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Abstract

It is shown that for any positive integer k there exists a constant
N = N(k) such that every 7-connected graph of order at least N
contains K3,k as a minor.

1 Introduction

In this paper, all graphs are finite and may have loops and multiple edges. A
graph is a minor of another graph if the first can be obtained from a subgraph
of the second by contracting connected subgraphs. There are many results
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concerning the structure of graphs that do not contain a certain graph as a
minor. These excluded graphs include K5 and K3,3 [19], V8 [14], the 3-cube
[9], the octahedron [10], graphs with single crossing [16] and K−

6 -minor [7].
There are well-known structures which guarantee a certain minor exists for
large graphs. For instance, any 5-connected graph on at least 11 vertices
contains the 3-cube as a minor [9]. Any 5-connected non-planar graph on
at least 8 vertices contains a V8-minor [14]. In addition, there are Ramsey-
type results similar to the fact that any sufficiently large connected graph
contains either a k-path or a k-star. Oporowski, Oxley and Thomas [13]
proved that any large 4-connected graph must have a large minor from a set
of four families of graphs. Moreover, they found a similar result for large
3-connected graphs. Ding [4] has characterized large graphs that do not
contain a K2,k-minor. A corollary of his result is that any large 5-connected
graph contains a K2,k-minor.

Robertson and Seymour [14] have an unpublished result that roughly
states that for any infinite family of graphs that do not all embed in a given
fixed surface, then for every integer k, there is a graph in the family that
contains either a K3,k-minor or a minor isomorphic to k Kuratowski graphs
identified on 0, 1, or 2 vertices.

Our result is a cross section of all of these types of results:

Theorem 1.1 For any positive integer k, there exists a constant N(k) such
that every 7-connected graph G on at least N(k) vertices contains K3,k as a
minor.

In a previous paper [2], the authors proved the theorem for the bounded
tree-width case:

Theorem 1.2 ([2]) For any positive integers k and w, there exists a con-
stant N = N1(k,w) such that every 7-connected graph of tree-width less than
w and with at least N vertices contains K3,k as a minor.

This paper contains the proof of the large tree-width case which com-
pletes the proof of Theorem 1.1. This case needs much more work than the
proof of Theorem 1.2.

Theorem 1.3 For any positive integer k, there exist integers N = N3(k)
and w = w(k) such that every 7-connected graph of tree-width at least w and
with at least N vertices contains K3,k as a minor.
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These results are best possible in the sense that the connectivity con-
dition cannot be reduced. In [2], we gave a family of arbitrarily large 6-
connected graphs none of which contain a K3,7-minor. Graphs in that fam-
ily have tree-width less than 9. On the other hand, no graphs embedded in
the torus contain K3,7 as a minor, and there are infinitely many 6-connected
triangulations of the torus with arbitrarily large tree-width. In fact the fam-
ily can be generalized to give arbitrarily large 2a-connected graphs with no
Ka,2a+1-minor. Hence we have made the following conjecture in [2]:

Conjecture 1.4 For any positive integers a, k, there exists a constant N(a, k)
such that every (2a + 1)-connected graph G on at least N(a, k) vertices con-
tains Ka,k as a minor.

Toward this conjecture, we proved in [1] the following theorem.

Theorem 1.5 ([1]) For any integers a, s and k, there exists a constant
N(a, s, k) such that every (3a + 2)-connected graph of minimum degree at
least 31

2 (a + 1)− 3 and with at least N(a, s, k) vertices either contains Ka,sk

as a topological minor or a minor isomorphic to s disjoint copies of Ka,k.

Although our main result, Theorem 1.3, seems to be a special case of a
more general Theorem 1.5, the weaker 7-connectivity assumption requires
several essentially different proof methods to be used in order to get K3,k-
minors in large 7-connected graphs. In particular, these methods involve
delicate elaboration about graphs embedded in surfaces and particular use
of nonplanarity properties within vortices.

The paper is organized as follows. In Section 2 we define the ingredients
needed to present the Excluded Minor Theorem of Robertson and Seymour.
In Section 3 we start with the proof of Theorem 1.4 and argue about all
cases when there is no large vortex. In Section 4 we show that large vortices
that are “well-linked” with a “flat grid minor” have special structure when
K3,k-minor is excluded. In the last section, we continue with the proof and
clear up the large vortex case.

2 Structure of near embeddings

In this section, we define some of the structures found in Robertson-Seymour’s
Excluded Minor Theorem [17] which describes the structure of graphs that
do no contain a given graph as a minor. Robertson and Seymour proved a
strengthened version of that theorem that gives a more elaborate descrip-
tion of the structure in [18]. This strengthened version enables us to apply
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a method when finding minors in a vortex structure that is similar to the
method used in the bounded tree-width case. In fact, we give a slightly
simplified version of the theorem. For a proof of how our version follows
from the main results of [18] see the appendix of our paper on Ka,k-minors
[1]. We assume that the reader is familiar with the notion of the tree-width
of graphs.

Figure 1: An 11-wall and its subwall

Let us define an r-wall as a graph which is isomorphic to a subdivision
of the graph Wr defined as follows. We start with vertex set V = {(i, j) |
1 ≤ i ≤ r, 1 ≤ j ≤ r}, and make two vertices (i, j) and (i′, j′) are adjacent
if and only if one of the following possibilities holds:

(1) i′ = i and j′ ∈ {j − 1, j + 1}.
(2) j′ = j and i′ = i + (−1)i+j .

Some of the vertices of this graph can have degree 1. After deleting them,
we get the graph Wr which is 2-connected; see Figure 1 showing the 11-wall
W11.

A surface is a compact connected 2-manifold (with or without bound-
ary). The components of the boundary are called the cuffs.

Let G be a graph and let W = {w0, . . . , wn}, n = |W | − 1, be a linearly
ordered subset of its vertices such that wi precedes wj in the linear order
if and only if i < j. The pair (G,W ) is called a vortex of length n, W is
the society of the vortex and all vertices in W are called society vertices.
Suppose that for i = 0, . . . , n, there exist vertex sets, called parts, Xi ⊆
V (G), with the following properties:

(V1) Xi ∩ W = {wi, wi+1} for i = 0, . . . , n, where wn+1 = wn,

(V2)
⋃

0≤i≤n Xi = V (G),
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(V3) every edge of G has both endvertices in some Xi, and

(V4) if i ≤ j ≤ k, then Xi ∩ Xk ⊆ Xj .

Then the family (Xi ; i = 0, . . . , n) is called a vortex decomposition of the
vortex (G,W ). The width of the vortex decomposition is the maximum of
{|Xi| ; i = 0, . . . , n}.

For i = 1, . . . , n, denote by Zi = (Xi−1 ∩ Xi) \ W . The adhesion of the
vortex decomposition is the maximum of |Zi|, for i = 1, . . . , n. The vortex
decomposition is linked if for i = 1, . . . , n− 1, the subgraph of G induced on
the vertex set Xi \W contains a collection of disjoint paths linking Zi with
Zi+1. Clearly, in that case |Zi| = |Zi+1|, and the paths corresponding to
Zi∩Zi+1 are trivial. Note that (V1) and (V3) imply that there are no edges
between nonconsecutive society vertices of the vortex. Let us remark that
every vortex (G,W ), in which wi, wj are non-adjacent for |i− j| ≥ 2, admits
a linked vortex decomposition; just take Xi = (V (G) \ W ) ∪ {wi, wi+1}.

The width of the vortex is the minimum width taken over all decomposi-
tions of the vortex, and the (linked) adhesion of the vortex is the minimum
adhesion taken over all (linked) decompositions of the vortex. Let us ob-
serve that in a linked decomposition of adhesion q, there are q disjoint paths
linking Z1 with Zn in G − W .

Let G0 be a graph. Suppose that (G1, G2) is a separation of G of order
t ≤ 3, i.e., G0 = G1 ∪G2, where G1 ∩G2 = {v1, . . . , vt} ⊂ V (G0), 1 ≤ t ≤ 3,
V (G2) \ V (G1) 	= ∅. Let us replace G0 by the graph G′, which is obtained
from G1 by adding all edges vivj (1 ≤ i < j ≤ t) if they are not already
contained in G1. We say that G′ has been obtained from G0 by an elementary
reduction. If t = 3, then the 3-cycle T = v1v2v3 in G′ is called the reduction
triangle. Every graph G′′ that can be obtained from G0 by a sequence of
elementary reductions is a reduction of G0.

Let H be an r-wall in the graph G0 and let G′′ be a reduction of G0. We
say that G′′ captures H if for every elementary reduction used in obtaining
G′′ from G0, at most one vertex of degree 3 in H is deleted. (With the above
notation, G2 \ G1 contains at most one vertex of degree 3 in H.)

If H is a wall in a graph G0, we say that the pair (G0,H) can be embedded
in a surface Σ up to 3-separations if there is a reduction G′′ of G0 such that
G′′ has an embedding in Σ in which every reduction triangle bounds a face
of length 3 in Σ and G′′ captures H.

Lemma 2.1 Suppose that G′′ is a reduction of the the graph G0 and that
G′′ captures an r-wall H in G0. Then G′′ contains an �(r + 1)/3�-wall, all
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of whose edges are contained in the union of H and all edges added to G′′

when performing elementary reductions.

Proof. Let H ′ be the subgraph of the r-wall H obtained by taking every
third row and every third “column”. See Figure 1 in which H ′ is drawn with
thick edges. It is easy to see that for every elementary reduction we can keep
a subgraph homeomorphic to H ′ by replacing the edges of H ′ which may
have been deleted by adding some of the edges vivj involved in the reduction.
The only problem would occur when we lose a vertex of degree 3 and when
all vertices v1, v2, v3 involved in the elementary reduction would be of degree
3 in H ′. However, this is not possible since G′′ captures H.

Let G be a graph, H an r-wall in G, Σ a surface, and α ≥ 0 an integer.
We say that the pair (G,H) can be α-nearly embedded in Σ if there is a set
of at most α cuffs C1, . . . , Cb (b ≤ α) in Σ, and there is a set A of at most
α vertices of G such that G−A can be written as G0 ∪G1 ∪ · · · ∪Gb where
G0, G1, . . . , Gb are edge-disjoint subgraphs of G and the following conditions
hold:

(N1) H is an r-wall in G0, and (G0,H) can be embedded in Σ up to 3-
separations, with G′′ being the corresponding reduction of G0.

(N2) If 1 ≤ i < j ≤ b, then V (Gi) ∩ V (Gj) = ∅.
(N3) Wi = V (G0) ∩ V (Gi) = V (G′′) ∩ Ci for every i = 1, . . . , b.

(N4) For every i = 1, . . . , b, the pair (Gi,Wi) is a vortex of adhesion less
than α, where the ordering of Wi is consistent with the (cyclic) order
of these vertices on Ci.

The vertices in A are called the apex vertices of the α-near embedding .
The subgraph G0 of G is said to be the embedded subgraph with respect
to the α-near embedding and the decomposition G0, G1, . . . , Gb. The pairs
(Gi,Wi), i = 1, . . . , b, are the vortices of the α-near embedding. The vortex
(Gi,Wi) is said to be attached to the cuff Ci of Σ containing Wi.

We shall use the following theorem which is a simplified version of one
of the cornerstones of Robertson and Seymour’s theory of graph minors, the
Excluded Minor Theorem, as stated in [18]. For a detailed explanation of
how the version in this paper can be derived from the version in [18], see
the appendix of [1].
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Theorem 2.2 (Excluded Minor Theorem) For every graph R, there is
a constant α such that for every positive integer w, there exists a positive
integer r = r(R,α,w), which tends to infinity with w for any fixed R and α,
such that every graph G that does not contain an R-minor either has tree-
width at most w or contains an r-wall H such that (G,H) has an α-near
embedding in some surface Σ in which R cannot be embedded.

For our purpose, as proved in [1] (see also [8]), we can add the following
assumptions about the r-wall:

Lemma 2.3 It may be assumed that the r-wall H in Theorem 2.2 has the
following properties:

(a) H is contained in the reduction G′′ of the embedded subgraph G0.

(b) H is planarly embedded in Σ, i.e., every cycle in H is contractible in
Σ and the outer cycle of H bounds a disk in Σ that contains H.

(c) Every non-contractible curve in the surface Σ intersects G′′ in at least
two vertices.

3 Finding a wide vortex

In order to prove Theorem 1.3, we fix k and let G be a 7-connected graph
with at least N3(k) vertices. It will become clear during the proof, which
value we may take for N3(k). Now we apply Theorem 2.2 to G, R = K3,k

and a large value of w = w(k) that will be specified later. We let α = α(k),
r0 = r(K3,k, α(k), w(k)), H, and Σ be the quantities from Theorem 2.2. By
taking large enough w, we can assume that r0 and hence also the wall H
are as large as we need (if the tree-width is bigger than w).

Following the notation of Section 2, the embedded subgraph of G is G0

and G′′ is the reduction of G0. By Lemmas 2.1 and 2.3 we may assume
henceforth that H is contained in G′′ and that it is planarly embedded in
Σ. Note that the use of Lemma 2.1 may reduce an r0-wall to an 1

3r0-wall,
so we assume henceforth that H is an r-wall, where r = 1

3r0. In particular,
G′′ has at least r2 vertices. Since K3,k cannot be embedded in Σ, the Euler
genus of Σ is at most k−2

2 (cf. [12]).
Our goal in this section is to prove that G′′ has a vortex (Gi,Wi) whose

society Wi has many vertices and is linked to the wall H by many disjoint
paths. Precise conditions on this linkage will be made more precise later in
this section.
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The basic idea of the proof is as follows. We know that all vertices in G
have degree at least 7, since G is 7-connected. Now we look at G′′. Since
|G′′| ≥ r2, where r is large, and G′′ is embedded in a surface whose Euler
genus is less than k/2, we conclude by Euler’s formula that G′′ has many
vertices whose degree is at most 6. Now we look at different possibilities
why many vertices of G′′ would have degree smaller than in G, and we show
that in each case we obtain a K3,k-minor.

For every vertex v ∈ V (G′′), whose degree in G′′ is less than its degree
in G, one of the following holds:

(R) v has been involved in elementary reductions when reducing G0 to G′′,

(S) v is a society vertex in one of the vortices (Gi,Wi), i = 1, . . . , b, or

(A) v is adjacent to a vertex in the apex set A.

Let V R be the set of vertices of G′′ for which (R) holds, let V S =
∪b

i=1Wi be the set of all society vertices, and let V A be the vertices in
V (G′′) \ (V R ∪ V S) which have a neighbor in A and whose degree in G′′ is
at most 6. For i = 1, 2, we let V A

i be the set of those vertices in V A which
have precisely i neighbors in A, and let V A

≥3 = V A \(V A
1 ∪V A

2 ) be those with
at least three neighbors.

For technical reasons we need in the proof of Claim 3.3 that G′′ be 2-
connected. If it is not, then we contract all blocks of G′′ to single vertices
except for the block containing the wall H. Let us observe that every former
cutvertex in V (G′′)\V S now becomes a vertex with at least three neighbors
in A, hence it is contained in (the updated) set V A

≥3. Of course, we update
other sets V A

1 , V A
2 , V F , V S accordingly. Note also that this operation may

change the surface, but does not increase its Euler genus. From now on we
assume that G′′ is this reduced 2-connected minor of the original graph.

Claim 3.1 If |V R| ≥ 3k
(
α
3

)
, then G contains a K3,k-minor.

Proof. For each u ∈ V R, consider the last reduction involving u. Let
G

(u)
1 and G

(u)
2 be the graphs used in this reduction. Then all vertices of

G
(u)
1 ∩ G

(u)
2 are contained in G′′ since any further reduction deleting either

of them would also involve all its neighbors, and hence also u. If |V R| ≥
3k

(
α
3

)
, then V R contains a subset U of cardinality k

(
α
3

)
such that the vertex

sets V (G(u)
2 ) \ V (G(u)

1 ) removed in these reductions are pairwise disjoint for
different vertices u ∈ U .
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For u ∈ U , let u′ be a vertex in V (G(i)
2 )\V (G(i)

1 ). Since G is 7-connected,
there are 7 internally disjoint paths connecting u′ with the apex set A in the
original graph G. At most three of these paths pass through the vertices
in V (G(u)

1 ) ∩ V (G(u)
2 ), so the other paths give rise to a collection of 3 paths

joining u′ with distinct vertices in A, and all vertices of these paths are
contained in A ∪ (V (G(u)

2 ) \ V (G(u)
1 )).

Since |U | ≥ k
(α

3

)
, there is a set of k of such vertices u′ such that the

corresponding three paths end at the same triple of vertices in A. These
paths then form a subdivision of K3,k in G.

The following claim is clear by the pigeonhole principle.

Claim 3.2 If |V A
≥3| ≥ k

(α
3

)
, then G contains a subgraph isomorphic to K3,k.

Our goal is to show that V S is large. We will be able to prove it after
we will show that neither V A

1 nor V A
2 are large. In fact, we will only need to

show that there are not too many vertices in these sets which are incident
with short faces only. For this purpose we define the set V F of all vertices
of G′′ that are incident with a face of size at least 12.

Claim 3.3 If |V A
2 \ V F | ≥ 55k

(
α
2

)
, then G contains a K3,k-minor.

Proof. By the Pigeonhole Principle, V A
2 \ V F contains a subset U of 55k

vertices which are adjacent to the same pair a1, a2 of apex vertices. Since
vertices in U are of degree at most 6 and all their incident faces have at
most 11 vertices, each vertex in U is cofacial (i.e., is on the same face) with
at most 54 other vertices. Therefore, U contains a subset U ′ with |U ′| = k
such that no two vertices in U ′ are cofacial. Our earlier assumption that
G′′ is 2-connected now implies that G′′ − u′ is connected for every u′ ∈ U ′.
By condition (c) of Lemma 2.3 we know that the set of all vertices that
are cofacial with u′ induces a connected subgraph of G′′. This implies that
G′′ − U ′ is connected. Therefore, the subgraph G′′ − U ′ contracted to a
single vertex, together with a1, a2 and with U ′ yields a minor of G which is
isomorphic to K3,k.

In order to exclude many vertices in V A
1 \V F , we can apply a result due

to Böhme and Mohar [3] which is stated below. Given a graph Z embedded
in some surface and a subset U of its vertices, a set F of facial walks of
Z is a face cover of U if each vertex of U belongs to a member of F . Let
τ(U) be the size of the smallest face cover of U . A subgraph of Z that
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can be contracted to the complete bipartite graph K2,t is called a U -labeled
K2,t-minor if each of the t trees, that are contracted to make the degree-two
vertices of K2,t, contains a vertex of U .

Theorem 3.4 ([3]) There is a nondecreasing integer function f0 : N → N

such that limn→∞ f0(n) = ∞ and such that the following holds. Let G be a
3-connected plane graph and let U ⊆ V (G). Then G contains a U -labeled
K2,t-minor where t ≥ f0(τ(U)).

If U is a subset of vertices in V A
1 , whose neighboring apex vertex is the

same, then a U -labeled K2,k-minor in G′′ together with the apex vertex gives
rise to a K3,k-minor in G. Theorem 3.4 can be generalized to 3-connected
graphs embedded in a fixed surface when the face-width is large. However,
this requires many technical details and we are not going to prove it here.
Instead, we prove a weaker statement with more elegant proof.

Let V H ⊆ V (G′′) be the set of those vertices in the r-wall H which are
of degree 3 in H and are not contained on the outer face of H.

Claim 3.5 If |V A
1 ∩ V H | ≥ 2αk2, then G contains a K3,k-minor.

Proof. There is an apex vertex a1 which is adjacent to at least 2k2 vertices
in V A

1 ∩ V H . Let U be a set of neighbors of a1 in V A
1 ∩ V H such that

|U | = 2k2. Then either 2k of these vertices are in the same row of the r-wall
H, or k of them are in distinct rows. In each case, a k-subset of them can be
linked by using the columns (or by using the rows) of the wall to the upper
and to the lower (or to the left and the right) side of the outer cycle of H.
This is easily seen to give rise to a U -labaled K2,k-minor in H. This is also
such a minor in G′′. Together with the vertex a1, this gives a K3,k-minor
in G.

Next we prove that the claims established above imply that there is
a large vortex. In fact, we need a large vortex and many disjoint paths
joining the society of this vortex with the wall H. Moreover, we want that
every society vertex participating in this linkage has at least three neighbors
in the vortex. These requirements are specified in conditions (a) and (b)
below. Having obtained such a vortex and the corresponding linkage, we
shall develop, in the next section, a refinement of the method used in [2] to
find a K3,k-minor in G.

We say that a society vertex v ∈ Wi is essential if v has at least three
neighbors in Gi \ Wi. We let V S

0 denote the subset of V S containing all
essential society vertices. We say that the vortex (Gi,Wi) attached to the
cuff Ci is n-wide if the following two properties are satisfied:
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(a) The vortex contains n essential society vertices w1, . . . , wn ∈ Wi that
appear in this order in Wi, and there are a path P in G′′ and n disjoint
paths Q1, . . . , Qn, where Qj ∩ P is a single vertex w′

j and Qj joins wj

with w′
j (1 ≤ j ≤ n), and where w′

1, . . . , w
′
n appear in this order on P .

(b) There exists a connected subgraph S in G′′ disjoint from P∪(
⋃n

j=1 Qj)∪
Wi such that there is an edge joining S with the segment of P from
w′

j to w′
j+1 (but excluding w′

j+1) for every 1 ≤ j ≤ n.

Claim 3.6 Let n be a positive integer. If G has no K3,k-minor and r ≥
22kα(α + g)n, then there exists an n-wide vortex.

Proof. For each cuff Ci (1 ≤ i ≤ b), let Li be the set of all essential
vertices in Ci. Let R0 be the outer cycle of the planarly embedded r-wall
H in G′′, and let R be the outer cycle of the graph H − V (R0) (viewed as
being embedded in the plane). Note that R bounds a planarly embedded
(r − 4)-subwall of H.

Suppose that for some i, there are 12(α + g)n2 disjoint paths from Li to
R. In this case we consider homotopy of these paths in the surface of Euler
genus at most α + g which is obtained from Σ by adding a crosscap into
each cuff. By a well-known result (cf. [12, Proposition 4.2.6]), a subset of
4n2 of these paths will be homotopic to each other. By another well-known
result, the famous theorem of Erdős and Szekeres [5], there are at least 2n
of these paths whose endvertices w1, . . . , w2n ∈ Wi appear in the society Wi

in the same order as their endvertices in R appear on R (traversed in one
or the other way). Since these paths are homotopic, their shortenings Qj

(1 ≤ j ≤ 2n) to R0 also end up in the same order on R0. By a shortening
we mean the segment of the path from Wi until the path hits R0 for the
first time. This proves part (a) from the definition of an n-wide vortex
(with twice as many paths than needed), where we take for the path P
the corresponding segment of R0. For Qj, consider how it continues from
R0 towards R. Let rj be the last vertex of the path on R0. Since Qj are
homotopic, the next edge after rj joins the segment of R0 between the Qj−1

and Qj+1 with the component of G′′ − (P ∪ (
⋃2n

l=1 Ql)) containing R. This
almost proves (b) except that this edge may precede the endvertex of Qj .
But if we take every second of these paths, we achieve property (b) as well.

Otherwise, by Menger’s theorem, for each i, there is a separation (Ii, Ji)
of order at most 3(α+g)n2−1 such that Ji contains all the vertices in Li and
R ⊆ Ii. (Here we allow that Ji \ Ii is empty.) Let G′′

1 be the graph obtained
from G′′ by deleting Ji − Ii for all i. We consider the induced embedding of
G′′

1 in the same surface as G′′. Observe that this may no longer be a 2-cell
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embedding. Let J =
⋃b

i=1(Ji ∩ Ii). Then G′′
1 − J has no essential society

vertices. Since R ⊆ G′′
1 , the subgraph G′′

1 also contains the disk bounded
by R (assuming all separations (Ii, Ji) are of minimal order). Therefore, G′′

1

contains the whole (r − 4)-subwall of H. In particular, |G′′
1 | ≥ (r − 4)2.

We may assume that the separations (Ii, Ji) obey the following require-
ment: For every edge e ∈ E(Ji), there is a path Pe ⊆ Ji, which starts in
the cuff Ci, passes through e, ends in Ji ∩ Ii, and its only vertex in Ji ∩ Ii

is its endvertex. This condition assures that all vertices in Ii ∩ Ji lie on the
same (possibly non-simply connected) face of G′′

1 and that every face of G′′
1

that is not a face of G′′ contains one or more of the cuffs. In particular, the
number of new faces is at most α.

If a vertex v ∈ J has at most one neighbor u in G′′
1 \ J , then we change

every separation (Ii, Ji) with v ∈ Ii∩Ji into the separation (Ii\{v}, Ji∪{v}).
This change does not affect the property discussed in the previous paragraph.
By repeating such changes as long as possible, each vertex v ∈ J will have
at least two neighbors in G′′

1 \ J , which we assume henceforth.
Let V F ′

denote the set of all vertices of G′′
1 that lie on faces of G′′

1 of
length at least 12. Note that a vertex v ∈ V (G′′

1) ∩ V F may not be in V F ′
.

However, this happens only when a large face in G′′ is replaced by a short
face in G′′

1 . But there are at most α faces in G′′
1 that are not faces in G′′.

These faces contain not only all vertices in V (G′′
1) ∩ V F \ V F ′

but also all
vertices in V (G′′

1) ∩ V S \ V F ′
. Therefore,

|V (G′′
1) ∩ V F \ V F ′ | + |V (G′′

1) ∩ V S \ V F ′ | ≤ 11α. (1)

In the rest of the proof we will use the discharging method on G′′
1 to

arrive to a contradiction. Let us assign the value c(v) = degG′′
1
(v) − 6 to

each vertex v ∈ V (G′′
1). This value is called the charge at v. Similarly, we

assign charge c(f) = 2deg(f) − 6 to each face f of G′′
1 , where deg(f) is the

length of f . Euler’s formula implies that∑
v∈V (G′′

1 )

c(v) +
∑

f∈F(G′′
1 )

c(f) ≤ −12 + 6g. (2)

If f is a face of length d ≥ 12, let us change its charge to c′(f) = c(f)− 3
2d =

1
2d − 6 ≥ 0, and then redistribute the difference to vertices incident with f
by adding charge 3

2 to each of them. After doing this for all long faces f , let
us denote by c′(v) the new charge at a vertex v. This way the total sum in
(2) remains the same, and we conclude that∑

v∈V (G′′
1 )

c′(v) ≤ −12 + 6g. (3)
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Observe that each vertex v of degree at least 7 has c′(v) ≥ 1. If v ∈ V (G′′
1)\J

is a vertex in the set (V A
1 ∪ V A

2 )∩ V F , then degG′′
1
(v) ≥ 5 and v gets charge

3
2 from at least one of the incident faces. Therefore, c′(v) ≥ 1

2 .
The remaining vertices of G′′

1 may have negative charge (but still c′(v) ≥
−5). However, their number cannot be too large. The vertices in V A

1 \ J
have degree at least 6 and thus have c′(v) ≥ 0. Also, G′′

1 may contain some
non-essential society vertices. They have degree at least 5. They get charge
3
2 if they lie on a big face, hence their charge c′(v) is positive. Since all
society vertices corresponding to the same cuff are on the same face, we
conclude that at most 11α of them can be on faces of size less than 12, and
each of them has charge at least −1. The same counting includes vertices
in V (G′′

1) ∩ V F \ V F ′
, see (1). By using Claims 3.1, 3.2, 3.3, 3.5, and the

inequality (3), we now conclude:

6g >
∑

v∈V (G′′
1 )

c′(v)

≥ 1
2
(|G′′

1 | − |V A
1 ∩ G′′

1 |) − (5 + 1
2 )(|J | + |V R| + |V A

≥3| + |V A
2 \ V F |) − 11α

≥ 1
2
(r − 4)2 − αk2 − 11

2

(
12α(α + g)n2 + 4k

(
α

3

)
+ 55k

(
α

2

))
− 11α

≥ 1
2
(r − 4)2 − 225k2α2(α + g)n2.

In passing from the second to the third line in the above chain of inequalities,
we have only involved the (r − 4)2 vertices in V H and have used Claim 3.5
to conclude that at most 2αk2 of them can be in V A

1 . In the last inequality,
which is very crude, we have assumed, without the loss of generality, that
α ≥ 1. Another crude estimate now implies that r < 22kα(α+g)n, contrary
to our assumption. This completes the proof.

4 The structure in a wide vortex

In this and the next section we complete the proof of Theorem 1.3. First,
for any positive integers a, k, and w, we define the constants that will be
used in the proofs:

n1 = (2n2)p, where p = 2w+1

n2 = 2nq
3, where q = 2w(w+1)/2

n3 = 30kα.
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At this point we can assume that for a fixed k, we have a 7-connected
graph G, with at least N3(k) vertices. Now we apply Theorem 2.2 to G
for the excluded minor R = K3,k and for the width parameter w = w(k),
which is chosen large enough to ensure that r0 = r(K3,k, α(k), w(k)) ≥
66kα(α + g)n1. Recall that in the previous section, we used an r-wall H,
where r = 1

3r0 ≥ 22kα(α + g)n1. Hence by Claim 3.6, we can also assume
that the α-near embedding of G in Σ has an n1-wide vortex (G1,W1). We
shall be using the notation from Section 3. Recall, in particular, that there
are paths Q1, . . . , Qn1 joining essential society vertices wi (1 ≤ i ≤ n1) in
W1 with a path P in G′′, and there is a connected subgraph S ⊆ G′′ as
specified in (a)–(b) in the definition of an n1-wide vortex.

At this point, we find it easier to include all apex vertices in G1 and
include all of them in every part of the vortex decomposition. In this way,
the decomposition remains linked (with the trivial paths consisting of the
added apex vertices) and the adhesion of the vortex decomposition increases
by |A| ≤ α, so it is still bounded by 2α. In order that the extended vortex
preserves the properties of the vortex, we add all edges of G connecting a
vertex in A with a vertex in G1.

Let (G1,W1) be an n1-wide vortex of adhesion q ≤ 2α, modified as in
the previous paragraph, with w1, . . . , wn1 being the corresponding essential
society vertices. Let P1, . . . , Pq be the paths of the linked decomposition
of the vortex. Let Q1, . . . , Qn1 , P , and S be as in the definition of an n1-
wide vortex. We will denote the union of the path P and all paths Qi

(1 ≤ i ≤ n1) by P0 and will call it the society path. (Note that P0 is
not a path but its role will be similar to the paths P1, . . . , Pq, and after
contracting Q1, . . . Qn1 to single vertices, it will actually become a path
joining the essential society vertices w1, . . . , wn1 .) Moreover, the connected
subgraph S can be contracted to a vertex, denoted henceforth by u0, and
called the surface node.

We shall use other notation introduced in previous sections. For instance,
Xi are parts of the linked decomposition of the vortex (G1,W1) (extended
with the apex vertices), and Zi = (Xi−1 ∩ Xi) \ W1.

Let Z = W1 ∪ P1 ∪ · · · ∪ Pq. Since a Z-bridge in G1 can be attached to
at most two society vertices, the 7-connectivity of the graph G is enough to
assure that the paths P1, . . . , Pq can be chosen such that every Z-bridge in
G1 is attached to at least two of the paths (cf., e.g., [6]), where we consider
the society vertices W1 ⊆ Z as one of the “paths”. We shall assume this
property henceforth. Note that every Z-bridge in G1 is confined to a single
part Xi.

Notice that for any parts Xi and Xl and for every j ∈ {1, . . . , q}, there is
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a unique subpath of Pj with one end in Zi and the other end in Zl. Denote
this subpath by Pj(i, l).

The path Pj is said to be trivial if it consists of a single vertex, and it is
said to be everywhere non-trivial w.r.t. the sequence r1, . . . , rn if Pj(ri, ri+1)
contains at least three vertices for each i = 1, . . . , n − 1. The proofs of the
following two claims can be found in [2] and [1].

Claim 4.1 For i = 1, . . . , n1, let ri be the index such that wi ∈ Xri−1∩Xri.
There is a subsequence q1, q2, . . . , qn2 of r1, r2, . . . , rn1 of length n2 such
that for each j = 0, 1, . . . , q, the path segment Pj(q1, qn2) is either trivial or
everywhere non-trivial (w.r.t. the subsequence).

The paths Pj and Pl are said to be everywhere bridge connected (resp.
everywhere bridge disconnected) with respect to a subsequence p1, . . . , pn of
r1, r2, . . . , rn1 if for every i = 1, . . . , n− 1, there exists (resp. does not exist)
a Z-bridge which has a vertex of attachment in Pj(pi, pi+1) and a vertex of
attachment in Pl(pi, pi+1).

Claim 4.2 There is a subsequence p1, p2, . . . , pn3 of q1, . . . , qn2 of length n3

such that for every distinct pair of indices j, l ∈ {0, 1, . . . , q}, Pj(p1, pn3)
and Pl(p1, pn3) are either everywhere bridge connected or everywhere bridge
disconnected (w.r.t. the new subsequence).

We introduce the following notation. Let Z(i) = ∪q
j=0Pj(pi, pi+1), and let

Ĥi be the subgraph of G1 consisting of Z(i) together with all Z-bridges in G1

that have all their vertices of attachment in Z(i). For reader’s convenience
we assemble the medium scale picture of the vortex structure between pi−1

and pi+1 in Figure 2. It is also worthwhile to point out the distinction
between pi±1 and pi±1 and between wpi±1 and wpi±1, which are all sketched
in Figure 2.

Next, we shall study how the paths Pj are (everywhere) connected to
each other. For this purpose, we define an auxiliary graph Γ with vertex set
V (Γ) = {P0, . . . , Pq}, and the paths Pj and Pl are adjacent vertices in Γ if
they are everywhere bridge connected w.r.t. p1, . . . , pn3 (cf. Claim 4.2).

Note that the surface node u0, although it is not a vertex of Γ, could
be considered as a trivial path that is everywhere bridge connected to the
society path P0, and that P0 is everywhere non-trivial.

Let Γ1 be the induced subgraph of Γ on the everywhere nontrivial paths.
Let Γ0 be the connected component of Γ1 containing P0. Further, let Γ+

0

be the the graph Γ0 together with the trivial paths adjacent to Γ0 in Γ.
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Figure 2: Vortex structure between pi−1 and pi+1

Let q0 = |Γ0| − 1. Note that 0 ≤ q0 ≤ q. We may assume that V (Γ0) =
{P0, P1, . . . , Pq0}.

As in [1], we introduce the graph Hi ⊆ Ĥi which consists of all segments
Pj(pi, pi+1) for j = 0, . . . , q0 together with all Z-bridges in Ĥi that are
attached to at least one of the paths P0, . . . , Pq0 . Observe that Hi contains
all paths in Γ+

0 .

Claim 4.3 There is at most one trivial path in Γ+
0 .

Proof. Suppose there are two trivial paths u1, u2 in Γ+
0 . Since they are

in Γ+
0 , there is a path L1

i in Hi from u1 to P0. Similarly, there is a path
L2

i joining u2 and P0 in Hi. These paths, taken for i = 3, 5, 7, . . . , 2k − 1
together with the surface node u0 would give a K3,k-minor after contracting
Γ0 ∩ Hi to a vertex for each i and contracting all edges except the ones
adjacent to u1 or u2 in L1

i and L2
i . Note that we used the fact that n3 > 2k.
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We also introduce vertex sets

Si = V (Xpi−1 ∩ Xpi) ∩ Hi,

S−
i = V (Xpi−2 ∩ Xpi−1) ∩ Hi−1,

S+
i = V (Xpi ∩ Xpi+1) ∩ Hi

and the corresponding society vertices: let z−i , zi and z+
i be the vertices from

W1 that are contained in S−
i , Si and S+

i , respectively. Note that zi = wpi .
Let us observe that Si, S−

i , and S+
i need not be disjoint. However, vertices

z−i , zi and z+
i are distinct. See Figure 3.
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1

P
2

wp
i

Xp
i
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i
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z =i zi
+zi

-

Si

-

Si

+
Si

Figure 3: Vortex structure around zi = wpi

Claim 4.4 The graph Γ0 has at least three vertices.

Proof. If Γ+
0 contains a trivial path, denote this path by u1. Let us

assume (reductio ad absurdum) that q0 ≤ 1. Since zi is an essential society
vertex, it has at least three neighbors in G1 \ W1. If one of them is not
in the set S = S−

i ∪ S+
i ∪ {zi, u1}, then S is a separating set. Therefore

7 ≤ |S| ≤ 2(q0 + 1) + 2, and we conclude that q0 ≥ 2. This contradiction
shows that all neighbors of zi in G1 \ W1 are in S. However, the only
possibility is that q0 = 1, when two of these neighbors are on the path P1

and the third one is u1. But this case occurring more than 2k times gives
rise to a K3,k-minor, whose vertices of degree k correspond to u0, u1, and to
the contracted path P1, and whose vertices of degree 3 are z1, z3, . . . , z2k−1.

17



Claim 4.5 degΓ+
0
(Pj) ≤ 2 for j = 1, . . . , q0, and degΓ+

0
(P0) = 1.

Proof. If the degree of Pj were at least 3, then the three paths adjacent
to Pj could be used to construct a K3,k-minor. Note that P0 is everywhere
connected with the surface node u0. Hence, if it had at least two neighbors
in Γ+

0 , contractions of those two paths along with u0 and the connecting
paths to P0 could be used to form a K3,k-minor.

To conclude, we can assume that Γ+
0 is a path on consecutive vertices

P0, P1, . . . , Pq0 (2 ≤ q0 ≤ α), which may be appended by one additional
vertex u1 (adjacent to Pq0) if there is a trivial path in Γ+

0 .

5 Finding the minor in the vortex

In this section, we will show that the non-planarity of the vortex can be
used to “weave” the paths and construct a K3,k-minor.

Let R,R′ ∈ V (Γ+
0 ) be paths that are adjacent in Γ+

0 . For i = 1, 2, . . . , n3

define the graph Di = Di(R,R′) as follows. First, take S = (R∪R′)∩(Hi−2∪
Hi−1∪Hi∪Hi+1) together with all Z-bridges in Hi−2∪Hi−1∪Hi∪Hi+1 that
have all vertices of attachment on S. Finally, let us add two edges e1, e2,
where e1 joins the “left” endvertices, λ in R∩ Si−2 and λ′ in R′ ∩ Si−2, and
e2 joins the “right” endvertices, ρ and ρ′ in Si+2, of these two paths. Then
S +e1 +e2 =: C0 is a cycle in Di. If R (R′) is everywhere trivial, then λ = ρ
(λ′ = ρ′).

Claim 5.1 For every value of i, there are adjacent vertices R,R′ of Γ+
0

such that Di(R,R′) has no embedding in the plane in which the cycle C0

would bound a face.

Proof. Suppose that for every adjacent pair R,R′ in Γ+
0 , the graph

Di(R,R′) has an embedding in the plane in which the cycle C0 bounds
the outer face. By using Claim 4.5 it is easy to see that such embeddings
can be combined together to get an embedding of Hi−2 ∪ Hi−1 ∪ Hi ∪ Hi+1

in the plane. This embedding would look like the representation shown in
Figure 2. We shall now get a contradiction by showing that the subgraph
Li exhibited in Figure 3 cannot be planar. To do this, we first give a precise
definition of Li.

Let us recall that paths P0, . . . , Pq0 form a path in Γ+
0 and that possibly

there is a trivial path u1 adjacent to Pq0 in Γ+
0 . Let m be the smallest index

such that Pm(pi − 1, pi + 1) is either a single vertex or a single edge. If

18



such index does not exist and u1 exists, then let m = q0 + 1. Otherwise, let
m = q0. Let us remark at this point that the 7-connectivity of G and the
fact that zi = wpi is an essential society vertex imply that m ≥ 2.

We will consider the graph Li ⊆ Hi−1 ∪ Hi which is a subgraph of
Xpi−1 ∪Xpi (see Figure 3), in which we have only the paths P0, . . . , Pm and
all Z-bridges in Hi−1 ∪ Hi with all their attachments in P0 ∪ · · · ∪ Pm. Let
us define the following sets:

Ti = Si ∩
( ∪m

j=0 Pj

)
,

T−
i = S−

i ∩ ( ∪m
j=0 Pj

)
, and

T+
i = S+

i ∩ ( ∪m
j=0 Pj

)
.

Consider the set B = T−
i ∪T+

i ∪{zi, z
−
i , z+

i } ⊆ V (Li). Suppose that Hi−2 ∪
Hi−1 ∪ Hi ∪ Hi+1 is embedded in the plane. This induces an embedding of
Li with the vertices in B appearing on the boundary of the ‘infinite face’.
Let I = V (Li) \ B be the set of remaining vertices of Li. We will apply
Euler’s formula to the planar graph L∗

i obtained from Li by first adding
edges (if they are not already present) to create a cycle on the vertex set B
and then adding an extra vertex of degree |B| in the infinite face adjacent
to all vertices of B. Note that degL∗

i
(v) = degG(v) ≥ 7 for any v ∈ I. The

2(m − 1) endvertices in B of the first m − 1 paths all have degree at least
4 in L∗

i , while z−i , z+
i and the (one or two) vertices in the path Pm all have

degree at least 3. Since zi is an essential society vertex, its degree in L∗
i is at

least 6. Finally, the vertex in the infinite face has degree 2m + 3 or 2m + 2.
Euler’s formula applied to L∗

i shows that

12 ≤
∑

v∈V (L∗
i )

(6 − degL∗
i
(v)).

By using the degree restrictions listed above, this inequality yields the fol-
lowing. If Pm has only one vertex, then

12 ≤ (6 − 7)|I| + (6 − 4)(2m − 2) + (6 − 3)(3) + (6 − (2m + 2)). (4)

If Pm has two vertices and at least one of them is of degree more than 3 in
L∗

i , then

12 ≤ (6 − 7)|I| + (6 − 4)(2m − 1) + (6 − 3)(3) + (6 − (2m + 3)). (5)

Finally, if Pm has two vertices of degree 3 in L∗
i , then we contract the edge

joining them and apply the above formula to the resulting graph, obtaining
(4) again. In each case, (4) or (5), we conclude that

|I| ≤ 2m − 2. (6)
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On the other hand, we will show that I must have at least 2m vertices,
and thus get a contradiction.

For l = 1, . . . ,m, let Dl = ∪l
j=1Di(Pj−1, Pj)∩Li and let I l = |V (Dl)∩I|.

A vertex v ∈ V (Dl) ∩ I has degree at least seven, unless it is contained in
the path Pl. In the latter case, we say that v is d-deficient if it has at least
d incident edges that are not contained in Dl.

We claim that I l ≥ 2l − 1, and if equality holds, then there exists a 4-
deficient vertex in Pl ∩ I. Moreover, if I l = 2l, then there exists a 3-deficient
vertex. This claim will be proved by induction on l. Clearly, we arrive at a
contradiction with (6) when l = m, so the proof of this claim will complete
the proof of Claim 5.1.

For l = 1, consider three neighbors of zi distinct from z−i and z+
i . Note

that at least one of them, let us call it z, is in I. We may assume that I1 ≤ 2
since otherwise there is nothing else to prove. If I1 = 1, then z is the only
vertex in D1 ∩ I, and it is easy to see that it must be on P1 and that it is
4-deficient. Suppose now that I1 = 2. If z /∈ V (P1), then it has degree at
least seven, and it is easy to see that this gives a contradiction to I1 = 2.
Therefore z ∈ V (P1). Since there is only one other vertex in D1 ∩ I and z
is of degree at least 7 in L∗

i , the vertex z is 3-deficient. This completes the
proof of the case when l = 1.

For the induction step, let us assume that l ≥ 2 and that the claim holds
for values less than l. The proof is easy if l = m, so we may also assume
that l < m. Then Pl contains a vertex z ∈ I by the definition of m. This
completes the proof if I l−1 ≥ 2(l − 1) + 2.

If I l−1 = 2(l − 1) + 1, we are done if there is another new vertex besides
z contributing to I l. If z has at most four neighbors in Dl, then it is 3-
deficient, and we are done. Otherwise, we apply Euler’s formula to Dl in
the same way as we did in deriving (6), and we arrive at a contradiction.

Suppose now that I l−1 = 2(l − 1). By the induction hypothesis, Pl−1

contains a 3-deficient vertex. The argument is now exactly the same as in
the case when l = 1, so we omit the details. Finally, if I l−1 = 2(l − 1) − 1,
then Pl−1 contains a 4-deficient vertex z′. We may assume that I l ≤ 2l, so
one of the neighbors of z′ is not in I. So it is one of the ends of Pl ∩ Dl.
The proof is easy to complete when Dl \ Dl−1 has a vertex that is not on
Pl. Otherwise, (at least) two of the neighbors of z′ are in Pl ∩ I. It is clear
that one of them is 4-deficient. This completes the proof.

After lots of preparation, we will now be able to construct a K3,k-minor
by exploiting the crossing paths forced by the nonplanarity of the segments
of the vortex. The following claim about crossing paths follows from a result
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by Robertson and Seymour [15] (see also [11]). It uses the fact that G is
7-connected and that the paths R and R′ are chosen in such a way that
every Z-bridge in G1 is attached to at least two of the paths.

Claim 5.2 If Di(R,R′) is nonplanar, then one of the following holds:

(a) Di(R,R′) contains disjoint paths Q1, Q2 connecting λ with ρ′ and λ′

with ρ, respectively.

(b) Di(R,R′) contains a path Q (resp., Q′) disjoint from R′ (resp., R)
which connects λ and ρ (resp., λ′ and ρ′) such that after replacing R
(resp., R′) by Q (resp., Q′), there is a Z-bridge in Hi which is attached
to (at least) three among the paths P0, . . . , Pq and the surface node u0.

We are ready to complete the proof of Theorem 1.3. Recall that Γ+
0

is a path on consecutive vertices P0, . . . , Pq0 (and u1, if u1 exists), where
2 ≤ q0 ≤ α. Let Dj

i = Di(Pj , Pj+1), j = 1, . . . , q0, where Pq0+1 is the trivial
path u1 (if it exists).

Claim 5.1 shows that in each of the segments there is a pair of adjacent
paths (R,R′) such that Di(R,R′) is non-planar. As n3 ≥ 30kα, either case
(a) occurs for at least 4kα indices, or case (b) occurs for at least 2kα indices,
and all these indices are at least five apart from each other. We need the
latter condition in order that the subgraphs Di ⊆ Hi−2 ∪ Hi−1 ∪ Hi ∪ Hi+1

are disjoint for distinct indices i.
Let us first assume that the case (a) of Claim 5.2 occurs at least 4kα

times. Then, there exits a pair of paths Pj and Pj+1 such that, for at least
4k indices il, the two paths Q1, Q2 of Claim 5.2(a) exist in Dil(Pj , Pj+1) for
1 ≤ l ≤ 4k. We will now show how to construct a K3,k-minor in the graph.
Let us construct two paths P ′ and P ′′ by first taking the paths Pj and Pj+1

and then exchanging their segments in Dil(Pj , Pj+1) by the crossing paths
Q1 and Q2 in all of the Dil with l even. Let us suppose first that j ≥ 1.
If we consider the auxiliary graph with respect to the new paths and the
subsequence pi2l

(l = 1, . . . , 2k), we see that either the path Pj−1 (if j ≥ 1)
or the path Pj+2 (if j ≤ q0 − 2) is everywhere bridge connected to three
other paths. This gives rise to a K3,k-minor as it was shown in Claim 4.5.

Let us now assume that the case (b) of Claim 5.2 occurs 2kα or more
times. Then there is an index j ∈ {0, . . . , q0}, and there are indices 1 ≤ i1 <
i2 < · · · < ik ≤ n3 such that each of Dj

i1
,Dj

i2
, . . . ,Dj

ik
contains a path Q (or

each of Dj
i1

,Dj
i2

, . . . ,Dj
ik

contains a path Q′) as stated in Claim 5.2(b).
For any Dj

il
we replace the segment of Pj (resp., Pj+1) by the correspond-

ing path Q (resp., Q′) such that there is a Z-bridge (where Z is defined as the
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union of the new paths) attached to Pj , Pj+1, and Pj+2 (or Pj−1). We may
assume that k of these bridges, B1, . . . , Bk are attached to Pj , Pj+1, and
Pj+2. Now, there is a K3,k-minor obtained by contracting Pj , Pj+1, Pj+2

into single vertices and adding paths in B1, . . . , Bk to these vertices. This
completes the proof of Theorem 1.3.
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