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Abstract

For every surface S (orientable or non-orientable), we give a linear
time algorithm to test the graph isomorphism of two graphs, one of which
admits an embedding of face-width at least 3 into S. This improves a
previously known algorithm whose time complexity is nO(g), where g is the
genus of S. This is the first algorithm for which the degree of polynomial
in the time complexity does not depend on g.

The above result is based on two linear time algorithms, each of which
solves a problem that is of independent interest. The first of these prob-
lems is the following one. Let S be a fixed surface. Given a graph G
and an integer k ≥ 3, we want to find an embedding of G in S of face-
width at least k, or conclude that such an embedding does not exist. It is
known that this problem is NP-hard when the surface is not fixed. More-
over, if there is an embedding, the algorithm can give all embeddings of
face-width at least k, up to Whitney equivalence. Here, the face-width of
an embedded graph G is the minimum number of points of G in which
some non-contractible closed curve in the surface intersects the graph. In
the proof of the above algorithm, we give a simpler proof and a better
bound for the theorem by Mohar and Robertson concerning the number
of polyhedral embeddings of 3-connected graphs.
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The second ingredient is a linear time algorithm for map isomorphism
and Whitney equivalence. This part generalizes the seminal result of
Hopcroft and Wong that graph isomorphism can be decided in linear time
for planar graphs.

1 The Graph Isomorphism Problem

The graph isomorphism problem asks whether or not two given graphs are iso-
morphic. It is one of the most fundamental problems in the theory of algorithms
and in complexity theory. It is probably the most notorious problem whose algo-
rithmic complexity is still largely undecided. While some complexity theoretic
results indicate that this problem is not NP-complete (if it were, the polyno-
mial hierarchy would collapse to its second level, see [15, 13, 27, 26, 65]), no
polynomial time algorithm is known for it, even with extended resources like
randomization or quantum computing.

On the other hand, there is a number of important classes of graphs on which
the graph isomorphism problem is known to be solvable in polynomial time. For
example, in 1990, Bodlaender [9] gave a polynomial time algorithm for graph
isomorphism of graphs of bounded tree-width. Many NP-hard problems can be
solved in polynomial time, even linear time, when input is restricted to graphs
of tree-width at most k [3, 10]. So, Bodlaender’s result may not be surprising,
but the time complexity in [9] is O(nk), and no one could improve the time
complexity to O(nO(1)) so far. This indicates that even for graphs of bounded
tree-width, the graph isomorphism problem is not trivial at all.

In this paper, we are interested in planar graphs and, more generally, graphs
of bounded genus. In 1966, Weinberg [71] gave a very simple O(n2) algorithm
for the graph isomorphism problem of planar graphs. This was improved by
Hopcroft and Tarjan [32, 33] to O(n log n). Building on this earlier work,
Hopcroft and Wong [30] published in 1974 a seminal paper, where they pre-
sented a linear time algorithm for isomorphism testing of planar graphs.

Leaving the plane to consider graphs on surfaces of higher genus, the graph
isomorphism problem seems much harder. In 1980, Filotti, Mayer [24] and
Miller [44] showed that for every orientable surface S, there is a polynomial
time algorithm for testing the isomorphism of graphs that can be embedded in
S, but the time complexity is nO(g), where g is the genus of S. Lichtenstein [40]
gave an O(n3) algorithm for testing graph isomorphism on projective planar
graphs. These works came out in the early 1980’s. These classes of graphs were
extensively studied from other perspectives. For example, Grohe and Verbitsky
[28, 29], who studied this problem from a logic point of view, made some inter-
esting progress. However, no one could improve the time complexity in the last
25 years. This can be perhaps explained in the following way. We can rather
easily reduce the problem to 3-connected graphs. For planar graphs, the famous
result of Whitney tells that us that embeddings of 3-connected graphs in the
plane are (combinatorially) unique. But for every nonsimply connected surface
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S, there exist 3-connected graphs with exponentially many embeddings. This
makes an essential difference between planar graphs and graphs of higher genus.

There are some other classes of graphs on which the graph isomorphism
problem is solvable in polynomial time. This includes general minor-closed
families of graphs [45, 53, 54]. A powerful approach based on group theory was
introduced by Babai [4]. Based on this approach, Babai et al. [6] proved that
isomorphism problem is polynomially solvable for graphs of bounded eigenvalue
multiplicity, and Luks [43] described his well-known group theoretic algorithm
for isomorphism of graphs of bounded degree. Babai and others [5, 7] investi-
gated the isomorphism problem for random graphs. Chen [16, 17] found a linear
time algorithm for graphs of bounded average genus. However, as proved by
Chen, these graphs have a very special and restricted structure. Time complex-
ity in these cases usually depends on the maximum degree of graphs and does
not apply to the bounded genus case treated in this paper.

2 Polyhedral Maps

A graph G embedded in a surface S has face-width or representativity at least
k, fw(G) ≥ k, if every non-contractible closed curve in the surface intersects
the graph in at least k points. This notion turns out to be of fundamental
importance in the graph minor theory of Robertson and Seymour, cf. [36], and
in topological graph theory, cf. [52]. If G is 3-connected and fw(G) ≥ 3, then
the embedding has properties that are characteristic for 3-connected planar
graphs. The main property is that the faces are all simple polygons and that
they intersect nicely – if two distinct faces are not disjoint, their intersection is
either a single vertex or a single edge. Therefore such embeddings are sometimes
called polyhedral embeddings .

Whitney proved that any embedding of a graph G in the sphere can be
obtained from any other embedding of G into the sphere by performing a se-
quence of simple local re-embeddings, called Whitney flippings . See Section 4
(and Figure 1) for a precise definition; check also [52, Sections 2.6 and 5.2] for
more details. Whitney flippings are defined for embeddings in arbitrary sur-
faces and can be made only when the graph is not 3-connected. We say that
two embeddings of the same graph G are Whitney equivalent if one embedding
can be obtained from the other by a sequence of Whitney flippings.

We say that an embedding of a graph G is (weakly) polyhedral if fw(G) ≥ 3.
In the sequel we shall omit the adjective “weakly”. Note that embeddings of
graphs in the plane are always polyhedral under this definition. As proved
by Robertson and Vitray [64], a graph that is polyhedrally embedded in a
non-planar surface contains unique non-planar 3-connected component whose
induced embedding is in the same surface and whose face-width is the same
as the face-width of G. Since this 3-connected component can be discovered
in linear time by the algorithm of Hopcroft and Tarjan [31], it may usually be
assumed that the graph with a polyhedral embedding is 3-connected.

Thomassen [68] proved that it is NP-complete to decide if a given graph
triangulates a surface, and Mohar [50] proved that deciding if a graph admits a
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polyhedral embedding in some surface is also NP-complete.
Mohar and Robertson [51] proved that for every integer g there is a constant

ξ = ξ(g) such that every graph G admits at most ξ(g) polyhedral embeddings,
up to Whitney equivalence, in surfaces of genus at most g.

Importance of embeddings of large face-width is highlighted in the book [52].
Let us point out that it is one of the fundamental tools in the seminal Graph
Minor Theory by Robertson and Seymour. In fact, they have introduced the
representativity (or face-width) in [59], and it is extensively used in the proof
of their structure theorem [61] and their proof of Wagner’s conjecture [62].

3 Our Main Results

Although existence of polyhedral embeddings is NP-hard [50], we show that for
every fixed surface, one can decide this problem in linear time. Moreover, we
can find not only one but all such embeddings (up to Whitney equivalence) at
the same time.

Theorem 1 For each surface S, there is a linear time algorithm for the follow-
ing problem: Given an integer k ≥ 3 and a graph G, either find an embedding
of G in S with face-width at least k, or conclude that G does not have such an
embedding. Moreover, if there is an embedding in S of face-width at least k, the
algorithm gives all embeddings with this property, up to Whitney equivalence.

The importance of Theorem 1 lies in the final conclusion. The reader may
wonder why this can be done in linear time, because there could be exponentially
many (non-Whitney-equivalent) embeddings on any non-planar surface. But
this cannot happen for polyhedral embeddings in a fixed surface, as proved in
[51]. The proof in [51] is hard and complicated. Let us observe that our proof is
constructive, simpler, and gives a better bound on the number of embeddings.
This fact tells us why we can output all polyhedral embeddings in linear time.

If the surface S is not fixed, the problem is NP-hard [50], and examples with
exponentially many non-Whitney-equivalent polyhedral embeddings are known.
These can be found in [51]. Cf. also [11], where it is shown that the complete
graphs K36n+7 and K36n+19 admit at least 2cn2

distinct polyhedral embeddings,
for some constant c > 0 and every n ≥ 1. We have to require the face-width of
the embedding to be at least 3 in Theorem 1, since there are 3-connected graphs
with exponentially many non-polyhedral embeddings in any surface (other than
the sphere). If we want to have unique embedding in the surface of the Euler
genus g (which is an analogue of Whitney’s theorem on the uniqueness of an
embedding in a plane), then the face-width must be at least Θ(log g/ log log g).
Sufficiency of this was proved in [47, 66], necessity in [2].

Theorem 1 has the following interesting corollary. There is a “near” linear
time algorithm to determine the face-width, see [15], and it is believed that the
correct order would be O(n log n). But if we only need to decide whether or not
a given graph has face-width at least k, we can do it in linear time. Specifically,
Theorem 1 implies the following result.
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Corollary 1 For each surface S, there is a linear time algorithm to decide,
for a given integer k ≥ 3 and a graph G, if G has an embedding on S with
face-width at least k.

Our second main result is about map isomorphism. Let us recall that a map
is a graph together with a (2-cell) embedding into some surface, and that a map
isomorphism between two maps is an isomorphism of underlying graphs which
preserves the facial walks of the maps.

Theorem 2 For every surface S (orientable or not), there is a linear time
algorithm for to decide whether or not two embedded graphs in S represent iso-
morphic maps.

Together with Theorem 1, this implies the following.

Theorem 3 For every surface S (orientable or not), there is a linear time
algorithm for testing graph isomorphism of two graphs, one of which admits a
(weakly) polyhedral embedding in S.

Every planar graph is polyhedrally embeddable into the sphere, so Theorem
3 is an appropriate generalization of the seminal result of Hopcroft and Wong
[30]. As remarked above, the time complexity of previously known results for
isomorphism of graphs of genus g is nO(g), as proved in the early 1980’s. The-
orem 3 is the first essential improvement after that, reducing the degree of the
polynomial in the time complexity not only to a constant independent of g, but
even reducing algorithm complexity to linear time. The only drawback is that
it applies only to “polyhedrally embeddable” graphs.

4 Basic Definitions

Before proceeding, we review basic definitions. For basic graph theory notions,
we refer the reader to the book by Diestel [20], for topological graph theory we
refer to the monograph by Mohar and Thomassen [52]. By an embedding of a
graph in a surface S we mean a 2-cell embedding in S, i.e., we always assume
that every face is homeomorphic to an open disk in the plane. Such embeddings
can be represented combinatorially by means of local rotation and signature.
See [52] for details. The local rotation and signature determine the facial walks ,
which represent face boundaries. We define the Euler genus of a surface S as
2−χ(S), where χ(S) is the Euler characteristic of S. This parameter coincides
with the usual notion of the genus, except that it is twice as large if the surface
is orientable.

Let G be a connected graph that is embedded in a surface S. Suppose that
C is a cycle of G that is contractible in S. Let D ⊂ S be the disk bounded
by C. Suppose, moreover, that only (one or) two vertices of C, say v and w,
have incident edges that are embedded in S \D. Then we define a flipping of G
(with respect to C) as a re-embedding of G such that the embedding in S \ D
is unchanged and the embedding of H := G ∩ D is changed so that the new
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embedding of H is equivalent with the original one but the clockwise orientations
of all the facial cycles are reversed. Moreover, the outer face boundary of H is
the same as the outer face boundary of H in the flipped graph. In other words,
we change the embedding of G only inside the disk D bounded by C, where
we replace the embedding with its “mirror image”. An example of a flipping is
shown in Figure 1.

Figure 1: A Whitney flipping

We say that two embeddings of the same graph G are Whitney equivalent
if one embedding can be obtained from the other by a sequence of Whitney
flippings. Note that Whitney flippings and Whitney equivalence do not change
the underlying surface. Whitney proved that all embedding of a graph G in
the sphere are Whitney equivalent to each other. See [52, Section 2.6] for more
details, and see [52, Section 5.2] for treatment on general surfaces.

A graph G embedded in a surface Σ has face-width (or representativity) at
least θ if every closed curve in S, which intersects G in fewer than θ vertices is
contractible (null-homotopic) in Σ. Alternatively, the face-width of G is equal
to the minimum number of facial walks whose union contains a cycle which is
non-contractible in Σ. See [52] for further details.

Let W be an embedding of G in a surface S (given by means of a rotation
system and a signature). Recall that a surface minor is defined as follows. For
each edge e of G, W induces an embedding of both G−e and G/e. The induced
embedding of G/e is always in the same surface, but the removal of e may give
rise to a face which is not homeomorphic to a disk, in which case the induced
embedding of G − e may be in another surface (of smaller genus). A sequence
of contractions and deletions of edges results in a W ′-embedded minor G′ of G,
and we say that the W ′-embedded minor G′ is a surface minor of W -embedded
graph G.

Let K be a subgraph of G. A K-bridge in G (or a bridge of K in G) is a
subgraph of G which is either an edge e ∈ E(G)\E(K) with both endpoints
in K, or it is a connected component of G − K together with all edges (and
their endpoints) between the component and K. The vertices of B ∩K are the
vertices of attachment of B, A vertex of K of degree different from 2 is called
a branch vertex of K. A branch of K is any path in K (possibly closed) whose
endpoints are branch vertices but no internal vertex on this path is a branch
vertex of K. Every subpath of a branch e is a segment of e. If a K-bridge is
attached to a single branch e of K, it is said to be local . The number of branch
vertices of K is denoted by bsize(K).
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A tree decomposition of a graph G is a pair (T, Y ), where T is a tree and Y
is a family {Yt | t ∈ V (T )} of vertex sets Yt ⊆ V (G), such that the following
two properties hold:

(W1)
⋃

t∈V (T ) Yt = V (G), and every edge of G has both ends in some Yt.

(W2) If t, t′, t′′ ∈ V (T ) and t′ lies on the path in T between t and t′′, then
Yt ∩ Yt′′ ⊆ Yt′ .

The tree-width of G is defined as the minimum width taken over all tree
decompositions of G.

One of the most important results about graphs, whose tree-width is large,
is existence of a large grid minor or, equivalently, a large wall. Let us recall that
an r-wall is a graph which is isomorphic to a subdivision of the graph Wr with
vertex set V (Wr) = {(i, j) | 1 ≤ i ≤ r, 1 ≤ j ≤ r} in which two vertices (i, j)
and (i′, j′) are adjacent if and only if one of the following possibilities holds:

(1) i′ = i and j′ ∈ {j − 1, j + 1}.
(2) j′ = j and i′ = i + (−1)i+j .

We can also define an (a× b)-wall in a natural way, so that the r-wall is the
same as the (r × r)-wall. It is easy to see that if G has an (a × b)-wall, then
it has an (� 1

2a	 × b)-grid minor, and conversely, if G has an (a × b)-grid minor,
then it has an (a × b)-wall. Let us recall that the (a × b)-grid is the Cartesian
product of paths Pa × Pb. An (8 × 5)-wall is shown in Figure 2.

Figure 2: The (8 × 5)-wall and its outer cycle

The main result of Graph Minors V [58] says that a graph has large tree-
width if and only if it contains a large wall as a (topological) minor. See also
[21, 55, 63]. For planar graphs, Robertson, Seymour and Thomas [63] proved
the following theorem.

Theorem 4 For every positive integer r, if a graph G is planar and has tree-
width at least 6r, then G contains an r-wall as a (topological) minor.

The bound 6r in Theorem 4 is best possible.
Let H be an r-wall in G. If G is embedded in a surface S, then we say that

the wall H is flat if the outer cycle of H bounds a disk in S and H is contained
in this disk. The following theorem was proved by Thomassen [69].
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Theorem 5 Let S be a surface of Euler genus g. For every r, there is a value
f(g, r) satisfying the following. If a graph G embedded in S has tree-width at
least f(g, r), then G contains a flat r-wall. Hence, if there is no flat r-wall, then
the tree-width of G is at most f(g, r).

5 Our Algorithms

We now give an overview of our algorithm for Theorem 3. The main new
contribution, the core of the algorithm and the hardest part is the proof of
Theorem 1. We also apply several existing nontrivial algorithms, which are
used to perform intermediate tasks. Our algorithm of Theorem 3 has seven
steps that are outlined below. The first six steps are devoted to prove Theorem
1, while the last step is needed for Theorem 3.

Henceforth we assume that S is a fixed surface (orientable or not) of Euler
genus g, and that G and H are given input graphs. We want to test if G (and
this can be done also for H) admits a polyhedral embedding in S. If one exists,
we want to find all of them, up to Whitney equivalence. Finally, we verify if G
and H are isomorphic graphs.

Step 1. Find an embedding of G into a surface S′ of smallest possible Euler
genus g′ ≤ g. If such an embedding does not exist, we stop. This task can
be achieved by using, for example, the linear time algorithm of Theorem 6 (for
each surface of Euler genus at most g), see Section 6.

At this moment, we may assume that we have an embedding of G in S′. We
do not require G to have an embedding with face-width at least k. Existence of
such embeddings will be addressed later.

Step 2. Cut the graph on the surface S′ into simply connected regions
(disks). For this task we use some strong results of computational surface topol-
ogy [39, 22].

Cutting an embedded graph into planar pieces can be done in different ways.
One is to break this embedded graph into a bounded number of pieces by using
the result in [39]. The other is to cut the embedded graph into planar pieces,
after adding some vertices. This step was previously adapted in [37].

Details are provided in Section 7.
Now we are given a bounded number of planar graphs. This allows us to

find many vertices to be thrown away at once, and we can apply the technique
developed in [57, 56] for reducing the tree-width of planar graphs in linear time
as explained in the next step.

Step 3. Bounding the tree-width. We remove some “irrelevant” parts of
G and get its subgraph G′ which has bounded tree-width, and has essentially
the same polyhedral embeddings (and essentially the same embeddings of face-
width at least k) in S as the graph G. This one and the next part are the heart
of our algorithm.

For this task, we use the technique from [57, 56], where it is shown that there
is a linear time algorithm for the k disjoint paths problem for fixed k when an
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input graph is planar. This algorithm handles planar graphs more quickly then
the seminal algorithm of Robertson and Seymour in [60] which solves the same
problem for arbitrary graphs in cubic time. The proof in [57, 56] uses several
ideas underlying Robertson and Seymour’s algorithm.

Let us first sketch the proof of Theorem 1. Recall that an embedding of a
given graph is minimal of face-width k, if it has face-width k, but for each edge
e of G, the face-width of G−e and of G/e are both less than k. It can be shown
that a minimal embedding of face-width k in a surface of Euler genus at most
g cannot contain a flat 4gk-wall. This was proved in [?], and can also be found
in [69]. The proof shows that the vertex in the “middle” of the large flat wall
can be deleted, and the resulting subgraph of G will have essentially the same
embeddings of face-width at least k as G. Therefore, such a vertex is called
irrelevant vertex .

Consequently, any minimal embedding of face-width k has tree-width at
most f(g, 4gk) by Theorem 5. Also, by Theorems 5.6.1 and 5.4.1 in [52], any
minimal embedding of face-width k has at most N = N(g, k) vertices.

Most importantly, a given graph G has an embedding in the surface S with
face-width at least k if and only if G contains one of minimal embeddings of
face-width k as a (surface) minor.

Therefore, our task is to find all minimal embeddings of face-width k for
the surface S and check for their presence in G. Note that it is possible that
several minimal embeddings of face-width k have the same underlying graph
with different embeddings. But since each surface minor has at most N(g, k)
vertices, so there are only N ′(g, k) embeddings for it, and the number of minimal
embeddings of face-width k is at most N ′(g, k).

Therefore, if a given graph has large tree-width, we can find an irrelevant
vertex in a flat grid minor. We delete irrelevant vertices as long as to obtain a
subgraph G′ of G of bounded tree-width. Let us observe that G′ contains as a
minor some fixed minimal embedding of face-width k if and only if the original
input graph G does. Since G′ has bounded tree-width, we can find all surface
minors of minimal embeddings of face-width k contained in G′ in linear time by
the standard dynamic programming approach.

In order to get a linear time algorithm, we have to find and remove many
irrelevant vertices at once. Therefore, we need to modify the reduction step
which results in a bounded tree-width graph. Roughly speaking, we need to
find many irrelevant vertices to be thrown away at the same time. Such an idea
was demonstrated in [57, 56] when an input graph is planar. We upgrade on
this idea to work in our case. More details are provided in Section 9.

Step 4. Finding excluded minors in graphs of bounded tree-width. At this
step, we need to detect, not only one, but all surface minors of minor-minimal
embedding of face-width k. This is because we need to find all embeddings
of face-width at least k. Note that the number of these surface minors is at
most N ′′ = N ′′(g, k), where N ′′ is an integer depending only on g, k. See [52,
Theorem 5.6.1]. In particular, each of these maps has bounded order. At this
moment, the current graph G′ has bounded tree-width by Step 3. Therefore,
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we can use the standard dynamic programming approach to find all surface
minors in G′ that are minor minimal embeddings of face-width k. If G′ has
none of these surface minors, we conclude that G is not embeddable in S with
face-width at least k. Hereafter, we assume that we have found all such surface
minors.

Alternatively, this can be done by the recent result of Adler, Grohe and
Kreutzer [1].

Step 5. Expanding each excluded minor. We expand each vertex of every
surface minor so that each vertex becomes a subgraph of a given graph G. This
is actually easy, and the size of this subgraph is still bounded in terms of Euler
genus g and the face-width k. We also need to eliminate all local bridges for
each of the subgraphs, i.e., bridges attached to only one subdivided edge of the
abstract graph.

Step 6. Finding all polyhedral embeddings of each subgraph from Step 5,
and extending the embedding to the whole graph.

Let us first observe that we may assume that our input graph is 3-connected.
To see this, we first perform the algorithm by Hopcroft and Tarjan [31] to make
the input graph 3-connected. Each 2-connected component has to be planar,
since otherwise, the input graph cannot have an embedding in the surface with
face-width at least 3 (the 2-separation gives rise to a non-contractible curve of
size 2), see [52]. Hence we can replace this 2-connected component by an edge.
Any embedding of the current graph can be extended to each of 2-connected
components, because they are all planar. Therefore, we can assume that a
current graph is now 3-connected.

Step 6 is actually easy, since the size of this subgraph is bounded. So we
can use the dynamic programming approach, and we can do it in linear time.
Find the embedding extension of each surface minor to the whole graph, if one
exists. At the moment, all the bridges of this subgraphs are in the face of
the embedding, if one exists. In this case, we just embed all the bridges in
the disk bounded by the face of the embedding of the subgraph. This can be
done in linear time by the result of Juvan and Mohar [35], if the input graph is
3-connected.

Step 7. Isomorphism of embedded graphs.
We start by describing an easy O(n2) algorithm based on the algorithm of

Hopcroft and Tarjan [32], and Weinberg [71]. Then we expose a rather straight-
forward O(n log n) algorithm, which also modifies the algorithm by Hopcroft
and Tarjan [33]. Finally, we give a linear time algorithm, which generalizes the
result by Hopcroft and Wong [30] and uses ideas similar to those in [30].

We shall look at each step in the next sections, except for Step 3, which was
given in [37]. Let us observe that our algorithm of Theorem 1 gives rise to all
drawings in the surface S with face-width at least k, up to Whitney equivalence.
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6 Embedding Graphs into a Fixed Surface

Our algorithms make use of planarity and need testing for embeddability of
graphs on a fixed surface. A seminal result of Hopcroft and Tarjan [34] from
1974 gives a linear time algorithm for testing planarity of graphs. Going from
the plane to general surfaces, embedding problems become notoriously hard.
Thomassen [67] proved that computing the genus of graphs is NP-hard. On the
other hand, if the genus is bounded, one can say more. Filotti, Miller, and Reif
[23] were the first to give an O(nO(g)) polynomial time algorithm for testing
embeddability of graphs into an orientable surface of genus g. Djidjev and Reif
[19] improved the algorithm of [23] by presenting a polynomial time algorithm
for each fixed orientable surface, where the degree of the polynomial is fixed.

Robertson and Seymour [60] proved that every class of graphs that is closed
under taking minors is recognizable in cubic time. Their results give rise to
an O(n3) algorithm for deciding whether or not G can be embedded into the
surface of the Euler genus g, for any fixed g, but it does not give an embedding,
if one exists. In 1996, Mohar [48, 49] gave a linear time algorithm for testing
embeddability of graphs in surfaces and constructing an embedding, if one exists.

Theorem 6 (Mohar [48, 49]) For every fixed surface S, there is a linear time
algorithm which either finds an embedding of a given graph G into S or returns
a minimal forbidden minor for S contained in G.

This is one of the hardest results in this area. It clearly generalizes linear
time algorithms for testing planarity and constructing a planar embedding if one
exists [34, 12, 72, 18]. A new, simpler linear time algorithm was found recently
by Kawarabayashi, Mohar, and Reed [38].

7 Cutting Embedded Graphs into Planar Pieces

At this moment, we know that a given graph G is embedded into the surface of
Euler genus at most g.

The purpose of this section is to cut the embedded graph into a plane. As far
as we see, there are two methods. One is to get at most O(g2) planar subgraphs
in G such that intersection of any two planar subgraphs are on the boundary.
The other is to cut the embedded graph into a plane after adding some vertices.
This was already described in [37].

This section is related to Section 7. Most of the arguments are already in
[37]. Let us look at each of two cases.

Detecting Generators of the Fundamental Group of the
Surface

We shall get at most O(g2) planar subgraphs in G such that intersection of
any two planar subgraphs are on the boundary. This can be done if we can
detect a shortest non-contractible curve in linear time, since we know that the
Euler genus is at most g, so we could repeatedly apply the algorithm until,
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after cutting these curves, the resulting graph is planar. But unfortunately,
there is only a “near” linear time algorithm for this problem [15], and it is
believed that the correct order would be O(n log n), see [15]. So we cannot
adapt this method to our algorithm. Instead, we will adapt the method of
detecting so-called “canonical polygonal schema”, which we shall define here.
Suppose G is embedded into the surface S of the Euler genus g. We first
define a cut graph C of G. A cut graph C is a subgraph of G such that after
slicing at C, the resulting graph G′ can be embedded into a disk. This disk
is sometimes called a “polygonal schema” of G. Each edge of C appears twice
on the boundary of polygonal schema of G′, and we can obtain G by gluing
together these corresponding boundary edges. Let us look at C more closely.
We would like to get such a set C so that C consists of 2g non-contractible
curves a1, . . . , ag, b1, . . . , bg in such a way that each of these curves is a cycle
(here, a cycle means an alternating sequence of edges and vertices, where edges
can connect two successive vertices that lie in the same face, either in its interior
or on the interior of one of its boundary edges. So if a graph embedded into
this surface is a triangulation, then this cycle must be a real cycle.), and after
slicing each ai and bi, we would get 4g curves a1, a1, b1, b1, . . . , ag, ag, bg, bg in
such a way that each ai and bi are directed counterclockwise, and each ai and
bi are directed clockwise. If we identify curves ai and ai, and bi and bi for
i = 1, . . . , g, then we would get an embedding of G into the orientable surface of
Euler genus g. Similarly, we can do it for the non-orientable case. We call these
cycles a1, . . . , ag, b1, . . . , bg canonical polygonal scheme. It is easy to see that
these 2g curves consist of generators of the fundamental group of the surface of
the Euler genus g. The main result in [39] is the following. See also [22].

Theorem 7 For any graph G on the surface of Euler genus g, there is an
O(gn)-time algorithm to detect a canonical polygonal schema. Actually, the
algorithm detects non-contractible curves a1, . . . , ag, b1, . . . , bg such that each of
these curves is a cycle (for the definition of the cycle, see above), and after
slicing each ai and bi, we would get 4g curves a1, a1, b1, b1, . . . , ag, ag, bg, bg in
such a way that each ai and bi are directed counterclockwise, and each ai and bi

are directed clockwise. Furthermore, if we identify curves ai and ai, and bi and
bi for i = 1, . . . , g, then we would get an embedding of G into the surface of the
Euler genus g.

We can actually modify these non-contractible curves. Since these non-
contractible curves are generators of the fundamental group of the surface of
the Euler genus g, hence we can take these non-contractible curves so that
the intersection of any two curves C1 and C2 is a path (here, a path means
an alternating sequence of edges and vertices, where edges can connect two
successive vertices that lie in the same face, either in its interior or on the
interior of one of its boundary edges. So if a graph embedded into this surface
is a triangulation, then this path must be a real path.). This argument also
follows from the algorithm of [39], since they first construct a breadth-first search
spanning tree T in a triangulation of a given graph on the surface, and contract
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T into a single point. Then they find 2g loops which consist of generators of the
fundamental group of the surface of the Euler genus g. So the corresponding
cycles in T are these loops, and clearly we can get these non-contractible curves
so that the intersection of any two curves C1 and C2 is a path (There is one
difference. A given graph G may not be a triangulation, but we are able to
make it a triangulation, and then apply this argument to the resulting graph.).
This idea is also demonstrated in [14, 70].

Now these non-contractible curves divide the graph G into at most 4g2 planar
subgraphs P1, . . . , P4g2 such that the intersection of any two planar subgraphs
are on the boundary. In the next section, we shall bound the tree-width of each
planar subgraph. The bound will be at most O(g). Before doing that, we shall
look at the second method.

8 Cutting a surface into a disk

Alternatively, we can adapt the method of Reed, Robertson, Schrijver and Sey-
mour [57, 56]. Their method would give how to bound the tree-width of graphs
on a fixed surface in linear time. But we have one better way.

We need to find a short non-contractible curve in linear time. How do we
do it? This is, in fact, not hard. The argument in [22] implies that there is a
linear time 2-approximation algorithm for computing the representativity. Note
that it was shown in [25] that the representativity is at most O(

√
gn). So, if

we perform this procedure finitely many times, depending on g, then we can
clearly get a planar graph, after duplicating vertices of the embedded graph
(but at most g

√
gn vertices). Hence we get a desired planar graph from the

embedded graph in linear time.

9 Bounding the tree-width

So far, we can assume that the given graph G is embedded into the surface of
the Euler genus g, and there are at most 2g curves that are generators of the
fundamental group for this surface. Furthermore, these curves divide G into at
most 4g2 planar subgraphs P1, . . . , P4g2 such that the intersection of any two
planar subgraphs are on the boundary. What we shall do here is that, for each
planar graph Pi, we are going to bound tree-width by deleting many vertices,
and we will do this in linear time. How do we find such vertices in each planar
graph Pi ? This is, in fact, rather easy, because no minimal embedding of face-
width k contains a large flat grid minor. Specifically, the following is known.
For the proof, see [52].

Theorem 8 Suppose G has a planar subgraph Q. Suppose furthermore that Q
contains a (2k + 1)-wall W . Then the middle vertex of W is irrelevant, i.e., a
vertex v which has distance at least k in the wall W from all the vertices of the
outer cycle of W is irrelevant. Here an irrelevant vertex v means that G has a
minor of a fixed minimal embedding of face-width k if and only if G − v has.
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Theorem 8 says that for any planar subgraph, if there is a (2k+1)-wall, then
we can delete the middle vertex, and we can keep deleting irrelevant vertices
until there is no flat (2k + 1)-wall in the resulting graph. The problem here is
that, how can we perform this operation in linear time? Fortunately, there is
a way to do it. This method was first adapted by Reed, Robertson, Seymour
and Schrijver [57, 56], who proved that there is a linear time algorithm for the
k disjoint paths problem for planar graphs. So we shall use this method to
delete vertices of each planar graph Pi until the resulting graph has no flat
(2k + 1)-wall. Let us state this as a lemma.

Lemma 1 Suppose G′ is a planar subgraph of G. Then there is a linear time
algorithm to find a vertex set X ⊆ V (G′) such that deleting the vertices of
X can be shown not to change the problem of finding minimal embeddings of
face-width at least k as a minor, by a sequence of applications of Theorem 8.
Furthermore, this algorithm can output the graph G′ − X such that it does not
contain a (2k + 1)-wall.

The proof of Lemma 1 is exactly the same as what Reed, Robertson, Schrijver
and Seymour did. We omit the details, and refer to the papers [57, 56]. In the
full version of this paper, these details will be included.

After performing Lemma 1 for each planar graph, the tree-width of each of
these planar subgraphs is at most 12k by Theorem 4. Since we may have O(k2)
planar pieces, the tree-width of the original graph becomes bounded by O(k3)
by Theorem 5.

10 Finding excluded minors in graphs of bounded tree-
width

From the previous section, our input graph now becomes a bounded tree-width
graph. In this section, we need to find some excluded surface minors in this
bounded tree-width graph. To this end, we shall define excluded minors we are
seeking for.

Recall that an embedding of a given graph is minimal of face-width k, if it
has face-width k, but for each edge e of G, the face-width of G− e and G/e are
less than k. Clearly, a graph G has an embedding in the surface S with face-
width at least k if and only if G contains at least one of minimal embeddings of
face-width k as a surface minor.

Theorems 5.6.1 and 5.4.1 in [52] guarantee that there are only finitely min-
imal surface minors of face-width k on a fixed surface, which we summarize in
the following:

Theorem 9 A minimal embedding of face-width k in the surface S does not
have a “flat” grid minor of width k, and consequently has tree-width at most
O(gk). Moreover, it has at most N = N(k, g) vertices, where the integer N
depends on g and k only. Therefore, there are at most N ′′ = N ′′(g, k) surface
minors for minimal embeddings of face-width k.
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Our task is to detect the presence of all surface minors from Theorem 9.
This is because, in order to prove Theorem 1, and apply it to prove Theorem 3,
we need to find all polyhedral embeddings in S.

By Theorem 9 and the fact that our current graph has bounded tree-width,
we can find all the surface minors of minimal embeddings of face-width k in
linear time, by the standard method of the Dynamic Programming, see [10]
(as we can find each of the surface minors in linear time). If G has none of
the surface minors, it concludes that G is not embeddable in S with face-width
at least k. Hereafter, we assume that we have found all the surface minors.
Alternatively, the recent result of Adler, Grohe and Kreutzer [1] gives rise all
required surface minors.

Therefore, at this stage, we can detect all surface minors of minimal embed-
dings of face-width k in linear time.

11 Expanding each excluded minor to subgraphs

Hereafter, we consider the original input graph G, which may have large tree-
width.

Furthermore, we are given the family of surface minors F = {F1, . . . , Fl} of
G such that the following holds:

1. For all i, Fi is a minimal embedding of face-width k, and Fi is a surface
minor for an embedding of G in S.

2. l ≤ N ′′(g, k) for some integer N ′′ depending only on g, k.

3. |Fi| ≤ N(g, k) for all i, where N is some integer depending only on g, k.

In order to get all embeddings of G in S whose face-width is at least k, we
need to figure out how the embedding of its surface minor Fi can be extended
to G. But there is one problem here.

Suppose we find an embedding of Fi of face-width k. Then each face is
homeomorphic to a disk. Ideally, we would like to prove that the rest of graph
(each Fi-bridge) will lie in a face of Fi. But since each vertex in Fi can be
obtained by the minor operation, it is not easy to figure out how the rest of
the graph can be attached to Fi. It would be much easier if Fi is a subgraph.
So we need to expand each vertex of Fi in order to get possible subgraphs F ′

i

of G by reversing the minor operation. This is actually easy. Note that each
obtained subgraph F ′

i may have many vertices of degree 2, but bsize(F ′
i ) is

still bounded, since the expansion from Fi only involves the vertices of Fi. So
bsize(F ′

i ) is at most |E(Fi)|/2 × |Fi|, since each vertex may be expanded at
most the degree of it. Therefore, it is still bounded.

Since |F| = l ≤ N ′′(g, k), we can do the expansion of all the surface minors
in linear time.
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12 Finding all polyhedral embeddings of subgraphs

At this moment, we are given the input graph G. Furthermore, we are given a
family of embedded subgraphs F′ = {F ′

1, . . . , F
′
l } of G such that the following

holds:

1. For all i, F ′
i has an embedding of face-width at least k in S.

2. l ≤ N ′′(g, k) for some integer N ′′ depending only on g, k.

3. bsize(F ′
i ) ≤ l′(g, k) for all i, where l′(g, k) is an integer depending on g

and k only.

In order to get all the embeddings of G such that each of them has face-
width at least k in the surface S, we need to figure out all the embeddings in S
of face-width at least k for each F ′

i .
This is actually easy, since the size of this graph is bounded, so we can do

it in constant time.
Let us observe that we may assume that our input graph is 3-connected. To

see this, we first perform the algorithm by Hopcroft and Tarjan [31] to make
the input graph 3-connected. Each 2-connected component that can be written
as Gi such that G = Gi ∪ G′, where G′ is a 3-connected graph, after adding
the edge to Gi ∩ G′ (|Gi ∪ G′| = 2), now has to be planar, since otherwise, the
input graph cannot have an embedding in the surface with face-width at least 3
(Gi ∩ G′ gives rise to a non-contractible curve of size 2). Hence we can replace
this 2-connected component G1 by the edge e. Any embedding of G′ can be
extended to each of 2-connected components, since they are all planar.

Therefore, we can assume that our current graph is now 3-connected.
Suppose there are no local F ′

i -bridges for the subgraph F ′
i . Once we fix an

embedding of F ′
i , we can figure out whether or not this embedding extends to

the whole graph G. Since F ′
i has a polyhedral embedding and F ′

i is a subgraph
of G, so if each F ′

i -bridge lies in the face of the embedding of F ′
i (the face is

uniquely determined, since each F ′
i -bridge is not local), then we can extend the

embedding of F ′
i to the whole graph.

The embedding extension easily follows from the planarity testing [34, 12,
72, 18].

Specifically, the following holds:

Theorem 10 Suppose C is a cycle of a given graph G. Then there is a linear
algorithm to decide whether or not G can be embedded into a plane with the
outer face boundary C. Moreover, if it can, the algorithm gives rise to a desired
embedding. In fact, the embedding is unique, up to Whitney equivalence.

For the proof, we refer the reader to [52].
As pointed out above, in order to apply Theorem 10, we need to eliminate

all local bridges.
This can be done by the algorithm in [35]. It can be done in linear time. So,

we now get the following.
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Theorem 11 In linear time, we can modify the subgraphs F ′
1, . . . , F

′
l of G so

that no F ′
i -bridge is local for i = 1, . . . , l.

In conclusion, if we fix one of the embeddings of F ′
i and no F ′

i -bridge is
local, either the rest of bridges can be embedded into faces bounded by the
embedding, or else, there are no embedding extensions. By Theorem 10, if the
first case occurs, we can embed the rest of the bridges in linear time. Since
there are only r = r(g, k) embeddings of F ′

i (for some value r depending only on
g, k), because bsize(F ′

l ) ≤ l′(g, k)) and l ≤ h(g, k), we can get all embeddings
of face-width at least k, up to Whitney equivalence, in linear time.

Our proof also yields the result of Mohar and Robertson [51], but our proof
is constructive, simpler and gives a better bound on f(g).

This completes the description of our algorithm for Theorem 1.

13 Map isomorphism in linear time

It remains to prove Theorem 3. By Theorem 1, for both input graphs G and H ,
we have all polyhedral embeddings, up to Whitney equivalence. The number
of embeddings is at most f(g) for some function f of Euler genus g. Our idea
is to compare each of all the embeddings of G to each of all the embeddings
of H . If we can figure out each of them in linear time, we would get a linear
time algorithm for the graph isomorphism problem of polyhedral embeddable
graphs, since there are at most f(g) embeddings of G and H , respectively.

It remains to figure out the graph isomorphism of two embedded graphs, in
terms of embeddings, i.e., whether or not two embeddings are same. As pointed
out by Weinberg [71], there is an easy algorithm for this problem when the
surface is planar. In fact, we can mimic this algorithm to the arbitrary surface,
so we can easily get an O(n2) time algorithm for this problem.

Hopcroft and Tarjan [33] gave an O(n log n) time algorithm for this problem
when the surface is planar. The idea is to use the famous planar separator
theorem (a separator is a vertex set X of order at most O(

√
n) such that G−X

can be partitioned into two vertex sets A, B in such a way that there are no
edges between A and B, and |A|, |B| ≤ 2n/3) by Lipton and Tarjan [41]. The
applications of this separator theorem were demonstrated in [42]. Specifically,
the separator theorem was applied O(log n) times to obtain O(log n) subgraphs
of constant size. Then Hopcroft and Tarjan [33] compare two graphs by placing
vertices to these small components which can be done in linear time. As a
planar separator can be found in linear time, Hopcroft and Tarjan [33] can get
an O(n log n) time algorithm for this problem.

The same method easily works for bounded genus graphs. There is a lin-
ear time algorithm to find a separator in bounded genus graphs by Gilbert,
Hutchinson and Tarjan [25]. We can use this theorem to follow the Hopcroft
and Tarjan’s approach [33] to obtain an O(n log n) algorithm for this problem.
Therefore, using Theorem 1, there is an O(n log n) algorithm for the graph
isomorphism problem of polyhedrally embeddable graphs.
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At the moment, we are able to mimic the proof of Hopcroft and Wong [30]
to obtain a linear time algorithm. Specifically, we can prove the following.

Theorem 12 Let S be a fixed surface. There is a linear time algorithm to
decide if, for two graphs G, H embedded in S, the embeddings of G and H are
combinatorially the same.

Sketch of the proof. The basic idea of the algorithm is the same as that in
Hopcroft and Wong [30]. Roughly speaking, they assign labels to each vertex
and each edge. Then they made a reduction. This reduction takes place when
(i) there is a vertex of degree at most 2 or (ii) there is a face F of size d such that
some face adjacent to F has size other than d or (iii) there is a vertex v of degree
d such that some vertex adjacent to v has degree other than d. These reductions
are performed in order determined by their priority, and labels of vertices and
edges are changed accordingly. The priority ordering insures a canonical form
for the graph at each stage. This allows to prove that the resulting graphs are
isomorphic if an only if the original graphs are isomorphic. When no further
reduction is possible, the graphs lie in five family of graphs, which are easy to
recognize.

We can do the same reduction process for maps on the surface S. After
performing all reductions, we are left either with very small graph or with a
regular map on S. With the exception of the torus and the Klein bottle, which
admit arbitrarily large regular maps, all other surfaces only have finitely many
regular maps. Therefore, we can check their isomorphism (even with labels on
vertices and edges) in time proportional to the time needed to compare the
labels. This completes the proof if S is not the torus or the Klein bottle.

Finally, for the two exceptional surfaces, all regular maps are classified. They
fall into three categories: (3,6)-regular maps (honeycomb lattices), (6,3)-regular
(their duals), and (4,4)-regular ones. This case needs a special touch but the
map isomorphism can nevertheless be detected in linear time. �

By Theorems 1 and 12, we can prove Theorem 3, since there are at most
f(g) polyhedral embeddings in the fixed surface.
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