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Abstract

We study the degenerate, the star and the degenerate star chro-
matic numbers and their relation to the genus of graphs. As a tool
we prove the following strengthening of a result of Fertin et al. [8]: If
G is a graph of maximum degree Δ, then G admits a degenerate star
coloring using O(Δ3/2) colors. We use this result to prove that every
graph of genus g admits a degenerate star coloring with O(g3/5) colors.
It is also shown that these results are sharp up to a logarithmic factor.

Key words: graph coloring, degenerate coloring, acyclic coloring, star col-
oring, planar graph, genus
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1 Concepts

Let G = (V,E) be a graph. An n-coloring of G is a function f : V → N such
that |f(V )| ≤ n. We say that f is a proper coloring if f(x) �= f(y) for every
edge xy ∈ E. A color class Ci of f is the set f−1(i), where i ∈ f(V ). Two
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colorings f and g of G are said to be equivalent if the partitions of V into
color classes of f and g are equal. Suppose that for each vertex v ∈ V (G)
we assign a list L(v) ⊂ N of admissible colors which can be used to color
the vertex v. A list coloring of G is a coloring such that f(v) ∈ L(v) for
each v ∈ V . If for any choice of lists L(v), v ∈ V , such that |L(v)| ≥ k, there
exists a proper list coloring of G, then we say that G is k-choosable. The
list chromatic number of G, denoted as ch(G), is the least k, such that G is
k-choosable.

A proper coloring of G, such that the union of any two color classes
induces a forest, is called an acyclic coloring. The acyclic chromatic number
of G, denoted as χa(G), is the least n such that G admits an acyclic n-
coloring.

The notion of a degenerate coloring is a strengthening of the notion of
an acyclic coloring. A graph G is k-degenerate if every subgraph of G has
a vertex of degree less than k. A coloring of a graph such that for every
k ≥ 1, the union of any k color classes induces a k-degenerate subgraph is
a degenerate coloring. The degenerate chromatic number of G, denoted as
χd(G), is the least n such that G admits a degenerate n-coloring.
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Figure 1: An example of a star coloring which is not degenerate

A proper coloring of G, with no two-colored P4 is called a star coloring.
This is equivalent to saying that the union of any two color classes induces
a star forest, i.e. a subgraph whose every component is a star K1,t for some
t ≥ 0. The least n such that G admits a star coloring with n colors is called
the star chromatic number of G, denoted as χs(G).

If a coloring is both, degenerate and star, then we speak of a degenerate
star coloring. The corresponding chromatic number is denoted as χsd.
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A proper list coloring is an acyclic coloring if the union of any two color
classes induces a forest. The acyclic list chromatic number cha is the least n,
such that for any assignment of lists of size n, there is an acyclic list coloring
of G. The definitions of list versions for all other types of chromatic numbers
are analogous to their non-list versions and we denote the list versions of
chromatic numbers by cha, chd, chs and chsd.

Clearly, χa(G) ≤ χd(G) ≤ χsd(G) and χa(G) ≤ χs(G) ≤ χsd(G). How-
ever χd(G) and χs(G) are not comparable. To see this, note that the de-
generate chromatic number of a tree is two. However, for any tree T which
is not a star, χs(T ) ≥ 3. In Fig. 1 we give an example of a graph whose
star chromatic number is four, but has no degenerate four-coloring (since its
minimum degree is four).

It is well known that the list chromatic number of a graph of genus g
is O(g1/2) (see e.g., [11]). For acyclic colorings, Borodin proved in [6] that
every planar graph admits an acyclic 5-coloring and thereby solved a conjec-
ture proposed by Grünbaum [9]. Alon et al. [3] determine the (asymptotic)
dependence on the acyclic chromatic number for graphs of genus g, where
g is large. The corresponding bounds for the acyclic list chromatic number
have not appeared in the literature, but the proof in [3] can be rather easily
adapted to give the same bounds for the list chromatic version.

It is also conjectured in [6] that every planar graph can be colored with
five colors, so that the union of any k-color classes induces a k-degenerate
graph for k = 1, . . . , 4. Rautenbach [13] proved the existence of degenerate
colorings of planar graphs using eighteen colors. This result was recently
improved to nine colors in [10].

In [1] it was proved that every planar graph admits a star coloring with
twenty colors and that the star chromatic number of a graph of genus g is
O(g).

Planar Upper bound Lower bound
ch(G) 5 O(g1/2) Ω(g1/2)
cha(G) ≤ 7 O(g4/7) Ω(g4/7/ log(g)1/7)
chd(G) ≤ 9 O(g3/5) Ω(g4/7/ log(g)1/7)
chs(G) ≤ 20 O(g3/5) Ω(g3/5/ log(g)1/5)
chsd(G) – O(g3/5) Ω(g3/5/ log(g)1/5)

Table 1: Bounds for chromatic numbers in terms of the genus (g)

The aim of this paper is to establish upper and lower bounds for the
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degenerate and the star list chromatic numbers. We prove that the degen-
erate star choice number of a graph of genus g is O(g3/5) thereby improving
the bound O(g) given in [1]. We also prove that our bound is sharp up to
a logarithmic factor. These results in particular solve Problem 3 proposed
in [1, Section 8]. The results of this paper and previously known results are
collected in Table 1.

2 Probabilistic approach

In this section we give upper bounds on the degenerate star choice number
in terms of the maximum degree. The proof uses the probabilistic method
in a way similar to that used in [2] and [8] in the case of acyclic and star
colorings. It is based on the Lovász Local Lemma but the proof is more
complicated than the corresponding proofs in [2] and [8]. We refer to [12]
for applications of the probabilistic method to graph colorings.

For X,Y ⊆ V we denote by E(X,Y ) the set of edges with one endvertex
in X and the other in Y .

Observation 2.1 Let G be a graph with minimum degree k ≥ 2 and let f be
a proper k-coloring of G. If S is a non-empty subset of a color class Ci of
f , then there exist a color class Cj of f , such that |E(S,Cj)| ≥ k

k−1 |S| > |S|.

Proof. Each vertex in S has degree at least k. Therefore,
∑
j �=i

|E(S,Cj)| ≥ k|S|,

which implies the claimed inequalities. �

To prove the main result of this section, we will use the Lovász Local
Lemma stated below (c.f. [4] or [12]).

Lemma 2.2 Let A1, A2, . . . , An be events in an arbitrary probability space.
Let H = (V,E) be a graph whose vertices V = {1, 2, . . . , n} correspond to the
events A1, A2, . . . , An and whose edge-set satisfies the following: for each i,
the event Ai is mutually independent of the family of events {Aj | ij /∈ E}.
If there exist real numbers 0 ≤ wi < 1 such that for all i

Pr(Ai) ≤ wi

∏
ij∈E

(1 − wj)
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then

Pr
(
∧n

i=1 Āi

)
≥

n∏
i=1

(1 − wi) > 0 ,

so that with positive probability no event Ai occurs.

Any graph H satisfying the condition stated in the above lemma is called
a dependency graph for the events A1, . . . , An.

The following theorem is the main result of this section. It is proved
without an attempt to optimize the constant.

Theorem 2.3 For any graph G with maximum degree Δ there is a degen-
erate star list coloring of G whenever the list of each vertex contains at least

1000Δ3/2� admissible colors. Moreover, a list coloring exists such that for
every vertex v of degree at most Δ1/2, all neighbors of v are colored differ-
ently. In particular χsd(G) ≤ 
1000Δ3/2�.

Proof. Let G be a graph with maximum degree Δ and let α = 
1000Δ3/2�.
Suppose that for each vertex v of G a list L(v) of admissible colors is given
and that |L(v)| = α. Consider the uniform probability space of all list
colorings of G. Then each list coloring of G appears with equal probability.

We will apply the Lovász Local Lemma to show that in this probability
space, a coloring of G is a degenerate star list coloring, and has additional
properties as stated in the theorem, with positive probability. For this pur-
pose, we define events of several types and show that if none of them occurs,
then the coloring is a degenerate star list coloring with the required proper-
ties.

A pair of vertices at distance two having at least Δ1/2 common neighbors
is called a special pair. We next define a family F of subgraphs of G. On
Fig. 2 we give a set of graphs X and for each graph X ∈ X , a coloring
gX (as shown) is given. Suppose that R is a subgraph of G isomorphic to
X ∈ X − {S, T} and let i : V (X) → V (R) be an isomorphism of these two
graphs. If for every pair a, b ∈ V (X), having the same color under gX , the
pair i(a), i(b) is not a special pair in G, then R is in F . Moreover, F contains
all special pairs of vertices and all paths x1x2x3 such that degG(x2) ≤ Δ1/2.

Let f be a random list coloring of G. For R ∈ F , denote by XR the
event that the induced coloring f|R on R is equivalent to the coloring gX ,
where R ∈ F ,X ∈ X and R ∼= X. We refer to an event XR as an event of
type X.
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Figure 2: The set of graphs X = {A,B,C,D,E, F, I, J,K,L,M,S, T}

Claim 0: If no event XR occurs for X ∈ X , and R ∈ F , then the color-
ing f of G is a degenerate star coloring such that for every vertex of degree
≤ Δ1/2 all its neighbors are colored by pairwise different colors.

Proof: Let us observe that the definition of the set F includes the con-
dition that vertices of the same color do not form a special pair. However,
knowing that events of type S do not occur, we may simply forget about
this condition in the rest of the proof. In particular, if a subgraph X of G is
isomorphic to some Y ∈ X − {S, T}, then its coloring f|X is not equivalent
to gY .

Since no event of type A, B, or T occurs, the coloring f is a star coloring
such that any vertex of degree at most Δ1/2 has its neighbors colored by
pairwise different colors. It remains to prove that the coloring is degenerate.
Suppose on the contrary, that there is a subgraph Q of G with minimum
degree k colored by k colors. Since f is a proper coloring, we have k ≥ 2.
Then there exists a vertex x ∈ V (Q) of (say) color 1 adjacent to two vertices
y, z of color 2 (see Observation 2.1). Furthermore, there is a color class P
of f|Q, such that |E({y, z}, P )| ≥ 3. Since events of type B do not occur,
the color of P is not 1 or 2. Similarly we see that N(y) ∩ N(z) ∩ P = ∅.
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As events of type C are excluded, there are three vertices u, v, w ∈ P , such
that u, v are adjacent to y and w is adjacent to z. Let Y = {u, v, w}. Then
there is a color class P ′ such that |E(Y, P ′)| ≥ 4. Since events of type B,
D, E, and F do not occur, P ′ is distinct from the color classes 1 and 2. If
|N(Y )∩P ′| ≥ 4 then (since B and C do not occur) an event of type I, K, L
or M happens, a contradiction. If |N(Y )∩P ′| ≤ 3, then a similar argument
shows that either type J or type E event occurs. This contradiction proves
the claim. �

Let H be the graph with vertices XR (X ∈ X , R ∈ F , R ∼= X), in which
two events XR1 and YR2 (X,Y ∈ X ) are adjacent if and only if R1∩R2 �= ∅.
Since every vertex gets its color independently from others, XR is mutually
independent of the family of events YR′ (Y ∈ X , R′ ∈ F , R′ ∼= Y,R∩R′ = ∅).
Therefore, the graph H is a dependency graph for the events XR.

Claim 1: Let X ∈ X , R ∈ F and R ∼= X. Then for every Y ∈ X − {S},
the number of events of type Y adjacent to XR in H is at most 100Δ|Y |−1.

Proof: If XR is adjacent to YR′ , then there is a vertex u ∈ R ∩ R′.
There are |X||Y | possibilities to choose a one-vertex intersection of R and
R′. Since G has maximum degree Δ and R′ is connected, there are at most
Δ|R′|−1 ways to choose the other vertices of R′. It follows that there are
at most |X||Y |Δ|Y |−1 graphs isomorphic to Y whose intersection with R is
nonempty. The result follows from the fact that |X| ≤ 10 for all X ∈ X . �

Claim 2: Let X ∈ X , R ∈ F and R ∼= X. Then the number of events
of type J adjacent to XR in H is at most 90Δ15/2.

Proof: There are 9|R| ≤ 90 possibilities to choose a one-vertex inter-
section of R with a graph R′ isomorphic to J . Let i : V (R′) → V (J)
be an isomorphism and recall that any pair of vertices a, b in R′ with
gJ (i(a)) = gJ(i(b)) is not a special pair. In particular, a pair of vertices
in the four-cycle of R′ is not a special pair. Therefore there are at most
Δ1/2 ways to choose a common neighbor of this pair. Since there is a vertex
of R′ that can be chosen in at most Δ1/2 ways, we conclude that there are
at most Δ1/2Δ7 ways to chose the graph R′, when a one-vertex intersection
of R and R′ is fixed. �

Claim 3: Let X ∈ X , R ∈ F and R ∼= X. Then the number of events
of type S adjacent to XR in H is at most 10Δ3/2.
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Proof: For a fixed vertex u ∈ R there are less than Δ2 induced paths of
length 2 with one endvertex u. Each special pair of vertices requires Δ1/2

of these paths. Thus there are at most Δ2/Δ1/2 vertices v, such that u, v is
a special pair. It follows that the number of special pairs intersecting R is
at most |R|Δ3/2 ≤ 10Δ3/2. �

Claim 4: Let X ∈ X , R ∈ F and R ∼= X. Then the number of events
of type T adjacent to XR in H is at most 30Δ3/2.

Proof: If XR and TR′ are adjacent in H, then R and R′ have nonempty
intersection. There are at most 3|R| ways to choose a one-vertex intersection
of R and a path x1x2x3. Since degG(x2) ≤ Δ1/2, the other two vertices of
R′ can be chosen in at most Δ3/2 ways. It follows that there are at most
3|R|Δ3/2 ≤ 30Δ3/2 events of type T adjacent to XR in H. �

The following table gives upper bounds P(XR) on probabilities of events
XR of different types X ∈ X :

Type A, S, T B, C D, E, F, M J I, K, L
P(XR) α−1 α−2 α−4 α−5 α−6

Let us define the weights for the Local Lemma 2.2. For each event XR

of type X, let the weight be wX = 2P(XR). Set T = X − {J, S, T}. To be
able to apply Lemma 2.2 it suffices to show that

P(XR) ≤ wX(1−wJ)90Δ
15/2

(1−wS)10Δ
3/2

(1−wT )30Δ
3/2

∏
Y ∈T

(1 − wY )100Δ
|Y |−1

.

To prove this, observe that 1 − nx ≤ (1 − x)n, so it suffices to show that

1
2
≤ (1− 90wJΔ15/2)(1− 10wSΔ3/2)(1− 30wT Δ3/2)

∏
Y ∈T

(1− 100wY Δ|Y |−1).

But this is easily seen to be true, since the weights for the events are wJ =
2α−5 ≤ 2 · 10−15Δ−15/2 and wA = wS = wT = 2α−1 ≤ 2 · 10−3Δ−3/2 and
wY ≤ 2 · 10−6Δ1−|Y | for Y ∈ X − {J,A, S, T}.

To conclude, Lemma 2.2 applies and shows that there exists a coloring
f for which no event XR (X ∈ X , R ∈ F) occurs. Finally, Claim 0 shows
that f is a coloring whose existence we were to prove. �
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3 Degenerate star colorings for graphs of genus g

An orientation of a graph G is a function h : E(G) → V (G), such that for
each edge e = xy ∈ E(G), h(e) ∈ {x, y}. We call h(e) the head of e and the
other endvertex of e the tail of e. Let G be a graph and h an orientation of
G. The set of in-neighbors of v is

N−(v) = {u ∈ V (G) |uv ∈ E(G), h(uv) = v}

and the set of out-neighbors of v is

N+(v) = {u ∈ V (G) |uv ∈ E(G), h(uv) = u} .

If c is a coloring of G, we define the set of in-colors C−(v), and out-colors
C+(v) of v as C±(v) = {c(u) |u ∈ N±(v)}.

The following lemma is a simple, yet effective, tool for recognition of star
colorings. We prove it for the sake of completeness although an equivalent
result appears in [1] and some other papers.

Lemma 3.1 A proper coloring of G is a star coloring if and only if the
edges of G can be oriented so that for every vertex v

|N−(v)| = |C−(v)| and C−(v) ∩ C+(v) = ∅ .

Proof. Suppose that c is a star coloring of G. Then the union of any two
color classes induces a star forest. Orient the edges with one endvertex in
color class A and the other in color class B so that the tail of each edge is the
root of a star induced by A and B (the root of a star, which is not a K2, is
the vertex of degree at least two, and the root of K2 is any vertex of K2). It
is straightforward that so defined orientation satisfies both conditions from
the lemma.

Conversely, let c be a proper coloring of G and h an orientation of G with
properties as stated in the lemma. Suppose that x1x2x3x4 is a two-colored
path on four vertices and (without loss of generality) assume that h(x2x3) =
x3. Since the in-neighbors of x3 are colored by pairwise different colors, we
have h(x3x4) �= x3. Since C−(v) ∩ C+(v) = ∅ we see that h(x3x4) �= x4, a
contradiction. �

The following observation will be used in a recursive construction of
degenerate colorings.
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Observation 3.2 Let G be a graph and let c be a degenerate coloring of a
vertex-deleted subgraph G − v. If the neighbors of v are colored by pairwise
distinct colors and we color v by a color which is different from all of those
colors, then the resulting coloring of G is degenerate.

We are ready for our main result. Its proof is given without intention
to optimize constants. Let us recall that a surface has Euler genus g if its
Euler characteristic is equal to 2 − g.

Theorem 3.3 Let G be a simple graph embedded on a surface of Euler
genus g. Then chsd(G) ≤ 
1000g3/5 + 100000�.

Proof. Let Σ be a surface of Euler genus g, and let G be a graph embedded
on Σ. For a vertex v ∈ V (G), let L(v) be the list of admissible colors.
We shall prove a stronger statement that G admits a degenerate star list
coloring from lists of size at least α := 
1000g3/5 + 100000�, such that every
vertex of degree ≤ 12 has its neighbors colored by pairwise distinct colors.
We will reduce the graph G by using a sequence of edge contractions so
that in the resulting graph G0 the number of vertices of degree at least
Δ0 := 
1

4g2/5 + 12� is at most α0 := 
48g3/5�. We say that a vertex v of G
is reducible if its degree is either at most two, or its degree is equal to 5 − i
and v is adjacent to a vertex of degree ≤ 9 + i for some i ∈ {0, 1, 2}.

We define a sequence of graphs G = G�, G�−1, . . . , G0 as follows. We
start with G� = G, and the precise value of � will be determined later.
Suppose that we have the graph Gt. If it has no reducible vertices, then
we stop and adjust the indices so that the current graph is G0 and � is the
number of reductions used to get G0 from G. Otherwise, let v be a reducible
vertex of Gt. In order to obtain Gt−1, we perform the following reduction.
If v has degree at most 1, then delete v; if v has degree 2, then delete v and
add an edge between the neighbors of v (if not already present). Otherwise,
v is of degree 5− i where i ∈ {0, 1, 2}. In this case contract the edge joining
v and a neighbor u of degree at most 9 + i (and delete possible multiple
edges that appear after the contraction). The new vertex inherits the list
L(u) of admissible colors from u.

Let the vertex set of G0 be {v1, v2, . . . , vn}, where deg(vi) ≤ deg(vi+1)
for i = 1, . . . , n − 1.

Claim 0: The number of vertices in G0 of degree at least Δ0 is at most α0.

Proof: Suppose (reductio ad absurdum) that deg(vk) ≥ Δ0, where k =
n − α0. Since G0 is a minor of G, it has an embedding in the same surface
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Σ of Euler genus g as G has. Let F be the set of faces of this embedding.
Let c(vi) = deg(vi) − 6 for i = 1, . . . , n and for each face f ∈ F let c̄(f) =
2deg(f)− 6, where deg(f) is the length of f . Euler’s formula for Σ implies
(cf., e.g., [11]) that

n∑
i=1

c(vi) +
∑
f∈F

c̄(f) ≤ 6g − 12 .

Now let c′(vi) = 1
2 deg(vi) if i > k and c′(vi) = c(vi) otherwise. Then

n∑
i=1

c′(vi) +
∑
f∈F

c̄(f) =
n∑

i=1

c(vi) +
n∑

i=k+1

(
6 − 1

2 deg(vi)
)

+
∑
f∈F

c̄(f)

≤ 6g − 12 + 6 · 48g 3
5 − 24g

3
5
(

1
4g

2
5 + 12

)
< 0 .

Let c′′ be obtained from c′ and c̄ by the following discharging rules, which
preserve the left hand side of the above inequality. From each face f ∈ F
with deg(f) ≥ 4 send charge 1 to each vertex of degree 3 lying on the
boundary of f . If deg(f) ≥ 4 and three consecutive vertices on its boundary
have degrees deg(v1) ∈ {4, 5}, deg(v2) = 11, and deg(v3) ∈ {4, 5}, then f
sends charge 1 to v2 as well. Further, send charge 1 from each vertex x of
degree ≥ 11 to each neighbor y of degree 3 such that the edge xy is incident
with two faces of length 3, and send 1/2 to other neighbors of degree 3 and
to each neighbor of degree 4 or 5. Finally, send 1/5 from each vertex of
degree 10 to each neighbor of degree 5.

Our goal is to show that c′′(x) ≥ 0 for every x ∈ V (G0) ∪ F . This will
imply that

n∑
i=1

c′(vi) +
∑
f∈F

c̄(f) =
∑

x∈V (G0)∪F
c′′(x) ≥ 0 ,

which will in turn contradict the above inequality.
Since G0 has no reducible vertices, a face f ∈ F has at most �1

2 deg(f)�
incident vertices whose degree is 3, or is 11 (and their neighbors on f have
degree 4 or 5). It sends charge 1 to them. Therefore,

c′′(f) ≥ c̄(f) − 1
2 deg(f) ≥ 0

whenever deg(f) ≥ 4. Clearly, c′′(f) = c̄(f) = 0 if deg(f) = 3.
It is easy to see that each vertex v of degree at least 12 sends charge

at most 1
2 deg(v), so that c′′(v) ≥ c′(v) − 1

2 deg(v) ≥ 0. It is also clear that
for a vertex of degree ten, c′′(v) ≥ c′(v) − 1

5 · 10 > 0. If v has degree 11,
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then c′(v) = 5. The vertex may send charge 1
2 to all its neighbors (if they

all have degrees 4 or 5). This is the only situation where its charge c′′(v)
may become negative. However, in such a case v receives 1 from each of its
neighboring faces (which are of length at least 4 since there are no reducible
vertices). Therefore, c′′(v) ≥ 0 holds in every case. Vertices of degrees
between 6 and 9 have not changed their charge. The reader will verify that
vertices of degrees 3, 4, or 5 have c′′(v) ≥ 0 as well.

In conclusion, we have c′′(v) ≥ 0 for every v ∈ V (G0) and we have
c′′(f) ≥ 0 for every f ∈ F . This yields a contradiction. �

Let k = n − α0 be as in the above proof, and let S = {vi | i > k} be the
set of special vertices. For each special vertex vi we choose a color fvi ∈ L(vi)
so that fvi �= fvj whenever i �= j. This is possible since |L(vi)| > |S| = α0.
Define new lists of admissible colors for the remaining vertices v ∈ V (G)−S:

L′(v) = L(v) − {fvi | i > k} .

Note that |L′(v)| ≥ |L(v)| − α0 and by Claim 0, degG0
(vk) ≤ Δ0. If

degG0
(vk) ≤ 144, then we color the graph induced by vertices v1, . . . , vk

by a distance-two list coloring with 1442 colors, where the distance-two col-
oring is a proper list coloring of G0 such that any two vertices at distance two
are colored differently. If degG0

(vk) > 144, then we give the graph induced
by vertices v1, . . . , vk a degenerate star list coloring with 
1000Δ3/2

0 � colors,
where the color for vi is taken from the list L′(vi) (see Theorem 2.3). This
is possible since max{1442, 1000Δ3/2

0 } ≤ |L′(vi)|. Since Δ0 > 144, Theorem
2.3 assures that each vertex of degree at most 12 has its neighbors colored
by different colors. Then we color each special vertex vi (i > k) with the
color fvi , which completes the coloring of G0. Note that each color used for
special vertices has been used only once altogether, since it has been deleted
from the lists. Therefore the coloring of G0 is a degenerate star coloring,
because the subgraph G0 − S was given a degenerate star coloring.

Now we extend this coloring to a coloring of G. Observe that while con-
tracting an edge uv (where v was a reducible vertex in Gt) when going from
Gt+1 to Gt, all vertices preserve their neighbor set except for the common
neighbors of u and v and for the new vertex (which is again denoted by u)
obtained after the contraction. Observe that degGt

(u) ≤ 12.
When we go back from Gt to Gt+1, we add the vertex v ∈ V (Gt+1) −

V (Gt). By induction, the coloring of Gt is a degenerate star coloring. There-
fore, we can orient the edges of Gt so that |N−(x)| = |C−(x)| and C−(x)∩
C+(x) = ∅ for each vertex x ∈ V (Gt).
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We color the vertex v by a color in L′(v) so that the neighbors of each
vertex x ∈ NGt+1(v) with degGt+1

(x) ≤ 12 receive pairwise different colors
and so that the color of v is different from the colors of its neighbors and the
colors in C−(x), where x ∈ NGt+1(v). We extend the orientation of Gt to an
orientation of Gt+1 by orienting all edges incident to v towards v. Observe
that by doing so |C−(x) − {fvi | i > k}| remains bounded by Δ0 for each
x ∈ V (Gt+1)−S. Since |L′(v)| > 4(Δ0 +1)+12, there is always an available
color.

We claim that so defined coloring of Gt+1 is a degenerate star coloring
with neighbors of each vertex of degree at most 12 colored by different colors.
Suppose that Gt was obtained from Gt+1 by contracting the edge vu, where
degGt+1

(v) = 5 − i and degGt+1
(u) ≤ 9 + i for some i ∈ {0, 1, 2}. Then

degGt
(u) ≤ 12. Therefore u ∈ V (Gt) has all neighbors colored by pairwise

different colors and hence also v ∈ V (Gt+1) has all neighbors colored by
pairwise different colors. The same is also true if the reduced vertex v is of
degree 1 or 2. It follows from Observation 2.1 that the coloring of Gt+1 is
degenerate. We infer from the definition of the coloring (and orientation)
that the set of in-colors and the set of out-colors of each vertex are disjoint
and, moreover, the in-neighbors of a vertex receive pairwise different colors.
This shows that the coloring is also a star coloring and completes the proof.
�

4 Lower bounds

In this section we provide lower bounds which show that the upper bound
given in Theorem 3.3 is asymptotically tight up to a polylogarithmic factor.
It is interesting to note that the lower bound construction is also based on
the probabilistic method, although in an essentially different way as in the
proof of Theorem 2.3 used to establish the upper bound.

Let F be a family of connected bipartite graphs, each of order at least
three. A proper coloring of G is F-free if it contains no two-colored subgraph
isomorphic to a graph F ∈ F . The least n such that G admits an F-free
coloring with n colors is denoted by χF (G).

Special cases of the following lemma have appeared in [2], [3], and [1].
Here |G| and ||G|| denote the number of vertices and the number of edges
of G, respectively.

Lemma 4.1 Let F be a family of connected bipartite graphs on at least three
vertices and let F ∈ F be a graph with ‖F‖ minimum. Let G = Gn,p be the
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random graph on n vertices where each pair of vertices is connected by an
edge, randomly and independently, with probability

p = 9
( log n

n

)1/||F ||
.

Then almost surely (that is, with probability tending to one as n tends to
infinity), G has at most

9n(2||F ||−1)/||F ||(log n)1/||F ||

edges and χF (G) > 1
2|F | n.

Proof. It is a standard observation that the number of edges of a random
graph with edge probability p is almost surely less than pn2 (see, e.g., [4]).
This proves the claim about ||G||.

Let A ∪ B be the bipartition of the vertex set of F . Set a = |A| and
b = |B| and assume that a ≥ b. Suppose that V1, . . . , Vk is a partition of
the vertex set of G into k ≤ 1

2n/|F | parts. Then we delete at most a − 1
vertices in each Vi so that there is a partition of each Vi into sets U i

1, . . . , U
i
k

of size a or b and so that (in all partitions together) the number of sets of
size a equals (or differs by one) the number of sets of size b. The number
of deleted vertices will be at most 1

2(a − 1)n/|F | < n/2 and therefore there
are at least n/2a pairwise disjoint sets U j

� whose size is a or b and each of
them is a subset of a member of the partition V1, . . . , Vk. Since the number
of a-sets is essentially the same to the number of b-sets we conclude that
there are at least n/4a sets of size a and at least n/4a sets of size b. The
probability that the partition V1, . . . , Vk is an F-free coloring is at most

(1 − p||F ||)(n/4a)2 < exp(−(9||F ||/16a2)n log n) ≤ n−81n/64 .

The last inequality follows from ||F || ≥ a ≥ 2. Since there are less than
nn partitions of the vertex set of an n-vertex graph into at most n/(2|F |)
classes we conclude that the probability that an F-free coloring with at most
n/(2|F |) colors exists tends to 0 as n tends to infinity. �

Theorem 4.2 For every large enough g, there is a graph G embeddable in
an orientable (resp. non-orientable) surface of genus g, such that χsd(G) ≥
χs(G) ≥ 1

32g3/5/(log g)1/5.
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Proof. Let F = {P4} and let G be a graph of order n with at most
9n5/3(log n)1/3 edges and χs(G) ≥ n/8 (see Lemma 4.1). It is easy to see
that G embeds in an orientable (resp. non-orientable) surface of Euler genus
g0 = ||G|| − 1 ≤ 
9n5/3(log n)1/3� =: g (in fact, every 2-cell embedding of
G satisfies this bound). Since g > n5/3, it follows that log g > 5

3 log n.
Substituting this to

g < 9n5/3(log n)1/3 + 1

we conclude that
n > 1

4g3/5/(log g)1/5

(for large enough g) and hence the theorem follows from χs(G) ≥ n/8. �
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