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Abstract

Let G be a graph of order n and let Λ(G, λ) =
∑n

k=0(−1)kckλn−k

be the characteristic polynomial of its Laplacian matrix. Zhou and
Gutman recently proved that among all trees of order n, the kth coef-
ficient ck is largest when the tree is a path, and is smallest for stars.
A new proof and a strengthening of this result is provided. A relation
to the Wiener index is discussed.

1 Introduction

Let G be a graph of order n = |G| and let L(G) = D(G) − A(G) be its
Laplacian matrix. The Laplacian polynomial of G is the characteristic poly-
nomial of its Laplacian matrix, Λ(G,λ) = det(λIn − L(G)). Let ck = ck(G)
(0 ≤ k ≤ n) be the absolute values of the coefficients of Λ(G,λ), so that

Λ(G,λ) =
n∑

k=0

(−1)kckλ
n−k.

It is easy to see that c0 = 1, c1 = 2‖G‖, cn = 0, and cn−1 = nτ(G), where
τ(G) denotes the number of spanning trees of G. We refer to [5] and [6, 7]
for a detailed introduction to graph Laplacians.

For a graph G, let mk(G) be the number of matchings of G containing
precisely k edges (shortly k-matchings), and let S(G) denote the subdivision
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of G. Zhou and Gutman [10] proved that for every acyclic graph T of order
n,

ck(T ) = mk(S(T )), 0 ≤ k ≤ n. (1)

Using this correspondence, Zhou and Gutman [10] proved a conjecture from
[3] that the extreme values of Laplacian coefficients among all n-vertex trees
are attained on one side by the path Pn of length n − 1, and on the other
side by the star Sn = K1,n−1 of order n. In other words,

ck(Sn) ≤ ck(T ) ≤ ck(Pn), 0 ≤ k ≤ n (2)

holds for all trees T of order n.
In this note we present a different proof of (2) and obtain a strengthening

of Zhou and Gutman’s result. We prove that all Laplacian coefficients are
monotone under two operations called π and σ. It is shown that by using
π consecutively, every tree can be transformed into a path, and successive
application of the operation σ transforms any tree into the star. This in
particular implies (2).

It is well-known that the Laplacian coefficient cn−2 of an n-vertex tree
T is equal to the sum of all distances between unordered pairs of vertices
(see, e.g. [9]), also known as the Wiener index W (T ) of T :

cn−2(T ) = W (T ) =
∑
{u,v}

dist(u, v).

In the last section we discuss some questions suggested by this correspon-
dence.

2 The transformation π

Let u0 be a vertex of a tree T . Suppose that P = u0u1 . . . up (p ≥ 1) is a
path in T whose internal vertices u1, . . . , up−1 all have degree 2 in T and
where up is a leaf (i.e., a vertex of degree 1 in T ). Then we say that P is a
pendant path of length p attached at u0.

Suppose that degT (u0) ≥ 3 and that P = u0u1 . . . up and Q = u0v1 . . . vq

are distinct pendant paths attached at u0. Then we form a tree T ′ =
π(T, u0, P,Q) by removing the paths P and Q and replacing them with
a longer path R = u0u1 . . . upv1v2 . . . vq. We say that T ′ is a π-transform of
T .

Proposition 2.1 Every tree which is not a path contains a vertex of de-
gree at least three at which (at least) two pendant paths are attached. In
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particular, every tree can be transformed into a path by a sequence of π-
transformations.

Proof. Let T be a tree which has at least one vertex of degree 3 or more. To
prove that T contains a vertex of degree at least 3 with two pendant paths,
consider a path S in T which contains the maximum number of vertices of
degree different from 2. Then S joins two leaves x and y. Let u be a vertex
on S of degree ≥ 3 which is closest to x. Let Q be a path joining u with
some leaf of T such that Q ∩ S = {u}. If Q would not be a pendant path,
this would contradict the maximality of S. So, Q and the segment of S from
u to x are two pendant paths attached at u.

The second part of the proposition is easily proved by induction on the
number of leaves of the tree since every π-transformation eliminates one leaf.

Theorem 2.2 Let T ′ = π(T, u0, P,Q) be a π-transform of a tree T of order
n = |T |. For d = 1, . . . , k− 1, let nd be the number of vertices in T −P −Q
that are at distance d from u0 in T . Then

ck(T ) ≤ ck(T ′) −
k−1∑
d=1

nd

(
n − 3 − d

k − 1 − d

)
for 2 ≤ k ≤ n − 2

and ck(T ) = ck(T ′) for k ∈ {0, 1, n − 1, n}.

Proof. As mentioned before, the coefficients c0 = 1 and cn = 0 are
constant, while c1 and cn−1 “count” the number of edges and the number of
spanning trees (multiplied by n), respectively, so they are the same for all
trees with the same number of vertices. This shows that ck(T ) = ck(T ′) for
k ∈ {0, 1, n − 1, n}, and so we henceforth assume that 2 ≤ k ≤ n − 2.

By a theorem of Zhou and Gutman, our Eq. (1), it suffices to see that
mk(S) ≤ mk(S′) − ∑k−1

d=1 nd

(n−3−d
k−1−d

)
, where S = S(T ) and S′ = S(T ′). We

let P = u0u1 . . . up, Q = u0v1 . . . vq, and R = u0u1 . . . upv1 . . . vq. In the sub-
division graphs we have the corresponding paths P̂ = u0û1u1û2u2 . . . ûpup,
Q̂ = u0v̂1v1v̂2v2 . . . v̂qvq, and R̂ = u0û1u1 . . . ûpupv̂1v1 . . . v̂qvq, where the
vertices with the “hats” are those subdividing the edges of T and T ′.

We consider the vertex-sets and edge-sets of T and T ′ and then also of
S and S′ to be the same under the obvious correspondence. In particular,
the edge e1 = u0v̂1 of S is identified with the edge upv̂1 of S′.

Let M be a k-matching of S. If e1 /∈ M or e2 = ûpup /∈ M , then we
set M ′ be the corresponding k-matching of S′. Every matching M ′ of S′

3



obtained in this way is said to be of type 1. If e1 and e2 are both in M ,
then we define the k-matching M ′ of S′ as follows. We let M and M ′ agree
on E(S) \ E(P̂ ), but we replace the edges in M ∩ E(P̂ ) with the edge-
set {ûiui | up−iûp−i+1 ∈ M} ∪ {ui−1ûi | ûp−i+1up−i+1 ∈ M}. (We think
of replacing the path P̂ with its inverse path upûp . . . u1û1u0.) It is obvious
that M ′ is a k-matching of S′ also in this case. We say that M ′ is a matching
of type 2. All other matchings of S′ are of type 0.

It is easy to see that a matching of S′ cannot be of types 1 and 2 at the
same time. This shows that the correspondence M �→ M ′ is 1-1. Therefore,
mk(S) ≤ mk(S′) and hence ck(T ) ≤ ck(T ′). In order to prove stronger
inequalities of the theorem, we have to find additional

∑k−1
d=1 nd

(
n−3−d
k−1−d

)
k-

matchings of S′ which are of type 0.
It is easy to see that for every vertex v ∈ V (S′), there is a (unique)

(n − 1)-matching Mv of S′ such that the vertex v is not covered by the
edges in Mv. For our purpose, we shall consider the vertex v = vq. Then
Mv ∩E(R̂) contains the edge upv̂1 and edges {ui−1ûi | 1 ≤ i ≤ p}∪{vj−1v̂j |
2 ≤ j ≤ q}. Let u be a vertex of T − P − Q that is at distance d from
u0. In S′, there is a path U of length 2d joining u0 with u. Every second
edge on this path belongs to Mv. Let us now form an (n − 2)-matching
Mu

v = (Mv + E(U)) \ {u0û1}, where + denotes the symmetric difference of
edge-sets. Finally, let N u

k be the set of all k-matchings contained in Mu
v

which contain the edge upv̂1 and all d edges of Mu
v ∩ E(U). It is clear

that no matching N in N u
k is of type 0, because every matching of type 1

corresponds to a matching of S (which N does not since upv̂1 = u0v̂1 and
the edge of U incident with u0 are both in N), and every matching of type 2
contains the edge u0û1.

The set N u
k contains precisely

(n−3−d
k−1−d

)
matchings, and for distinct ver-

tices u,w, the matchings are distinct, N u
k ∩ Nw

k = ∅. This gives rise to∑k−1
d=1 nd

(n−3−d
k−1−d

)
additional k-matchings of S′, which we were to prove.

Let us observe that the estimate for the difference ck(T ′) − ck(T ) in
Theorem 2.2 is just the “first-order estimate” and that the method of our
proof easily reveals additional k-matchings of S′ (except in some very specific
cases).

3 The transformation σ

Let u0 be a vertex of a tree T of degree p+1. Suppose that u0u1, . . . u0up are
pendant edges incident with u0, and that v0 is the neighbor of u0 distinct
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from u1, . . . , up. Then we form a tree T ′ = σ(T, u0) by removing the edges
u0u1, . . . u0up from T and adding p new pendant edges v0v1, . . . v0vp incident
with v0. We say that T ′ is a σ-transform of T .

Proposition 3.1 Every tree which is not a star contains a vertex u0 such
that p = degT (u0) − 1 neighbors of u0 are leaves of T , while the remaining
neighbor of u0 is not a leaf. Consequently, every tree can be transformed
into a star by a sequence of σ-transformations.

Proof. Let us consider a longest path S in T . Clearly, S connects two
leaves x and y and the vertex u0 adjacent to x has the required property. The
second part of the proposition is easily proved by induction on the number
of leaves of the tree since every σ-transformation increases the number of
leaves by one.

Theorem 3.2 Let T ′ = σ(T, u0) be a σ-transform of a tree T of order
n = |T |. For d = 2, . . . , k, let nd be the number of vertices in T − u0 that
are at distance d from u0 in T . Then

ck(T ) ≥ ck(T ′) +
k∑

d=2

nd p

(
n − 2 − d

k − d

)
for 2 ≤ k ≤ n − 2

and ck(T ) = ck(T ′) for k ∈ {0, 1, n − 1, n}.

Proof. The last claim was already argued before, so let us assume that
2 ≤ k ≤ n − 2. Again, we will compare k-matchings in S = S(T ) and in
S′ = S(T ′). We denote by ûi (1 ≤ i ≤ p) and v̂0 the vertices of S and S′

which subdivide edges u0ui and u0v0, respectively.
The edges of S and S′ are in the natural bijective correspondence, and

it is easy to see that a k-matching M ′ of S′ is also a k-matching of S unless
v̂0u0 ∈ M ′ and v0v̂i ∈ M ′ for some 1 ≤ i ≤ p. In the latter case, a k-
matching of S is obtained by replacing the edge v̂0u0 of M ′ by the edge
v̂0v0.

Similarly as in the proof of Theorem 2.2, we shall prove that there exist
k-matchings of S that are not counted in the above 1-1 correspondence
M ′ �→ M . We refer to the notation introduced in that proof.

Let us consider the (n− 1)-matching M0 of S such that the vertex u0 is
not covered by the edges in M0. Let u be a vertex of T that is at distance
d ≥ 2 from u0. In S′, there is a path U of length 2d − 2 joining v0 with
u. Every second edge on this path belongs to M0. For i = 1, . . . , p, let us
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now form an (n− 2)-matching Mu
i = ((M0 + E(U))∪ {u0ûi}) \ {v0v̂0, ûiui}.

Finally, let N u
k be the set of all k-matchings contained in some Mu

i which
contain the edges u0ûi and all d − 1 edges of Mu

i ∩ E(U). It is clear that
no matching N in N u

k appears under the above correspondence M ′ �→ M ,
because every such M either corresponds to a matching of S′ (which N does
not), or contains the edge v0v̂0.

The set N u
k contains precisely p

(n−2−d
k−d

)
matchings, and for distinct

pairs u,w, the matchings are distinct, N u
k ∩ Nw

k = ∅. This gives rise to∑k
d=1 nd p

(n−2−d
k−d

)
additional k-matchings of S, which we were to prove.

4 Wiener index

As observed in the introduction, the Wiener index W (T ) of an n-vertex tree
T is equal to the (n − 2)nd Laplacian coefficient, W (T ) = cn−2(T ). It is
a simple exercise to show that Theorems 2.2 and 3.2 can be made more
explicit for this special coefficient:

Theorem 4.1 Let T ′ = π(T, u0, P,Q) be a π-transform of a tree T of order
n = |T |, and let T ′′ = σ(T, u0) be a σ-transform of T . If p = |P | − 1 and
q = |Q| − 1, then

W (T ′) − W (T ) = cn−2(T ′) − cn−2(T ) = pq(n − p − q).

If r = degT (u0) − 1, then

W (T ) − W (T ′′) = cn−2(T ) − cn−2(T ′′) = r(n − r − 1).

Ordering of trees based on their Wiener index has a long history and is in
almost ideal correlation with several combinatorial properties and, notably,
also with some physical properties of substances whose molecular graphs
correspond to such trees, see, e.g. [2, 8]. Theorem 4.1 suggests a refinement
of this order. Namely, trees with the same Wiener index should be ordered
(lexicographically) according to the values of other Laplacian coefficients.
Of course, Laplacian-cospectral trees [1, 4] will be indistinguishable.

Another partial ordering among classes of Laplacian-cospectral trees of
the same order n may be of interest. We can say that T 
 T ′ if ci(T ) ≤ ci(T ′)
for i = 1, . . . , n. Theorems 2.2 and 3.2 show that this poset has a unique
minimal and a unique maximal element. It would be interesting to know
what is the height (the maximum length of a chain) and how large is the
width (the maximum size of an antichain) of this poset.
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