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October 27, 2008

Abstract

Let Gk
n be the subgraph of the hypercube Qn induced by levels between k and

n − k, where n ≥ 2k + 1 is odd. The well-known middle level conjecture asserts
that Gk

2k+1 is Hamiltonian for all k ≥ 1. We study this problem in Gk
n for fixed k.

It is known that G0
n and G1

n are Hamiltonian for all odd n ≥ 3. In this paper we
prove that also G2

n is Hamiltonian for all odd n ≥ 5, and we conjecture that Gk
n is

Hamiltonian for every k ≥ 0 and every odd n ≥ 2k + 1.

1 Introduction

Let Gk
n be the subgraph of the n-dimensional hypercube Qn induced by the vertices in

levels between k and n− k, where n ≥ 2k + 1 is odd. The level i consists of vertices with
exactly i 1’s. Note that n is required to be odd in order to have bipartite classes of equal
size in Gk

n.
The well-know middle level conjecture, attributed to Havel [6], asserts that the graph

Gk
2k+1 consisting of two middle levels k and k + 1 of Q2k+1 is Hamiltonian for all k ≥ 1.

This graph is a notorious example of a connected vertex transitive graph, all of which were
conjectured by Lovász [11] to have Hamiltonian paths.

Despite many attempts, the middle level problem remains open. The conjecture was
verified for k ≤ 11 by Moews and Reid in unpublished work in 1990. Then it was extended
by Shields, Shields, and Savage [15, 16] also for 12 ≤ k ≤ 17.

One possible relaxation of this problem is to show that Gk
2k+1 at least contains long cy-

cles. Savage and Winkler [13] showed that Gk
2k+1 has a cycle of length at least 0.867|V (Gk

2k+1)|.
The best lower bound by Johnson [9] shows that Gk

2k+1 is “asymptotically” Hamiltonian:
it contains a cycle of length (1 − o(1))|V (Gk

2k+1)|. On the other hand, Horák, Kaiser,
Rosenfeld, and Ryjáček [7] showed that Gk

2k+1 has a closed spanning walk in which every
vertex appears at most twice, by proving that the prism over Gk

2k+1 is Hamiltonian.
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Our approach is to study this problem for the graph Gk
n where 0 ≤ k ≤ (n − 1)/2 is

fixed. It is well-known that G0
n = Qn is Hamiltonian for every n ≥ 2. El-Hashash and

Hassan [5], and independently (in a more general setting) Locke and Stong [12] proved that
G1

n is Hamiltonian for all odd n ≥ 3. As a first step towards the general problem, in this
paper we prove that also G2

n is Hamiltonian for all odd n ≥ 5. Now, it becomes naturally
to conjecture:

Conjecture 1. Gk
n is Hamiltonian for every k ≥ 0 and every odd n ≥ 2k + 1.

A different approach to generalize the middle level problem was proposed, as far as we
know, independently by Dejter, Cedeno, and Jaurequi [2] and by Hurlbert [8] who studied
Hamiltonian cycles in the graph Hk

n consisting of level k and n−k of Qn, and edges joining
a vertex from level k with a vertex from level n− k if their Hamming distance (distance in
Qn) is n− 2k. In other words, Hk

n is the cover graph of the ordered set consisting of level
k and n− k of the Boolean lattice Bn with the order inherited from Bn. For other results
on ordered sets obtained by removing selected levels of the Boolean lattice, called Boolean
layer cakes, we refer to a survey of Schmidt [14].

2 Preliminaries

Let [n] denote the set {1, . . . , n}. For a binary vector v ∈ {0, 1}n and i ∈ [n] we denote by
v[i] the i-th coordinate of v. For vectors u, v ∈ {0, 1}n let u⊕ v denote the vector obtained
by the coordinate-wise addition modulo 2 of u and v. The n-dimensional hypercube Qn is
a (bipartite) graph with all binary vectors of length n as vertices and with edges joining
every two vertices that differ in exactly one coordinate, i.e.

V (Qn) = {0, 1}n and E(Qn) = {uv; |∆(u, v)| = 1},

where ∆(u, v) = {i ∈ [n]; u[i] 6= v[i]}. Thus the distance of vertices u and v is d(u, v) =
|∆(u, v)|. The distance of two edges uv and xy is the minimum distance between a vertex
of uv to a vertex of xy. A vertex v is said to be even (odd) if it has even (odd) weight.
The weight of v is the number of 1’s in v. Note that vertices of each parity form bipartite
classes of Qn. Consequently, u and v have the same parity if and only if d(u, v) is even.

Let 0,1 ∈ V (Qn) be the vertices of all 0’s and 1’s, respectively. For i ∈ [n] we denote
by ei the vertex containing 1 exactly in the i-th coordinate. Note that each vertex ei is
adjacent to 0. An i-th level of Qn for 0 ≤ i ≤ n is the set of vertices of weight i. An
antipodal vertex to a vertex u ∈ V (Qn) is the vertex denoted by u such that u[i] = u[i] for
all i ∈ [n], that is d(u, u) = n.

If adjacent vertices u and v of Qn differ in the i-th coordinate, then u⊕ v = ei and we
say that the edge uv ∈ E(Qn) has direction i. By removing all edges of a fixed direction
i ∈ [n], the hypercube Qn is split into two (induced) subgraphs isomorphic to Qn−1. We
say that Qn is split along the direction i into subcubes Q0

n−1 and Q1
n−1. For a ∈ {0, 1} the

subcube Qa
n−1 is induced by all vertices u ∈ V (Qn) with u[i] = a. Furthermore, by splitting
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Figure 1: All configurations (up to isomorphism) in Proposition 2 for n = 3.

Q0
n−1 and Q1

n−1 along another direction j ∈ [n] \ {i} we obtain four subcubes Q00
n−2, Q01

n−2,
Q10

n−2, and Q11
n−2. Note that for a, b ∈ {0, 1} the subcube Qab

n−2 is induced by all vertices
u ∈ V (Qn) with u[i] = a and u[j] = b.

We consider a path P to be a nonempty sequence of distinct vertices such that every
two consecutive vertices are adjacent. If a and b are the first and the last vertices of
P , respectively, we say that P is an ab-path and a, b are its endvertices. Assume that
an ab-path P and an cd-path R are (vertex) disjoint. If b and c are adjacent, then the
concatenation of P and R is an ad-path. If P contains consecutive vertices x and y such
that both x, c and y, d are adjacent, then by inserting R into P between x and y we obtain
an ab-path containing vertices P ∪ R. A reversed path of an ab-path P is the ba-path
obtained by the reversed sequence.

It is well known that the hypercube Qn for every n ≥ 2 is Hamiltonian and also
Hamiltonian-laceble; that is, there is a Hamiltonian path between every two vertices of
opposite parity. We will also need several simple results on Hamiltonian cycles and paths
in the hypercube with some removed vertices. The case of one removed vertex was described
by Lewinter and Widulski [10].

Proposition 1. If distinct u, v ∈ V (Qn), where n ≥ 2, have the same parity that is
opposite to the parity of x ∈ V (Qn), then Qn − {x} has a Hamiltonian uv-path.

A similar result holds, up to one exception, for the case of two removed vertices that
are adjacent.

Proposition 2. If u, v ∈ V (Qn) \ {x, y}, where xy ∈ E(Qn) and n ≥ 2, have the opposite
parity, then Qn − {x, y} has a Hamiltonian uv-path unless:

n = 3, u⊕ v = x⊕ y, and d(uv, xy) = 2. (1)

Proof. The exceptional configuration (1) is depicted on Figure 1(a). We proceed by induc-
tion on the dimension n. For n = 2 the statement trivially holds. For n = 3, aside from the
exceptional configuration (1), we have (up to isomorphism) another three configurations
depicted on Figure 1(b)-(d). Observe that the statement holds for each of them.

For n ≥ 4 we split Qn into two subcubes Q0
n−1 and Q1

n−1 such that the edge xy belongs
to Q0

n−1 or Q1
n−1, and moreover, the vertex v is in the other subcube than the edge xy.
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Assume without loss of generality that xy ∈ E(Q0
n−1) and v ∈ V (Q1

n−1). Considering the
position of the vertex u, we distinguish two cases.

Case 1: u ∈ V (Q1
n−1). Let P1 be a Hamiltonian uv-path of Q1

n−1. We claim that
P1 contains consecutive vertices a and b such that their neighbors a′ and b′ in Q0

n−1 are
distinct from both x and y, and the edge a′b′ ∈ E(Q0

n−1) does not form the exceptional
configuration (1) in Q0

n−1. Since n ≥ 4, the path P1 contains at least 7 edges. At most 4 of
them contain a vertex whose neighbor in Q0

n−1 is x or y. In addition, at most one of them
contains vertices whose neighbors in Q0

n−1 form the configuration (1). Hence P1 contains
at least 2 edges that satisfy the claim.

Applying induction we obtain a Hamiltonian a′b′-path P0 of Q0
n−1−{x, y}. By inserting

P0 into P1 instead of the edge ab, we have the desired path.

Case 2: u ∈ V (Q0
n−1). First we choose a neighbor a ∈ V (Q0

n−1) of u such that the
edge ua does not form the configuration (1). Amongst neighbors of u in Q0

n−1 at most one
is x or y, and at most one forms the configuration (1). Thus, such neighbor a exists since
u has at least 3 neighbors in Q0

n−1. Applying induction we obtain a Hamiltonian ua-path
P0 of Q0

n−1. Let a′ be the neighbor of a in Q1
n−1, and let P1 be a Hamiltonian a′v-path of

Q1
n−1. By concatenating P0 and P1, we are finished.

Let us denote by NG(u) the set of neighbors of a vertex u in a subgraph G of Qn. If
G = Qn, the subscript Qn is omitted. Recall that N(0) = {e1, . . . , en}. For n ≥ 2 and
distinct i, j ∈ [n], we define the set

Aij = (N(0) \ {ei, ej}) ∪ (N(ei) \ {ei ⊕ ej}). (2)

Note that Aij contains n−2 odd vertices and n−1 even vertices of Qn including the vertex
0. We continue with a result on Hamiltonicity of Qn in case of 2n− 3 removed vertices of
this set Aij.

Proposition 3. If z ∈ V (Qn) \ Aij is odd, n ≥ 2, and z 6= ei where i, j ∈ [n] are distinct,
then Qn − Aij has a Hamiltonian eiz-path.

ei ⊕ ej ei ⊕ ej

1 z = 1

0 ei

z = ej

j

i 0 ei

ej

j

i

Figure 2: The Hamiltonian paths in Proposition 3 for n = 3.
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Proof. We proceed by induction on the dimension n. For n = 2 the statement trivially
holds. For n = 3 we have either z = ej or z = 1. The Hamiltonian paths for both cases
are depicted on Figure 2.

For n ≥ 4 we choose k ∈ [n] distinct from i and j, and we split Qn along the direction
k into subcubes Q0

n−1 and Q1
n−1. For A0 = Aij ∩V (Q0

n−1) and A1 = Aij ∩V (Q1
n−1) observe

that A0 restricted to n−1 directions of Q0
n−1 satisfies (2), and A1 = {ek, ei⊕ ek}. The idea

is to apply induction in Q0
n−1 and Proposition 2 in Q1

n−1. We distinguish the following two
cases regarding z; see Figures 3 and 4 for an illustration.

ei ⊕ ej

a v

0 ei

j

i x = ei ⊕ ek y = ek

u = ei ⊕ ej ⊕ ekz

k

Figure 3: The case z ∈ V (Q0
n−1) in Proposition 3 for n = 4.

Case 1: z ∈ V (Q0
n−1). Applying induction we obtain a Hamiltonian eiz-path P0 of

Q0
n−1 − A0. Note that P0 goes first from ei to ei ⊕ ej since ei has no other neighbors in

Q0
n−1 − A0. Let a 6= ei be the next vertex on P0 after ei ⊕ ej, and let u and v be the

neighbors of ei⊕ej and a in Q1
n−1, i.e. u = ei⊕ej⊕ek and v = a⊕ek. By Proposition 2 for

x = ei ⊕ ek and y = ek, we obtain a Hamiltonian uv-path P1 of Q1
n−1 − A1. Note that we

avoid the exceptional configuration (1) since d(u, x) = 1. By inserting P1 into P0 instead
of the edge between ei ⊕ ej and a, we construct the desired path.

ei ⊕ ej

z

0 ei

j

i x = ei ⊕ ek y = ek

v = ej ⊕ eku = ej

k

Figure 4: The case z ∈ V (Q1
n−1) in Proposition 3 for n = 4.

Case 2: z ∈ V (Q1
n−1). Applying induction we obtain a Hamiltonian path P0 of

Q0
n−1 − A0 between ei and u = ej. By Proposition 2 for x = ei ⊕ ek and y = ek we obtain

a Hamiltonian path P1 of Q1
n−1 − A1 between v = ej ⊕ ek and z. Note that we avoid the

exceptional configuration (1) since d(v, y) = 1. It remains to concatenate P0 and P1, and
we are done.
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For the sake of simplicity, the set Aij is defined and Proposition 3 is stated with respect
to the vertex 0. However, note that by the automorphism of Qn, Proposition 3 could be
stated more generally for the set A′

ij = Aij ⊕w and the endvertices e′i = ei⊕w, z′ = z⊕w
for any w ∈ V (Qn). Typically, we will apply Proposition 3 in Lemma 1 for w = 1.

3 Path partition of Qn − {0,1}
Assume that we have 2k distinct vertices a1, . . . , ak and b1, . . . , bk of a subgraph G of
Qn. We say that G has an aibi-paths partition if V (G) can be partitioned into k vertex-
disjoint paths of G between ai and bi. Note that this notion generalizes the problem
of Hamiltonian paths for more paths with prescribed endvertices, and it was previously
studied for hypercubes by Caha and Koubek [1], and by Dvořák and Gregor [4] and also
in a variation of faulty vertices [3].

We proceed with a technical, but useful lemma on aibi-paths partition of Qn − {0,1}.
Lemma 1. Let n ≥ 3 be odd, k = n − 1, {a1, . . . , ak} ⊆ N(0), {b1, . . . , bk} ⊆ N(1) such
that a1 = b1 and ai 6= bi for every 1 < i ≤ k. Then Qn−{0,1} has an aibi-paths partition.

0

a1

b2 1

a2 b1

Figure 5: The only (up to isomorphism) configuration in Lemma 1 for n = 3.

Proof. For n = 3 there is only one (up to isomorphism) configuration of sets {a1, a2} ⊆
N(0) and {b1, b2} ⊆ N(1) such that a1 = b1 and a2 6= b2. This configuration with the
aibi-paths partition of Qn − {0,1} is depicted on Figure 5.

Now we assume that n ≥ 5. Let a0 and b0 denote the remaining neighbors of 0 and 1
that are not amongst a1, . . . , ak and b1, . . . , bk, respectively.

Claim 1. The hypercube Qn can be split along two distinct directions d1, d2 ∈ [n] into four
subcubes Q00

n−2, Q01
n−2, Q10

n−2, and Q11
n−2 such that

(i) {a0, a1} ⊆ V (Q00
n−2), {b0, b1} ⊆ V (Q11

n−2), and

(ii) {ai, bi} ⊆ V (Q01
n−2) or {ai, bi} ⊆ V (Q10

n−2) for at most one i ∈ [k];

unless n = 5 and ai’s with bi’s comprise the configuration depicted on Figure 6.
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b3 1

a3

p

a0

b4

b1

b0

b2

0 a1

a4

q

r a2

d1

d2

Figure 6: The only exceptional configuration which does not allow splitting satisfying
conditions (i) and (ii) in Claim 1 for n = 5.

Proof of Claim 1. To satisfy the condition (i), at most 3 directions from [n] are forbidden
for d1 and d2. More precisely, if a0 = ep, b0 = eq, and a1 = b1 = er, then we satisfy (i) if
and only if we choose d1 and d2 from the set D = [n] \ {p, q, r}. Note that r is distinct
from both p and q, but we may have p = q in general.

In the first step, we choose d1 arbitrarily from D, and we split Qn into Q0
n−1 and Q1

n−1

along the direction d1. Then we obtain bj ∈ V (Q0
n−1) and al ∈ V (Q1

n−1) for exactly one j

and exactly one l with 1 < j, l ≤ k. Observe that j 6= l since ai 6= bi for every 1 < i ≤ k.
By renaming the vertices we may assume that j = 2 and l = 3. Thus, we have

b2[d1] = a2[d1] = 0 and a3[d1] = b3[d1] = 1. (3)

To satisfy also (ii), it suffices to choose d2 ∈ D \ {d1} such that a2[d2] 6= b2[d2] or b3[d2] 6=
a3[d2]. Since ai and bi differ in exactly n − 2 directions for every 1 < i ≤ k, and by (3),
such d2 ∈ D \ {d1} exists if n ≥ 7 or p = q.

Now suppose that n = 5, p 6= q, and for the unique choice of d2 ∈ D \ {d1} we
have a2[d2] = b2[d2] and b3[d2] = a3[d2]. Notice that it must be a2[d2] = b2[d2] = 1 and
b3[d2] = a3[d2] = 0. If follows that

a0 = b4 = ep, a1 = b1 = er, a2 = b3 = ed2 , a3 = b2 = ed1 , and a4 = b0 = eq.

This is exactly the configuration which is depicted on Figure 6. Therefore the claim
holds.

The aibi-paths partition for this exceptional configuration is also depicted on Figure 6.
So, now we assume that we have splitting of Qn such that conditions (i) and (ii) hold.
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b3 1

a3

a6

a0

b4

b1

b0

b2

0

a1

a4

a5

b5

a2

d1

d2

b6

b
∗

1

b
∗

5
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∗

6

u

v

w

c
∗

6

c
∗

5
c
∗

1
c1

c5

c6

x

t2

b
′

2
= t1

b
′

6

b
′

5

b
′

1

Q
10

Q
00

Q
01

Q
11

j

i

Figure 7: The construction of aibi-path partition in Case 1 of Lemma 1.

Furthermore, by renaming the vertices we may assume that b2 ∈ V (Q01
n−2) and a3 ∈

V (Q10
n−2). Moreover, by exchanging d1 and d2 we may assume that {ai, bi} ⊆ V (Q01

n−2)
for no i ∈ [k], and therefore a2 /∈ V (Q01

n−2). Thus, by renaming the vertices we have, say
a4 ∈ V (Q01

n−2).
The idea of the rest of the proof is to apply induction in Q00

n−2, Proposition 3 in Q10
n−2

and in Q11
n−2, and Proposition 1 in Q01

n−2, and then glue all the paths together in order
to obtain an aibi-paths partition of Qn − {0,1}. To this end, we distinguish two cases
regarding whether b3 is in Q10

n−2. But before, to avoid ambiguity, let us mention that below
we write simply {i, j, . . . k} also for k ≤ j to denote the set {i} ∪ ([k] \ [j − 1]).

Case 1: b3 ∈ V (Q10
n−2). We start with the construction of an a4b4-path in Q11

n−2 and
Q01

n−2. Note that most of the vertices of Q11
n−2 and Q01 are on this path. See Figure 7 for

an illustration. Let i, j ∈ [n] \ {d1, d2} be such that b4 = ei and b0 = ej. Furthermore, let

B = {bl | l ∈ {1, 5, . . . , k}} and C = {cl = bl ⊕ ei | l ∈ {1, 5, . . . , k}}.

Note that
NQ11

n−2
(1) = B ∪ {b0, b4} and NQ11

n−2
(b4) = C ∪ {1, b4 ⊕ ej}.

Thus, applying Proposition 3 for the set Aij = B ∪ C ∪ {1}, we obtain a Hamiltonian
b4b0-path P11 of Q11

n−2 − Aij.
Note that the vertex w = b0⊕ ed1 is adjacent to b2 in Q01

n−2, and therefore, w is distinct
from a4 but has the same parity as a4 which is opposite to the parity of b2. So, we may apply
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Proposition 1 to construct a Hamiltonian wa4-path P01 of Q01
n−2 − {b2}. By concatenating

P11 and P01, we obtain the reversed a4b4-path.
Second, we construct an a3b3-path in Q10

n−2. Note that most of the vertices of Q10
n−2 are

on this path. Let

B∗ = {b∗l = bl ⊕ ed2 | l ∈ {1, 5, . . . , k}} and C∗ = {c∗l = b∗l ⊕ ei | l ∈ {1, 5, . . . , k}},

and let u = b3⊕ ei and v = b3⊕ ej. Note that the vertices b3, u, and v in Q10
n−2 correspond

to the vertices 1, b4, and b0 in Q11
n−2. Similarly as above, observe that

NQ10
n−2

(b3) = B∗ ∪ {u, v} and NQ10
n−2

(u) = C∗ ∪ {b3, u⊕ ej}.

Hence, applying Proposition 3 for the set A∗
ij = B∗ ∪ C∗ ∪ {b3}, we obtain a Hamiltonian

a3u-path P10 of Q10
n−2 − A∗

ij. By prolonging this path from u to b3, we have the a3b3-path.
Finally, we construct the remaining paths. Let x = b2 ⊕ ed2 , B′ = {b′l = b∗l ⊕ ed1 | l ∈

{1, 5, . . . , k}}. Notice that all these vertices are in Q00
n−2, x has the role of 1 in Q00

n−2 and
is adjacent to all vertices of B′. Furthermore, let t1, t2 be the remaining two neighbors of
x in Q00

n−2 that are not in B′; that is, t1 = x⊕ ej = x⊕ b0 and t2 = x⊕ ei = x⊕ b4.
Observe that d(a1, b

′
1) = n − 2 since d(a1, b1) = n. So the vertices a1 and b′1 are

complementary in Q00
n−2. Similarly, d(al, b

′
l) = n − 4 since d(al, bl) = n − 2 for every

l ∈ {5, . . . , k}. We choose b′2 ∈ {t1, t2} such that also d(a2, b
′
2) = n−4. Applying induction

we obtain an alb
′
l-paths partition of Q00

n−2 − {0, x} where l ∈ {1, 2, 5, . . . , k}. Then, we
prolong the a2b

′
2-path through x to b2, and each alb

′
l-path through b∗l , c∗l , and cl to bl for

l ∈ {1, 5, . . . , k}. Thus, we obtain remaining albl-paths.
To conclude Case 1, observe (on Figure 7) that all aibi-paths for i ∈ [k] are vertex-

disjoint and they cover all vertices of Qn − {0,1}.
Case 2: b3 /∈ V (Q10

n−2). The constructions in this case differ only in small details to
the construction in the previous case. However, for the sake of completeness, we present
here the entire argument. First, recall that b0, b1, b2, and b3 are not in Q10

n−2. Moreover, b4

cannot be in Q10
n−2 since a4 is Q01

n−2 and a4 6= b4. Thus, by renaming the vertices we may
assume that b5 ∈ V (Q10

n−2). Note that it follows that n ≥ 7 in Case 2.
We start with the construction of an a4b4-path in Q11

n−2 and Q01
n−2 which is completely

the same as above. Let i, j ∈ [n] \ {d1, d2} be such that b4 = ei and b0 = ej. Furthermore,
let

B = {bl | l ∈ {1, 3, 6, . . . , k}} and C = {cl = bl ⊕ ei | l ∈ {1, 3, 6, . . . , k}.
Note that

NQ11
n−2

(1) = B ∪ {b0, b4} and NQ11
n−2

(b4) = C ∪ {1, b4 ⊕ ej}.
Thus, applying Proposition 3 for the set Aij = B ∪ C ∪ {1}, we obtain a Hamiltonian
b4b0-path P11 of Q11

n−2 − Aij. Second, we apply Proposition 1 to construct a Hamiltonian
path P01 between vertices w = b0 ⊕ ed1 and a4 in Q01

n−2 − {b2}. By concatenating P11 and
P01, we obtain the reversed a4b4-path. Now we distinguish two subcases regarding d(a5, b3).
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Figure 8: The construction of aibi-path partition in Case 2.A of Lemma 1.

Subcase 2.A: d(a5, b3) = n − 2. We construct an a3b3-path in Q10
n−2 and Q11

n−2. See
Figure 8 for an illustration. Again, let

B∗ = {b∗l = bl ⊕ ed2 | l ∈ {1, 3, 6, . . . , k}} and C∗ = {c∗l = b∗l ⊕ ei | l ∈ {1, 3, 6, . . . , k}},
and let u = b5 ⊕ ei and v = b5 ⊕ ej. Similarly as above, observe that

NQ10
n−2

(b5) = B∗ ∪ {u, v} and NQ10
n−2

(u) = C∗ ∪ {b5, u⊕ ej}.
Hence, applying Proposition 3 for the set A∗

ij = B∗ ∪ C∗ ∪ {b5}, we obtain a Hamiltonian
a3u-path P10 of Q10

n−2 − A∗
ij. By prolonging this path from u through c∗3 and c3 to b3, we

have the a3b3-path.
Finally, we construct the remaining paths. Let x = b2 ⊕ ed2 , B′ = {b′l = b∗l ⊕ ed1 | l ∈

{1, 3, 6, . . . , k}}. Furthermore, let t1, t2 be the remaining two neighbors of x in Q00
n−2 that

are not in B′; that is, t1 = x⊕ ej = x⊕ b0 and t2 = x⊕ ei = x⊕ b4.
Observe that d(a1, b

′
1) = n − 2 since d(a1, b1) = n. So the vertices a1 and b′1 are

complementary in Q00
n−2. Similarly, d(al, b

′
l) = n−4 since d(al, bl) = n−2 for every 5 < l ≤ k.

We put b′5 = b′3. Since d(a5, b3) = n − 2 in this subcase, we have that d(a5, b
′
5) = n − 4.

Furthermore, we choose b′2 ∈ {t1, t2} such that also d(a2, b
′
2) = n− 4. Applying induction

we obtain an alb
′
l-paths partition of Q00

n−2 − {0, x} where l ∈ {1, 2} ∪ {5, . . . , k}. Then, we
prolong the a2b

′
2-path through x to b2, the a5b

′
5-path through b∗3 to b5, and the alb

′
l-path

through b∗l , c∗l , and cl to bl for every l ∈ {1, 6, . . . , k}. Thus, we obtain the remaining
albl-paths.
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Figure 9: The construction of aibi-path partition in Case 2.B of Lemma 1.

To conclude Subcase 2.B, observe (on Figure 8) that all aibi-paths for i ∈ [k] are
vertex-disjoint and they cover all vertices of Qn − {0,1}.

Subcase 2.B: d(a5, b3) = n. In this subcase we have to apply induction in Q00
n−2 in a

different way than in the previous subcase. The reason is that we need d(a5, b
′
5) = n − 4,

so now we cannot put b′5 = b′3 as we did before. As a consequence, we have to construct
also an a3b3-path in Q10

n−2 and Q11
n−2 in a different way. See Figure 9 for an illustration.

Again, let B∗ = {b∗l = bl ⊕ ed2 | l ∈ {0, 1, 6, . . . , k}} and C∗ = {c∗l = b∗l ⊕ ei | l ∈
{0, 1, 6, . . . , k}}, and let u = b5 ⊕ ei, b∗3 = b3 ⊕ ed2 , and c∗3 = b∗3 ⊕ ei. Similarly as above,
observe that

NQ10
n−2

(b5) = B∗ ∪ {u, b∗3} and NQ10
n−2

(u) = C∗ ∪ {b5, c
∗
3}.

Hence, applying Proposition 3 for the set A∗
ij = B∗ ∪ C∗ ∪ {b5}, we obtain a Hamiltonian

a3u-path P10 of Q10
n−2 −A∗

ij. Note that c∗3 is the vertex previous to u on P10 since u has no
other neighbor in Q10

n−2 − A∗
ij than c∗3. By deleting the vertex u from P10 and prolonging

this path from c∗3 through c3 to b3, we have the a3b3-path.
Finally, we construct the remaining paths. Let x = b2 ⊕ ed2 , B′ = {b′l = b∗l ⊕ ed1 | l ∈

{1, 3, 6, . . . , k}}. Furthermore, let t1, t2 be the remaining two neighbors of x in Q00
n−2 that

are t1 = x⊕ ej = x⊕ b0 and t2 = x⊕ ei = x⊕ b4. We put b′5 = t1, so d(a5, b
′
5) = n− 4 since

d(a5, b
′
3) = n− 2. We also choose b′2 ∈ {b′3, t2} such that d(a2, b

′
2) = n− 4.

Again, observe that d(a1, b
′
1) = n − 2 since d(a1, b1) = n, and d(al, b

′
l) = n − 4 for

every l ∈ {1, 2, 5, . . . , k}. Hence, applying induction we obtain an alb
′
l-paths partition of
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Q00
n−2 − {0, x} where l ∈ {1, 2, 5, . . . , k}. Then, we prolong the a2b

′
2-path through x to b2,

the a5b
′
5-path through b∗0, c∗0, and u to b5, and each alb

′
l-path through b∗l , c∗l , and cl to bl for

l ∈ {1, 6, . . . , k}. Therefore, we obtain the remaining albl-paths.
To conclude Subcase 2.B, observe (on Figure 9) that all aibi-paths for i ∈ [k] are

vertex-disjoint and they cover all vertices of Qn − {0,1}.

4 Hamiltonicity of G2
n

Recall that G2
n is the graph induced on Qn by levels from 2 to n− 2; that is,

G2
n = Qn − ({0,1} ∪N(0) ∪N(1)).

For our convenience, we use the following notation of vertices in subcubes of Qn. Assume
that Qn is split along two fixed directions d1, d2 ∈ [n] into four subcubes Q00

n−2, Q01
n−2, Q10

n−2,
and Q11

n−2, which are isomorphic to Qn−2. For w ∈ {00, 01, 10, 11} and x ∈ V (Qn−2) we
denote by xw the copy of the vertex x in the subcube Qw

n−2.

Theorem 1. G2
n is Hamiltonian for every odd n ≥ 5.

Proof. We proceed by induction on n. The statement holds for n = 5 since G2
5 is the

middle level graph which is known to be Hamiltonian [15]. For n ≥ 7 we split Qn along
two arbitrary directions into four subcubes Q00

n−2, Q01
n−2, Q10

n−2, and Q11
n−2. For w ∈ {00, 11}

let Hw denote a copy of G2
n−2 in Qw

n−2, that is

Hw = Qw
n−2 − ({0w,1w} ∪NQw

n−2
(0w) ∪NQw

n−2
(1w)).

Initially, applying induction we obtain Hamiltonian cycles C1 and C2 of H00 and H11,
respectively. Next, we construct a Hamiltonian cycle C3 of G2

n \ (H00 ∪ H11) and finally,
we interconnect C3 with copies of C1 and C2 mapped by properly chosen automorphisms
of H00 and H11.

The construction of C3 is as follows. First, we label the neighbors of 0 and 1 in Qn−2

in the following way. Let pi = ei for every i ∈ [n− 2], and let

q1 = e1, q2 = e4, q3 = e2, qn−2 = e3, and qi = ei+1 for every 4 ≤ i ≤ n− 3.

Note that p1 = q1 and pi 6= qi for every 1 < i ≤ n− 3. We use corresponding labelings pw
i

and qw
i in Qw

n−2 for each w ∈ {00, 01, 10, 11}.
Hence, by Lemma 1, Q01

n−2−{001,101} can be partitioned into n−3 vertex-disjoint paths
Pi between p01

i and q01
i for i ∈ [n − 3]. Similarly, since p2 = q3, pn−2 6= q2 and pi 6= qi+1

for 2 < i ≤ n− 3, Q10
n−2 − {010,110} can be partitioned into n− 3 vertex-disjoint paths Ri

between q10
i+1 and p10

i for 2 ≤ i ≤ n − 3, and R1 between q10
2 and p10

n−2. See Figure 10 for
an illustration.

To construct C3, we interconnect paths Ri and Pi at Q11
n−2, and paths Pi and Ri−1 at

Q00
n−2 as follows (here R0 means Rn−3). The path R1 continues from p10

n−2 through p11
n−2,
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Figure 10: The construction in Theorem 1 with n = 7.

011, p11
1 to the vertex p01

1 of P1. The path Ri for 2 ≤ i ≤ n− 3 continues from p10
i through

p11
i to the vertex p01

i of Pi. The path P1 continues from q01
1 through q00

1 , 100, q00
n−2 to the

vertex q10
n−2 of Rn−3. The path Pi for 2 ≤ i ≤ n− 3 continues from q01

i through q00
i to the

vertex q10
i of Ri−1. These connections are presented with green color on Figure 10. The

choices of endvertices of paths Pi’s and Ri’s allow these connections which assures that C3

is a Hamiltonian cycle of G2
n \ (H00 ∪H11).

To conclude the proof, we interconnect C3 with copies of C1 and C2. For two adjacent
vertices u and v of Qn we say that u is a light neighbor of v if w(u) < w(v), otherwise u
is a heavy neighbor of v. Since w(p1) = 1 and w(q1) = n− 3 ≥ 4, the p01

1 q01
1 -path P1 ⊂ C3

contains a vertex x01 such that w(x) = 2 and x01 has a heavy neighbor on P1. Note that
the neighbor x00 of x01 in Q00

n−2 belongs to C1.
Let y00 be one of two neighbors of x00 on C1. Observe that y00 is a heavy neighbor

of x00 since w(x00) = w(x) = 2 and C1 does not visit vertices of weight 1. Then, let z01

be a heavy neighbor of x01 on P1. Let i and j be the directions of edges x00y00 ∈ E(C1),
x01z01 ∈ E(C3), respectively. If i = j, then y00 and z01 are adjacent in G2

n, so we can
interconnect C1 with C3 directly by replacing the edges x00z00 ∈ E(C1) and x01z01 ∈ E(C3)
with x00x01, z00z01 ∈ E(G2

n).
Now we assume i 6= j. Thus, we have

• y00[i] = z01[j] = 1, and

• x00[i] = x01[i] = z01[i] = x01[j] = x00[j] = y00[j] = 0.
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Figure 11: The interconnection of the path P1 and a copy C∗
1 of the cycle C1.

Hence, by switching the directions i and j we obtain a bijection π of V (H00) such that
π(x00) = x00 and π(y00) = z00 where z00 is the neighbor of z01 in Q00

n−2. Moreover, π
is an automorphism of H00, and therefore, C∗

1 = π(C1) is a Hamiltonian cycle of H00

containing the edge x00z00. Therefore, we can interconnect C∗
1 with C3 by replacing the

edges x00z00 ∈ E(C∗
1) and x01z01 ∈ E(C3) with x00x01, z00z01 ∈ E(G2

n). See Figure 11 for
an illustration, where C1 is represented by green and C∗

1 by blue color.
To interconnect C3 also with a copy of C2, we proceed similarly with the path R1 ⊂ C3

in Q10 as above. By a proper choice of a vertex x10 (with his neighbor z10) on R1 and an
automorphism of H11 which maps an edge of C2 to x11z11 we easily connect C3 and a copy
of C2. Therefore, we obtain a Hamiltonian cycle of G2

n.
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[3] T. Dvořák, P. Gregor, Partitions of faulty hypercubes into paths with prescribed
endvertices, SIAM J. Discrete Math. 22 (2008), 1448–1461.
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