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Abstract

Mathematical models of fullerenes are cubic planar maps with pentagonal
and hexagonal faces. As a consequence of Eulers’s formula the number of
pentagons in such a map is 12. Conversly, for any integer α ≥ 0, there exists
a fullerene map with precisely α hexagons unless α = 1. In this paper, we
consider hyperbolic analogues of fullerenes, which are defined as cubic maps of
face-type (6, k) on orientable surface of higher genus greater than 1, where by
a map of face-type (6, k) we mean a map with only two face lengths: 6 and k

for some k ≥ 7. It follows from Euler’s formula that if k is an integer such that
for any g ≥ 2 there exists a cubic map of face-type (6, k) and genus g, then
k ∈ {7, 8, 9, 10, 12, 18}. In such a map, the number of k-gons is determined in
terms of genus, with no condition on the number of hexagons. We show that
for any k ∈ {7, 8, 9, 12, 18} and any g ≥ 2 there exists a cubic map of face-
type (6, k) with any prescribed number of hexagons. Furthermore, for k = 7
and 8 we prove the existence of polyhedral cubic maps of face-type (6, k) on
surfaces of any prescribed genus g ≥ 3 and with any number of hexagons α,
with possible exceptions when k = 8 and either g = 2 and α = 4 or g = 3 and
α = 1, 2.
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1 Introduction

Fullerenes are carbon-cage molecules comprised of carbon atoms that are arranged
on a sphere with pentagonal and hexagonal faces. The icosahedral C60, well-known
as Buckminsterfullerene was found by Kroto at al. [9], and later confirmed by ex-
periments by Krätchmer at al. [8] and Taylor at al. [16]. Since the discovery of the
first fullerene molecule, fullerenes have been objects of interest to scientists all over
the world.

From the graph theoretical point of few, fullerenes can be viewed as cubic 3-
connected graphs embedded into a sphere with face lengths 5 or 6. Euler’s formula
implies that each fullerene contains exactly twelve pentagons, but provides no re-
striction on the number of hexagons. It is well known that mathematical models of
fullerenes with precisely α hexagons exist for all values of α with the sole exception
of α = 1.

The aim of this paper is to investigate mathematical models of fullerene ana-
logues, embedded on orientable surfaces of higher genera, with all faces of length 6
or k for some fixed k. In particular, we show that for any k ∈ {7, 8, 9, 12, 18} and
any g ≥ 2 there exists a cubic map of face-type (6, k) with any prescribed number
of hexagons. This problem was addressed before by Jendrol [5] in a more general
setting of cubic maps with prescribed number of faces of given length, provided that
the number of hexagons is large enough. (The actual smallest number of hexagons
needed for the arguments of [5] to work is hard to extract.) However, it is the maps
with a small number of hexagons that seem to be harder to construct.

We are particularly interested in the cases k = 7 and k = 8, where we discuss
the existence of cubic maps of face-type (6, k) that are, in addition, polyhedral.

In the rest of this section we introduce some terminology, needed to state our
results in a rigorous mathematical manner. An (orientable) map is an embedding
of a finite graph into an (orientable) surface (compact 2-manifold) such that the
graph separates the surface into simply-connected regions, called the faces of the
map. Unless explicitly stated otherwise, the surface is assumed to be closed (with-
out “holes”) and connected. Similarly all the graphs are connected unless stated
otherwise.

The length of a face is the number of edges on its boundary (counted twice if
the edge appears twice on the boundary of the face). Planar maps with only two
face-lengths were considered in [3, 10]. If the embedded graph is regular of valence
3, then the map is also called cubic. A map in which each face is of length k1 or k2,
for some fixed integers k1, k2, is said to be of face-type (k1, k2).

A map is called polyhedral if

• the underlying graph is simple (that is, it has no loops and multiple edges),

• each vertex appears at most once on the boundary of a face (or equivalently,
the closure of a face is a closed disk), and

2



• the boundaries of two faces are either disjoint or they meet in a single vertex
or in a single edge.

By a well-known result of Robertson and Vitray [13], a map is polyhedral if the
underlying graph is 3-connected and the embedding has representativity at least
three.

Observe that the above conditions simplify if the map in question is cubic. In
particular, an embedding of a simple cubic graph is polyhedral provided that every
edge lies on the boundary of two distinct faces (i.e. no face is adjacent to itself),
and that any two adjacent faces share only one edge in the boundary.

Mathematical models for fullerenes are precisely the cubic polyhedral maps of
face-type (6, 5). We shall generalize this notion and call a cubic polyhedral map of
face-type (6, k), k ≥ 7, a k-gonal fullerene or a hyperbolic fullerene as it is embedded
on an orientable surface of hyperbolic type. Constructions of higher genus fullerens
(with some additional symmetry properties) have in fact been suggested earlier by
Gareth Jones [6].

In this paper we resolve the question of existence of k-gonal fullerenes for k = 7
and 8. In particular, in Section 5 we show that a heptagonal fullerene of genus g
with exactly α hexagonal faces exists for any g ≥ 2 and any α ≥ 0. Further, in
Section 6, we show that an octagonal fullerene of genus g with exactly α hexagonal
faces exists whenever the following holds:

1. g = 2 and α = 3 or α ≥ 5; or

2. g = 3 and α ≥ 3; or

3. g ≥ 4 and α ≥ 0.

For g = 2 and α ≤ 2 as well as for g = 3 and α = 0 octagonal fullerenes do not
exist. The question of existence of octagonal fullerens remains open for g = 2 and
α = 4, as well as for g = 3 and α ∈ {1, 2}.

2 Necessary conditions

A straightforward application of Euler’s formula gives the following necessary con-
dition for the existence of a k-gonal fullerene.

Lemma 2.1 Let M be an n-vertex cubic map of face-type (6, k), k 6= 6, on an
orientable surface of genus g with α hexagons and β k-gons. Then,

β =
12(g − 1)

k − 6
and n = 2α +

4k(g − 1)

k − 6
.
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Proof. Let e and f be the number of edges and faces of the map M , respec-
tively. Then, f = α + β, e = (6α + kβ)/2 and n = 2e/3. Plugging these relations
into Euler’s formula n − e + f = 2 − 2g gives the first relation. Inserting the first
relation for β into n = (6α + kβ)/3 yields the second relation.

If we admit k = 6 we obtain the well-known hexagonal tessellations of the torus;
these maps are also known under the name toroidal polyhexes, see [14, 18]. We shall
therefore only consider k-gonal fullerens of genus at least 2.

Proposition 2.2 Let k be a number such that for any g ≥ 2 there exists a cubic
map of face-type (6, k) with genus g. Then k ∈ {7, 8, 9, 10, 12, 18}.

Proof. If the assumption is true for some k, then, by Lemma 2.1, we have
k > 6 and both 12(g−1)/(k−6) and 4k(g−1)/(k−6) are integers. Since we require
that there exists such a map for any g ≥ 2, even for g = 2, we conclude that k − 6
divides 12. This is satisfied only for k ∈ {7, 8, 9, 10, 12, 18}.

As we show in the next section, the necessary condition on k, given by Propo-
sition 2.2, is also sufficient, with a possible exception when k = 10 and g is even.
What is more, as Theorem 3.1 states, these maps exist for any prescribed number
of hexagons.

Of course, it is not possible for all of these maps to be polyhedral (and thus
k-gonal fullerenes). For example, a cubic map of face-type (6, 8) of genus 2 and with
0 hexagons cannot be polyhedral since such a map would have 6 faces, all of length
8, implying that some of the faces would share more than one edge in common.

3 Non-polyhedral maps

In this section we prove the following theorem.

Theorem 3.1 Let g and α be arbitrary integers such that g ≥ 2 and α ≥ 0. If
k ∈ {7, 8, 9, 12, 18} or if k = 10 and g is odd, then there exists a cubic map of
face-type (6, k) with genus g and α hexagonal faces.

Remark. The existence of cubic maps of face-type (6, 10) for arbitrary number
of hexagons remains open in the case of even genus.

In the proof of Theorem 3.1, we use the following general construction.

Construction A. Let M be a map on an orientable (not necessarily connected)
surface with h holes, h ≥ 2. Assume that all the holes are bounded by cycles of even
length and that the degrees of the vertices in each boundary cycle are alternatingly
2, 3, 2, 3, . . .. Pick two holes whose boundary cycles have the same length, and identify
their boundaries in such a way that the vertices of degree 3 in one cycle are identified
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with the vertices of degree 2 in the other cycle, and so that the resulting surface
remains orientable. Then we donote the resulting map by M∗.

A few remarks about the resulting map M∗ are in place. Suppose that the iden-
tified cycles are A = (a0, a1, . . . , a2k−1) and B = (b0, b1, . . . , b2k−1), where a0 and b0

have degree 2, and where A is listed in a clockwise and B in the counter-clockwise ori-
entation (with respect to some fixed orientation of the underlying surface). In order
to obtain an orientable surface, we will assume that, for some fixed t ∈ {0, . . . , k−1}
and every i ∈ {0, . . . , 2k− 1} the oriented edge aiai+1 is identified with the oriented
edge b2t−1+ib2t+i (the addition in the subscripts being modulo 2k). Here different
choices of the parameter t (sometimes referred to as the twist) may result in non-
isomorphic maps.

Note that the resulting map M∗ has precisely the same faces as the original
map M , however the number of holes in the underlying surface was decreased by 2.
Also, the vertices obtained by identification all have degree 3, and the degrees of the
remaining vertices in M∗ are the same as in M . Now assume that the original map
M is of face-type (k1, k2) and that all the vertices which do not lie on the boundary
of the underlying surface (holes) have degree 3. Then the map obtained by applying
Construction A repeatedly until no holes remain is cubic and is of face-type (k1, k2).
Of course, Construction A can be used repeatedly until no holes remain only if the
original holes can be arranged into pairs where the boundary cycles in each pair
have equal length.

Proof of theorem 3.1. In the proof we use the well-known “pants decom-
position” which decomposes an arbitrary orientable surface of genus g, g ≥ 2, into
2(g−1) “pants”, where by “pants” one means the sphere with 3 holes (see Figure 1).
In fact, one can do the gluing of pants in two steps. First arrange the pants into
pairs and in every pair glue two pants together by one hole in each. This gives from
2(g − 1) pants exactly g − 1 “double pants”, where by “double pants” we mean a
sphere with four holes. These can then be glued together (as shown in Figure 1) to
obtain a surface of genus g.

Figure 1: Surface of genus 5 decomposed into 8 “pants” (or 4 “double pants”).

Let us consider the maps Mk, k ∈ {7, 8, 9, 12, 18}, presented in Figure 2. In all
these maps, Mk contains only holes and k-gonal faces, one of the faces being the

5



outerior one. For k ∈ {7, 8, 9, 12} the Mk is a map on a sphere with three holes
(i.e., it is embedded on “pants”), while M18 is embedded on a sphere with 4 holes
(i.e., it is embedded on “double pants”), and all the holes satisfy the assumptions
of Construction A. Hence, if one takes 2(g − 1) of Mk for k ∈ {7, 8, 9, 12}, or g − 1
of M18, and identifies the holes according to Construction A and Figure 1, then
the resulting structure is a cubic map on an orientable surface of genus g (without
holes), all of whose faces are k-gons. (In the case k = 9 we first glue pairs of “pants”
along the holes bounded by 4-cycles to obtain the “double pants”.)

M7 M8 M9

M10 M12 M18

Figure 2: Building blocks for cubic maps of type (6, k), k ∈ {7, 8, 9, 10, 12, 18}.

Now assume that k = 10 and that g is odd. Let us take the map M10 embedded
into the “double pants” (that is, the sphere with four holes) depicted in Figure 2.
Take g − 1 copies of this map and use Construction A repeatedly to obtain a map
of genus g in which all the faces are bounded by 10-cycles. Note that here we need
that g− 1 is an even integer, for otherwise the “hexagonal” holes would not pair up
and the resulting surface would still have at least one hole.

It remains to add to the map α hexagons. Take one hexagon and glue together
a pair of its opposite edges to obtain a cylinder. This cylinder is a sphere with
two holes, and the map is denoted by S1 (see the left-hand side of Figure 3). Now
take α maps S1 and glue them together according to Construction A to obtain
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Figure 3: Left: the map S1; Right: Four copies of S1 glued to form a cylinder.

a connected map with just two holes (see the right-hand side of Figure 3). The
resulting map is a cylinder with α hexagons and we can attach this cylinder according
to Construction A at any one of the holes bounded by a cycle of length 2 at any
stage of our gluing process. This does not affect the number of “pants” (or “double
pants”), so that the resulting map is a cubic map of genus g with α hexagons of
face-type (6, k), where k ∈ {7, 8, 9, 12, 18}, or k = 10 if g is odd.

Of course, the maps obtained in the proof of Theorem 3.1 are not polyhedral. In
the rest of the paper we restrict our attention to polyhedral maps only.

4 Some properties of tori polyhexes

In this section we present hexagonal tessellations of torus, that are used for con-
structing of heptagonal and octagonal fullerens.

x

y

0 1 2 3 4 5 6 7

Figure 4: Hexagonal tessellation and fundamental region for T7,2.

Let us consider a tessellation of a plane by regular hexagons shown in Figure 4.
Note that the hexagons have sides of length

√
3

3
. Now let a ≥ 1 and b ≥ 0 be

two integers. Consider the parallelogram with vertices (0, 0), (a, 0), (1

2
+ b,

√
3

2
)

and (1

2
+ b + a,

√
3

2
) (see Figure 4). If the two pairs of parallel sides are identified

appropriately, one obtains a cubic map Ta,b on the torus, which has precisely a
hexagonal faces. Notice that Ta,b corresponds to what is usually called a tori polyhex
H(a, 1, b).
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Denote the face of Ta,b whose center is at (i, 0) by fi, 0 ≤ i < a. Since we identify

the points (x, 0) with (b + 1

2
+ x,

√
3

2
), the center of fi is also at (b + 1

2
+ i,

√
3

2
).

In our constructions of polyhedral k-gonal fullerenes, k ∈ {7, 8}, we start from
the maps Ta,b. It is therefore useful to be able to determine which of these maps
are polyhedral. Note that the underlying graph of Ta,b contains no loops since
it is bipartite. Further, it contains no parallel edges provided that a > 1 and
b 6∈ {0, a−1}.

Proposition 4.1 The map Ta,b with a > 2 and 0 ≤ b ≤ a−1 is polyhedral if and
only if b 6∈ {a−2, a−1, 0, 1} and 2b 6∈ {a−2, a−1, a}.

Proof. Observe that the face f0 is adjacent to f1, fa−b, fa−b−1, fa−1, fb and
fb+1 (the addition in subscript being modulo a). Since Ta,b is face-transitive, it
suffices to consider only the face f0.

The face f0 is not adjacent to itself if and only if none of the neighbouring faces
is f0, which happens if and only if 1 6= 0, a − b 6= 0, a − b − 1 6= 0, a − 1 6= 0, b 6= 0
and b+1 6= 0 (all equalities being modulo a). This is equivalent to a > 1, b 6= 0 and
b 6= a − 1.

Now observe that f0 has more than one edge in common with some other face fc if
and only if c is equal to at least two values from the set L = {1, a−b, a−b−1, a−1, b, b+1}
(equality again being modulo a). By considering all pairs of values in L, we see that
two members in L coincide if and only if one of the following holds: a = 1, a = 2,
b = a−2, b = a−1, b = 0, b = 1, 2b = a−2, 2b = a−1, 2b = 0. This, combined with
the previous paragraph, yields the desired result.

The previous statement has the following straightforward corollary.

Corollary 4.2 The map Ta,2 is polyhedral if and only if a ≥ 7. The map Ta,3 is
polyhedral if and only if a ≥ 9.

5 Cubic polyhedral maps of face-type (6, 7)

In this section we construct cubic polyhedral maps of face type (6, 7) using the
following construction.

Construction B. Suppose that we have k maps Ta1,b1 , . . . , Tak,bk
. In these maps,

select a set F of 2h faces so that each face is adjacent to at most one face in F . Cut
out the faces in F from the (generally not connected) surface T = Ta1,b1 ∪ . . .∪Tak ,bk

.
In this way we obtain 2h holes, which are bounded by 6-cycles of the underlying cubic
graph. Now subdivide each edge in these 6-cycles to obtain 12-cycles whose vertices
have degrees 2 and 3 alternatingly. This results in an orientable map M of face-type
(6, 7) with 2h holes. Now apply Construction A to M consecutively h times to obtain
a connected cubic map M∗ of face-type (6, 7) which does not have holes.
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Note that no matter how we pair the holes of M , the map M∗ will always have
genus h + 1. We may now use the maps Ta,2 to produce heptagonal fullerens with
any admissible number of hexagons and any genus.

Theorem 5.1 Let α ≥ 0 and g ≥ 2 be arbitrary integers. Then there exists a
heptagonal fullerene of genus g with exactly α hexagonal faces.

Proof. Let G2, . . . , Gg−1 be disjoint copies of T14,2. In each Gi, i ∈ {2, . . . , g−
1}, denote by f i

0 and f i
7 the faces with centres at (0, 0) and (7, 0), respectively. Next,

let G1 and Gg be disjoint copies of T7,2 and T7+α,2, and let f 1
0 and f g

7 be the faces
of G1 and Gg with centres in (0, 0) and (7, 0), respectively. Now, use Construction
B by identifing each f i

0 and f i+1

7 for each i ∈ {1, . . . , g − 1} to obtain a map M∗ of
genus g. Note that the holes were chosen carefully enough so as to assure that the
resulting map is polyhedral (see also Corollary 4.2).

Finally we show that the number of hexagons is α. Note that during the con-
struction, the edges of each of f i

0’s and f i
7’s are subdivided. Hence the hexagons

neighbouring one of f i
0’s and f i

7’s are transformed into heptagons. Since every face
of G1, . . . , Gg−1, other than f i

0’s and f i
7’s, is adjacent to one of these, the only

hexagons in M∗ are those coming from Gg = T7+α,2. Since the number of faces in
Gg is precisely 7 + α, precisely α of them remain as hexagons in M∗.

6 Cubic polyhedral maps of face-type (6, 8)

In this final section we consider the octagonal fullerens and provide a generic con-
struction thereof.

Construction C. Take Ta,b and select 2h vertices, so that every face of Ta,b

is incident with at most one of the selected vertices. Now truncate all the selected
vertices, which creates 2h triangles. Cut out these 2h triangles from the surface
and subdivide every edge bounding the resulting holes (see Figure 5). In such a way
we obtain an orientable map M of face-type (6, 8) with 2h holes, each of which is
bounded by a 6-cycle whose vertices have degrees 2 and 3 alternatingly. Now apply
Construction A to M consecutively h times, to obtain a cubic map M∗ of face-type
(6, 8) which does not have holes.

Observe that the number of hexagonal faces in M∗ is a − 6h and the number of
octagonal faces is 6h. Further, since Ta,b is a toroidal map and each identification
of boundaries of a pair of holes increases the genus by 1, the genus of M∗ is h + 1.

In the next two theorems we construct cubic polyhedral maps of face-type (6, 8)
for every genus g ≥ 2. We start with g = 2.

9



v

Figure 5: Creating a hole bounded by a 6-cycle at the place of vertex v.

Theorem 6.1 If α ≤ 2 then there exist no octagonal fullerenes of genus 2 with
exactly α hexagonal faces. On the other hand, if α = 3 or α ≥ 5 then there exists
an octagonal fullerene of genus 2 with exactly α hexagonal faces.

Remark. Note that the existence of an octagonal fullerene of genus 2 with
precisely 4 hexagonal faces is still an open question.

Proof. By Lemma 2.1, a cubic map of face-type (6, 8) and of genus 2 must have
exactly 6 octagonal faces. If the map is polyhedral then the eight faces, adjacent to
every octagon, must be distinct. Therefore we have at least 9 faces in the map, so
that α ≥ 3, which gives the first part of the statement.

Now suppose that α ≥ 6 and consider Ta,2, where a = 6 + α. Select vertices

v1 and v2 with coordinates v1 = (1

2
,
√

3

6
) and v2 = (1

2
+ 6,

√
3

6
), see Figure 4. Then

v1 is incident with faces f0, f1 and fa−2, while v2 is incident with f4, f6 and f7

(where fi is the face the centre of which is in (i, 0)). Since a ≥ 12, the faces f0,
f1, fa−2, f4, f6 and f7 are distinct. Hence, Construction C, applied to Ta,2 with
the set of chosen vertices being {v1, v2}, gives a cubic map M∗ of face-type (6, 8).
By Corollary 4.2, Ta,2 is a polyhedral map, but this may not be the case for M∗.
However, if none of f0, f1 and fa−2 is adjacent to any of f4, f6 and f7, then the
map M∗ is polyhedral. As we show now, this can be achieved by selcting the twist
(parameter t) in Construction C appropriately.

Denote by Li the list of faces adjacent to fi. Then L0 = {f1, fa−2, fa−3, fa−1, f2, f3},
L1 = {f2, fa−1, fa−2, f0, f3, f4} and La−2 = {fa−1, fa−4, fa−5, fa−3, f0, f1}. Is it possi-
ble that we have f4, f6 or f7 in these lists? Let V2 = {f4, f6, f7}. As a ≥ 12, we have
L0 ∩V2 = ∅, L1 ∩V2 = {f4}, La−2 ∩V2 = {f7} if a = 12 and La−2 ∩V2 = ∅ if a > 12.
Thus, there is a required 8-gonal fullerene if we can glue the boundaries of the holes,
appearing on the places of v1 and v2, in such a way that f1 will not be adjacent to
f4 on this boundary and fa−2 will be not adjacent to f7. Let us fix a rotation on
Ta,2; say we choose the anti-clockwise one. Then the faces around v1 are in cyclic
order f0, f1, fa−2, while those around v2 are in order f4, f6, f7. Therefore the gluing
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can be organized in such a way that f1 is “opposite” to f4 and fa−2 is “opposite”
to f7, preserving the orientability of the surface, see Figure 6. The constructed map
M∗ is then polyhedral.

f6

fa−2

f4

f0

f7

f1

Figure 6: Left: Gluing the holes for g = 2 and α ≥ 6; Right: R3.

Suppose now that α = 5 and consider T8,2. Select vertices v1 = (8+ 1

2
,
√

3

6
) (which

may also be thought of as vertex (8+ 1

2
,
√

3

6
)) and v2 = (1

2
+4,

√
3

6
). Then v1 is incident

with f0, f1 and f6, while v2 is incident with f2, f4 and f5. Thus, after creating of
holes at the places of v1 and v2 we obtain a map M of face-type (6, 8) with two holes.
Let R3 be the cylindrical map with 3 hexagons shown in Figure 6). Then R3 is a
map on the sphere with two holes (i.e., on a cylinder), where each hole is bounded
by a 6-cycle with vertices of degrees 2 and 3 alternatingly. Hence, one can glue the
two holes of this cylinder to the two holes of M according to Construction A. Since
the faces incident to v1 are different from the faces incident to v2, in this way we
obtain a polyhedral map M∗ on double torus with α = 5.

Finally suppose that α = 3. Note that the graph K9−K3, the complete graph on
9 vertices with removed three edges that comprise a triangle, can be embedded on the
orintable surface with genus 3 due to Heffter [7] (see also [17, pp. 199]). Moreover,
this embbeding is a triangulation with 3 vertices of degree 6 and 6 vertices of degree
8. Its dual is a polyhedral cubic map of type (6, 8) with 3 hexagons and genus 2.

Theorem 6.2 Let g and α be integers, g ≥ 3 and α ≥ 0. Then there exists an
octagonal fullerene of genus g with exactly α hexagonal faces with possible exceptions
of g = 3 and α = 1, 2.

Remark. Note that the existence of octagonal fullerenes of genus 3 with pre-
cisely 1 or 2 hexagonal faces remains open.

Proof. Consider Ta,3, where a = 6(g−1)+α. In Ta,3 select the vertices ui and

vi, 1 ≤ i ≤ g−1, with coordinates ui = (1

2
+6(i−1),

√
3

6
) and vi = (2+6(i−1),

√
3

3
).
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Since ui is incident with faces f6i−6, f6i−5 and f6i−9, while vi is incident with faces
f6i−4, f6i−7 and f6i−8; the two vertices ui and vi are incident with f6i−9, f6i−8, f6i−7,
f6i−6, f6i−5 and f6i−4. As a ≥ 6(g − 1), each face of Ta,3 is incident to at most one
of the selected vertices. Thus, applying Construction C on Ta,3 with the selected
vertices gives a cubic map of face-type (6, 8). In the rest of the proof we show that
if we pair up the holes appearing at ui and vi carefully, then the resulting map M
is polyhedral.

Observe that as g ≥ 3 we have a ≥ 12, so that Ta,3 is a polyhedral map by
Corollary 4.2. Our intention is to glue the hole appearing at the position of ui with
the one at the position of ui+1 and also to glue the hole at vi with that at vi+1 for
some values of i. Since the underlying graph of Ta,b is vertex-transitive, it suffices
to check the pair u1 and u2. The faces incident with u1 are f0, f1 and fa−3, while u2

is incident with f6, f7 and f3. Now we have to check if these faces are not adjacent
already. Analogously as in the previous proof, denote by Li the list of faces adjacent
to fi. Then L0 = {f1, fa−3, fa−4, fa−1, f3, f4}, L1 = {f2, fa−2, fa−3, f0, f4, f5} and
La−3 = {fa−2, fa−6, fa−7, fa−4, f0, f1}. Denote V2 = {f6, f7, f3}.

First consider the case g = 3 and α = 0. Then a = 12 and we have 4 selected
vertices, u1, u2, v1 and v2. We like to glue the hole appearing at the position of u1

(v1) with the one appearing at the position of u2 (v2). We denote this pairing of holes
by u1−u2 and v1−v2. In this case L0∩V2 = {f3}, L1∩V2 = ∅ and La−3∩V2 = {f6}.
Thus, there is a required 8-gonal fullerene if we can glue the boundaries of the holes,
appearing on the places of v1 and v2, in such a way that f0 will be not adjacent to
f3 on this boundary and fa−3 will be not adjacent to f6. Since in the anti-clockwise
rotation the faces around v1 are in cyclic order f0, f1, fa−3, while those around v2 are
in order f3, f6, f7, the gluing can be organized in such a way that f0 is “opposite” to
f3 and fa−3 is “opposite” to f6, preserving the orientability of the surface. Hence,
M∗ is a polyhedral map.

Now consider the case when either g = 3 and α ≥ 3, or g is odd and g ≥ 5. In
this case we have even numbers of u’s and also even number of v’s. Hence, we will
glue them in fashion u1 − u2, u3 − u4, . . . and also v1 − v2, v3 − v4, . . .. Now a ≥ 15
and L0 ∩ V2 = {f3}, L1 ∩ V2 = ∅ and La−3 ∩ V2 = ∅. Thus, we can glue the holes
with a twist forcing that the face f0 will be “oposite” to f3, which gives the required
8-gonal fullerene.

Finally suppose that g is even (i.e., g− 1 is odd), g ≥ 4. Moreover, suppose that
if g = 4 then α ≥ 1. Then a ≥ 19. We glue the holes in fashion u2 − u3, u4 − u5,
. . . , v1 − v2, v4 − v5, v6 − v7, . . . , u1 − v3. All the pairs, but the last one, are all right
due to our previous discussion. In the last one, v3 is incident with faces f14, f11 and
f10. Let W3 = {f14, f11, f10}. Since a ≥ 19, we have L0 ∩ W3 = ∅, L1 ∩ W3 = ∅,
La−3 ∩W3 = {f14} if a = 20 or a = 21 and La−3 ∩W3 = ∅ if a = 19 or a ≥ 22. Thus,
we can glue the holes (with a twist forcing that the face fa−3 will be “opposite” to
f14 in the cases a = 20 and a = 21), which gives the required octagonal fullerene.

It remains to solve the case g = 4 and α = 0. Here we start with a hexagonal
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Figure 7: Initial toroidal map for g = 4 and α = 0.

grid with the fundamental region depicted in Figure 7 and we glue the opposite
edges in order to obtain a tori polyhex M ′ = H(6, 3, 0). Select in M ′ six vertices
u1, u2, v1, v2, w1 and w2 (these vertices are depicted as white circles in Figure 7).
Then it is obvious that no face incident with v1 is adjacent to any face incident with
v2, and analogous statement is true for the pair u1 and u2, as well as for w1 and
w2. Therefore if we provide Construction C on M ′ with gluing the pairs of holes
according to the scheme u1−u2, v1−v2 and w1−w2, we obtain a polyhedral map of
face-type (6, 8), that is, an octagonal fullerene of genus 4 with no hexagonal faces.

We remark that the cases g = 2 and α = 4, as well as g = 3 and α = 1, 2, remain
open for octagonal fullerenes.
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