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Andrej Muhič a,∗, Bor Plestenjak b

aInstitute of mathematics, physics and mechanics, Jadranska 19, SI-1000
Ljubljana, Slovenia.

bDepartment of Mathematics, University of Ljubljana, Jadranska 19, SI-1000
Ljubljana, Slovenia.

Abstract

We introduce quadratic two-parameter eigenvalue problem and show that we can
linearize it as a singular two-parameter eigenvalue problem. This problem, together
with another example that comes from model updating, shows the need for nu-
merical methods for singular two-parameter eigenvalue problems and for a better
understanding of such problems.

There are various numerical methods for two-parameter eigenvalue problems, but
all of them can only be applied to nonsingular problems. We develop a numerical
method that can be applied to certain singular two-parameter eigenvalue problems
including the linearization of the quadratic two-parameter eigenvalue problem. It is
based on the staircase algorithm for the extraction of the common regular part of
two singular matrix pencils.

AMS classification: 65F15, 15A18, 15A69, 15A22

Key words: two-parameter quadratic eigenvalue problem, singular two-parameter
eigenvalue, problem, model updating, linearization, Kronecker canonical form

1 Introduction

We consider the quadratic two-parameter eigenvalue problem
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(A1 + λB1 + µC1 + λ2D1 + λµE1 + µ2F1)x = 0
(1)

(A2 + λB2 + µC2 + λ2D2 + λµE2 + µ2F2)y = 0,

where Ai, Bi, . . . , Fi are given ni × ni complex matrices, x ∈ Cn1 , y ∈ Cn2

nonzero vectors and λ, µ ∈ C. We say that (λ, µ) is an eigenvalue of (1) and
the tensor product x⊗ y is the corresponding eigenvector. In the generic case
problem (1) has 4n1n2 eigenvalues that are solutions of the following system
of two bivariate polynomials

q1(λ, µ) := det(A1 + λB1 + µC1 + λ2D1 + λµE1 + µ2F1) = 0,
(2)

q2(λ, µ) := det(A2 + λB2 + µC2 + λ2D2 + λµE2 + µ2F2) = 0.

Recently, a quadratic two-parameter eigenvalue problem of a simpler form,
where some of the quadratic terms λ2, λµ, µ2 are missing, appeared in the
study of linear time-delay systems for the single delay case [9]. Due to the
missing terms the problem in [9] has 2n1n2 eigenvalues which makes it easier
to solve. Here we study a general case (1) where all quadratic terms are present
in both equations.

Similar to the quadratic eigenvalue problem (see, e.g., [11]), where we can
linearize the problem to a generalized eigenvalue problem with matrices of
double dimension, we can write (1) as a two-parameter eigenvalue problem
with matrices of larger dimension. One such two-parameter eigenvalue problem
is



A(1)︷ ︸︸ ︷
A1 B1 C1

0 −I 0

0 0 −I

 +λ

B(1)︷ ︸︸ ︷
0 D1 E1

I 0 0

0 0 0

 +µ

C(1)︷ ︸︸ ︷
0 0 F1

0 0 0

I 0 0





w1︷ ︸︸ ︷
x

λx

µx

 = 0

(3)

A(2)︷ ︸︸ ︷
A2 B2 C2

0 −I 0

0 0 −I

 +λ

B(2)︷ ︸︸ ︷
0 D2 E2

I 0 0

0 0 0

 +µ

C(2)︷ ︸︸ ︷
0 0 F2

0 0 0

I 0 0





w2︷ ︸︸ ︷
y

λy

µy

 = 0,

where matrices A(i), B(i), and C(i) are of size 3ni × 3ni for i = 1, 2. One can
check that indeed
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det(A(1) + λB(1) + µC(1)) = q1(λ, µ)
(4)

det(A(2) + λB(2) + µC(2)) = q2(λ, µ).

There are several numerical methods for two-parameter eigenvalue problems,
see for instance [7] and references therein, but, unfortunately, as we show later,
(3) belongs to a class of singular two-parameter eigenvalue problems whereas
all the available methods require that the problem is nonsingular. We present
a numerical algorithm that works for singular two-parameter eigenvalue prob-
lems of the form (3) and computes all eigenvalues of (1). Up to our knowledge,
next to a very special case in [3], this is one of the first numerical methods for
singular multiparameter eigenvalue problems.

Let us mention that the linearization (3) is not optimal. Namely, it follows from
the theory on determinantal representations [13] that there do exist matrices
A(i), B(i), and C(i) of dimension 2ni × 2ni for i = 1, 2 such that (4) holds. An
appropriate pair of determinantal representations would result in a smaller
and, more important, nonsingular two-parameter eigenvalue problem, but as
there are no algorithms for the construction of such matrices, this is just a
pure theoretical result.

The usual approach for a two-parameter eigenvalue problem of type

(
A(1) + λB(1) + µC(1)

)
w1 = 0

(5)(
A(2) + λB(2) + µC(2)

)
w2 = 0,

is to define operator determinants

∆0 = B(1) ⊗ C(2) − C(1) ⊗B(2),

∆1 = C(1) ⊗ A(2) − A(1) ⊗ C(2), (6)

∆2 = A(1) ⊗B(2) −B(1) ⊗ A(2)

on the tensor product space C3n1⊗C3n2 (see, e.q., [2]) and consider the coupled
generalized eigenvalue problem

∆1z = λ∆0z
(7)

∆2z = µ∆0z,

where z = w1 ⊗ w2.

If A(i), B(i), and C(i) are generic matrices of size 3ni× 3ni for i = 1, 2 then ∆0

is nonsingular and we say that (5) is a nonsingular two-parameter eigenvalue
problem. In this case it follows (see, e.g., [2]) that matrices ∆−1

0 ∆1 and ∆−1
0 ∆2
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commute, and the problem (5) has 9n1n2 eigenvalues (λ, µ) which can be
computed from eigenvalues of ∆−1

0 ∆1 and ∆−1
0 ∆2.

In our case, where matrices A(i), B(i), and C(i) arise from linearization (3),
∆0 is singular and (5) is a singular two-parameter eigenvalue problem. The
theory for singular two-parameter eigenvalue problems is scarce and there
are no general results linking the eigenvalues of (5) to the eigenvalues of (7).
Some properties of singular two-parameter eigenvalue problems are presented
in Section 2. For the particular case (3) we show in Section 3 that, under very
mild conditions, the eigenvalues of (1) are exactly the regular eigenvalues of
(7).

In order to solve the quadratic two-parameter eigenvalue problem (1) using
the linearization (3) we derive an algorithm for the extraction of the com-
mon regular part of two matrix pencils in Section 4. The algorithm is based
on the staircase algorithm for one matrix pencil from [14]. In our case, the
algorithm returns matrices Q and U with orthonormal columns that define
matrices ∆̃i = Q∗∆iU of size 4n1n2×4n1n2 for i = 0, 1, 2 such that ∆̃0 is non-
singular, matrices ∆̃−1

0 ∆̃1 and ∆̃−1
0 ∆̃2 commute, and the eigenvalues of the

quadratic two-parameter eigenvalue problem (1) are exactly the eigenvalues
of the projected regular matrix pencils ∆̃1 − λ∆̃0 and ∆̃2 − µ∆̃0.

In Section 5 we give some numerical examples. We show that the algorithm
can be successfully applied to some other singular two-parameter eigenvalue
problems, for example to the polynomial two-parameter eigenvalue problem
and to problems that appear in model updating [3].

2 Singular two-parameter eigenvalue problem

Let us consider a general two-parameter eigenvalue problem of form (5) where
A(i), B(i), and C(i) are mi × mi matrices over C, wi ∈ Cmi for i = 1, 2 and
λ, µ ∈ C. A pair (λ, µ) is an eigenvalue if it satisfies (5) for nonzero vectors
w1, w2, and the tensor product w1⊗w2 is the corresponding (right) eigenvector.
Similarly, v1 ⊗ v2 is the corresponding left eigenvector if v1, v2 6= 0, v∗1(A

(1) +
λB(1) + µC(1)) = 0, and v∗2(A

(2) + λB(2) + µC(2)) = 0.

Multiparameter eigenvalue problems of this kind arise in a variety of applica-
tions [1], particularly in mathematical physics when the method of separation
of variables is used to solve boundary value problems [15].

The eigenvalues of (5) are solutions of the following system of two bivariate
polynomials
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p1(λ, µ) := det(A(1) + λB(1) + µC(1)) = 0,
(8)

p2(λ, µ) := det(A(2) + λB(2) + µC(2)) = 0.

Instead of (5) we study the coupled generalized eigenvalue problem (7) with
operator determinants ∆0, ∆1, and ∆2.

Usually, the two-parameter eigenvalue problem (5) is nonsingular, i.e., the
corresponding operator determinant ∆0 is nonsingular. In this case matrices
∆−1

0 ∆1 and ∆−1
0 ∆2 commute and the nonsingular two-parameter eigenvalue

problem can be solved using standards tools for the generalized eigenvalue
problem, for some algorithms see, e.g., [7,8].

However, several applications lead to singular two-parameter eigenvalue prob-
lems where ∆0 is singular. One such example is the quadratic two-parameter
eigenvalue problem, while another one that appears in model updating is pre-
sented in the following example.

Example 1 In model updating [3] one wants to adjust the matrices obtained
from the finite element model so that some of the eigenfrequencies of the model
match the measured eigenfrequencies. In a matrix formulation we can write the
problem for the two frequencies as follows.

Given n × n matrices K, L, M and two prescribed eigenvalues ξ1 6= ξ2, find
values of λ and µ such that two of the eigenvalues of the matrix K + λL +
µM are equal to ξ1 and ξ2. The problem can be expressed as a two-parameter
eigenvalue problem

(K − ξ1I)x + λLx + µMx = 0,
(9)

(K − ξ2I)y + λLy + µMy = 0,

which is singular because its operator determinant ∆0 = L ⊗M −M ⊗ L is
singular.

If ∆0 is singular then there might still exist a linear combination ∆ = α0∆0 +
α1∆1+α2∆2 such that ∆ is nonsingular. In such case (see [2]) matrices ∆−1∆0,
∆−1∆1, and ∆−1∆2 commute. If we consider the homogeneous problem

(η0A
(1) + η1B

(1) + η2C
(1))w1 = 0,

(10)
(η0A

(2) + η1B
(2) + η2C

(2))w2 = 0

instead of (5), then we get η0, η1, and η2 from the following three joined
generalized eigenvalue problems
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∆0z = η0∆z,

∆1z = η1∆z,

∆2z = η2∆z.

The solutions of the original problem (5) are then solutions of (10) having
η0 6= 0 (we are only interested in finite eigenvalues). For such solution λ =
η1/η0 and µ = η2/η0 give an eigenvalue of (5). As we are interested in singular
problems, we assume from now on that α0∆0 + α1∆1 + α2∆2 is singular for
all values of α0, α1, and α2.

Theorem 2 ([2, Theorem 8.7.1]) The following two statements for the ho-
mogeneous problem (10) are equivalent:

(1) The matrix ∆ =
∑2

s=0 µs∆s is singular.
(2) There exist an eigenvalue η of (10) such that

∑2
s=0 ηsµs = 0.

Using this theorem we can easily see that ∆0 in Example 1 is singular. If we
look at the homogenized version of problem (9) and put η0 = 0, we get two
identical equations.

Some results about specific hermitian singular problems can be found in [3].
In the situation where all ∆i matrices are hermitian and Im(∆1), Im(∆2) ⊆
Im(∆0) one can use a generalized inverse of ∆0 to obtain matrices ∆+

0 ∆0,
∆+

0 ∆1, and ∆+
0 ∆2. All new matrices are of the form


m k

m X 0

k 0 0

,

where k is the dimension of Ker ∆0. Let ∆̂0 = I, ∆̂1, and ∆̂2 be m×m leading
submatrices of ∆+

0 ∆0, ∆+
0 ∆1, and ∆+

0 ∆2, respectively. When all eigenvalues
are semisimple, matrices ∆̂1 and ∆̂2 commute. It turns out that this is a special
case of the algorithm for the extraction of the common regular part that is
presented in Section 4.

3 Quadratic two-parameter eigenvalue problem

Let us take a closer look at the general quadratic two-parameter eigenvalue
problem (1). To simplify things, we will assume from now on that n1 = n2 = n.
By inspecting the Kronecker canonical structure of the two matrix pencils (7)
obtained by the linearization, we will show that we get exactly 4n2 regular
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eigenvalues in the generic case. This is equal to the number of common zeros
of polynomials q1 and q2 defined in (2).

Let us denote

Wi(λ, µ) = Ai + λBi + µCi + λ2Di + λµEi + µ2Fi

for i = 1, 2. We are looking for λ, µ and nonzero vectors x, y such that

W1(λ, µ)x = 0,

W2(λ, µ)y = 0.

We form the two-parameter eigenvalue problem



A(1)︷ ︸︸ ︷
A1 B1 C1

0 −I 0

0 0 −I

 +λ

B(1)︷ ︸︸ ︷
0 D1 E1

I 0 0

0 0 0

 +µ

C(1)︷ ︸︸ ︷
0 0 F1

0 0 0

I 0 0




w1 = 0



A(2)︷ ︸︸ ︷
A2 B2 C2

0 −I 0

0 0 −I

 +λ

B(2)︷ ︸︸ ︷
0 D2 E2

I 0 0

0 0 0

 +µ

C(2)︷ ︸︸ ︷
0 0 F2

0 0 0

I 0 0




w2 = 0.

The matrix of the first equation
A1 B1 + λD1 C1 + λE1 + µF1

λI −I 0

µI 0 −I


can be transformed multiplying it from left by

E(λ, µ) =


I B1 + λD1 0

0 I 0

0 0 I




I 0 C1 + λE1 + µF1

0 I 0

0 0 I
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and from right by

F (λ, µ) =


I 0 0

0 I 0

µI 0 I




I 0 0

λI I 0

0 0 I


to 

W1(λ, µ) 0 0

0 I 0

0 0 I

 .

This shows that (3) is a weak linearization of (1) in a sense of [10]. For a def-
inition of the weak linearization see Appendix A, where we show that we can
apply a similar approach to linearize every polynomial two-parameter eigen-
value problem to obtain a two-parameter eigenvalue problem with matrices of
higher dimension.

Matrices of the corresponding pair of generalized eigenvalue problems (7) are

∆0 = B(1) ⊗ C(2) − C(1) ⊗B(2),

∆1 = C(1) ⊗ A(2) − A(1) ⊗ C(2),

∆2 = A(1) ⊗B(2) −B(1) ⊗ A(2).

In order to simplify the proofs of the next two lemmas, we will apply the
Tracy–Singh product of partitioned matrices [12].

Definition 3 Let an m × n matrix A be partitioned into the mi × nj blocks
Aij and a p × q matrix B into the pk × ql blocks Bkl such that m =

∑r
i=1 mi,

n =
∑s

j=1 nj, p =
∑t

k=1 pk, q =
∑u

l=1 ql. The Tracy–Singh product A ◦ B is a
mp× nq matrix, defined as

A ◦B = (Aij ◦B)ij = ((Aij ⊗Bkl)kl)ij,

where the (ij)th block of the product is the mip×njq matrix Aij ◦B, of which
the (kl)th subblock equals the mipk × njql matrix Aij ⊗Bkl.

Basically, A ◦ B is a block matrix, where each block is a pairwise Kronecker
product for each pair of partitions in the two matrices. For instance, if A and
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B are 2× 2 block matrices, then

 A11 A12

A21 A22

 ◦
 B11 B12

B21 B22

 =



A11 ⊗B11 A11 ⊗B12 A12 ⊗B11 A12 ⊗B12

A11 ⊗B21 A11 ⊗B22 A12 ⊗B21 A12 ⊗B22

A21 ⊗B11 A21 ⊗B12 A22 ⊗B11 A22 ⊗B12

A21 ⊗B21 A21 ⊗B22 A22 ⊗B21 A22 ⊗B22


.

Theorem 4 ([12, Theorem 5]) In the case of balanced partitioning, where
all blocks in matrix A and B are of the same size, respectively, the Tracy–Singh
product A ◦B is permutation equivalent to the Kronecker product A⊗B.

All our block matrices have balanced partition and it turns out that some
properties are easier to see if we work with the Tracy-Singh product instead
of the Kronecker product. Since this is just a reordering of columns and rows,
we will denote by TS the map that reorders the elements of A ⊗ B so that
TS(A⊗B) = A ◦B.

Lemma 5 In the generic case, matrices ∆1 and ∆2 are of rank 8n2.

Proof. Let us observe the problem obtained by putting λ = 0 in W1(λ, µ)

W1(0,µ)︷ ︸︸ ︷
(A1 + µC1 + µ2F1) x = 0,

W2(λ,µ)︷ ︸︸ ︷
(A2 + λB2 + µC2 + λ2D2 + λµE2 + µ2F2) y = 0,

which is a modified version of the original problem (1). Its linearization is



A′(1)︷ ︸︸ ︷A1 C1

0 −I

 +µ

C′(1)︷ ︸︸ ︷0 F1

I 0


 w1 = 0

(11)

A(2)︷ ︸︸ ︷
A2 B2 C2

0 −I 0

0 0 −I

 +λ

B(2)︷ ︸︸ ︷
0 D2 E2

I 0 0

0 0 0

 +µ

C(2)︷ ︸︸ ︷
0 0 F2

0 0 0

I 0 0




w2 = 0.

9



Let us look at the homogenized version of (11). The first equation in the lin-
earization of the modified problem has no infinite eigenvalues, because matrix
C ′(1) is invertible in the generic case. Therefore, if the original problem (1) does
not have an eigenvalue with λ = 0, then that is also the case for the modified
version. A nonexistence of an eigenvalue with λ = 0 means that polynomials
q1(0, µ) and q2(0, µ) do not have a common zero, which is the situation in the
generic case. It follows that the 6n2 × 6n2 matrix

∆′
1 = C ′(1) ⊗ A(2) − A′(1) ⊗ C(2)

from the coupled generalized eigenvalue problem of the modified problem (11)
is nonsingular. Block structure of TS(∆1) is



3n2 3n2 3n2

3n2 × × ×

3n2 0 × 0

3n2 × 0 ×

,

where the four corner blocks represent nonsingular matrix TS(∆′
1) of the mod-

ified problem. The central 3n2 × 3n2 block of matrix TS(∆1) is



n2 n2 n2

n2 0 0 I ⊗ F2

n2 0 0 0

n2 I ⊗ I 0 0

.

This matrix is of maximal rank 2n2 in the generic case, where we assume that
matrix F2 is nonsingular. It follows that matrix ∆1 is of rank 8n2.

Similarly we can show that if the problem (1) does not have an eigenvalue
with µ = 0 and if the matrix [D2 E2] is of full rank, then matrix ∆2 has rank
8n2. 2

Lemma 6 Matrix ∆0 has rank 6n2 in the generic case.

Proof. If we rewrite the matrix ∆0 in the Tracy–Singh reordering, we obtain
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the following block structure

TS(∆0) =


3n2 6n2

3n2 0 S

6n2 T 0

,

where

S =


0 0 D1 ⊗ F2 0 −F1 ⊗D2 E1 ⊗ F2 − F1 ⊗ E2

0 0 0 −F1 ⊗ I 0 0

D1 ⊗ I 0 0 E1 ⊗ I 0 0


and

T =



0 0 I ⊗ F2

0 0 0

I ⊗ I 0 0

0 −I ⊗D2 −I ⊗ E2

−I ⊗ I 0 0

0 0 0


.

From the above block representations of S and T it is easy to see, under the
general assumption, that matrices D1, F1, D2, and F2 are all nonsingular, that
each of the matrices S and T is of rank 3n2. It follows that in the generic case
the rank of ∆0 is indeed 6n2. 2

Lemma 7 In the generic case, where we assume that matrices D1, D2, F1, F2

are nonsingular, we can construct basis for kernels of ∆0, ∆1, and ∆2 as
follows:

(1) A basis for Ker(∆1) consists of vectors


0

ei

0

⊗


0

ej

0

 , i, j = 1, . . . , n.
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(2) A basis for Ker(∆2) consists of vectors


0

D−1
1 E1ei

−ei

⊗


0

D−1
2 E2ej

−ej

 , i, j = 1, . . . , n.

(3) Kernels of ∆1 and ∆2 are included in the kernel of ∆0. A basis for
Ker(∆0) consists of vectors in (1) and (2), and vectors

0

D−1
1 (E1 − F1)ei

−ei

⊗


0

D−1
2 (E2 − F2)ej

−ej

 , i, j = 1, . . . , n.

Proof. One can confirm the lemma by a direct computation. 2

In a similar way we can find basis for Ker(∆∗
0), Ker(∆∗

1), and Ker(∆∗
2).

Lemma 8 A basis for Ker(∆∗
0) is

Ker(∆∗
1)︷ ︸︸ ︷

0

ei

0

⊗


0

ej

0

,

Ker(∆∗
2)︷ ︸︸ ︷

0

0

ei

⊗


0

0

ej

,


0

ei

ei

⊗


0

ej

ej

 , i, j = 1, . . . , n.

Proof. It is easy to see that the above vectors are indeed in the spaces
Ker(∆∗

1), Ker(∆∗
2), and Ker(∆∗

0), respectively. From Lemmas 5 and 6 it follows
that these vectors form a basis for the mentioned kernels. 2

Let us show that for all α0, α1, α2 ∈ C, not all equal to zero, the linear combi-
nation α0∆0 + α1∆1 + α2∆2 is singular. This means that the two-parameter
eigenvalue problem is singular even if we study it in the homogeneous form
(10).

Lemma 9 Matrices ∆∗
1 and ∆∗

2 act on Ker(∆0) as
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∆∗
1


0

x

x

⊗

0

y

y

 = −∆∗
2


0

x

x

⊗

0

y

y

 =


0

x

x

⊗

y

0

0

−

x

0

0

⊗

0

y

y



∆∗
1


0

0

x

⊗

0

0

y

 =


0

0

x

⊗

y

0

0

−

x

0

0

⊗

0

0

y



∆∗
2


0

x

0

⊗

0

y

0

 =


x

0

0

⊗

0

y

0

−

0

x

0

⊗

y

0

0

 .

In fact images of ∆∗
1 and ∆∗

2 restricted to Ker ∆∗
0 coincide.

Using the above straightforward lemma one can easily check that there exist
a, b, and c, not all equal zero, such that

(α0∆
∗
0 + α1∆

∗
1 + α2∆

∗
2)

a


0

x

x

⊗

0

y

y

 + b


0

x

0

⊗

0

y

0

 + c


0

0

x

⊗

0

0

y



 = 0,

one solution is a = α1α2, b = α2
1 − α1α2, and c = α2

2 − α1α2. The problem is
therefore singular.

We would like to show that the eigenvalues of the initial quadratic two-
parameter eigenvalue problem (1) are exactly the finite regular eigenvalues
of the coupled generalized eigenvalue problem (7).

Definition 10 Normal rank of a square matrix pencil A− λB is

nr = max
s∈C

rank(A− sB).

We say that z ∈ C is a finite regular eigenvalue of matrix pencil if rank(A−
zB) < nr.

Definition 11 A pair (λ, µ) ∈ C2 is a finite regular eigenvalue of two-parameter
eigenvalue problem (5) if

rank(A(i) + λB(i) + µC(i)) < max
(s,t)∈C2

rank(A(i) + sB(i) + tC(i))

for i = 1, 2.
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Definition 12 Let A−λB ∈ Cm×n be a matrix pencil. There exist nonsingular
matrices P ∈ Cm×m and Q ∈ Cn×n such that

P−1(A− λB)Q = Ã− λB̃ = diag(A1 − λB1, . . . , Ak − λBk)

is the Kronecker canonical form. Each block Ai − λBi, i = 1, . . . , k, must be
of one of the following forms: Jj(α), Nj, Lj, or LT

j , where blocks

Jj(α) =



α− λ 1
. . . . . .

. . . 1

α− λ


, Nj =



1 −λ
. . . . . .

. . . −λ

1


,

Lj =


−λ 1

. . . . . .

−λ 1

 , LT
j =



−λ

1
. . .

. . . −λ

1


,

represent finite regular blocks, infinite regular blocks, right singular blocks, and
left singular blocks respectively. More about Kronecker canonical form can be
found in, e.g., [4], [5], [6], and [14].

It follows from the weak linearization that all eigenvalues of the initial quadratic
two-parameter eigenvalue problem (1) are finite regular eigenvalues of the lin-
earized two-parameter eigenvalue problem (3).

Definition 13 A pair (λ, µ) ∈ C2 is a finite regular eigenvalue of matrix
pencils ∆1 − λ∆0 and ∆2 − µ∆0 if all of the following statements are true:

(1) λ is a finite regular eigenvalue of ∆1 − λ∆0,
(2) µ is a finite regular eigenvalue of ∆2 − µ∆0,
(3) there exists a common eigenvector z in the intersection of finite regular

subspaces of pencils ∆1 − λ∆0 and ∆2 − µ∆0 such that

(∆1 − λ∆0)z = 0,

(∆2 − µ∆0)z = 0.

Now we can show that all eigenvalues of the initial quadratic two-parameter
eigenvalue problem (1) are finite regular eigenvalues of the coupled general-
ized eigenvalue problem (7). The equivalence of both sets of eigenvalues is
established later in Theorem 17.

Lemma 14 The common zeros of q1(λ, µ) and q2(λ, µ) from (2) are finite
regular eigenvalues of matrix pencils ∆1 − λ∆0 and ∆2 − µ∆0 from (7).
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Proof. It follows from Lemmas 5, 6, and 7 that the normal rank of pencils
∆1 − λ∆0 and ∆2 − µ∆0 is exactly 8n2.

Let a vector of the form 
x

λx

µx

⊗


y

λy

µy


be an eigenvector for the eigenvalue (λ, µ) that we get from the linearization.
Such vector has nonzero first block components x and y. Vectors in the kernels
of ∆1 and ∆2 have the first block component zero, so we have rank(∆1−λ∆0) <
8n2 and rank(∆2 − µ∆0) < 8n2. 2

Now we have enough information to determine the Kronecker canonical struc-
ture of matrix pencils ∆1 − λ∆0 and ∆2 − µ∆0.

Lemma 15 The pencil ∆∗
1−λ∆∗

0 has at least 2n2 first root vectors for infinite
eigenvalues. The same is true for the pencil ∆∗

2 − µ∆∗
0.

Proof. The first root vector for an infinite eigenvalue is vector x1 in the chain
∆∗

0x0 = 0, ∆∗
1x0 = ∆∗

0x1 such that ∆∗
1x1 6= 0. We have to show that we can

find 2n2 such linearly independent vectors.

Froma Lemma 9 it follows that all vectors in Ker(∆0), which are of the form
0

×

×

⊗


0

×

×


by Lemma 7, are obviously orthogonal to ∆∗

1 Ker(∆∗
0). As the whole space is

an orthogonal sum of Im(∆∗
0) and Ker(∆0), it follows that ∆∗

1 Ker(∆∗
0) is a

subspace of Im(∆∗
0). So, there exist 2n2 linearly independent vectors x1 such

that ∆∗
0x1 is in ∆∗

1 Ker(∆∗
0). 2

Lemma 16 Kronecker canonical form of pencil ∆1 − λ∆0 has n2 L0, n2 LT
0 ,

2n2 N2 blocks, and the finite regular part of size 4n2.

Proof. Regular Kronecker canonical structure of the transposed pencil ∆∗
1 −

λ∆∗
0 is the same as of ∆1−λ∆0. Right (left) singular structure of ∆∗

1−λ∆∗
0 is

left (right) singular structure of ∆1−λ∆0. The pencil ∆1−λ∆0 has a regular
part of size at least 4n2 by Lemma 14. Number of L0 and LT

0 blocks is n2 by

15



Lemmas 5, 7, and 8. It follows from Lemma 15 that the pencil in addition has
2n2 N2 blocks. Thus we have completely determined the Kronecker canonical
structure. 2

Theorem 17 The eigenvalues of the initial quadratic two-parameter eigen-
value problem (1) are exactly the finite regular eigenvalues of the coupled gen-
eralized eigenvalue problem (7).

Proof. We know that (1) has 4n2 eigenvalues which are also finite regular
eigenvalues of the linearized two-parameter eigenvalue problem (5) and we
proved in Lemma 15 that all eigenvalues of (5) are finite regular eigenvalues of
(7). As it follows from Lemma 16 that (7) can not have more than 4n2 finite
regular eigenvalues, the sets of eigenvalues must be equal. 2

In the next section we describe the algorithm that computes the common regu-
lar part of two matrix pencils. Using this algorithm we can solve the quadratic
two-parameter eigenvalue problem applying the proposed linearization.

4 Algorithm for the extraction of common regular subspace of two
singular matrix pencils

We would like to recover the finite regular eigenvalues of matrix pencils ∆1 −
λ∆0 and ∆2 − µ∆0. In this paper we are not interested in the infinite part.

Instead of the Kronecker canonical form we will use the generalized upper-
triangular form, where the transformation matrices P and Q are unitary, see,
e.g., [14] or [4]. For the matrix pencil A− λB there exist unitary matrices P
and Q such that

P ∗(A− λB)Q =



Aµ − λBµ

× A∞ − λB∞

× × Af − λBf

× × × Aε − λBε


. (12)

Pencils Aµ−λBµ, A∞−λB∞, Af−λBf , and Aε−λBε contain the left singular
structure, the infinite regular structure, the finite regular structure, and the
right singular structure, respectively. We are particularly interested in the
lower right block of (12). There we find the finite regular structure together
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with the right singular structure. We partition P =
[
P1 P2

]
and Q =

[
Q1 Q2

]
in such a way that

Af − λBf

× λAε − λBε

 = P ∗
2 (A− λB)Q2.

The columns of Q2 now represent a basis for the eigenspace of the regular
part with the right singular structure. The most simple case of a right singular
structure is when Ker(A)∩Ker(B) is nontrivial. Eigenvectors of the projected
pencil are then not well defined.

Below we provide a sketch of the algorithm that computes a pencil representing
the regular structure together with the right singular structure of pencil ∆1−
λ∆0. The algorithm, which is based on the staircase algorithm presented in
[14], starts with two matrices ∆0 and ∆1. It reduces them using consequent
row and column compressions, until D0 has full row rank.

Algorithm 1 D0 = ∆0; D1 = ∆1;
Repeat,

(1) (a) Compute SVD(D0). Matrix D0 has size m × n. We get matrices
with orthonormal columns U0, V0 and a diagonal matrix Σ0 such that
U0Σ0V

∗
0 = D0. Rank r of ∆0 is the number of nonzero singular eigen-

values.
(b) If matrix D0 has full row rank, exit and return D0 = P ∗∆0Q, D1 =

P ∗∆1Q.
(2) Compute the row compression of matrix D0.

U∗
0 D0 =


n

r ×

m−r 0

.

Compute block H of

U∗
0 D1 =


n

r ×

m−r H


and compress it to full column rank c. Compute SVD(H). We get matrices
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U1, V1, Σ1. We now have

U∗
0 (D1 − λD0)V1 =


c n−c

r × D̂1

m−r 0 0

− λ


c n−c

r × D̂0

m−r × 0

.

(3) Assign D0 = D̂0, D1 = D̂1 and proceed to 1.

The algorithm has a dual form that computes a pencil representing the reg-
ular structure together with the left singular structure of pencil ∆1 − λ∆0.
The algorithm starts with two matrices ∆0 and ∆1. It reduces them using
consequent column and row compressions, until D0 has full column rank. For
the reduction we use the singular value decomposition or rank revealing QR.

Algorithm 2 D0 = ∆0; D1 = ∆1;
Repeat,

(1) (a) Compute SVD(D0). Matrix D0 has size m × n. We get matrices
with orthonormal columns U0, V0 and a diagonal matrix Σ0, such that
U0Σ0V

∗
0 = D0. Rank c of ∆0 is the number of nonzero singular eigen-

values.
(b) If matrix D0 has full column rank, exit and return D0 = P ∗∆0Q,

D1 = P ∗∆1Q.
(2) Compute column compression of matrix D0.

D0V0 =
[ c n−c

m × 0

]
.

Compute block H of

D1V0 =
[ c n−c

m × H

]
and compress it to the full row rank r. Compute SVD(H). We get matrices
U1, V1, Σ1. We now have

U∗
1 (D1 − λD0)V0 =


c n−c

r × 0

m−r D̂1 0

− λ


c n−c

r × ×

m−r D̂0 0

.

(3) Assign D0 = D̂0, D1 = D̂1 and proceed to 1.
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We will apply these two algorithms to compute the common regular structure
of two matrix pencils. In the first phase of the algorithm we compute the
common regular structure and the common right singular structure of ∆1 −
λ∆0 and ∆2−µ∆0 separately using Algorithm 1. We get P ∗

1 ∆1Q1−λP ∗
1 ∆0Q1

and P ∗
2 ∆2Q2−µP ∗

2 ∆0Q2. Let the columns of matrix Q be an orthogonal basis
of Q1 ∩Q2 and the columns of matrix P an orthogonal basis for P1 +P2. We
now continue with ∆0 = P ∗∆0Q, ∆1 = P ∗∆1Q, and ∆2 = P ∗∆2Q. We stop if
matrix ∆0 has full row rank. In the second phase of the algorithm we separate
the regular part and the right singular structure using the Algorithm 2. At
the end we get square matrices, where ∆0 is invertible.

In the following algorithm we denote the vector space spanned by the columns
of a matrix A as A.

Algorithm 3 P = Im, Q = In, where m is the number of rows of ∆0 and n
is the number of columns of ∆0.

(1) Separate infinite and finite part.
(a) Apply Algorithm 1 to P ∗∆1Q−λP ∗∆0Q and P ∗∆2Q−µP ∗∆0Q. We

get P1, Q1 and P2, Q2.
(b) Compute matrices Q and P with orthonormal columns such that Q =

Q1 ∩Q2 and P = P1 + P2.
(c) If Q = Q1 return P, Q and proceed to (2.a). Otherwise, proceed to

(1.a).
(2) Separate the finite regular part from the right singular part.

(a) Apply Algorithm 2 to P ∗∆1Q−λP ∗∆0Q and P ∗∆2Q−µP ∗∆0Q. We
get P1, Q1 and P2, Q2.

(b) Compute matrix Q with orthonormal columns such that Q = Q1+Q2

and matrix P with orthonormal columns such that P = P1 ∩ P2.
(c) If Q = Q1 return P, Q and exit. Otherwise, proceed to (2.a).

Algorithm 3 stops in a finite number of steps. In the first phase the row rank
of P ∗∆0Q and the number of columns in Q decrease until P ∗∆0Q has full
row rank. In the second phase the column rank of P ∗∆0Q and the number of
columns in Q decrease until P ∗∆0Q has full column rank. Moreover, P ∗∆0Q
is a full rank square matrix.

Let us mention that the above algorithm has a dual form. We can start with
Algorithm 2 in the first phase and use Algorithm 1 in the second phase, but
then we have to compute Q as an orthogonal basis for Q1 + Q2 and P as
an orthogonal basis for P1 ∩ P2 in the first step. In the second step we then
compute Q as an orthogonal basis for Q1 ∩ Q2 and P as an orthogonal basis
for P1 + P2.

In the following lemma we show that Algorithms 1, 2, and 3 work for the
special singular two-parameter eigenvalues problems that appear in model
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updating [3].

Lemma 18 Let matrices ∆0, ∆1, and ∆2 be hermitian and Im(∆1), Im(∆2) ⊆
Im(∆0). Then matrices ∆+

0 ∆0, ∆+
0 ∆1, and ∆+

0 ∆2, where ∆+
0 is a generalized

inverse of ∆0, are of the form

∆+
0 ∆0 =


m k

m I 0

k 0 0

, ∆+
0 ∆1 =


m k

m ∆̂1 0

k 0 0

, ∆+
0 ∆2 =


m k

m ∆̂2 0

k 0 0

,

where k is the dimension of Ker(∆0).

Transformations in Algorithm 2 can be chosen so that U∗
1 ∆̂1U1 = D−1

1 ∆̃1,
U∗

1 ∆̂2U1 = D−1
1 ∆̃2, and ∆̃0 = D1. Matrix D1 is diagonal and matrix U1 is

unitary.

Proof. Matrix ∆0 is hermitian. There exist a unitary matrix U =
[
U1 U2

]
and a diagonal matrix D = diag(d1, . . . , dm, 0, . . . , 0), where m = dim(Im(∆0))
and the columns of U1 span Im(∆0), such that ∆0 = UDU∗. In the first phase
in Algorithm 1 we compress ∆0 to the full row rank. We multiply with U∗ and
obtain

U∗∆0 =

m ×

0

, U∗∆1 =

m ×

0

, U∗∆2 =

m ×

0

.

We know that Ker(∆0) ⊆ Ker(∆1), Ker(∆2), and so we compressed ∆0 to full
row rank.

We can do the same to compress ∆0 to the full column rank. We get the
following matrices

U∗∆0U =


m

m D 0

0 0

, U∗∆1U =


m

m ∆̃1 0

0 0

, U∗∆2U =


m

m ∆̃2 0

0 0

.

It is easy to check that UD+U∗ is a generalized inverse of ∆0. Let us compute

U∗∆+
0 ∆1U = U∗UD+U∗∆1U = D+

 ∆̃1 0

0 0

.
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The proof for ∆2 is analogous. 2

5 Numerical examples

Example 19 We have the following quadratic two-parameter eigenvalue prob-
lem−3 4

6 −1

 + λ

 7 2

−2 1

 + µ

4 −1

9 4

 + λ2

6 7

5 2

 + λµ

10 −3

7 1

 + µ2

4 8

6 −3

 x = 0,

−1 3

2 −1

 + λ

−1 −4

8 2

 + µ

 2 3

−4 −1

 + λ2

2 6

1 3

 + λµ

7 −2

3 7

 + µ2

 3 −5

−5 2

 y = 0

which has 16 eigenvalues.

Matrices ∆0, ∆1, and ∆2 obtained from the weak linearization are of size 36×
36. Algorithm 3 returns matrices ∆̃0, ∆̃1, and ∆̃2 of size 16×16 such that ∆̃0 is
nonsingular and matrices ∆̃−1

0 ∆̃1 and ∆̃−1
0 ∆̃2 commute. From ∆̃0, ∆̃1, and ∆̃2

we can compute all 16 eigenvalues of the quadratic two-parameter eigenvalue
problem. The largest and the smallest (by absolute value) eigenvalue truncated
to 3 decimal places are (1.799,−2.166) and (0.007 + 0.167i,−0.507 ± 0.1i),
respectively.

Example 20 A cubic two-parameter eigenvalue problem has the form

(S00 + λS10 + µS01 + · · ·+ λ3S30 + λ2µS21 + λµ2S12 + µ3S03)x = 0
(13)

(T00 + λT10 + µT01 + · · ·+ λ3T30 + λ2µT21 + λµ2T12 + µ3T03)y = 0.

If Sij and Tij are general n×n matrices, then the problem has 9n2 eigenvalues.
In a similar way as we linearized the quadratic two-parameter eigenvalue prob-
lem we can linearize (13) as a two-parameter eigenvalue problem, a possible
linearization is



S00 S10 S01 S20 S11 S02

−I

−I

−I

−I

−I


+ λ



0 0 0 S30 S21 S12

I 0 0 0 0 0

0 0 0 0 0 0

0 I 0 0 0 0

0 0 I 0 0 0

0 0 0 0 0 0


+ µ



0 0 0 0 0 S03

0 0 0 0 0 0

I 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 I 0 0 0




x̃ = 0
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T00 T10 T01 T20 T11 T02

−I

−I

−I

−I

−I


+ λ



0 0 0 T30 T21 T12

I 0 0 0 0 0

0 0 0 0 0 0

0 I 0 0 0 0

0 0 I 0 0 0

0 0 0 0 0 0


+ µ



0 0 0 0 0 T03

0 0 0 0 0 0

I 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 I 0 0 0




ỹ = 0,

where x̃ =
[
1 λ µ λ2 λµ µ2

]T

⊗ x and ỹ =
[
1 λ µ λ2 λµ µ2

]T

⊗ y. The cor-

responding operator determinant ∆0 of the above two-parameter eigenvalue
problem is of rank 20n2 and thus singular.

Using software package GUPTRI [5] for the evaluation of the generalized
upper-triangular form we observe the following interesting structure:

a) Kronecker structure of ∆1 − λ∆0 (and same for ∆2 − µ∆0) consists of
4n2 L0, 4n2 LT

0 , n2 L1, n2 LT
1 , 6n2 N1, 2n2 N2, 2n2 N3, n2 N4, and the

regular part of size 9n2.
b) dim(Ker(∆0)) = 16n2, dim(Ker(∆1)) = 5n2, and dim(Ker(∆2)) = 5n2.
c) dim(Ker(∆1) ∩Ker(∆0)) = 4n2, dim(Ker(∆2) ∩Ker(∆0)) = 4n2, and

dim(Ker(∆0) ∩Ker(∆1) ∩Ker(∆2)) = n2.

Due to a complex Kronecker canonical structure, we did not attempt to prove
the structure in theory as we did for the quadratic case.

Using Algorithm 3 for the extraction of the common regular part, we are able
to compute all eigenvalues of the cubic two-parameter eigenvalue problem. For
the test case we reuse the matrices from Example 19 and add the matrices

S30 =

 3 5

−2 4

 , S21 =

−1 7

2 8

 , S12 =

−4 −9

1 1

 , S03 =

 5 8

−6 3

 ,

T30 =

 2 3

−2 −7

 , T21 =

−6 5

9 1

 , T12 =

5 7

8 8

 , T03 =

 3 1

−3 5

 .

Matrices ∆0, ∆1 and ∆2 obtained from the weak linearization are of size
144 × 144. Algorithm 3 returns matrices ∆̃0, ∆̃1, and ∆̃2 of size 36 × 36.
Matrices ∆̃−1

0 ∆̃1 and ∆̃−1
0 ∆̃2 commute as assumed. From ∆̃0, ∆̃1, and ∆̃2 we

can compute all 36 eigenvalues of the cubic two-parameter eigenvalue problem.
The largest and the smallest (by absolute value) eigenvalue truncated to 3 dec-
imal places are (−1.227±0.495i, 1.758∓0.178i) and (0.090∓0.245i,−0.439∓
0.0142i), respectively.
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Example 21 For the last example we simulate a problem from model updat-
ing. We take the following three matrices

A =



9 5 2 −1 −8

−5 0 5 8 −2

2 −9 8 8 6

0 6 4 −1 −9

7 −1 −6 7 −7


, B =



−5 −9 −1 6 0

−6 4 6 −9 4

2 −1 0 3 −1

−4 8 −5 −2 −3

−6 0 3 6 −6


,

and

C =



−6 3 0 3 4

3 −2 7 −3 −3

−3 7 6 −4 6

0 7 2 −3 1

−6 1 6 0 −2


.

We are looking for parameters λ and µ such that two eigenvalues of the matrix
A+λB+µC are σ1 = 2 and σ2 = 3. If we write this as a two-parameter eigen-
value problem (9) and apply Algorithm 3 we obtain 20 suitable pairs (λ, µ).
The closest solution to (0, 0), which corresponds to the smallest perturbation
of A, is (0.2593, 0.0067).
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A Linearization of two-parameter matrix polynomials

Let us recall the definition of the weak linearization for one-parameter matrix
polynomial.

Definition 22 An ln× ln linear matrix pencil A−λB is a weak linearization
[10] (of order ln) of a matrix polynomial L(λ) if there exist unimodular matrix
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polynomials E(λ) and F (λ) such that

L(λ) 0

0 Il(n−1)

 = E(λ)(A− λB)F (λ).

We can generalize this idea to the general two-parameter polynomial eigen-
value problem.

Theorem 23 Let

P (λ, µ) =
k∑

i=0

k−i∑
j=0

λiµjAij

be a two-parameter matrix polynomial, where Aij is an n× n matrix for each
i, j. Let us define

Kij(λ, µ) = Aij, i + j < k − 1,

Kij(λ, µ) = Aij + λAi+1,j, i + j = k − 1, i 6= 0,

K0,k−1(λ, µ) = A0,k−1 + λA1,k−1 + µA0,k.

The linear matrix polynomial

L(λ, µ) =



n 2n 3n ... kn

n K0 K1 K2 · · · Kk

2n T1 −I2n

3n T2 −I3n

...
. . . . . .

kn Tk −Ikn


,

where Kr is an n× (r + 1)n matrix in block form

Kr =
[
Kr0 Kr−1,1 · · · K0r

]

and

Tr =



λIn

. . .

λIn

µIn


,
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r = 1, . . . , k, is a weak linearization of P (λ, µ). There exist unimodular two-
parameter polynomial matrices

E(λ, µ) =



n 2n 3n ... kn

n In H1 H2 · · · Hk

2n −I2n

3n −I3n

...
. . . . . .

kn −Ikn


and

F (λ, µ) =



n 2n 3n ... kn

n In

2n T1 I2n

3n T2 I3n

...
. . . . . .

kn Tk Ikn


such that

E(λ, µ)L(λ, µ)F (λ, µ) =

 P (λ, µ)

0 I(k−2)(k+1)n/2

. (A.1)

Proof. Let us define a vector of the r-th powers of λ, µ multiplied by x as

xr =
[
λr λr−1µ · · · λµr−1 µr

]T

⊗ x.

It is easy to check that

xr+1 =

 λxr

µr+1x

 = Trxr.

We define the vector xk =
[
x0

T x1
T · · · xk−1

T

]T

which is composed of up to

(k − 1)-th powers of λ, µ.
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If we write polynomial P (λ, µ) as

P (λ, µ) =
∑

i+j<k

λiµjAij +
∑

i+j=k
i6=0

λ(λi−1µjAij) + µkA0k

then it is easy to see that

P (λ, µ) =
k−1∑
i=0

k−1−i∑
j=0

λiµjKij.

It follows that

L(λ, µ)xk =

P (λ, µ)

0

 .

If we multiply L(λ, µ) and F (λ, µ), we obtain

L(λ, µ)F (λ, µ) =



n 2n 3n ... kn

n P (λ, µ) H1 H2 · · · Hk−1

2n −I2n

3n −I3n

...
. . . . . .

kn −Ikn


for some matrices H1, . . . , Hk−1 which we use in E(λ, µ). Equation (A.1) now
follows readily. 2
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