u;) <
11if i € {2,3,4,5}. Moreover, since{v,w} C Az(u;) for i € {1,5}, we obtain|L(uy)| > 1,
IL(u)| > 4forie {2,3,4} and|L(us)| > 5. Therefore G3[U] is L-colourable.

L16. Define the partiaB-facial 11-colouring c as always, regarding the bold edges and the
verticesv,w andt. Then,G3[U| ~ Ks anddeg(u;) < 15fori € {1,2}, deg(u;) < 12fori €
{3,4} anddeg;(us) < 11. Moreover, notice thafv,t} C Az(u;) fori € {1,4}, {v,w,t} C Az(uz)

and {v,w} C Az(us). Thus, we obtairiL(u1)| > 1, |L(u2)| > 2, |L(uz)| > 3, |L(usa)| > 4 and
|L(us)| > 5. ThereforeG3[U] is L-colourable.

L17. Define the partiaB-facial 11-colouring c as always, regarding the bold edges and the
verticesv,w andt. Then, G3[U| ~ Ks and degy(uj) < 15for i € {1,2}, deg(uz) < 12 and
deg(ui) < 11 for i € {4,5}. Moreover, notice thafv,t} C Az(u;) for i € {1,5}, {v,wt} C
ANz(u2) and{v,w} C Az(uz). Thus, we obtainL(ui)| > 1, |L(uz)| > 2, |L(u;)| > 4 fori € {3,4}
and|L(us)| > 5. Therefore G3[U] is L-colourable.

L18. Let us define the partid-facial 11-colouringc as always, regarding the bold edges and
the verticess andw. Then,Gz[U] ~ K3z, deg;(u1) < 13anddeg(ui) < 11fori e {2,3}. More-
over,{v,w} C Az(u;) fori € {1,2,3}. Thus, we obtaifL(u;)| > 1and|L(y)| > 3fori € {2,3}.
Therefore G3|[ U] is L-colourable.

L19. Again,G3[U] ~ Ks anddegs(u;) < 15fori € {1,2} while deg(u;) < 11fori € {3,4,5}.
Furthermore{v,w} C Az(u;) for i € {1,3,4}, {v,t} C A3(us) and{v,w,t} C A3(uz2). Thus,
we deducel(ug)| > 1, |[L(u2)| > 2 and|L(u;)| > 5 for i € {3,4,5}. Therefore,G3[] is L-
colourable.

L20. Here,G3[U] ~Kg. Also,deg(ui) < 15fori e {1,2,3}, deg(us) < 13anddeg(u;) <11
fori € {5,6}. Furthermore{w,t} C Az(u;) fori € {1,6}, {v,w,t} C A3(uz) and{v,t} C Az(u;)
fori € {2,4}. Thus, we infefL(u;)| > 2fori € {1,2}, |L(uz)| > 3, |L(us)| > 4, |L(us)| > 5and
IL(ug)| > 6. Therefore Gz[U] is L-colourable.

L21. Again G3[U] ~ Kg. Also, deg(u;) < 15for i € {1,2,3}, deg(u;) < 12 for i € {4,5}
anddeg(ug) < 11 Furthermore{w,t} C Az(u) fori € {1,5}, {v,w,t} C Az(uz) and{vt} C
As(ui) fori € {2,6}. Thus, we infefL(u;)| > 2fori e {1,2} and|L(u;)| > i fori € {3,4,5,6}.
Therefore G3[ U] is L-colourable.

L22. In this caseGz[U] ~ Ke. Also, degy(uj) < 13fori € {1,2,3,4} anddeg(u;) < 12 for
i € {5,6}. Furthermore{v,t} C Az(u;) fori € {4,5}, {v,w,t} C Az(ug) and{w,t} C Az(u;) for
i € {2,3}. Thus, we infelL(u1)| > 3, |L(u)| >4 fori e {2,3,4}, |L(us)| > 5and|L(us)| > 6.
Therefore G3|[ U] is L-colourable.
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(L17) (L18) (L19)

(L22)

(L23) (L24)

Figure 4: Reducible configurations (L17)—(L24).
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L23. In this caseG3z[U| ~ K3. Also, deg(uj) < 12 fori € {1,2,3}. Moreover,{v,w,t} C
Az(u) fori € {1,2,3}. Thus, we infer|lL(u;)| > 3 for i € {1,2,3}. Therefore,G3[U] is L-
colourable.

L24. Define the partial colouring as always, regarding the bold edges and the vertdXe-

mark thatGs[U] is isomorphic to the complete graph on four vertices minus one &gjge
sinceu; ¢ Az(uz) (because the face has size at legstBy Lemma 1,degs(uj) < 11 for ev-

eryi € {1,2,3,4}. Thus,|L(u)| > 2forie {1,2} and|L(u;)| > 3 fori € {3,4}. Hence, the
graphGg[U] is L-colourable. This assertion can be directly checked, or seen as a consequence of
a theorem independently proved by Borodin [2] and@srdRubin and Taylor [8] (see also [16]),
stating that a connected graph is degree-choosable unless @Gaflaa tree, that is each of its
blocks is either complete or an odd cycle. O

Corollary 1. Every(3,11)-minimal graphG has the following properties:
(i) Let fq, f2 be twob-faces ofG with a common edgey. Thenxandy are not both3-vertices.

(i) Let f be a7-face whose every incident vertex iSaertex. Iff is adjacent to a3-face,
then every other face adjacent tds a (> 7)-face.

(iii) If two adjacent dangerous vertices do not lie on a safxed)-face, then none of them is
incident to a3-face.

(iv) Two dangerous vertices incident to a saédkace are not adjacent.
(v) There cannot be four consecutive dangerous vertices incident to a(saf)eface.
(vi) A very-bad face is adjacent to at least thifge 7)-faces.

(vii) A bad face is adjacent to at least two 7)-faces.

Proof.

(i) By Lemma 2v), degy(x) + deg(y) > 23. By Lemma 1, the3-facial degree of &-vertex
incident to two5-faces is at most1. Hence at least one afandy is a (> 4)-vertex.

(i) First note that, according to LemmaiR), the faces adjacent to bothand the3-face has
size atleast. Hence,f is adjacent to at most foyk 6)-faces. Now, the assertion directly
follows from the reducibility of the configurations (L1) and (L2) of Figure 2.

(i) This follows from the reducibility of the configuration (L4) of Figure 2.

(iv) Suppose the contrary, and beandy be two such vertices. By Lemm4iR), a 6-face is
not adjacent to &8-face, hence botk andy are incident to a-face. Thendegy(x) < 11
anddeg(y) < 11, which contradicts Lemma(g).

(v) Suppose that the assertion is false. Then, according to the third item of this corollary, the
graphG must contain the configuration (L5) or (L6) of Figure 2, which are both reducible.
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(vi) Let f be a very-bad face. By the first item of this corollary and Lemma 3, two adjacent
(< 6)-faces cannot be both adjacentftoHence,f is adjacent to at most two such faces.

(vii) Let f be a bad face, and denote by i € {1,2,3,4,5} its incident vertices in clockwise
order. Without loss of generality, assume that, for every{1,2,3,4}, a; is a dangerous
vertex. For € {1,2,3,4}, denote byf; the face adjacent tb and incident to botl; and
ai+1. According to the first item of this corollary and Lemma 3, at most two faces among
f1, fo, f3, f4 can be(< 6)-faces. This concludes the proof.

[]

3 Proof of Theorem 1

Suppose that Theorem 1 is false, and3die a(3,11)-minimal graph. We shall get a contradic-

tion by using the Discharging Method. Here is an overview of the proof: each vertex and face

is assigned an initial charge. The total sum of the charges is known to be negative by Euler’s
Formula. Then, some redistribution rules are defined, and each vertex and face gives or receives
some charge according to these rules. The total sum of the charges is not changed during this
step, but at the end we shall show, by case analysis, that the charge of each vertex and each face
iS non-negative, a contradiction.

Initial charge. First, we assign a charge to each vertex and face. For ev&¥(G), we define
the initial charge
ch(v) =d(v) — 4,

whered(v) is the degree of the vertaxin G. Similarly, for everyf € F(G), whereF (G) is the
set of faces 06, we define the initial charge

with r(f) the length of the facé. By Euler’s formula the total sum is

> chv)+ % ch(f)=-8
veV (G) feF(G)

Rules. We use the following discharging rules to redistribute the initial charge.

Rule R1. A (> 5)-face sendd/3 to each of its incident safe vertices af@? to each of its
incident dangerous vertices.

Rule R2. A (> 7)-face send4/3 to each adjacens-face.

Rule R3. A (> 7)-face send4/6 to each adjacent bad face.
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Rule R4. A 6-face send4/12to each adjacent very-bad face.

Rule R5. A (> 5)-vertexv gives2/3 to an incident facef if and only if there exist tw@-faces
both incident tov and both adjacent td. (Note that the size of such a fates at least7.)

We shall prove now that the final chargh®(x) of everyx € V(G) UF(G) is non-negative.
Therefore, we obtain

—-8= Z ch(v) + Z ch(f) = 2 ch*(v) + Z ch*(f) >0,
veV(G) feF(G) veV(G) feF(G)

a contradiction.

Final charge of vertices. First, as noticed in Lemma(®), G has minimum degree at least
three. Letv be an arbitrary vertex db. We will prove that its final chargeh®(v) is non-negative.

In order to do so, we consider a few cases regarding its degree. So, suppose firss #at
vertex. Ifvis a safe vertex, then by Rule R1 its final chargehi§v) = —1+3~% = 0. Similarly,

if vis dangerous, theth*(v) = —1+2-1 = 0. If vis a4-vertex then it neither receives nor sends
any charge. Thugh*(v) = ch(v) = 0.

Finally, suppose that is of degreed > 5. Notice thatv may send charge only by Rule R5.
This may occur at most/2 times ifd is even, and at most /2| — 1 times ifd is odd (since two
3-faces are not adjacent). Thudy(v) >d—4— L%J % which is non-negative il > 6. For
d=5ch*(v) >5-4-%>0.

Final charge of faces. Let f be an arbitrary face d&. Denote byfce andbad the number

of 3-faces and the number of bad faces adjacertt, teespectively. Denote byfe anddgs the
number of safe vertices and the number of dangerous vertices incidenegpectively. We will
prove that the final chargeh®(f) of f is non-negative. In order to do so, we consider a few cases
regarding the size of.

f isa3-face. Itis adjacent only td> 7)-faces by Lemma @i ). Thus, by Rule R2f receives
1/3 from each of its three adjacent faces, so we ohthiiif) = 0.

f is a4-face. It neither receives nor sends any charge. Thb¥,f) = ch(f) = 0.

f is ab-face. Then,f is adjacent only tq> 5)-faces due to Lemma(Ri ). So a5-face may
send charge only to its incideBtvertices, which are all safe. Consider the following cases
regarding the numbexfe of such vertices.

sfe < 3: Then,ch*(v) >1-3-1 =0.

sfe = 4: In this casef is a bad face. According to Corollary\i), at least two of the faces
that are adjacent tb have size at leagt Thus, according to Rule R3,receivesl/6 from
at least two of its adjacent faces. Hence, we concludecttigav) > 1—4- % +2- % =0.
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sfe =5: Thenf is a very-bad face, and so, according to Corollafyi)l at least three faces
adjacent tof have size at least Moreover, all faces adjacent fohave size at lea$ by
Lemma Ziii ) and Corollary 1i). By Rules R3 and R4, it follows that the neighbouring
faces off send at least- 1/6 to f, which implies thath*(v) > 1-5-1+4. 1 =0.

f isa6-face. By Lemma Ziii ), fce = 0. Denote bywbd number of very-bad faces adjacent to
f. The final charge of is2—dgs - 3 —sfe- § —vbd- 7 due to Rules R1 and R4.

According to Corollary 1iv), two dangerous vertices ohcannot be adjacent so there are
at most three dangerous vertices an Observe also thatbd < sfe/2 by Corollary 1i) and
because a very-bad face adjacent tis incident to two safe vertices df. Let us consider the
final charge off regarding its number of dangerous vertices.

dgs = 3: Since a safe vertex is not incident tq € 4)-face, there is at most one safe vertex

incident tof, i.e. sfe < 1. Thus,vbd = 0, and hencegh*(f) >2-3-3 -1 >0.

dgs = 2: Then,sfe < 3. Let us distinguish two cases according to the valuefef

sfe = 3. Notice thatvbd = 0, otherwise it would contradict the reducibility of (L3).
Hencech(f) >2-2.3-3.1=0.

sfe < 2 In this case, there is at most one very-bad face adjaceft 8w ch*(f) >
2-2.3-2.1-L>0

dgs = 1: Then,sfe <4andvbd < 1because (L3) is reducible. Sth*(f) >2—-5 35— %2 > 0.

dgs = 0: If sfe > 5 then, because (L3) is reducibleyd = 0, thereforech®(f) > 2 — g =0.
And, if sfe < 4, thenvbd < 2, soch*(f) >2—-4.1-2. 4 >0.

fisa7-face. The final charge of is atleasB —dgs - 5 — (fce +sfe)- 5 —bad- 3.

According to Corollary 1v), four dangerous vertices cannot be consecutivé, drence there
cannot be more than five dangerous verticed oDenote bya,0o,...,a7 the vertices off in
clockwise order. LetD be the set of dangerous verticesfolsodgs = |D|. We shall look at the
final charge off, regarding its numbeigs of dangerous vertices.

dgs = 5. Up to symmetry,D = {aj,02,03,05,06}. Suppose first thatts and og are not
incident to a samé< 4)-face. Then, there can be neither a safe vertex incideftrtor
a bad face adjacent tb, because a safe vertex is not incident t6<a4)-face, and also
a bad face is not adjacent to(& 4)-face. Moreover, by Corollary(iii ), there is no3-
face adjacent td. Thereforech*(f) > 3—% > 0. Now, if a5 andag are incident to a
same(< 4)-face, then the vertess must be a> 4)-vertex by the reducibility of (L7),

and because it is not a dangerous vertex. Hence, there is no safe vertex and no bad face

adjacent tof, so its charge ish*(f) >3- 3 -1 > 0.
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dgs = 4. We consider several subcases, according to the relative position of the dangerous ver-
tices onf. Recall that, by Corollary (), there are at most three consecutive dangerous
vertices. Without loss of generality, we only need to consider the following three possibil-
ities:

D = {a1,0a2,a3,0s}: The charge of isch*(f) =1— (fce+sfe)-—bad- . Moreover,
sfe < 2, bad < 1andfce+ sfe < 3 by Corollary Xiii ) and because a safe vertex is
not incident to &< 4)-face. Soch*(f) is negative if and only ikfe =2, bad =1
andfce = 1. Butin this case, the obtained configuration is (L8), which is reducible.

D = {a1,02,04,05}: As a bad face is neither adjacent t¢a4)-face nor incident to a
dangerous vertex, we gead < 1. Observe also that, ass is not dangerous, it has
degree at least four by the reducibility of (L7) and (L11). Thass < 2. Suppose
first thatbad = 1, thensfe is one or two. According to the reducibility of (L10), we
infer sfe + fce < 2. Hence,ch*(f) >3-4-3-2.1—1>0. Suppose now that
bad = 0. We havefce < 3andsfe < 2. If fce = 3thensfe =0, and iffce = 2,
thensfe < 1 according to the reducibility of (L12). Sdce + sfe < 3. Therefore,
ch*(f) >3—4-1 — (fce+sfe) % > 0.

D = {a1,02,04,06}: In this case, there is no bad face adjacent .td=urthermore, by
Corollary 1(iii ), fce < 3 andsfe < 2, as the dangerous verticag andog prevent
at least one non-dangerous vertex from being safe. Observecihatsfe # 5 since
otherwise it would contradict the reducibility of (L13). According to the reducibility
of (L13), if fce+sfe =4 thenfce = 3 and no two3-faces have a common vertex.
Hence, the obtained configuration is isomorphic to (L14) or (L15), which are both
reducible. Sofce + sfe < 3and thush*(f) > 3—2— (fce+sfe)- % > 0.

dgs = 3: Again, we consider several subcases according to the relative position of the dangerous
vertices onf.

D = {a1,02,03}: Thenfce+sfe < 3by Corollary Xiii ), andbad < 2. Thus,ch*(f) >
3-31-3.1-2.1>o0

D = {a1,02,04}: Then,fce < 4. We shall now examine the situation according to each
possible value of ce.

fce = 4. Necessarilysfe < 1 andbad = 0. Now, if sfe =0, thench*(f) >
3-3-3—4-1>0. And, if sfe = 1, then the safe vertex must big. Moreover,
as must be g > 5)-vertex because (L9) is reducible. Henées incident toas
between twB-faces, so by Rule R5 the vertex gives% to f. Thus,ch*(f) >
3-3.3-5.1+2>0

fce = 3. Suppose first that one of the dangerous vertices is incidenttéaeae.
Necessarilysfe < 1andbad < 1. Thus,ch*(f) >3-3-3-4-3 -4 =0.
Suppose now that no dangerous vertex is incident feface. In particular,
sfe < 2. If sfe = 2 then the obtained configuration contradicts the reducibility
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of (L19). Hencesfe < 1andbad < 1. Thereforech*(f) >3-3- % —4.
0.

fce = 2: We shall prove thagfe < 2. This is clear ifa; anday are not incident
to a same3-face. So, we may assume that the edge- lies on a3-face. But
then we obtain the inequality due to the reducibility of (L19) and (L20). Using
Corollary 1(i) andsfe < 2, we infer thatbad < 1. Hencech*(f) >3- 3. % -
4-1-1=0.

fce = 1: Thensfe < 3andbad < 2. If sfe = 3andbad = 2, the obtained configu-
ration contradicts the reducibility (L20) or (L21). Sty (f) >3-3-3 4.1 -
5=0.

fce = 0: Again,sfe < 3andbad < 2, soch*(f) >3-3.5-3.1-2.2>0.

S -
g =

Wl

D = {aj,d2,05}: As in the previous casé€ce < 4 and we look at all the possible cases
according to the value dfce. Since a bad face is not incident to a dangerous vertex,
notice that only edgessa, andagay can be incident to a bad face. In particular,
bad < 2.

fce = 4: Inthis caseste = 0 andbad = 0. Thereforech*(f)=3-3-3-4-1 > 0.

fce = 3: If one of the dangerous vertices is incident d-face thersfe = 0, hence
bad = 0. Thus,ch*(f) >3-3-3—3-1 > 0. So now, we infer thatfe cannot
be 2, otherwise it would contradict the reducibility of (L16). Therefasee is at
most one, and sbad < 1 by Corollary 1i). Thus,ch*(f)>3-3.5-4.2 -1 =
0.

fce = 2: According to the reducibility of (L16) and (L173fe < 2. Asch*(f) =
3-3-3—(fce+sfe)-1—bad- g, we deduceh’(f) < Oifand only if sfe =2
andbad = 2. In this case, the obtained configuration is (L18), which is reducible.

fce = 1: Because (L16) and (L17) are reducibdge < 2. So,ch*(f) >3-3- % -
3-1-2.1>0

fce =0: Thensfe < 3, and scch(f) >3-3-3-3.2-2.1>0.

D ={0a1,a3,0s5}: Inthis casesfe < 2 since a safe vertex is not incident t¢< 4)-face,
andbad < 1, since a bad face cannot be incident to a dangerous vertex. Moreover,
fce < 4. Let us examine the possible cases regarding the valtieeof

fce = 4. Observe thatfe < 1 andbad = 0. Note also one obi»,03,06,07 IS
adjacent to a dangerous vertex, and inciderit beetween two triangles. Hence,
by the reducibility of (L9), it has degree at least five, and by Rule R5, it sénds
to f. Thus,ch*(f) >3-3.-2-5-21+2>0.

fce = 3: If sfe < 1thench’(f) >3-3-3-4.-3—1=0. And, if sfe = 2 then,
up to symmetry, the two safe vertices are eitbigranda,, or a2 andag. In
the former case, one of,, 04 is incident tof at the intersection of tw8-faces.
Furthermore, it must be & 5)-vertex due to the reducibility of (L9). In the
latter case, the same holds for due to the reducibility of (L9). Hence, in both
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cases the facéreceive2/3 from one of its incident vertices by Rule R5. Recall
thatbad < 1, and thereforegh*(f) >3-3-3-5.-2-2.1+ 2> 0.

fce < 2: Assfe < 2andbad < 1, we infer thatch*(f) >3-3-2 4.1 -1 =0.

dgs = 2: Again, we consider several subcases, regarding the position of the dangerous vertices
on f.

D = {a1,02}: Observe thabad < 3, and according to Corollary(ili ), fce + sfe < 6.
We consider three cases, according to the valuief+ sfe.

fce + sfe = 6: All the vertices incident tof have degree three, arfdis adjacent
to a3-face. Thus, by Corollary (i), f is not adjacent to any< 6)-face. In
particular, no bad face is adjacentftpi.e. bad = 0. Hencech*(f) >3- 1—6-
=0

fce +sfe =5: If bad < 2, thench*(f) >3-1-5-1-2.1=0. Otherwise,
bad = 3. Note that the edge;02 must be incident to &< 4)-face. If this
face is of size four, then we obtain configuration (L22). Suppose now that this
face is of size three. Since there is no three consecutive bad faces drouad
can assume that each of the edges4 andaga; lies on a bad face. By the
reducibility of (L18), we conclude thatz anda; have degree at least four. But
then,fce +sfe < 5.

fce+sfe < 4: Inthis casegh’(f) >3-1-4.2-3.1> 0.

D ={aj,a3} or D={0a1,04}: Againfce+sfe < 6, and we consider two cases regard-
ing the value offce + sfe. Since a bad face is not incident to a dangerous vertex, we
infer thatbad < 3.

fce + sfe = 6. Suppose first thatD = {a1,a3}. Let P, = ai0203 and P, =
030405060701. IN Order to assuréce + sfe = 6, observe that all edges &
are incident ta@3-faces and all inner vertices & are safe, or vice-versa. Thus,
02 or a4 is a(> 5)-vertex by the reducibility of (L9). Hence, it givéto f by
Rule R5. Thereforesh*(f) >3-2-3-6-2-3-1+2>0.
Suppose now thab = {a1,04}. Similarly as above, one can show thator as

is a(> 5)-vertex that donate$to f. Hencegh'(f) >3-2-2-6-3-2+2>0.

fce+sfe < 5: Notice thatad < 2. Thereforech*(f) >3-2-2-5.1-2.1=0.

dgs = 1. Thenfce + sfe < 6 and, by Corollary 1i), we infer thatbad < 3. So, ch*(f) >
3-2-6.1-3.2=0.

dgs = 0: By Corollary 1(i), fce+ sfe < 7andbad < 4. So,ch*(f) >3—-7-5—-4.-z=0.

Wl
ol

f is an 8-face. Because (L4) and (L23) are reducible, there cannot be three consecutive dan-
gerous vertices ofi. Hencedgs < 5. Denote by, i € {1,2,...,8}, the vertices incident td
in clockwise order, and leD be the set of dangerous vertices incident to
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dgs = 5: Up to symmetry,D = {a1,02,04,05,07}. Since a bad face is not incident to a
dangerous vertex, necessailyd = 0. Fori € {1,4}, denote byf; the face adjacent tb
and incident to botl; andaj.1. Since (L24) is reducible, at most one fafand f4 is a
3-face. Furthermore, at most two ag,0g,0g can be safe vertices, since at least one of
O, Og is a(> 4)-vertex. Thereforefce < 2, sfe < 2and soch*(f) >4-5-3—-4.1>0.

dgs = 4: Up to symmetry, the set of dangerous vertice$ds,0,04,05}, {01,02,05,06},
{ay,02,04,06}, {0(1,0(2,0(4,0(7} or {0(1,0(3,0(5,a7} In any casepad < 2 and fce +
sfe <5. Hencech'(f) >4—-3-3-£=0.

. + 3 6 3
dgs = 3. Then,fce +sfe < 6andbad < 3. So,ch*(f) >4-5 -3 -5 =0.

0.
dgs = 1: Again, fce +sfe < 7 andbad < 4, soch*(f) >4-3 -1 -2 >0,
dgs = 0: By Corollary 1(i), bad < 5. So,ch*(f) <4-§ -2 >0.
f isa (> 9)-face. Let f be ak-face withk > 9, and denote by, Uy, ..., Uses the dangerous

vertices onf in clockwise order. Denote bfj the (< 4)-face incident tay;. The facial segment
P =uwiw,...wjui;1 of f betweeny; andu;; (in clockwise order) is of one of the five following

types:

(a) if j > 1, wy is notincident tof; andw; is not incident tofj 1;
(b) if j > 1, wy is incident tof; andw; is incident tofj 4;

(c) if j > 1and not of typga) or (b);

(d) if j =0and bothf; and f; 1 are the sam8-face; and

(e) if j =0and not of typgd).

We denote bya the number of paths of typ@), B the number of paths of typ@), y the
number of paths of typ&), & the number of paths of typl) ande the number of paths of type
(e). Note that a path of typéd) or (e) is of length one. Observe that the following holds:

Claim 1. a+pB+y+0d+¢&=dgs.
We now bound the number of safe vertices 8rdces.

Claim 2. fce+sfe<k—a—-y—c¢.
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For each/-pathP of type (a), (c) or (e) the number of safe vertices éhplus the number of
3-faces which share an edge wRhs at most/ — 1. Indeed, for any path of one of these types,
there are at mogt faces different fromf and incident to an edge of the path, but at least one
of them is not & < 4)-face. There aré — 1 vertices on the path, so at mdst 1 safe vertices.
Furthermore, every< 4)-face prevents at least one vertex from being safe. Observe also that an
¢-path of type(b) or (d) contributes for at mogt, which thus yields Claim 2.

We distinguish two kinds of paths of tyge): a path of typge) is of type(ep) if its edge is
not incident to ad-face. Otherwise, it is diype(e;). Let g be the number of paths of tyge)),
i€{0,1}.

Claim 3. bad < k—2dgs + 6+ €.

First, remark that each dangerous vertex prevents its two incident edge$rom belonging
to a bad face, since no bad face is incident to a dangerous vertex. By the reducibility of (L23),
there cannot be three consecutive dangerous verticds sa it only remains to consider two
consecutive dangerous vertices, i.e. paths of tyPer (e). A path of type(d) or (e;) prevents
exactly three edges dffrom being incident to a bad face. Evelypath of type(ep) prevents at
least four edges df from being incident to a bad face. To see this, consider aipatiusususus,
whereu,us is al-path of typeep). Clearly, none ofiyup, Upus, Uzug is incident to a bad face. We
claim that at least one afsus, Usug is not incident to a bad face. Otherwiseuijus is incident
to a bad face, then by Lemmadii2), us must be &> 4)-vertex. Hence, by Corollary(1), usus

is not incident to a bad face. As no three dangerous vertices are consecutivehisf proves
Claim 3.

Claim4. a—pB+¢& =0+¢1.

Associate each dangerous vertewith its incident(< 4)-face f;. Each path of typéa) contains
no facefj, so does each path of typey); each path of typéc) contains exactly one fack, and
each path of typéb), (d) or (e;) contains exactly two facef (where a face is counted with its
multiplicity, i.e. once for each dangerous vertexfdhcident to it). Sodgs =y+2(B+0+¢€1),
and hence +pB+y+6+¢&=y+2(B+d+¢1), which gives Claim 4.

So, by Claims 1-4, we get

ch'(f) = k—4—dgs~%—(fce+sfe)-%—bad-%
> k_4_dgs_k—a—y—s_k—ngs+6+£1
2 3 6
2_4_dgs+a+\é—i—€o+€16—6
_ ;—4+(G_BZEO)+Y—2
> X4l
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According to Corollary iii ) and the reducibility of (L24), there are at least two vertices
between any two paths of tygd). So0,6 < "—j. Therefore, one can conclude that

* >_ - — A= _—"K—-4> — — .
ch*(f) 4 k—4>22-4>0
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