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Abstract

The central problem of the total-colourings is the Total-Colouring
Conjecture, which asserts that every graph of maximum degree ∆
admits a (∆ + 2)-total-colouring. Similarly to edge-colourings—with
Vizing’s edge-colouring conjecture—this bound can be decreased by
one for plane graphs of higher maximum degree. More precisely, it is
known that if ∆ ≥ 10 then every plane graph of maximum degree ∆
is (∆ + 1)-totally-colourable. On the other hand, such a statement
does not hold if ∆ ≤ 3. We prove that every plane graph of maximum
degree 9 can be 10-totally-coloured.

1 Introduction

Given a graph G = (V, E) and a positive integer k, a k-total-colouring of G
is a mapping λ : V ∪ E → {1, 2, . . . , k} such that

(i) λ(u) 6= λ(v) for every pair u, v of adjacent vertices;

(ii) λ(v) 6= λ(e) for every vertex v and every edge e incident to v;
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(iii) λ(e) 6= λ(e′) for every pair e, e′ of incident edges.

This notion was independently introduced by Bezhad [3] in his doctoral the-
sis, and Vizing [15]. It is now a prominent notion in graph colouring, to
which a whole book is devoted [17]. Both Bezhad and Vizing made the cel-
ebrated Total-Colouring Conjecture, stating that every graph of maximum
degree ∆ admits a (∆ + 2)-total-colouring. Notice that every such graph
cannot be totally-coloured with less than ∆ + 1 colours, and that a cycle of
length five cannot be 3-totally-coloured. The best general bound so far has
been obtained by Molloy and Reed [10], who established that every graph
of maximum degree ∆ can be (∆ + 1026)-totally-coloured. Moreover, the
conjecture has been shown to be true for several special cases, namely for
∆ = 3 by Rosenfeld [11] and Vijayaditya [14], and then for ∆ ∈ {4, 5} by
Kostochka [9].

Another natural subclass to consider is the one of planar graphs. It
attracted considerable attention, and several results were obtained. First,
Borodin [5] proved that if ∆ ≥ 9 then every plane graph of maximum degree
∆ fulfils the conjecture. This result can be extended ∆ = 8 by the use of the
Four Colour Theorem [1, 2], and Vizing’s Theorem about edge colouring—the
reader can consult the book by Jensen and Toft [8] for more details. Sanders
and Zhao [12] solved the case ∆ = 7 of the Total-Colouring Conjecture
for plane graphs. So the only open case regarding plane graphs is ∆ = 6.
Interestingly, ∆ = 6 is also the only remaining open case for Vizing’s edge-
colouring conjecture, after Sanders and Zhao [13] resolved the case ∆ = 7.

However, plane graphs with high maximum degree allow a stronger as-
sertion. More precisely, Borodin [5] showed that if ∆ ≥ 14 then every
plane graph with maximum degree ∆ is (∆+1)-totally-colourable, and asked
whether 14 could be decreased. Borodin, Kostochka and Woodall extended
this result to the case where ∆ ≥ 12 [6], and later to ∆ = 11 [7]. Recently,
Wang [16] established the result for ∆ = 10. On the other hand, this bound
is not true if ∆ ≤ 3. The complete graphs K2, K4 and the cycles of length
3k + 2 with k ≥ 1 are examples of plane graphs that cannot be (∆ + 1)-
totally-coloured. We continue along those lines, and establish the following
theorem.

Theorem 1. Every plane graph of maximum degree 9 is 10-totally-colourable.

So, the values of ∆ for which it is not known whether all plane graphs
of maximum degree ∆ are (∆ + 1)-totally-colourable are now 4, 5, 6, 7 and
8. Recall that the case where ∆ = 6 is even open for the Total-Colouring
Conjecture. We also note that if ∆ ≥ 3, then every outerplane graph with
maximum degree ∆ can be (∆+1)-totally-coloured [19]. Another result of the
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same type is that every Halin graph of maximum degree 4 admits a 5-total-
colouring [18]. Note also that the complete r-partite balanced graph Kr∗n,
whose maximum degree ∆ is n(r− 1), admits a (∆ + 2)-total-colouring, and
the cases where this bound can be decreased by 1 have been characterised [4].

We prove Theorem 1 by contradiction. From now on, we let G = (V, E)
be a minimum counter-example to the statement of Theorem 1, in the sense
that the quantity |V |+ |E| is minimum. In particular, every proper subgraph
of G is 10-totally-colourable. First, we establish various structural properties
of G in Section 2. Then, relying on these properties, we use the Discharging
Method in Section 3 to obtain a contradiction.

In the sequel, a vertex of degree d is called a d-vertex. A vertex is a
(≤d)-vertex if its degree is at most d; it is a (≥d)-vertex if its degree is at
least d. If f is a face of G, the degree of f is its length, i.e. the number
of its incident vertices. The notions of d-face, (≤d)-face and (≥d)-face are
defined analogously as for the vertices. Moreover, if a vertex v is adjacent
to a d-vertex u, we say that u is a d-neighbour of v. A cycle of length 3
is called a triangle. For integers a, b, c, a (≤a,≤b,≤c)-triangle is a triangle
xyz of G with deg(x) ≤ a, deg(y) ≤ b and deg(z) ≤ c. The notions of
(a,≤b,≤c)-triangles, (a, b,≥c)-triangles and so on, are defined analogously.

2 Reducible configurations

In this section, we establish some structural properties of the graph G. We
prove that some plane graphs are reducible configurations, i.e. they cannot
be subgraphs of G.

For convenience, we sometimes define configurations by depicting them
in figures. In all the figures of this paper, 2-vertices are represented by small
black bullets, 3-vertices by black triangles, 4-vertices by black squares, and
white bullets represents vertices whose degree is at least the one shown on
the figure.

Let λ be a (partial) 10-total-colouring of G. For each element x ∈ V ∪E,
we define C(x) to be the set of colours (with respect to λ) of vertices and
edges incident or adjacent to x. Also, we set F(x) := {1, 2, . . . , 10} \ C(x).
If x ∈ V we define E(x) to be the set of colours of the edges incident to
x. Moreover, λ is nice if only some (≤4)-vertices are not coloured. Observe
that every nice colouring can be greedily extended to a 10-total-colouring
of G since for each (≤4)-vertex v, |C(v)| ≤ 8, i.e. v has at most 8 forbidden
colours. Therefore, in the rest of the paper, we shall always suppose that such
vertices are coloured at the very end. More precisely, every time we consider
a partial colouring of G, we uncolour all (≤4)-vertices, and implicitely colour
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them at the very end of the colouring procedure of G. We make the following
observation about nice colourings.

Observation. Let uv be an edge with deg(v) ≤ 4. There exists a nice
colouring λ of G−e, in which u is coloured and v is uncoloured. Moreover, it
then suffices to properly colour the edge e with a colour from {1, 2, . . . , 10}
to extend λ to a nice colouring of G.

We will use this observation implicitely throughout the paper.

Lemma 2. The graph G has the following properties.

(i) The minimum degree is at least two;

(ii) if vu is an edge with deg(v) ≤ 4 then deg(u) ≥ 11 − deg(v);

(iii) a 9-vertex is adjacent to at most one 2-vertex;

(iv) a triangle incident to a 3-vertex must also contain a 9-vertex;

(v) there is no (4,≤7,≤8)-triangle;

(vi) a triangle contains at most one (≤5)-vertex.

Proof. (i). Suppose that v is a 1-vertex, and let u be its neighbour. By
the minimality of G, the graph G − v admits a nice colouring in which u is
coloured. Since the degree of u in G− v is at most 8, we obtain |C(vu)| ≤ 9.
Thus, the edge vu can be properly coloured, which yields a nice colouring of
G.

(ii). Suppose that vu ∈ E with deg(v) ≤ 4 and deg(u) ≤ 10 − deg(v).
There exists a nice colouring of G′ := G− vu, in which u is coloured and v is
uncoloured. Therefore, |C(vu)| ≤ deg(v)− 1 + deg(u)− 1 + 1 ≤ 9. Hence we
can colour properly the edge vu, thereby obtaining a nice colouring of G.

(iii). Suppose that v is a 9-vertex adjacent to two 2-vertices x and y.
Let x′ be the neighbour of x different from v, and let y′ be the neighbour
of y different from v. Notice that we may have x′ = y′. By the previous
assertion, x′ and y′ are 9-vertices. It is enough to consider the following two
possibilities.

v is adjacent to neither x′ nor y′. Then, we construct the graph G′ by
first removing x and y, and then adding the edge vx′. If y′ 6= x′, we
additionally add the edge vy′. Note that G′ is a simple plane graph of
maximum degree 9 with fewer vertices and edges than G. Therefore, it
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Figure 1: Configurations for the proof of Lemma 2.

admits a nice colouring λ by the minimality of G. We easily modify λ
to obtain a nice colouring of G. First, put λ(xx′) := λ(vy) := λ′(vx′).
Now, if x′ 6= y′ then we put λ(vx) := λ(yy′) := λ′(vy′). See Figure 1(a)
for an illustration. And, if x′ = y′ then we note that each of the edges
yy′ and vx has at most 9 forbidden colours. Thus, both of them can
be coloured and the obtained 10-total-colouring of G is nice.

v is adjacent to x′. Thus vxx′ is a triangle. Consider a nice colouring
of G − vy. To extend it to G, it suffices to properly colour the edge
vy. If this cannot be done greedily, then |C(vy)| = 10, and up to a
permutation of the colours, we can assume that the colouring is the
one shown in Figure 1(b). If a 6= 10, then recolour vx with 10 and
colour vy with 5 to obtain a nice colouring of G. And if a = 10, then
we interchange the colours of vx′ and xx′, and afterwards colour vy
with 4.
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(iv). By (ii), a 3-vertex has only (≥8)-neighbours. Thus we may suppose
that vwu is a (3, 8, 8)-triangle, with u being the 3-vertex. Consider a nice
colouring of G−vu. To extend it to G, again it suffices to properly colour the
edge vu. If we cannot do this greedily, it means that |C(vu)| = 10. Thus, up
to a permutation of the colours, the colouring is the one shown in Figure 1(c).
If the edge wu can be properly recoloured, then we do so, and afterwards
colour the edge vu with 10, which gives a nice colouring of G. So we deduce
that |C(wu)| = 9. Consequently, {a, b, c, d, e, f, g} = {1, 2, 3, 4, 5, 6, 8}. Thus
we obtain 9 /∈ C(vw). So, we can recolour vw with 9 and colour vu with 7 to
conclude the proof.

(v). By (ii), it is enough to prove that there is no (4, 7, δ)-triangle in G for
δ ∈ {7, 8}. Suppose that vwu is such a triangle with w having degree δ and
u degree 4. Consider a nice colouring of G − vu. It is sufficient to properly
colour the edge vu to obtain a nice colouring of G. Again, |C(vu)| = 10,
so up to a permutation of the colours, we assume that the colouring is the
one of Figure 1(d). If the edge wu can be properly recoloured, then do so,
and colour vu with 8 to obtain a nice colouring of G. Thus, we deduce
that |C(wu)| = 9. Therefore, {1, 2, 3, 4, 5, 7} ⊂ {a, b, c, d, e, f, g}. From this
we infer that |C(vw)| ≤ 6 + δ − 6 = δ ≤ 8. Thus, the edge vw can be
properly recoloured, and so the edge vu can be coloured with 6, yielding a
nice colouring of G.

(vi). Let vuw be a triangle with deg(u) = deg(w) = 5. Consider a total-
colouring of G− uw, and uncolour the vertex w. Observe that |F(uw)| ≥ 1
and |F(w)| ≥ 1. Furthermore, these two sets must actually be equal and
of size one, otherwise we can extend the colouring to G. Up to a permu-
tation of the colours, the colouring is the one shown in Figure 1(e), with
{A, B, C,D} = {1, 2, 3, 4}. Notice that the colours of the edges vu and vw
can be safely interchanged. Now, the vertex w can be properly coloured with
6, and the edge uw with 10.

Lemma 3. For the graph G, the following assertions hold.

(i) There is no (5, 6, 6)-triangle.

(ii) A 6-vertex has at most two 5-neighbours.

(iii) Suppose that v is a 7-vertex, and let x1 be one of its neighbours. If v
and x1 have at least two common neighbours, then at most one of them
has degree 4.
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Figure 2: Reducible configurations of Lemma 3(vi) and (vii).

(iv) Suppose that vwu and vwu′ are two triangles with deg(u) = 2. Then,
deg(u′) ≥ 4.

(v) Suppose that v is a 9-vertex incident to a (2, 9, 9)-triangle. Then it is
not incident to a (≤3,≥8, 9)-triangle.

(vi) The configuration of Figure 2(a) is reducible.

(vii) The configuration of Figure 2(b) is reducible.

Proof. (i). Suppose on the contrary that G contains a (5, 6, 6)-triangle uvw
with u being of degree 5. The proof is in two steps. In the first step, we prove
the existence of a 10-total-colouring of G in which only u is uncoloured. And
in the second step, we establish that such a colouring can be extended to G.
Consider a nice colouring of G − vu, and uncolour the vertex u. Our only
goal in the first step is to properly colour the edge vu. If we cannot do this
greedily, then |C(vu)| = 10, and thus we can assume that the colouring is the
one of Figure 3(a). We infer that {6, 7, 8, 9, 10} = {a, b, c, d, e}, otherwise we
can choose a colour α ∈ {6, 7, 8, 9, 10} \ {a, b, c, d, e}, recolour uw with α and
colour vu with 4. Consequently, we have C(vw) = {4, 6, 7, 8, 9, 10}. Thus, we
can recolour vw with 1, and colour vu with 5.

For the second step, consider a partial 10-total-colouring of G such that
only u is not coloured. If we cannot greedily extend it to G, then with-
out loss of generality the colouring is the one of Figure 3(b). Note that if
|C(vu)| ≤ 8, then we can recolour vu and colour u with 5. Thus, we infer that
{a, b, c, d, e} ⊃ {7, 8, 9, 10}. Similarly, {e, f, g, h, i} ⊃ {6, 8, 9, 10}. Observe
that |C(v)| = 9, otherwise we just properly recolour v and colour u with 6.
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Figure 3: Configurations for the proof of Lemmas 3 and 4.
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We assert that we can assume that e ∈ {1, 2, 3}. If it is not the case,
then e ∈ {8, 9, 10}, say e = 10. By what precedes, |C(vw)| ≤ 12 − 4 = 8 and
{4, 5, 6, 7, 8, 9} ⊂ C(vw). Thus at least one colour among 1, 2, 3 can be used to
recolour vw, which proves the assertion. Therefore, {a, b, c, d} = {7, 8, 9, 10}
and {f, g, h, i} = {6, 8, 9, 10}. Thus vw can be recoloured by every colour
of {1, 2, 3}. So, if there exists a colour α ∈ {1, 2, 3} \ {A, B, C,D}, we can
recolour vw with a colour of {1, 2, 3} different from α, recolour v with α and
colour u with 6. Hence {1, 2, 3} ⊆ {A, B, C,D}. Now, recall that |C(v)| = 9,
thus 4 ∈ {A, B, C,D}. Consequently, we can interchange safely the colours
of vu and wu, recolour v with 5, and finally colour u with 6.

(ii). Suppose that v is a 6-vertex with three 5-neighbours x1, x2, x3. By
Lemma 2(vi), these three vertices are pairwise non-adjacent. Let λ be a nice
colouring of G−vx1, and uncolour the edges vx2 and vx3 as well as the vertices
v, x1, x2 and x3. Notice that for each i ∈ {1, 2, 3}, |C(xi)| ≤ 8 and |C(vxi)| ≤
7. Moreover, |C(v)| ≤ 6. Recall that F(x) := {1, 2, . . . , 10} \ C(x) for every
x ∈ V ∪ E. Observe that for each i ∈ {1, 2, 3}, we have F(v) ∩ F(xi) ⊆
F(vxi). Hence, we infer that |F(v)∩ (F(vxi) ∪ F(xi)) | = |F(v)∩F(vxi)| ≤
3. Consequently, there exists a colour α ∈ F(v) that does not belong to
F(x3) ∪ F(vx3). Set λ(v) := α. If we colour properly x1, vx1, x2 and vx2,
then we will be able to colour greedily vx3 and x3 and hence the proof would
be complete. Observe that if α does not belong to F(x1) or to F(vx2), then
the colouring can be extended greedily to x1, x2, vx1, vx2—just colour x1 or
vx2 last, respectively. Therefore we assume that α belongs to these two lists.
Uncolour v and colour x1 and vx2 with α. With respect to this colouring, note
that |F(vx1)| ≥ 2, |F(v)| ≥ 3, |F(x2)| ≥ 1, |F(vx3)| ≥ 3 and |F(x3)| ≥ 2.
Hence, we can colour x2. Now, if there exists β ∈ F(vx1) ∩ F(x3), then we
let λ(vx1) := λ(x3) := β, and afterwards greedily colour v and vx3.

So, F(vx1)∩F(x3) = ∅. If there exists κ ∈ F(v)∩F(x3) 6= ∅, then we set
λ(v) := κ, and afterwards we greedily colour x3, vx3 and vx1 in this order.
Otherwise, greedily colouring vx1, v, vx3 and x3 in this order yields a nice
colouring of G.

(iii). Suppose that the statement is false, so the graph G contains the
configuration of Figure 3(c). Consider a nice colouring λ of G − vx7. If it
cannot be extended to G, then |C(vx7)| = 10. Furthermore, |C(vx2)| = 9,
otherwise we can colour the edge vx7 with λ(vx2) and greedily recolour the
edge vx2, thereby obtaining a nice colouring of G. Therefore, we can assume
that the colouring is the one shown in Figure 3(c). Then a nice colouring
of G is obtained by interchanging the colours of the edges x7x1 and vx1,
recolouring vx2 with 1 and colouring vx7 with 2, as shown in Figure 3(d).
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(iv). Suppose on the contrary that G contains the configuration of Fig-
ure 3(e). Consider a nice colouring of G − vx9. If the edge vx9 cannot be
greedily coloured, then |C(vx9)| = 10. Thus we may assume that the colour-
ing is the one shown in Figure 3(e). Notice that a = 10, otherwise we recolour
vx2 with 10 and colour vx9 with 2. So, the recolouring in Figure 3(f) is nice.

(v). Suppose that G contains the configuration of Figure 3(g), and con-
sider a nice colouring λ of G − vx9. Without loss of generality, we may
assume that it is the one of Figure 3(g). Observe that 10 ∈ {a, b}, otherwise
we obtain a nice colouring of G by setting λ(vx6) := 10 and λ(vx9) := 6.
Now, we consider two cases regarding b.

b = 10. If a 6= 7 then we can interchange the colours of the edges x6x7

and vx7, and colour vx9 with 7 to obtain a nice colouring of G. And if
a = 7, then we interchange the colours of the edges x9x8 and vx8, and
then we let λ(vx6) := 8 and λ(vx9) := 6.

b 6= 10. In this case, a = 10. We interchange the colours of x9x8 and vx8.
Similarly as before, we deduce that b = 8. Now, the previous case
applies with 8 playing the role of colour 10.

(vi). Suppose on the contrary that G contains the configuration of Fig-
ure 2(a). Up to a permutation of the colours, every nice colouring of G−vx9

is as the one of the figure. Note that d = 10, otherwise recolour vx8 with
10 and colour vx9 with 8. Similarly, a = 10. Now, interchange the colours
of the edges x1x2 and vx2. If b 6= 2, the obtained colouring extends to G by
colouring vx9 with 2. If b = 2, then interchange the colours of the edges x9w
and x1w thereby obtaining a nice colouring of G − vx9. Since d = 10 6= 2,
observe that we can extend it to G as before, i.e. we recolour vx8 with 2 and
colour vx9 with 8.

(vii). Suppose that G contains the configuration of Figure 2(b). Consider
a nice colouring of G− vx9. Without loss of generality, we may assume that
it is the one of the figure. Note that 10 ∈ {a, b}, otherwise recolour vx5

with 10 and colour vx9 with 5. By symmetry, we can assume that a = 10.
Interchange the colours of the edges x5x4 and vx4. If b 6= 4, we have a
nice colouring of G − vx9, and we extend it to G by colouring vx9 with 4.
Otherwise, b = 4, we interchange the colours of the edges x5x6 and vx6, and
colour vx9 with 6, which yields a nice colouring of G.

Lemma 4. The configuration of Figure 3(h) is reducible.
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Proof. Consider a nice colouring of G−vx9. If it cannot be greedily extended
to G then |C(vx9)| = 10, and so we can assume that the colouring is the one
of Figure 3(h). First, we note that if a 6= 7 then 10 ∈ {b, c}, otherwise we
recolour vx7 by 10 and colour vx9 with 7. Similarly, if a 6= 2 then 10 ∈ {d, e}.
We now split the proof into three cases.

a /∈ {6, 8}. Since a is different from either 2 or 7, we may assume that
a 6= 7. As mentioned above, we must have 10 ∈ {b, c}. Moreover, if
we interchange the colours of the edges x9x8 and vx8, we deduce as
before that 8 ∈ {b, c}, the colour 8 playing the role of colour 10. Hence
{b, c} = {8, 10}. Now, interchange the colours of the edges x7x6 and
vx6, and colour vx9 with 6. If b = 10, the obtained colouring is proper,
and if b = 8 then we additionally interchange the colours of the edges
x9x8 and vx8 to obtain the desired colouring.

a = 8. In this case 10 ∈ {b, c}. By interchanging the colours of the edges
x9x8 and vx8, and also of x9x1 and vx1, we infer that 1 ∈ {b, c}. Hence
{b, c} = {1, 10}. Similarly as in the previous case, interchange the
colours of x7x6 and vx6, and afterwards colour vx9 with 6. If b = 10,
the obtained colouring of G is proper, and if b = 1 then it suffices to
additionally interchange the colours of the edges x9x8 and vx8, and also
of x9x1 and vx1 to obtain a nice colouring of G.

a = 6. Then, 10 ∈ {d, e}. Note that the colours of the edges x9x8 and vx8

can be interchanged safely, because a 6= 8. Therefore, as a 6= 2, we
infer that 8 ∈ {d, e}, and hence {d, e} = {8, 10}. We interchange now
the colours of the edges x2x3 and vx3 and colour vx9 with 3. If e = 10,
the obtained colouring of G if proper. And, if e = 8, then it suffices to
interchange the colours of the edges x9x8 and vx8 to obtain a desired
colouring.

Lemma 5. If uvz is a triangle with an 8-vertex v and a 3-vertex u, then v
has no 3-neighbour distinct from u.

Proof. Suppose that v is an 8-vertex that contradicts the lemma. Let u and
w be two 3-neighbours of v, and assume that vuz is a triangle. We consider
a nice colouring of G− vu. If we cannot extend it to G, then without loss of
generality, we may assume that the colouring is the one shown on Figure 4(a).
Observe that {a, b} = {9, 10}, otherwise we obtain the desired colouring by
recolouring vw with either 9 or 10, and colouring vu with 2. Now, as depicted
in Figure 4(b), we interchange the colours of the edges uz and vz, recolour
vw with 1, and colour vu with 2 to obtain the sought colouring.

11



1

2

3 4

5

6

7

8

vw

u
z

a

b

9

10

(a)

�1
9

�2
1

3 4

5

6

72

8

9

10

�9
1

10

(b)

Figure 4: Colouring and recolouring for the proof of Lemma 5.
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Figure 5: Configurations for Lemma 6.

Lemma 6. The configuration of Figure 5(a) is reducible.

Proof. Consider a nice colouring of G − vx2. Up to a permutation of the
colours, it is the one of Figure 5(a). Note that 10 ∈ {a, b}, otherwise we

12



obtain a nice colouring of G by colouring vx2 with 10. We split the proof
into two cases, regarding the value of b.

Case 1: b = 10. If a = 4, then apply the recolourings of Figure 5(b) and (c),
regarding whether d is 3.

Suppose now that a 6= 4. In this case, we deduce that d = 10, otherwise
we can recolour vx4 with 10 and colour vx2 with 4. If c 6= 5, then the desired
colouring can be obtained as follows. If a 6= 5, interchange the colours of the
edges x4x5 and vx5, and colour vx2 with 5, and if a = 5 then the recolouring
of Figure 5(d) is nice.

We may assume now that c = 5. Interchange the colours of the edges
x4x5 and vx5, and also of the edges x4x3 and vx3. If a 6= 3 then it suffices to
colour vx2 with 3. And, if a = 3, then additionally interchange the colours of
the edges x2x1 and vx1, recolour vx4 with 1 and colour vx2 with 4 to obtain
the sought colouring.

Case 2: b 6= 10. Therefore, a = 10. First, note that 10 ∈ {c, d}, otherwise
we recolour vx4 with 10 and colour vx2 with 4. Either the obtained colouring
of G is nice, or b = 4. In the latter case, we additionally interchange the
colours of x2x3 and x4x3 to obtain the desired colouring.

Suppose now that c = 10. Then, b = 4 otherwise we uncolour vx4, colour
vx2 with 4, and apply Case 1 to the obtained colouring with x4 playing the
role of the vertex x2. Now, interchange the colours of x4x3 and vx3. The
obtained colouring is nice if d 6= 3, and we extend it to G by colouring vx2

with 3. And, if d = 3, we additionally interchange the colours of x4x5 and
vx5 and colour vx2 with 5.

Finally, assume that c 6= 10, and hence d = 10. Up to interchanging the
colours of x2x3 and x4x3, we may assume that b 6= 5. Interchange the colours
of x4x5 and vx5. If c 6= 5, the obtained colouring is nice and we extend it to
G by colouring vx2 with 5. And, if c = 5, we additionally interchange the
colours of x4x3 and vx3, and colour vx2 with 3.

Lemma 7. The configuration of Figure 6(a) is reducible.

Our proof of Lemma 7 uses the following result. Given a colouring λ and
a vertex v, recall that E(v) is the set of colours assigned to the edges incident
to v. Let E ′(v) := {1, 2, . . . , 10} \ (E(v) ∪ {λ(v)}).

Lemma 8. Suppose that G contains the configuration of Figure 6(b). Then,
for every nice colouring λ of G− vx2, it holds that E ′(v)∪{λ(vx6)} ⊆ E(x2).
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Figure 6: Configurations for Lemmas 7 and 8.

Proof. Up to a permutation of the colours, the colouring λ is the one of
Figure 6(b). Notice that E ′(v) = {10}, λ(vx6) = 6 and E(x2) = {a, b}.
Clearly, 10 ∈ {a, b} otherwise we just colour vx2 with 10. By symmetry, we
may assume that a = 10. Thus, to finish the proof, it only remains to prove
that b = 6. Suppose on the contrary that b 6= 6. Note that 10 ∈ {c, d}
otherwise we recolour vx6 with 10 and colour vx2 with 6. By symmetry, we
may assume that d = 10. We consider two possibilities, regarding the value
of b.

b = 1: Interchange the colours of the edges x6x7 and vx7. The obtained
colouring of G is nice if c 6= 7, and if c = 7 we additionally interchange
the colours of x6x5 and vx5. Now, colouring vx2 with 7 or 5 yields a
nice colouring of G, a contradiction.

b 6= 1: In this case, c = 1. Indeed, if c 6= 1, we recolour vx6 with 1,
interchange the colours of x2x1 and vx1 and colour vx2 with 6 to obtain
a nice colouring of G. Now, if b 6= 7 then interchange the colours of
x6x7 and vx7 and colour vx2 with 7. And, if b = 7 then interchange
the colours of x6x5 and vx5, and also of x2x1 and vx1, and colour vx2

with 5.

Proof of Lemma 7. Consider a nice colouring λ of G− vx2. Up to a permu-
tation of the colours, we assume that the colouring is the one of Figure 6(a).
By Lemma 8, we have {a, b} = {6, 10}. We consider two cases.

a = 10 and b = 6. If there exists a colour α ∈ {1, 10} \ {e, f, g}, then
recolour vx4 with α and colour vx2 with 4. The obtained colouring is

14



nice if α = 10. And, if α = 1 it suffices to additionally interchange the
colours of x2x1 and vx1. Thus, {1, 10} ⊂ {e, f, g}.

Suppose that 6 /∈ {e, f, g}. We start by interchanging the colours of the
edges x2x3 and x4x3. If e = 10, we additionally interchange the colours
of x2x1 and vx1. Observe that the obtained colouring does not fulfil
the condition of Lemma 8, a contradiction. Hence, {e, f, g} = {1, 6, 10}
and so e ∈ {1, 10}. We interchange the colours of x4x3 and vx3 and
colour vx2 with 3. Either this colouring of G is nice, or e = 1 and
hence additionally interchanging the colours of x2x1 and vx1 yields a
nice colouring of G.

a = 6 and b = 10. If there exists α ∈ {3, 10}\{f, g}, then recolour vx4 with
α, and colour vx2 with 4. If the obtained colouring is not nice, then
α = 3 and hence interchanging the colours of x2x3 and vx3 yields a
nice colouring of G, a contradiction. Observe that we may assume that
f = 3 and g = 10. Indeed, if it is not the case, then we interchange
the colours of x2x3 and vx3 and obtain the desired condition, with 3
playing the role of colour 10.

Furthermore e = 5, otherwise we interchange the colours of x4x5 and
vx5 and colour vx2 with 5. Now, observe that d = 10, otherwise we
recolour vx6 with 10, vx4 with 6 and colour vx2 with 4 to obtain a nice
colouring of G. Finally, we interchange the colours of x6x7 and vx7. If
c = 7, we additionally interchange the colours of x6x5 and vx5. Now,
colouring vx2 with 7 or 5 yields a nice colouring of G, a contradiction.

Lemma 9. The configurations of Figure 7 are reducible.

Proof. Consider a nice colouring of G−vu. We may assume that the colouring
is the one of Figure 7. Let α ∈ {1, 7, 9, 10}\{a, b, c}. We recolour vx3 with α
and colour vu with 3. The obtained colouring of G is nice unless α ∈ {1, 7}.
If α = 7 then we additionally interchange the colours of uw and vw. And if
α = 1, we interchange the colours of ut and vt.

Lemma 10. A 6-vertex incident to 6 triangles is not adjacent to two 5-
vertices.

Proof. Suppose that v is a 6-vertex. We let x1, x2, . . . , x6 be its neighbours,
such that xi is adjacent to xi+1 if i ∈ {1, 2, . . . , 5} and x6 is adjacent to x1.
We also assume that x6 is a 5-vertex, and we let w be the other 5-vertex.
By symmetry and Lemma 2(vi), we may assume that w ∈ {x2, x3}. The
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Figure 7: Reducible configurations of Lemma 9. We assume that the degree
of v in G is 8.

proof is in two steps. In the first step, we show that there exists a partial
10-total-colouring of G in which only x6 is uncoloured. In the second step,
we show how to extend it to a 10-total-colouring of G.

Given a total-colouring and an element x ∈ V ∪E, recall that C(x) is the
set of colours of all the elements of V ∪ E incident or adjacent to x. Recall
also that if x ∈ V , E(x) is the set of colours of all the edges incident to x.

Let λ be a total-colouring of G− vx6, in which furthermore we uncolour
the vertex x6. Our goal is to properly colour the edge vx6. Note that
|C(vx6)| = 10, otherwise the edge vx6 can be greedily coloured. Without
loss of generality, we may assume that the colouring is the one shown in
Figure 8(a).

We want to colour vx6 with λ(vw). Recall that w is either x2 or x3.
We set E := E(w) ∪ {λ(w)}. If there exists a colour α ∈ {7, 8, 9, 10} \ E ,
then we set λ(vx6) := λ(vw) and λ(vw) := α. Furthermore, if 1 /∈ E , then
interchange the colours of x6x1 and vx1, colour vx6 with λ(vw) and recolour
vw with 1. Thus, 1 ∈ E . Similarly, we deduce that 5 ∈ E . Finally, note that
either 2 or 3 belongs to E , according to whether w is x2 or x3. Consequently,
this shows that |E| ≥ 7. But w has degree five, thus |E| = 6, a contradiction.
This concludes the first step.

Suppose now that we are given a partial 10-total-colouring of G in which
only x6 is not coloured. If we cannot extend it to G, then without loss
of generality, we may assume that the colouring is the one shown in Fig-
ure 8(b). If there exists a colour α ∈ {2, 4, 6, 10} \ {a, b, c, d, e}, then re-
colour vx6 with α and colour x6 with 7 to obtain a 10-total-colouring of G.
Hence, {2, 4, 6, 10} ⊂ {a, b, c, d, e}. Suppose that a /∈ {2, 4, 6}. In this case,
{b, c, d, e} = {2, 4, 6, 10}, and thus e ∈ {2, 4, 10}. Interchange the colours of
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Figure 8: Proof of Lemma 10: (a) colouring of G− vx6, (b) partial colouring
of G in which x6 is not coloured.

the edges x6x5 and vx5. Now, if a 6= 5 then the obtained colouring is proper,
and we extend it to G by colouring x6 with 5. And, if a = 5, we additionally
interchange the colours of x6x1 and vx1, and colour v with 9. Consequently,
we obtain a ∈ {2, 4, 6}.

If 9 /∈ {b, c, d, e}, we can apply a similar recolouring. More precisely,
interchange the colours of the edges x6x1 and vx1. The obtained colouring is
proper and can be extended to G by colouring x6 with 9. So 9 ∈ {b, c, d, e},
and hence 5 /∈ E(v). If e = 9, then {b, c, d} ⊂ {2, 4, 6, 10}. So, analogously
to what precedes, it suffices to interchange the colours of x6x1 and vx1, the
colours of x5x6 and vx5 and to colour v with 5. Therefore, we conclude that
e ∈ {2, 4, 10}. We interchange the colours of x6x5 and vx5, and colour x6

with 5, thereby obtaining a nice colouring of G.

Lemma 11. The configuration of Figure 9(a) is reducible.

Proof. Consider a nice colouring of G− vx9. Without loss of generality, it is
the one of Figure 9(a). First note that a = 10, otherwise we can recolour the
edge vx8 with 10 and colour vx9 with 8. Next, we infer that b = 7, otherwise
we can interchange the colours of x8x7 and vx7, and colour vx9 with 7. Now,
observe that 10 ∈ {c, d}, otherwise we recolour vx2 with 10 and colour vx9

with 2. Furthermore, 7 ∈ {c, d}, otherwise we interchange the colours of x8w
and x9w, and also of x8x7 and vx7, recolour vx2 with 7 and colour vx9 with
10. Thus, {c, d} = {7, 10}. If d = 7 and c = 10, we just interchange the
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Figure 9: Precolouring and recolouring for the proof of Lemma 11.

colours of the edges x2x1 and vx1, and colour vx9 with 1. And, if d = 10 and
c = 7, the recolouring shown in Figure 9(b) is a nice colouring of G.

3 Discharging part

Recall that G = (V, E) is a minimum counter-example to the statement
of Theorem 1, in the sense that |V | + |E| is minimum. We shall obtain a
contradiction by using the Discharging Method. Here is an overview of the
proof. We fix a planar embedding of G. Each vertex and face of G is assigned
an initial charge. The total sum of the charges is negative by Euler’s Formula.
Then, some redistribution rules are applied, and vertices and faces send or
receive some charge according to these rules. The total sum of the charges
is not changed during this step, but at the end we infer that the charge of
each vertex and face is non-negative, a contradiction.

Initial charge. We assign a charge to each vertex and face. For every
x ∈ V ∪ F , we define the initial charge ch(x) to be deg(x)− 4, where deg(x)
is the degree of x in G. By Euler’s formula the total sum is∑

v∈V

ch(v) +
∑
f∈F

ch(f) = −8.

Rules. We need the following definitions to state the discharging rules. A
2-vertex is bad if it is not incident to a (≥5)-face. A triangle is bad if it
contains a vertex of degree at most 4. Recall that a triangle with vertices
x, y and z, is a (deg(x), deg(y), deg(z))-triangle.
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Rule R0. A (≥5)-face sends 1 to each incident 2-vertex.

Rule R1. A 5-vertex v sends 1/5 to each incident triangle.

Rule R2. A 6-vertex sends 13/35 to each incident (5, 6,≥7)-triangle; 1/3 to
each incident (6, 6, 6)-triangle; and 2/7 to each incident (6,≥6,≥7)-triangle.

Rule R3. A 7-vertex sends 1/2 to each incident bad triangle; 3/7 to each
incident non-bad (≤7,≤7, 7)-triangle; and 1/3 to each incident non-bad tri-
angle containing a (≥8)-vertex.

Rule R4. A 8-vertex sends

(i) 1/3 to each adjacent 3-vertex;

(ii) 1/2 to each incident bad triangle;

(iii) 7/15 to each incident non-bad (5,≤7, 8)-triangle and each incident (6, 6, 8)-
triangle;

(iv) 2/5 to each incident (5,≥8, 8)-triangle, each incident (6, 7, 8)-triangle
and each incident (6, 8, 8)-triangle;

(v) 1/3 to each incident (6, 8, 9)-triangle and each incident (≥7,≥7, 8)-
triangle.

Rule R5. A 9-vertex sends

(i) 1 to each adjacent bad 2-vertex and 1/2 to each adjacent non-bad 2-
vertex;

(ii) 1/3 to each adjacent 3-vertex;

(iii) 1/2 to each incident bad triangle and each incident (5,≤7, 9)-triangle;

(iv) 3/7 to each incident (6, 6, 9)-triangle;

(v) 2/5 to each incident (5,≥8, 9)-triangle and each incident (6,≥7, 9)-
triangle;

(vi) 1/3 to each incident (≥7,≥7, 9)-triangle.
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In the sequel, we prove that the final charge ch∗(x) of every x ∈ V ∪F is
non-negative. Hence, we obtain

−8 =
∑
v∈V

ch(v) +
∑
f∈F

ch(f) =
∑
v∈V

ch∗(v) +
∑
f∈F

ch∗(f) ≥ 0,

a contradiction. This contradiction establishes the theorem.

Final charge of faces. Let f be a d-face. Our goal is to show that ch∗(f) ≥
0. By Lemma 2(ii) and (iii), f is incident to at most bd

3
c vertices of degree

2. Therefore, if d ≥ 5 then by Rule R0 we obtain ch∗(f) ≥ d − 4 − bd
3
c =

d2d
3
e − 4 ≥ 0. A 4-face neither sends nor receives any charge, so its charge

stays 0.
Finally, let f = xyz be a triangle with deg(x) ≤ deg(y) ≤ deg(z). The

initial charge of f is −1, and we assert that its final charge ch∗(f) is at least
0. We consider several cases and subcases according to the degrees of x, y
and z.

deg(x) = 2. Then both y and z have degree 9 by Lemma 2(ii), and hence
f receives 1/2 from each of y and z by Rule R5(iii).

deg(x) = 3. In this case, by Lemma 2(ii) and (iv), we infer that deg(y) ≥ 8
and deg(z) = 9. Thus, f receives 1

2
+ 1

2
= 1 by Rules R4(ii) and R5(iii).

deg(x) = 4. Then, by Lemma 2(ii) and (v), deg(y) ≥ 7 and deg(z) ≥ 8.
Hence, by Rules R3, R4(ii) and R5(iii), f receives 1

2
+ 1

2
= 1 from y

and z.

deg(x) = 5. According to Lemma 2(vi), deg(y) ≥ 6 and by Lemma 3(i),
deg(z) ≥ 7. By Rule R1, f receives 1/5 from x, so we only need to
show that it receives at least 4/5 from y and z together. Consider the
following subcases.

deg(z) = 7. By Rule R3, z sends 3/7 to f , and by Rules R2 and R3,
y sends at least 13/35. Thus, f receives at least 13

35
+ 3

7
= 4

5
from

y and z, as needed.

deg(z) = 8. If deg(y) ≤ 7 then z sends 7/15 to f by Rule R4(iii) and
y sends at least 1/3 by Rules R2 and R3. And, if deg(y) = 8 then
both y and z send 2/5 to f by Rule R4(iv). So, in both cases f
receives 4/5 from y and z together.

deg(z) = 9. Suppose first that deg(y) ≤ 7. Then, by Rule R5(iii), z
sends 1/2 to f . Moreover, by Rules R2 and R3, y sends at least
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1/3 to f , which proves the assertion. Now, if deg(y) ≥ 8 then
according to Rules R4(iv) and R5(v) f receives 2/5 from each of
y and z, as needed.

deg(x) = 6. First, if deg(z) = 6 then f receives 1/3 from each of its vertices
by Rule R2. So we assume that deg(z) ≥ 7. In this case, f receives 2/7
from x by Rule R2. Hence, we only need to show that y and z send at
least 5/7 to f in total. We consider several cases, regarding the degree
of z.

deg(z) = 7. Then f receives 3/7 from z by Rule R3, and at least 2/7
from y by Rules R2 and R3, as desired.

deg(z) = 8. If deg(y) = 6, then z sends 7/15 by Rule R4(iii) and y
sends 2/7 by Rule R2. And, if deg(y) ≥ 7 then y sends at least
1/3 by Rules R3 and R4(iv), and z sends at least 2/5 by Rule
R4(iv).

deg(z) = 9. If deg(y) = 6 then f receives 2/7 from y by Rule R2 and
3/7 from z by Rule R5(iv). And, if deg(y) ≥ 7 then f receives at
least 1/3 from y by Rules R3, R4(v) and R5(v), and at least 2/5
from z by Rule R5(v), which yields the result.

deg(x) ≥ 7. The assertion follows from Rules R3, R4(v) and R5(vi).

Final charge of vertices. Let v be an arbitrary vertex of G. We have
deg(v) ≥ 2 by Lemma 2(i). For every positive integer d, we define vd to be
the number of d-neighbours of v, and fd to be the number of its incident
d-faces. Let x1, x2, . . . , xdeg(v) be the neighbours of v in clockwise order. We
prove that the final charge of v is non-negative. To do so, we consider several
cases, regarding the degree of v.

If deg(v) = 2, then its two neighbours are 9-vertices by Lemma 2(ii). If
v is bad then it receives 1 from each of its two 9-neighbours by Rule R5(i),
while otherwise it receives at least 1 from its incident faces by Rule R0, and
1/2 from each of its two 9-neighbours by Rule R5(i). Thus, in both cases,
its final charge is at least 0.

If deg(v) = 3, then all its neighbours have degree at least 8, so by Rules
R4(i) and R5(ii) it receives 1/3 from each of its neighbours, setting its final
charge to 0. If deg(v) = 4, then it neither sends nor receives anything, so its
charge stays 0. If v is a 5-vertex, then by Rule R1 it sends 1/5 to each of its
at most five incident triangles, therefore its final charge is non-negative.

Suppose now that v is a 6-vertex. All its neighbours have degree at least
5 by Lemma 2(ii). Note that if f3 ≤ 5 then, according to Rule R2, ch∗(v) ≥
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2−5 · 13
35

> 0. So, we assume now that f3 = 6, i.e. v is incident to 6 triangles.
Thus, we infer from Lemma 10 that v5 ≤ 1. If v5 = 0, then following Rule
R2, v sends at most 6 · 1

3
= 2, so its final charge is at least 0. And, if v5 = 1,

then let x1 be the unique 5-neighbour of v. By Lemma 3(i), deg(x2) ≥ 7 and
deg(x6) ≥ 7. Consequently, vx3x2 and vx5x6 are two (6,≥6,≥7)-triangles.
Thus, by Rule R2, ch∗(v) ≥ 2 − 2 · 13

35
− 2 · 1

3
− 2 · 2

7
= 2

105
> 0.

Suppose that v is a 7-vertex. If f3 ≤ 6 then ch∗(v) ≥ 3 − 6 · 1
2

= 0
by Rule R3. So, we assume now that f3 = 7. We consider several cases,
according to the number of 4-neighbours of v. Note that, by Lemma 2(ii)
and Lemma 3(iii), v has at most two such neighbours, i.e v4 ≤ 2.

v4 = 0. According to Rule R3, we have ch∗(v) ≥ 3 − 7 · 3
7

= 0.

v4 = 1. Let x1 be this 4-neighbour. So, x2 and x7 both are 9-vertices
by Lemma 2(v). According to Rule R3, v sends at most 1/3 to each
of vx2x3 and vx5x6. Furthermore, v is incident to exactly two bad
triangles, and sends at most 3/7 to each non-bad triangle. Therefore,
we obtain ch∗(v) ≥ 3 − 2 · 1

2
− 3 · 3

7
− 2 · 1

3
= 1

21
> 0.

v4 = 2. Without loss of generality, we assume that x1 has degree 4. Ac-
cording to Lemmas 2(ii) and 3(iii), the other 4-neighbour of v must
be x4 or x5, say x4 by symmetry. By Lemma 2(v), x2, x7, x3 and x5

all have degree 9. Note that x6 has degree at least 5. Consequently,
ch∗(v) ≥ 3 − 4 · 1

2
− 3 · 1

3
= 0.

Suppose now that v is an 8-vertex. If v3 = 0, then ch∗(v) ≥ 4 − 8 · 1
2

= 0
by Rule R4. Thus, we assume now that x1 is a 3-vertex. Notice that, by
Lemma 5, if a 3-neighbour of v is on a triangle then v3 = 1. Therefore,
v3 + f3 ≤ 9. If f3 ≤ 6, we obtain ch∗(v) ≥ 4 − 6 · 1

2
− 3 · 1

3
= 0. If f3 = 7,

we infer from Lemma 5 that v3 ≤ 1, and so ch∗(v) ≥ 4 − 7 · 1
2
− 1

3
= 1

6
> 0.

Now we suppose that f3 = 8, and thus v3 = 1. Note that, according to
Lemma 2(iv), deg(x2) = 9 and deg(x9) = 9. Moreover, by Lemma 9, all
vertices but x1 have degree at least five. Thus, by Rule R4, we infer that
ch∗(v) ≥ 4 − 1

3
− 2 · 1

2
− 4 · 7

15
− 2 · 2

5
= 0.

Finally, suppose that v is a 9-vertex. By Lemma 2(iii), v is adjacent to
at most one 2-vertex. We consider two cases.

Case 1: v2 = 0. Suppose first that v is incident to a (≥4)-face, i.e. f3 ≤ 8. If
f3 = 8 then v3 ≤ 3 by Lemmas 4 and 6, and hence ch∗(v) ≥ 5−8· 1

2
−3· 1

3
= 0.

If f3 ≤ 7, then we assert that f3 + v3 ≤ 12. Indeed, if v3 ≥ 6 then, as
two 3-vertices are not adjacent, we infer that f3 ≤ 2(9 − v3), which yields
the assertion. So if f3 ≤ 6, we obtain ch∗(v) ≥ 5 − 6 · 1

2
− 6 · 1

3
= 0. If
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f3 = 7 then we can see that v3 ≤ 4 by Lemmas 4 and 6. Consequently,
ch∗(v) ≥ 5 − 7 · 1

2
− 4 · 1

3
= 1

6
> 0. Now assume that f3 = 9. According to

Lemma 4, v3 ≤ 2. If v3 ≤ 1, then ch∗(v) ≥ 5 − 9 · 1
2
− 1

3
= 1

6
> 0. Assume

now that v3 = 2. Without loss of generality, say that x1 is a 3-vertex, thus
both x2 and x9 are (≥8)-vertices. Note that by Lemma 6, both x3 and x8 are
(≥4)-vertices. Therefore, up to symmetry, it suffices to consider the following
two cases.

x4 is the second 3-neighbour. Then deg(x3) ≥ 8, so by Rule R5(vi), v sends
1
3

to vx2x3, so we infer that ch∗(v) ≥ 5 − 2 · 1
3
− 8 · 1

2
− 1

3
= 0.

x5 is the second 3-neighbour. In this case, deg(x4) ≥ 8 and deg(x6) ≥ 8.
Furthermore, by Lemma 7, deg(x3) ≥ 5. Consequently, x3x2v and
x3x4v both are (≥5,≥8, 9)-triangles hence, by Rule R5(v), v sends at
most 2

5
to each of them. So, ch∗(v) ≥ 5 − 2 · 1

3
− 7 · 1

2
− 2 · 2

5
= 1

30
> 0.

Case 2: v2 = 1. Let x1 be the 2-neighbour. Observe that by Lemma 3(vii),
v cannot have a 3-neighbour on two triangles. Moreover, x1 cannot lie on
two triangles, so f3 ≤ 8. We consider the following possibilities.

x1 is on a triangle. Let this triangle be vx1x2. From Lemma 3(iv) and (v),
we infer that f3 + v3 ≤ 8. So, ch∗(v) ≥ 5 − 1 − 8 · 1

2
= 0.

x1 is bad but not on a triangle. In this case, x1 is on two 4-faces, so in partic-
ular f3 ≤ 7. Note that by Lemma 3(vi), either one vertex among x2, x9

has degree at least 4, or f3 ≤ 5. Besides, according to Lemma 3(vii)
there is no 3-neighbour on two triangles. Observe also that if both
vx2x3 and vx8x9 are triangles, then Lemma 11 implies that v3 ≤ 6. Let
us consider several cases regarding the value of f3.

f3 ≤ 4. Then f3 + v3 ≤ 10, otherwise we obtain a contradiction by
Lemma 3(vi) and (vii). Thus, ch∗(v) ≥ 5 − 1 − 4 · 1

2
− 6 · 1

3
= 0.

f3 = 5. Using Lemma 3(vi) and (vii), a small case-analysis shows
that v3 ≤ 5. Moreover, if v3 = 5 then the obtained configuration
is the one of Lemma 11, which is reducible. And, if v3 ≤ 4 then
we obtain ch∗(v) ≥ 5 − 1 − 5 · 1

2
− 4 · 1

3
= 1

6
> 0.

f3 = 6. In this case, v3 ≤ 3 by Lemma 3(vi) and (vii). Thus,
ch∗(v) ≥ 5 − 1 − 6 · 1

2
− 3 · 1

3
= 0.

f3 = 7. By Lemma 3(vi) and (vii), v has at most one 3-neighbour,
namely x2 or x9. Thus, ch∗(v) ≥ 5 − 1 − 7 · 1

2
− 1

3
= 1

6
> 0.

x1 is neither bad nor on a triangle. Notice that f3 ≤ 7. Let us again
consider several cases regarding the value of f3.
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f3 ≤ 5. In this case, f3 + v3 ≤ 11 by Lemma 3(vii). So, ch∗(v) ≥
5 − 1

2
− 5 · 1

2
− 6 · 1

3
= 0.

f3 = 6. Similarly as before, we infer that v3 ≤ 4, and hence ch∗(v) ≥
5 − 1

2
− 6 · 1

2
− 4 · 1

3
= 1

6
> 0.

f3 = 7. By Lemma 3(vii) the vertex v has at most two 3-neighbours,
namely x2 and x9. Thus, ch∗(v) ≥ 5 − 1

2
− 7 · 1

2
− 2 · 1

3
= 1

3
> 0.

This establishes that the final charge of every vertex is non-negative, so the
proof of Theorem 1 is now complete. �
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